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ASYMPTOTIC EXPANSION AT A CORNER
FOR THE CAPILLARY PROBLEM: THE SINGULAR CASE

ERICH MIERSEMANN

Consider the solution of the capillary surface equation near a cor-
ner of the base domain. It is shown that there exists an asymptotic ex-
pansion of the height rise of the surface in a wedge when a+γ < π/2,
where 2a is the corner angle and 0 < γ < π/2 the contact angle
between the surface and the container wall. The asymptotic does not
depend on the particular solution considered. In particular, the lead-
ing singularity which was discovered by Concus and Finn is equal to
the solution up to O(r3).

1. Introduction. We consider the non-parametric capillary problem
in the presence of gravity. One seeks a surface S: u = u(x), defined
over a base domain Ω c R2, such that S meets vertical cylinder
walls over the boundary dΩ in a prescribed constant angle γ. This
problem leads to the equations, see Finn [6],

(1.1) div Tu = κu inΩ,

(1.2) v -Tu = cos γ on the smooth parts of dΩ,

where

\Du\2 '

K = const > 0 and v is the exterior unit normal on the smooth parts
of dΩ.

Let x = 0 be a corner of Ω with the interior angle 2a satisfying

(1.3) 0 < 2 α < π .

We assume that the corner is bounded by lines near x = 0 and that
ΩR =ΩΓ\BR coincides with the circular sector

^ 0 0

{x e R2\x\ tanα > |JC2|} n BRQ

for a sufficiently small Ro > 0, where

BR = {x e R2\xf + x2 < R}.

Furthermore, we assume that the contact angle satisfies

(1.4) 0<y<π/2.
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Concus and Finn [2] have shown that u is bounded near the corner
if and only i f α + y > π / 2 i s satisfied.

The existence of a solution at an isolated corner when a + γ > π/2
was proved by Emmer [5] and in the case a + γ < π/2 by Finn and
Gerhardt [7].

When a + γ > π/2 there exists an asymptotic expansion of u near
the corner, see [9]. In the borderline case a + γ = π/2 Tarn [13]
obtained that the normal vector to the surface S is continuous up to
the corner.

In this note we will give an asymptotic expansion in the case

(1.5) a + γ<π/2,

where the solution u is singular at the corner.
The proof is based on the following comparison principle of Concus

and Finn, see [3] or [6, Chapter 5]. This principle remains valid for
unbounded domains too, see Finn and Hwang [8].

For 0 < R < Ro we set ΩR = ΩnBR, ΣR = (<9ΩnBR) \ {0} and
Γ Λ = Ω n dBR.

THEOREM 1.1 {Concus and Finn [3]). Let v , w e C2(ΩRuTR) with
the properties

(i) div Tv -KV < div Tw - KW in ΩR,
(ii) v > w on ΓR,

(iii) v -Tυ >v Tw on ΣR as a limit from points of ΩR.

Then υ <w in ΩR.

This theorem is a consequence of a more general comparison prin-
ciple, see Finn [6, Chapter 5].

Let r, θ be polar coordinates centered at x = 0, set k = sin a/ cos γ
and

Then, it was shown by Concus and Finn [3] that under the assump-
tions (1.3), (1.4) and (1.5) there exist positive constants ΓQ and A
only depending on α, γ, K and not on the particular solution u
considered such that

h(θ)
(1.7) u- <A inΩr0

The author [10] improved this estimate by showing that in fact there
exist positive constants ΓQ , A and e not dependent on the particular
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solution u considered such that
h{θ)

(1.8) u — Arε in Ω r .
0

The proofs of (1.7) and (1.8) are based on the above comparison
principle.

The estimate (1.8) shows that for fixed θ the height u(x) is asymp-
totically a hyperbola. For θ = ±a one obtains the curves of contact
on the container wall. With respect to an experiment performed by
Taylor [14] in 1712 compare Finn [6, Note 4, p. 131], see also Boys
[1, p. 26] and Minkowski [12, p. 577] for the assertion that the trace
of the surface on the container wall is a hyperbola.

2. Asymptotic expansion. The proof of the existence of the fol-
lowing expansion is completely based on the comparison principle of
Concus and Finn. In contrast to the bounded case a + γ > π/2, the
terms in the expansion do not depend on the particular solution u
considered.

In the following we set

where h is defined by (1.6).
Let u be a solution of (1.1), (1.2) and assume that (1.3), (1.4) and

(1.5) hold. Under these assumptions we have

THEOREM 2.1. For a given nonnegative integer m there exist posi-
tive constants r0, A and m + 1 functions h4l_ι(θ), / = 0, . . . , ra,
analytical on (—α, a) and bounded on [—a, a], such that

m
/-I <Ar ,4ra+3

/=0

in Ω r Q. Moreover, the constants r 0 , A and the functions Λ4/_! do not
depend on the particular solution u considered.

REMARK 2.1. The functions /*4/_i(0) are solutions of regular
boundary value problems of second order (3.16)? (3.17) with analytic
coefficients and an analytic right-hand side, provided 0 < y is satis-
fied, see Lemma 3.2. Therefore, the functions h4ι_χ are analytical on
the closed interval [-a, a]. In the case γ = 0 the boundary value
problems are singular, see §§4 and 5.

In particular, we obtain from m = 0 an improvement of the esti-
mate (1.8).
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COROLLARY 2.1. Under the assumptions (1.3), (1.4) and (1.5)
exwί positive constants AQ am/ 4̂ rcctf dependent on the particular so-
lution considered such that

u{x)-
cos θ - y/k2 - sin2 θ

Kkr

in Ω, Λ .

<Ar3

REMARK 2.2. It is interesting that the above asymptotic expansion
has the same qualitative behavior as does the asymptotic expansion
for the isolated singular solution of div Tu — —κu studied by Concus
and Finn [4]. In particular, both expansions contain only powers in

r4/-i with nonnegative integers /.

3. Proof of Theorem 2.1 if 0 < γ < π/2. The result follows by
induction from the next three lemmas.

For a nonnegative integer n we define

(3.1) v Λ W =
1=0

with analytic functions h^_λ{θ) on [ - α , α ] .
We assume that vn satisfies

(3.2) div Tvn - κvn = O(r4n+3) in o

(3.3) v Tvn- cos γ = O(r4n+4) on ΣRQ .

By writing g = O(r^), we mean |g | < cr$, where c is independent
of x e ίlRo.

The calculations in the proof of the next lemma are natural exten-
sions of computational results of Concus and Finn [2, 3] and of the
author [10].

LEMMA 3.1. Let vn be a function of the above type (3.1) satisfying
(3.2) and (3.3). Then there exist positive constants A and r0, 0 <
f"o < ^o» not dependent on the solution u considered such that

\u(x) - vn{x)\ < Ar4n+3

in Ω r o .

Proof Let

(3.4) w = v +Aq(θ)rλ, v=vn,
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where A = const, λ = const > 0 and q e C2[—α, a]. The positive
constant λ and the function q(θ) will be determined later indepen-
dent of A.

In polar coordinates we have

where |Z>w|2 = w} + r~2w%.
The definition of w yields

div Tw = r

where

Q = 2Aλvrqrχ-χ + 2Aq'ver
x-2 + A2λ2q2r2λ~2 + A2qar2χ-2 .

We assume that for a given sufficiently small η > 0 the inequality

(3.5) \A\ri+l < η

holds. Then, after some calculations, we obtain

(3.6) div Tw = div Tv + ALλ[q]rλ + η\ + ηi

in Ω r o, with

(3.7) Lλ[q] = {ax{θ)Qf

where ax = h2(h2 + /z / 2)"3/2, α0 = λhh'{h2 + h'1)^!2, bγ =
{λ + 2)hhf{h2 + hf2)~y2 and b0 = λ(λ + 2)h/2(h2 + Λ/2)"3/2 and the
quantities η\ and f/2 satisfy

\η2\<c2A
2r2M

where the constants c\ and C2 do not depend on A or r.
From (3.4) and (3.6) we obtain

(3.8) div Tw -KW = A(Lλ[q] - κq)rλ + η\+η2 + η?>

in Ω Γ Q , where
ΓQ

C3 independent of A or r.
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For v Tw on Σ ^ we have in polar coordinates

— l
v-Tw = sign0. / Wθ , θ = ±a.

/l + \D\2

Under the assumption (3.5) it follows after calculation that

(3.9) v Tw - cos γ = AGλ[q]rλ+ι + μx + μ2 + μ$

on Σr , where

(3.10) Gλ[q] = aι(θ)q'

and

\μι\ < kx\AVλ+\ \μi\ < k2A
2r2λ+

with constants kj not dependent on A or r.
We insert q — h(θ)~λ + 8Q with λ = An + 3 into Lλ[q] and

^A[<?]? where εo is a sufficiently small positive constant such that
Lχ[q] — Kq < 0 remains valid on [-α, a].

If 4̂ > 0, then this choice and (3.8), (3.9) imply that there are
positive constants Co and ko not dependent on r or 4̂ such that

div Tw -KW < -c0Arλ

in ΩΓQ and

Tw - cosy > M > A + 1 - M r ^ + 5 - k2A
2r2λ+1 - k3r

λ+ι

on ΣΓQ . From (3.5) it follows that

(3.11) divΓu; ~κw < -rλ[A(c0 - cxr% - c2η) - c3]

in ΩΓQ , and

(3.12) v . Γw - cosy > r A + 1 μ(/c 0 - fciftf - fc2»/) - ^ 1

on ΣΓ . The estimate (1.7) or (1.8) implies that for

(3.13) A = Aor'\

where Ao is a fixed sufficiently large positive constant which does not
depend on r0 or on the particular solution u considered, we have

(3.14) u<w o n Γ v
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From (3.11), (3.12) and (3.13) we conclude that there exist sufficiently
small η > 0 and ro > 0 such that the estimate (3.5) and the inequal-
ities

div Tw - KW <0 in ΩΓo,

v Tw > cos γ on Σr ,

w >u on ΓVo

hold. The comparison principle of Concus and Finn (see Theo-
rem 1.1) implies u < w in ΩΓQ , or

u(x)<υn(x) + Cr4n+\

where C = Ah{θ)~^n^ .
If 4̂ < 0, then we obtain by the same reasoning a lower bound for

u in Ωro. Thus, the lemma is proved.

The next lemma concerns the existence of approximate solutions in
the sense of (3.1)5 (3.2) and (3.3).

LEMMA 3.2. Assume that vm(x), m a nonnegative integer, satisfies
(3.1), (3.2) and (3.3) with n = m. Then there exists an analytic
function h^m+^θ) on [ - α , α ] such that

satisfies (3.2) and (3.3) with n = m + l.

Proof. Set v = υm and λ = Am + 3. We seek a function q(θ) such
that w = υ(x) + q(θ)rλ is an approximate solution in the sense of
(3.2) and (3.3) with n = m + l.

Following the proof of Lemma 3.1, we obtain

div Tw -KW = div Tv -KV + (Lλ[q] - κq)rλ + O^4)

in Ω Γ Q , and

v Tw = v Tv + Gλ[q]rM + O(rλ+5)

on ΣΓ Q , provided r0 > 0 is sufficiently small.
Since v =υm is given by (3.1) and satisfies (3.2) and (3.3), we have

for an analytic function fλ(θ) on [-α, a]

(3.15) divTv -κv=
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in Ω r o, and for constants g[ι\ g^

v Tv = cosy + g[i]rM + O{rλ+5)

on Σ^ , where Σ^ denotes the upper part and Σ^2^ the lower part of
Σ.

Thus, we seek a solution q(θ) of the following linear and regular
boundary value problem.

(3.16) Lλ[q]-κq = fλ(θ) in(-α,α),

(3.17) Gλ[q]=l8λ

m ^"j

where the differential operators Lλ and Gχ are defined by (3.7) and
(3.10).

The lemma is proved if there exists a solution of (3.16) and (3.17).
We will show that the homogeneous problem

(3.18) Lλ[q]-κq = 0 in (-α, a),

(3.19) Gλ[q] = 0 iΐθ = ±a,

has only the null solution. Consequently, there is a unique solution of
(3.16), (3.17).

Let qo(θ) be a solution of the homogeneous problem. We replace
v = vm by υm + qo{θ)rλ\nr in w of the proof of Lemma 3.1; see
(3.4). Following the calculations in that proof, we obtain

div Tw = div Tv + ALλ[q]rλ + ηx + η2

= div Tvm + Lλ[qQ]rλ In r + ALλ[q]rλ + ηλ + η2 + ̂ /3

where the ^ satisfy the same estimates as in the proof of Lemma 3.1.
From the definition of w we obtain

div Tw - KW = (Lλ[qo] - κqo)rλ In r

+ A(Lλ[q]-κq)rλ + m + η2 + η3.

For the boundary operator we find

(3.21) v Tw -cosy - Gλ[q0]rλ+ι In r + AGλ[q]rM

also the μ7 satisfy the same estimates as in the proof of Lemma 2.1.
Because #o solves the homogeneous problem (3.18), (3.19), the es-

timates (3.20) and (3.21) imply by the same reasoning as in the second
part of the proof of Lemma 3.1 the asymptotic formula

u(x) = vm(x) + qo(θ)rλlnr + O(rλ),

where λ = 4m + 3.
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According to Lemma 2.1, we have on the other hand

u{x) = vm(x) + O(rλ).

These expansions force that qo(θ) = 0 f° r aU θ £ [~a > a] Thus, the
lemma is proved.

REMARK 3.1. The functions h^_x{θ) are even with respect to 0 = 0
since Λ_i(0) = h(θ) is even. We omit the details.

REMARK 3.2. The solvability of a boundary value problem of the
type (3.16), (3.17) was discussed also in [11] by using asymptotic ex-
pansions.

The next lemma, see Finn [6, Chapter 5], which yields the basis of
the induction, follows after some calculation.

LEMMA 3.3. The singular function υ0 = h(θ)r~ι satisfies (3.2) and
(3.3), also in the case y = 0.

4. Proof of Theorem 2.1 if γ = 0. In this case the function h\θ), h
is given by (1.6), becomes singular at the ends of the interval (-a, a)
whereas h remains bounded from below by a positive constant.

More precisely, there are positive constants CQ , C\ and 6Q , 0 <
8Q < a, such that

(4.1) co(a2 - θ2)-χ/2 < h'(θ)signθ < cλ{a2 - 0 2 )" 1 / 2 ,

(4.2) cQ(a2 - θ2)-3'2 < h"(θ) < cx(a2 - Θ2)~^2

on (-a, -a + ε0) U (α - ε 0 , α ) .
Let υn(x) be given by (3.1) with analytic functions h4ι_ι(θ) = q

in (—α, a) satisfying

(4.3a) sup|#(0)| < oc,

(4.3b) sup[(a2-θ2)ι'2\q'(θ)\]<oo,

(4.3c) sup[(α2 - Θψ2\q"(θ)\] < oo,

where the supremum is taken over (—a, a).

LEMMA 4.1. Let vn be a function oftype (3.1), where h4ι_ι satisfies
(4.3a)-(4.3c) and (3.2). Then the conclusion of Lemma 3.1 is valid.
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Proof, Let w be given by (3.4), where the functions h4i_ι and q
satisfy (4.3a)-(4.3c). We have

i 2

Inserting these expressions into

v Tw = sign θ — θ

we obtain from the properties (4.1), (4.3a) and (4.3b) and under the
assumption (3.5) that

(4.4) v Tw = 1 on Σ r

as a limit from points of ΩΓQ .
After some calculation we arrive at (3.8) also in the case γ = 0.
Combining (3.8) and (4.4), Lemma 3.1 follows also in the case γ = 0

as in the second part of the proof of that lemma.
One obtains the estimate (3.8) by the same calculations as in the

proof of Lemma 3.1, provided that θ G (—α + βo > a ~ eo) is satisfied.

It is not clear from that computation whether the estimates
(3.8) remain valid up to the ends of the intervals (—α, a). If θ e
( - α , —α + εo] U [a - 8Q , a), then we calculate div Tw as follows.

With the abbreviations

* + Aλq(θ)rM ,

we obtain

div Tw = r-ι([rH0(r4 + # 0

2 + , + + H$ +
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Since

it follows from (4.1)? (4.2) and (4.3a)-(4.3c) that the constants cy in
the estimates (3.8) remain bounded near the ends of the interval.

This is valid also for the functions f4m+?>{θ) in the expansion (3.15).

LEMMA 4.2. Assume that vm(x), m a nonnegative integer, satisfies
(3.1), (4.3a)-(4.3c) and (3.2) with n = m. Then there exists a function
h4m+3(θ) satisfying (4.3a)-(4.3c) such that the function vm+\ from
Lemma 3.2 solves the approximate differential equation (3.2) with n =
ra+ 1.

Proof. As in the proof of Lemma 3.2 we arrive at the differential
equation (3.16) for q = /*4m+3 with the right-hand side Um+τ>.

The boundary conditions are given by (4.3a)-(4.3c).
By the same reasoning as in the second part of the proof of Lemma

3.2 one concludes that the associated homogeneous problem has only
the solution q = 0 on (-α, a).

From the lemma of the next section it follows that there is a unique
solution of (3.16) under the boundary conditions (4.3a)-(4.3c). Thus,
Lemma 4.2 is proved.

The result of Theorem 2.1 if γ = 0 follows from the above lemmas
and from Lemma 3.3 as in the previous section.

5. The singular boundary value problem. From the behavior (4.1),
(4.2) of h one sees that coefficients of the differential equation (3.16)
degenerate at the ends of the interval if γ = 0.

LEMMA 5.1. Under the boundary conditions (4.3a)-(4.3c) there ex-
ists a unique solution q e C2(-a, a) of the singular differential equa-
tion (3.16) with the right-hand side fλ(θ) =

The proof of this lemma is based on standard methods for such
singular boundary value problems. For the convenience of the reader
we will sketch the proof.

Let φ G CQ (-α, a). We define an associated bilinear form to Lλ[q]

by

J-
- boqφ + aoqφ) dθ.
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Instead of (3.16) we consider

for all φeC£(-a,a)9 where (f9φ) = f°af(θ)φ(θ)dθ.

Define the Hubert space H\ as the closure of CQ(—α, a) with re-
spect to the norm

1/2

amφ^dθ + wφw^

where \\φ\\2

0 = J^&dθ.
From the special structure of the coefficients of Lχ[q] and the es-

timate (4.1) for h'(θ) one concludes that there are positive constants
Co and c\ such that

for all φeH\.
Consequently, according to the lemma of Lax and Milgram, the

problem

qeHχ:a[q,φ] + c{q, φ) = - ( / , φ)

for all φeH\, has a unique solution for each / e L2 , provided c is
a sufficiently large positive constant.

Since c(q, φ) is a compact perturbation of a[q, (/>] + /c(<?, 0) with
respect to the above Hi norm, it follows that the associated operator
T to a[q, φ] + κ(q, (/>) considered as a mapping from //i in L2 has
index zero, that means

index T = codim(range T) — dim(kernel T) = 0.

Thus, there is a unique solution of (5.1) for each / e L 2 , provided
the associated homogeneous problem has only the null solution.

The lemma is proved if each solution q e H\ of (5.1) belongs to
C 2 ( - α , a) and satisfies (4.3a)-(4.3c). The definition of Hγ implies

(5.2) 2 2

for q G H\, which is an easy consequence of a Sobolev embedding
lemma in one dimension. The supremum is taken over (—α, a). In
fact, one has the stronger inequality

(5.3) sup[(α 2-

which is a consequence of the Hardy inequality.



SINGULAR CAPILLARIES IN CORNERS 107

From the special structure of the coefficients of the differential equa-
tion (3.16) and since the right-hand side / is bounded on (—α, a),
we obtain the desired estimates (4.3a)-(4.3c) after three iterations by
using the equation (3.16) and the estimate (5.2). With (5.3) instead
of (5.2) we need only two iterations.
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