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ON THE ANALYTIC REFLECTION
OF A MINIMAL SURFACE

JAIGYOUNG CHOE

For a long time it has been known that in a Euclidean space one
can reflect a minimal surface across a part of its boundary if the
boundary contains a line segment, or if the minimal surface meets a
plane orthogonally along the boundary. The proof of this fact makes
use of H. A. Schwarz's reflection principle for harmonic functions.

In this paper we show that a minimal surface, as a conformal and
harmonic map from a Riemann surface into R 3, can also be reflected
analytically if it meets a plane at a constant angle.

THEOREM 1. Let Σ c R3 be a minimal surface with nonempty
boundary dΣ and let Π be a plane. Suppose that L c Σ n Π is a
C 1 curve, Σ is C 1 along L, and at all points of L the tangent plane
to Σ makes a fixed angle 0 < θ < 90° with Π. Then Σ can be
analytically extended across L to a minimal surface Σ satisfying the
following properties:

(i) Σ = ΣuΣ*, where Σ* is the set of all images p* of p eΣ under
an analytic reflection map *.

(ii) p and p* are separated by Π in such a way that

dist(p, Π) = dist(/7*, Π).

(iii) The Gauss map #: Σ —> C satisfies

g(p) g(P*)=
(iv) p* G Σ* is a branch point (geometric) if and only if p eΣ is.
(v) The map * is a single-valued immersion if Σ is simply con-

nected and L is connected, or Σ is doubly connected and L is closed.
(vi) If * is single-valued, then Σ* has finite total curvature if and

only if Σ does.
(vii) If dΣ = L, then Σ is complete.

Proof. Let x, y, z be coordinates of R3 such that Π = {(x, y, z):
z = 0}. Since x, y, z are harmonic functions on the minimal sur-
face Σ, one can find conjugate harmonic (possibly multiple-valued)
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functions x j , z t o x j , z respectively on Σ. Then

u = x + ix, v = y + ϊy, tt; = z + ίz

are holomorphic (possibly multiple-valued) functions on Σ, and

du — dx + ΰ/jc, dv = dy + idy, dκ; = dz + zrfz

are holomorphic 1-forms on Σ. Introduce z , z as conformal param-
eters on Σ. Then Σ can be recaptured by setting

/

W rW pw

du, y — Re / dυ , z = Re / rfw .
From the conjugacy of x , y, z to x , j ; , z , it follows that

du2 + dv2 + dw2 = 0.

Define a holomorphic differential ω and a meromorphic function ^
on Σ by

ω — du- idv , g = -= T-T-.
du- idv

Then we have

(1) y = Re

= Re/

It is well known that g is exactly the Gauss map of the surface Σ.
Put - Σ = {{x,y, -z): (x,y, z) e Σ} and define a Riemann

surface Σ by Σ = Σ u (-Σ). For any p = (x, y, z) e Σ, let
-p = (x,y9 -z) e - Σ . Since z = 0 on Σ n (-Σ) (D L), we can
extend the conformal parameters z, z over to Σ (across L) by the
usual reflection with respect to Π, that is,

z(-p) = -z{p) and ~z{-p) = ~z{p) for any -pe-Σ.

Hence we see thatdw is a well-defined holomorphic 1-form on the
Riemann surface Σ.

Now note that the constant angle hypothesis implies

\g(p)\= (tan£) forallpeL.

In other words, g maps L into a circle in C. Since JC is C 1 along
L and L plays the same role in the Riemann surface Σ as a line does
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in C, we can extend the Gauss map g holomorphically over to Σ
(across L) as follows. Define an extension of g, still called g, by

(2) g(-p) = (tan2 θ- . J{pή , -p 6 - Σ .

Clearly g is holomorphic on - Σ and continuous on Σ. Let h: C —• C
be a linear transformation which maps the circle \w\ = (tanf )~* onto
the imaginary axis of C. Then the real part of hog is continuous on
Σ and harmonic on Σ and - Σ . Moreover we have

Re[Λ o g(-p)] = Re[Λ o g(p)] = 0 for p e L,

Rc[h o g(-p)] = -Re[A o g(p)] for - p e - Σ .

Hence by the reflection principle we conclude that hog is holomorphic
on Σ, and so is g.

Using this extended map g, the extended 1-form dw, and the
Weierstrass representation formula (1), we can obtain the extended
minimal surface Σ. Here, forjuiy p G Σ ? p* is determined by inte-
grating (1) over a contour on Σ from a fixed point to —p. In case Σ
is multiply connected it may happen that the reflection map * maps
p G Σ to infinitely many points p* G Σ*. Also we should discuss the
case where g(p) = 0 or oo. At such a point p, w cannot be a param-
eter of Σ. However dw and ^±g have a zero and a pole of the same
order respectively at —/? as well as p. Consequently du and dυ are
holomorphic at -p and thus Σ* is well defined in a neighborhood of
p*. This proves conclusion (i).

Conclusion (ii) follows from the symmetry of - Σ to Σ and the
formula for z in (1).

(2) implies (iii).
Suppose p is a regular point. If the tangent plane to Σ at p is

parallel to Π, then dw = 0 at p. For this reason, w is not a good
conformal parameter near the point p. However, for any conformal
parametrization in a neighborhood of p, the metric of the correspond-
ing immersion is, by [BC],

ds2 = I(
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Hence the ratio between the metrics at p and -p is given by

ds2(-p) = + (tan~2 f \g\~ι + tan2 f - \g\)2\dw\2

ds2(p) 4(1*1+ ltfh1)2Wwl2

Note here that this ratio depends not on the parametrization of Σ but
on the geometry of Σ. Furthermore one can easily show that

( θ θ\

tan2 - , tan"2 - )
ds(-p) ^ ( 2Θ -2^\

Λ / < max tanz - , tan z - < oc.

<

Therefore Σ* is also regular at /?*. Since Σ = (Σ*)* and p = (/?*)*,
we can obtain the converse similarly.

For (v), we note that in either case every contour in Σ is nullhomo-
topic or homotopic to a contour in Σ and that no forms in formula
(1) have real periods on Σ. Hence * is single-valued and so, by (3),
an immersion.

To prove (vi), we use a formula for the Gauss curvature of Σ [BC]:

.1/1(1 +
The curvature ratio between p and —p is given by

Γ 4 | ^ | 1
K{-p) _ [tan6f |g|3(l+tan-4f |gΓ2)2J _ tan4 f (1 + |g | 2 ) 4

K(P) Γ 4\g'\ ]2 ~ ( 1 + tan4 f -1^|2)4

Therefore

0 < min tan l z - , tan~4 ^

and the conclusion follows.
Finally it is not difficult to see that (vii) can be derived from (3).

Thus the proof of the theorem is now complete.
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COROLLARY. Let Σ be a complete minimal surface of finite total
curvature in R 3 . If an end E of Σ meets a plane along dE at a
constant angle, then Σ is the catenoid.

Proof. From Theorem 1 it follows that E = EuE* is a complete
minimal surface of finite total curvature with two ends. E must then
be the catenoid [L]. Obviously, by the unique continuation property
of a minimal surface, we have Έ = Σ.

Let Σ be a minimal surface in R3 with Gauss map g. For any
real number 0 < r < oo, let us denote by Σ r the minimal immersion
of Σ into R3 defined by the formula

/

w 1 / 1

2 V g rg
<*w i ( 1

=ReI
W

dw.

Then we see that every minimal surface can be deformed into a 1-
parameter family of minimal surfaces and that this deformation pre-
serves the z-coordinate and multiplies the Gauss map by r.

THEOREM 2. Assume Σ c R 3 is a minimal surface with nonempty
boundary dΣ which makes a constant angle θ with a plane Π along

dΣnu.
(i) For any real number 0 < r < oo, the minimal surface Σr makes

a constant angle φ = 2 tan" 1 (± tan | ) with Π along dΣr n Π.
(ii) There exists a positive real number s such that the minimal

surface Σs meets Π orthogonally along dΣs n Π, and the analytic
extension Σ of Σ is the same as (Σs u (Σs)*)\/S, where (Σ5)* is the
usual reflection {mirror image) of Σs with respect to Π.

Proof, (i) By hypothesis, \g{p)\ = (tanf)" 1 for all p e <9ΣnΠ.
Then

\ / \ /
where φ = 2 t a n ~ 1 ( ~ t a n | ) . Since the deformation of Σ into Σr
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preserves the z-coordinate and multiplies the Gauss map by r, Σr

meets Π along 3Σr n Π at the constant angle φ.
(ii) Let s be the positive real number satisfying

2tan" 1 I - t a n - J = 9 0 ° .

Then Σs meets Π orthogonally. Clearly we have

Since (Σ5) is the union of Σ5 and its mirror image (Σ5)* with respect
to Π, we conclude that

REMARKS. 1. A nice example of the analytic reflection can be seen
in the catenoid. Let Π ! , Π 2 , and Π 3 be the parallel planes with
dist(Πi, Π2) = dist(Π2, Π 3 ) . Let Σ be the catenoid whose ends are
parallel to the Π, . Then Σ intersects the Π/ along circles at con-
stant angles at. Assume α 2 φ 90° and define D\, Z>3 to be the two
bounded components of Σ ~ (Πi UΠ2 UΠ 3 ) . Then Z>3 is the analytic
reflection of Dγ with respect to Π 2 and D\ is that of Z>3. If we
define D+, Z>_ to be the components of Σ ~ Π 2 , then D+ = CD-)*
and Z)_ = (/)+)*.

2. Embeddedness of Σ does not necessarily imply that of Σ*.
3. If the tangent plane to Σ at p is parallel to Π, so is the tangent

plane to Σ* at p*. This is clear in view of Theorem l(iii).
4. Given an angle 0 < θ < 90°, two points p\, /?2 on Π, and a

curve Γ c R 3 from p\ to /?2, one can construct an area minimizing
surface Σ with the fixed boundary Γ and a free boundary L c Π
along which Σ meets Π at the angle θ as follows. Let Γi be the line
segment on Π from p2 to p\. We regard Γ, Γi as 1-dimensional
sets with orientation, i.e., 1-currents. Let S be a surface with dS =
Γ U Γs, Γs c Π. Give S and Γ^ orientations, S is then called a
2-current, in such a way that dS = Γ - Γ^. As sets, Γi and Γ^
bound a planar domain ΰ c Π with dD — T\ U Γ^ . Giving suitable
orientations to each component of D, we can make D into a 2-current
such that dD = Γ\ + Γ^. Let us fix an orientation of the plane Π.
Then D, as a set, is divided into two disjoint domains D\, Z)2 such
that D\ and Z>2 with the orientation inherited from Π can be thought
of as 2-currents, and

D = Dx - D2 .
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Now we define A(S), the modified area of S, by

A{S) = Area(S) + cos <9[Area(Z>i) - Area(D2)l -

Let &" be the family of all 2-currents S such that dS -Γ is a 1-
current on Π. Then it is not difficult to see that —oo < mf{A(S): S e
^} and therefore we can find a modified area minimizing current
Σ. Σ, as a set, is a desired minimal surface, and by [T] it is Holder
continuously differentiable up to its free boundary. Thus we can an-
alytically extend Σ across its free boundary <9Σ ~ Γ to obtain the
θ-reflection Σ* of Σ with respect to Π.

Open problems. 1. Is it possible to extend Theorem 1 to the case of
a constant mean curvature surface in R3 or a minimal hypersurface
in Rn ? It is well known that the answer is yes if a constant mean
curvature surface (a minimal hypersurface respectively) meets a plane
(a hyperplane respectively) orthogonally.

2. As a generalization of Corollary, is it true that if a complete
constant mean curvature surface Σ of finite topological type intersects
a plane at a constant angle Φ 90°, then Σ is a Delaunay's surface?

3. Given a compact convex body U in R 3 , one can construct a
minimal disk D in U which makes a constant contact angle θ with
the convex boundary d U ? Griiter and Jost [GJ] solved the problem
affirmatively when θ — 90°.

4. Most complete minimal surfaces are known to have at least one
plane of symmetry. However, some complete immersed minimal sur-
faces of genus zero constructed by H. Karcher do not have a plane
of symmetry. Nevertheless, given a complete minimal surface in R 3 ,
can one find a plane which intersects the minimal surface at a constant
angle?
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