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ASYMPTOTICALLY FREE FAMILIES
OF RANDOM UNITARIES IN SYMMETRIC GROUPS

ALEXANDRU NICA

We prove that independent, Haar distributed families of random
unitaries in symmetric groups are asymptotically free.

1. Introduction. In this note we prove that independent, Haar dis-
tributed families of random unitaries in symmetric groups are asymp-
totically free.

If Gn is a closed subgroup of the unitary group U(n), then by a ran-
dom unitary in Gn we understand a measurable function f: X -+ Gn,
where (X, &, P) is a (fixed) probability space. A random unitary in
Gn has a distribution, which is a probability measure on Gn, and we
can define the notion of independence for a family of random uni-
taries, exactly as it is done for usual real-valued random variables. A
family (fω)ωeΩ °f random unitaries in Gn will be called, following
[1], standard-independent if it is independent and if the distribution
of every fω is the Haar measure on Gn .

Now, a family (fω)ωeo, °f random unitaries in Gn can be also
viewed as a family of unitaries in the non-commutative probabil-
ity space (SDΐπ, τn), where UJln is the unital *-algebra of measurable
functions X —> Matπ(C), having bounded entries, and τn is the trace-
state of ίJJln obtained by integrating the normalized trace of MatΛ(C).
From this point of view, the concept analogous to independence to be
considered is the property of (fω)ωeΩ of being or not being free (see
[2]). This property can be expressed in terms of a naturally defined
"non-commutative distribution" of (fω)ωeΩ > which is a state on the
group algebra of the free group on Ω generators.

Hence, we are in a situation when both concepts of independence
and freeness can be considered. It seems to be a deep phenomenon
that, as found by D. Voiculescu in [1] for several important examples
of such situations, one can hope independence to give rise (at least in
good cases) to asymptotic freeness.

In our particular framework, the problem-type reflecting this phe-
nomenon can be stated as follows: "For every n > 1, let (Λ,
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be a standard-independent family of random unitaries in the closed
subgroup Gn of U(n). Is it true, for a reasonable series (Gn)™=l9

that the families (Λ,ω)ωeΩ a r e asymptotically free for n —• oo?" In
[1] it is proved that this is true for Gn — U(n), and it is found that
the limit non-commutative distribution of the families (fn,ω)ωeΩ is>
roughly speaking, the free product of Ω copies of the Haar measure
on the circle.

The goal of this paper is to prove that the same holds if every Gn

is a semidirect product A* xanSn , with Sn the group of permutations
of {1, 2, . . . , n} , An a closed subgroup of the circle, and an: Sn —>
AvA(A%) the natural action,

an(t)(zι, z2, . . . , zn) = (V'( i ) , V1(2)> ' V 1 ^)) *
The paper is subdivided into sections as follows: in §2 we fix the

notations and review the concepts related to non-commutative prob-
ability spaces that we need. In §3 we state precisely the problem-type
concerning asymptotic freeness for standard-independent families of
random unitaries. In §4 we prove the main theorem of the paper,
namely that asymptotic freeness holds for the series (Sn)™=ι of sym-
metric groups, and in §5 we extend the result to the above-mentioned
case of semidirect products.

We are deeply indebted to Dan Voiculescu for his constant sup-
port during the preparation of this work. We are thankful for the
good atmosphere of the Operator Algebra theme year at the C. R. ML,
Montreal, where the paper was written.

2. Basic definitions. In this section we fix the notations and briefly
review the basic concepts about non-commutative random variables
that we need (for a more detailed exposition, see [2]).

2.1. By a non-commutative probability space we shall understand
a pair (21, σ), with 21 a unital *-algebra and σ a state of 21 (i.e.
σ: 21-+C linear, σ(a*a) > 0 for any α e 2 l , σ(l) = 1).

2.2. *-distributions for families of unitaries. For a non-void set Ω,
let F(Ω) be the free group having a free family of generators indexed
by Ω, and let C[F(Ω)] be its group algebra. It is handy to view
C[F(Ω)] as an algebra of non-commutative trigonometric polynomi-
als, i.e., as having a linear basis consisting of 1 and the monomials
Xω\Xω\' X%m

m , with ωxφω2φ -φωm mΩ and c*i, α 2 , . . . , α w

in Z\{0}. (Note: By ω\ Φ ω2 Φ - φ ωm we shall always mean
that ω, Φ tϋi+i ? 1 < / < m - 1.) Of course, if cardΩ = 1, then
C[F(Ω)] = C[Z] is the algebra of usual trigonometric polynomials.
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C[JP(Ω)] has a natural *-operation, uniquely determined by the
condition that every Xω (ω e Ω) be unitary, and has the following
universality property: for any unital *-algebra 21, and for any family
(uω)ωeΩ °f unitaries of 21, there exists a unique homomorphism of
unital *-algebras, Π: C[F(Ω)] -> 2t, such that Π(Xω) = uω, for every
ω in Ω.

DEFINITION. Let (21, σ) be a non-commutative probability space.
The *-distribution of a unitary u e 21 will be the state μu: C[Z] -* C
obtained by composing σ with the unique homomorphism C[Z] —• 21
sending X into u. More generally, the *-distribution of a family
(wω)ω€Ω of unitaries in 21 will be the state μ: C[F(Ω)] —> C obtained
by composing σ with the unique homomorphism C[F(Ω)] —> 21 send-
ing Xω into wω for every ω.

2.3. Example (Haar distribution on C[Z]). Consider the algebra
C(T) of continuous functions on the circle, with pointwise operations,
let σ: C(T) -> C be integration with respect to Haar measure, and let
id e C(T) be the unitary id(z) = z. The *-distribution μiά: C[Z] -^ C
will be called the Haar distribution on C[Z] it is clearly determined
by the property that μ^{Xk) = 0 for any kφΰ.

2.4. Free families. Let (21, σ) be a non-commutative probability
space. A family (uω)ωeQ of unitaries in 21 is called free if for any
ω\ Φ (ϊ>2 φ - - Φ com in Ω and p\, pi, .. - , Pm in C[Z] such that
o{Pj{uωj)) = 0, 1 < j < m, we also have that σ{p\{uω{) pm(Uωm))
= 0.

Remark that the fact whether the family (uω)ωea is free or not
depends only on its *-distribution μ on C[F(Ω)]. More precisely, it
is easy to check that (uω)ωea is free in (21, σ) if and only if (Xω)ω€Ω
is free in (C[JF(Ω)] , μ).

2.5. Asymptotically free families. Let, for every n > 1, {un^ω)ωeςι
be a family of unitaries in the non-commutative probability space
(2l«> σn), and let μn be its *-distribution. The families {uniω)ωeΩ
are said to converge in distribution (for n -> oό) to the state μ on
C[F(Ω)] if //«(/?) -^ //(p), for any /? in C[F(Ω)]. If, moreover,

the limit state μ has the property that the family (Xω)ωea is free in
(C[F(Ω)], μ), then the families (w«,ω)ωeΩ are said to be asymptoti-
cally free for n —• oc.

2.6. Random matrices. For (X9^9 P) a probability space and
« a positive integer, we shall work with the unital *-algebra UJln of
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measurable functions / : X —• Mat π (C) having the property that for
any 1 < /, j < n, the entry fij: X —> C is bounded. This is only
a subalgebra of what one usually calls the algebra ofnxn random
matrices on (X, &, P) (see the definitions preceding Theorem 2.2
of [1]), but it will be sufficient for our purposes. On UJln we have a
canonical trace state, defined by:

(1) jχ

2.7. Random unitaries. Let (X, ^ , P) and n be as above, and
assume that we are also given a closed subgroup G of U(n). A mea-
surable function f: X -> G (which is in particular a unitary in the
algebra 9Jίrt defined at 2.6) will be called a random unitary in G.

As a unitary in the non-commutative probability space (Mn 9τn),
a random unitary f in G has of course a *-distribution in the sense
of 2.2. But in this case, we also have the distribution of / defined
in the classical sense, which is the probability measure on the Borel
σ-algebra of (?, given by the formula: λf(A) = P(f~ι(A)). More
generally, a finite family {fω)ωςςι of random unitaries in G has a
joint distribution, which is the probability measure λ on the compact
group GΩ, given by

λ{A) = P({x e X\(fω(x))ωeΩ eA})9 ACGΩ Borel set.

If X = Y[ωeΩλf , the family (fω)ωea is called independent. If this
happens and, moreover, each λf coincides with the Haar measure on
(?, the family (fω)ωeςι will be called standard-independent (see 3.7

An arbitrary family (finite or not) (fω)ωeΩ, of random unitaries in
G will be called standard-independent if so is (fω)ωea0 f ° r a nY finite
subset ΩQ of Ω. As it is easily checked, this is equivalent to the fact
that

(2) / 9i(fωι(x)) -9m(fωm(x))dP{x) = f[ ί φq(t)dt,
JX q=lJG

for any ω\, . . . , ωm in Ω such that ω, Φ ω 7 when / φ j , and for
any ψ\, . . . , φm in C(G) on the right side of (2), integration is done
with respect to the Haar measure of G.
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3. The setting of the problem.

3.1. The enunciation of the problem can be done as follows. For
every n > 1, let (fn,ω)ωeΩ t>e a standard-independent family of ran-
dom unitaries in the closed subgroup Gn of U(n). Is it true, for
reasonable series ( G ^ ) ^ , that:

(i) the families (fn,ω)ωeΩ> regarded in the non-commutative
probability spaces (UJln , τ w ) , are asymptotically free, and

(ii) For every ω € Ω, the unitaries fn,ω converge in distribution
(for n -* oo) to the Haar distribution on C[Z] ?

3.2. Reformulation. For concrete computations, it is useful to re-
mark that (i) and (ii) of 3.1 together are equivalent to the following as-
sertion: For any ω\ Φ ωi φ φ com in Ω, and any a\, a2, . . . , ocm

in Z\{0}, we have:

(3) rtlimτn(/^ωi /«Tωw) = 0.

Indeed, (i) + (ii) mean that the *-distributions of the families
(fn,ω)ωeΩ converge, for n -> oc, to a state μ on C[F(Ω)] with
the following properties:

(j) (Xω)ωeΩ is a free family in (C[F(Ω)], μ)
(jj) μ(X%) = 0 for any ω in Ω and k in Z\{0}.

But (j) and (jj) together are clearly equivalent to

(jjj) μ{X%\ Xωm) = 0, for any ω{ φ ω2 φ φ ωm in Ω and
1 m

OL\ , α 2 , . . . , am in Z\{0}

(in particular (j) + (jj) determine μ completely).
So, if (i) and (ii) hold, we have for any ω\ Φ CO2Φ φ com in Ω

and any a\, . . . , am in Z\{0} :

conversely, if (3) holds, then the ^distributions of the families
{fn,ω)ωeΩ converge for n -» oc to a state on C[F(Ω)] satisfying
(jjj), and we have (i) + (ii).

3.3. REMARK. The expression τn(fnι

ω - f°nmω ) appearing in
' 1 ' m

(3) depends in fact only on Gn (and not on the probability space
(X, &, P) we started with). Indeed, if /*• ωχ f%a>m = / , then for
any 1 < j < n, the entry fjj of / is a polynomial in the entries of
fn9ωι9 ••• , fn,ω > and Jxfj,jdP is seen not to depend on
(X, ^ , P) because of (2) of 2.7.

3.4. Reformulation for G finite. Let us assume that the subgroups
Gn c U(n) considered at 3.1 are finite.
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Let (fn,ω)ωeΩ b e a family of random unitaries in Gn . Since C(Gn)
is the linear span of characteristic functions of one-point sets, and
Haar measure on Gn is the normalized counting measure, the relation
(2) of 2.7 (i.e. the standard-independence of (fn9ω)ωeά) *s s e e n t 0 be
equivalent to

(4) P(/B-Vi) n • π f-)ωβm)) = {cJGn)m ,

for any ω\, . . . , ωm in Ω such that ωz Φ ω 7 when / Φ j , and for
any ^ , . . . , tm in Gn .

Further, let (fn,ω)ωeΩ be a standard-independent family of random
unitaries in Gn, and let us compute in{fa

n\ω^ '-fn"lωm) f°Γ some
ω\ φ <x>2 Φ '- Φ ωm in Ω and α i , . . . , α w in Z\{0}. When <?
runs from 1 to ra, ω^ describes a subset α/j, . . . , ω'k of Ω, with
k < m. In other words, we have written ωq — ωf

c , (1 < q < m),
q

with ω\ Φ ω'j for i φ j . The hypothesis ω\ Φ ω2 φ - - φ ωm

becomes c\Φ ciφ •- φ cm.
We claim that

(5) τ . ( / ; V . /;;>.)

Indeed, for any ^ , . . . , tk in Gw , the function fa

n\ωχ - fnm,ω is
7 1 7 m

constant and equal to φ -ta

c

m on the set / ~ 1 , (ίi) n Π / ~ ! , (ί^),

which has measure l/(card Gn)
k , by (4). The sets of this form realise

a partition of X (when t\, . . . , tk describe Gn)\ decomposing the
integral which appears in the formula (1) of 2.6 after this partition,
we get (5).

We conclude that a sufficient condition for having an affirmative
answer to (i) and (ii) of 3.1 (for any indexing set Ω) is, in this case

(6) lim — 1——Γ Y Tτ(φ fc

m) = 0,

for any k > 1, c\ Φ c2 φ •• φ cm exhausting {1, . . . , k) and
a\, . . . , am in Z\{0}. Clearly, this condition is also necessary (take
Ω = {1, . . . , k} and ω{ = cx, . . . , ωm = cm).

4. Asymptotic freeness in the case of the symmetric groups.

4.1. Statement of the result. We view the symmetric group Sn as a
subgroup of U(n), by identifying every t in Sn with the correspond-
ing permutation matrix (the entry (/, j) equals 1 if t{j) = ί, and 0
otherwise). We shall prove that:
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THEOREM. The assertions (i) and (ii) of3Λ are true for the series

As we saw at 3.4, this comes to

(7) lim — l —r V T r ( # fc

m) = 0,

f o r a n y k > 1 , c\ Φ c-χ Φ Φ c m e x h a u s t i n g { I , ... , k } a n d
aΪ9...9am in Z\{0}.

The numbers: A:, c\, . . . , cm , α i , . . . , am will be fixed for the
rest of this section. In fact, we shall also fix for the rest of the
section an integer n, not too small (for instance such that n >
2(|αi| + h \oίm\)), and prove the inequality:

Σ
with a = |αi | + ••• + \am\. Clearly, (8) implies (7) and hence the
proposition.

4.2. REMARK. In some particular cases, the left side of (8) can be
computed precisely. We give here some examples (we omit the proofs,
since they are not part of the main stream of this paper).

1°. Assume that there exists 1 < j < k with the following property:
there is only one q (1 < q < m) with cq = j , and for that q we
have aq = ± 1 . Then the left side of (8) is exactly \jn .

2° . Assume that for every 1 < j < k there is only one q (1 < q <
m) with cq = j (but instead there is no condition on the exponents).
After a change of indices, the non-commutative monomial t"1 ί£j
becomes fγ

x fk

k. We have

n n(n- l)*-» '

where Δ(α7) denotes the number of positive divisors of α 7 .
3°. Assume that the non-commutative monomial fc

x --fc

m is the
1 tn

commutator of two permutations. We have:

Σ T ( ί ί ί f 1 ί J 2 )

case.

It would be interesting to find such precise evaluations in the general
se
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4.3. NOTATIONS, (a) Besides k, c\, ... 9cm, a\9 ... 9am and
α = |e*i I H h | α m | which were fixed at 4.1, we also fix the following
partition of {1, 2, . . . , a} into integer valued intervals:

+ + | α w _ i | + 1, . . . , |»i | + + | α m _ i | + | α m | } .

(b) Relations. By a relation we shall mean a subset of {1, . . . , n}2.
A relation R will be called injective if the two projections on the
components are injective when restricted to R. For any t in Sn , the
relation Rt associated to t will be {(/, j)\t(i) = j}.

It is easy to see that for a given relation R, there exist permutations
t such that RQ Rt if and only if R is injective; if this happens, the
number of permutations t such that RQRt equals (n - (cardit))!.

(c) Cycles. By a cycle we shall understand a sequence ζ = (u\, . . . ,
ua, wα+i) of numbers in {1, . . . , n}, such that ua+\ = u\. To a cycle
£ we shall associate A: relations, R\(ξ)9 . . . , Rk(ζ)- It will be useful at
4.7 to have the construction made for any sequence η = (u\, . . . , w )̂
of elements of { 1 , . . . , « } , with 2 < /? < α + 1. So, having such a
sequence η, we define for any 1 < j < k a relation Rj(η) as follows:
we take all the numbers 1 < a < β - 1 which belong to intervals Iq

(1 < q < m) having cq = j ; and for any such a e Iq we take into
Rj(η) the couple:

(Mβ+i, Mβ), if aq > 0 ;

A sequence η — (u\, ... ,Uβ) will be called injective if the relations
Λi(f/), . . . ,Rk(η) are so.

Having a cycle ξ and a fc-tuple (t\, ... , t^) in S^ , we shall write
£ « ( * ! , . . . , * * ) i f R j ( ζ ) C R t Jorall \ < j < k .

Now, for (̂  = (u\,..., ua, ua+\) a cycle, t a permutation and
1 < j < k, we clearly have: i?,(£) c Rt & tsi&ιa<(ua+ι) = ua, for
any 1 < q < m such that cq — j , and for any a&Iq. This gives the
criterion

(9) ξ = {u1,...,Ua, M β + i ) -< (ίi , . . . , ίjfc)

^ " = ua, VI <q <m,aelq.
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4.4. LEMMA. For any t\, . . . , t^ in Sn we have.

£ ; ) = card{£ cycle\ξ <{tu..., tk)}.

Proof. Let ζ^a" d^sq = (sq;u,υ)ι<u,v<n € l/(»). Then:

= ( ! < ! , . . . , M β + 1 ) , cyc le \ 0 =

Since ^ ; W ) V equals 1 if C^^iv) = w? and 0 otherwise, every term

of the last sum is 0 or 1, and it is 1 if and only if t^^ίua+i) = ua

for every 1 < q < m and a £ Iq . Comparing with (9) we obtain the
desired equality. D

4.5. LEMMA. For any injective cycle ξ we have

(10) caτd{(tl9...9tk)eS*\ξ*(tl9...,tk)}

Proof. We have:

k

{ ( ί ! , . . . , tk)eSk

n\ξ -< fa , . . . , tk)} = Y[{teSn\Rt D Rj(ξ)}9

7=1

so that the cardinal to be majorized is

k

Hczτd{teSn\RtDRj(ξ)}

7=1

k

= H(n-(ceLrdRj(ξ)))\ (by 4.3b))
7=1

Now, from 4.3c) it is clear that Σ y = 1 cardi? ; (ί) < Σ ^ = i c a r d ^ =

α. This implies that £, ̂ , . . . , w _ ( c a r d ^ ( 0 ) + 1 are not greater than

" < 2 (we assumed in 4.1 that « is not too small); majorizing all
these factors with 2 in the last expression, we get (10). D
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4.6. A reduction of the problem. Applying Lemma 4.4, changing
the order of summation and applying after that Lemma 4.5 we get

1

Σ

c a r d { £ c y c l e d <(t{,... ,

Σ card{(/,,...,< t)eSi|{-i ( ( , , . . . , tk)}
ξ cycle

Σ O.!Λ»/2Γ £-.-"'«>.
£ injective cycle

The sum Σy=i cardi? ; (ί) takes values not greater than α, as re-
marked in the proof of 4.5, and not less than k (since obviously
every Rj(ζ) is non-void). Hence the last expression equals:

1 α ί
n)1 card < ξ injective cycle

k 1
] Γ cardRj(ζ) = / > ,
7=1

and a simple computation shows that (8) will follow if we can prove
that:

(11) caπi I <J|ί injective cycle, ^ c a r d Λ 7 (O = /> < (°!\αα'ιnι

for every k < I <α.

4.7. The tree of injective cycles. In order to estimate the cardinals
of sets of injective cycles needed in (11), it is convenient to have all
the injective cycles placed together in a rooted tree.

Let T be a rooted tree, let V be its set of vertices, and let VQ be
its root. For any υ in V, the length of the (unique) path connecting
υ and VQ will be called the level of v , and denoted by L(υ). The
vertices of level L(υ) + 1 which can be connected with v by a path
of length 1 will be called the successors of v their number, denoted
by D(v), will be called the degree of v .

The rooted tree T will be called (1, ή) -regular if

(i) it has a maximal value of the levels, L m a x > 2
(ii) any vertex υ with L(v) Φ L m a x has D(v) = 1 or n - α <

D(v) < n (of course, for L{υ) = L m a x we have D(v) = 0).
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Clearly, if T is a (1, π)-regular rooted tree, then for any vertex v
of Γ, the subtree Tv of T generated by υ is also (1, n)-regular.

By a labeling of the (1, «)~regular tree T we shall understand a
function e: V\{VQ} -* {1, . . . , n}, having the property that whenever
v G V has n - a < D(v) < n, the restriction of e to the set of the
successors of v is one-to-one.

PROPOSITION. One can construct a rooted (1, ή) -regular tree T,
with L m a x = a + 1, and a labeling e: V\{v0} -* {1, . . . ,«} such
that

1°. For any 2 < β < a + 1, there is a canonical bijection from
{υ G V\L(v) = β} onto the injective sequences of β numbers in
{1, . . . , ή) [see 4.3c)), given by the following rule: for any v in V
with L(v) = β, we take the unique path VQ9V\> ... >Vβ = υ connect-
ing v to the root, and we associate to it the sequence (e(v\), . . . ,e(Vβ)).

2°. For any v in V with n-a < D(v) < n and L(v) < a - 1, at
most a of the successors of v have degree 1.

3°. Let ξ be an injective cycle, an let v be the unique vertex with
L{v) = a + 1 associated to ξ at 1°. Then, denoting the path between
υ0 and v by VQ , v\, . . . , υa+χ = υ, we have:

k

card{l < β < a\D{υβ) = 1} = a - ^ cardRj(ξ).

7=1

Proof. We shall construct the levels of the tree inductively, and
define the labeling at the same time, taking care that 1° holds.

The level 0 contains only one vertex, the root, which is not labeled.
The level 1 contains n vertices, labeled from 1 to n. The level 2
contains n2 vertices, and more precisely, every vertex of the level 1 has
n successors, labeled from 1 to n . It is clear that the rule described
at 1° gives a bijection between the vertices of the level 2 and the
sequences of two numbers in {1, . . . , n} (which are all injective). If
α = 1, then this is Γ, and 1°, 2°, 3° are easily checked. For the
rest of the proof, we shall suppose that α > 2.

Now, let us assume that for some 2 < β < α we have constructed
the tree and the labeling up to the level β, such that 1° is satisfied.
For constructing the level β + 1, what we have to do is provide an
algorithm which decides, for a given vertex υ with L[v) = β, what
D(v) should be, and which indicates the labels of the successors of
v. Let q (1 < q < m) be such that β G Iq, and consider j = cq G
{1 , . . . , & } , αq G Z\{0}. If αq > 0, the algorithm sounds like this:
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"Take v with L(v) = β, consider the path VQ9V\9 ... 9Vβ = v
connecting v to the root, consider the sequence η = (e(v\), . . . , e(Vβ))
and the relation Rj(η) (defined at 4.3c)). If there is W G { 1 , . . , , « }

such that (u, e(Vβ)) e Rj(η), then put D(v) = 1, and the label of
the unique successor of υ is u. Otherwise, n — a < D(v) < n,
and the labels of the successors of v are { 1 , . . . , n}\π\(Rj(η))." If
aq < 0, the algorithm is the same, but we replace "(w, e(Vβ))" with
"(e(Vβ), u)".

It is easy to check that the level β + 1 constructed in this manner
has the property of 1°. Hence the construction can be reiterated up to
β = a, giving us a labeled (1, n)-regular rooted tree T, with maximal
value of the levels a + 1, and satisfying 1°.

To prove 2°, we need the following

LEMMA. Let vf be in V such that L(vf) = βr < a and D(vf) = 1.
Let VQ , v\, . . . , Vβ> = v' be the path connecting vf with the root.
Then there exists 1 < γ < βf - 1 such that e(vι) = e(υγ).

Proof of the Lemma. We denote by q, qf, respectively, the numbers
in {1, . . . , m) such that β' - 1 € Iq, β' e Iq> (note that L(vr) = y?',
D(υ') = 1 imply β1 > 3, so that # makes sense; clearly, q = q' or

Let us assume that e(v') Φ e(vγ) for every 1 < γ < β1 - 1, and
obtain a contradiction. To make a choice, suppose that cy > 0.
From D(v') = 1 and the way we constructed the tree, we infer that
there exists 1 < γ < βf - 1, belonging to an interval Ip, such that
cp = cq> and:

e(υγ) = e(v'), if ap > 0,

Because of the assumptions we made, the only possibility is that ap <
0 and γ = β' - 1 (hence p = q). This gives c^ = cq> and α^ < 0.
Further, α^ < 0 < aq> implies q Φ q1, and hence # = qf - 1 so we
get cq = cρ_i, a contradiction. If cy < 0, we proceed in the same
manner.

The proof of 2° is now immediate. Take v in V with L(υ) =
β < α — 1, n ~ α < JD(I ) < π, and let υ0, V\, . . . , Vβ = t; be the
unique path connecting v with the root. If a successor v' of ^ has
D(vf) = 1, then, by the lemma, e(v') € {e(υ\)9 . . . , e(Vβ)} which has
at most a - 1 elements. Since the labeling is one-to-one on the set of
successors of v, we obtain 2°.
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Finally, let ξ, v and VQ,V\9 ... 9 va+\ = v be as in 3°. From the
construction of the tree it is clear that, for any 2 < β < a:

k

, . . . , e{vβ), e{vβ+x))

Hence the sum:

k

card{l < y < β\D(vγ) = 1} + ΣcardRj(e(vx), ... , e ( ^ ) ,

considered for 1 < β < a, increases with 1 when β increases with 1.
Since for β = 1:

card{l <γ< l\D(vγ) = 1} + ̂ c a r d i ? 7 (^(^i), e(υ2)) = 0 + 1 = 1,

7=1

by putting β = a we get assertion 3° . D

4.8. Remarks on (1, n)-regular rooted trees.

4.8.1. LEMMA. Lei T be a rooted tree with maximal value of the
levels L m a x = /? + 1, and such that every vertex υ with L(υ) < β has
D(v) < n. Then, for any 0 < γ < β + 1, T has at most nγ vertices
of level γ.

The proof of 4.8.1 is clear, by induction on γ.

4.8.2. LEMMA. Let T be a (1, n)-regular rooted tree, with maxi-
mal value of the levels β + 1, and with the following property: for any
vertex υ with L(v) < β - 1 and n - a < D(υ) < n, at most a of the
successors of υ have degree 1. Then for any 1 < γ < β, there are no
more than anγ~ι vertices of degree 1 on the level γ.

Proof. The case γ = 1 is clear. If γ > 2, denote by N^ the number
of vertices of degree / on the level ί, ι ' € { l , . . . , / i } , ί G {γ— 1, y}.
We have

i=n-a
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4.8.3. LEMMA. Let T be a (1, n)-regular rooted tree with the prop-
erty stated at 4.8.2. Fix 1 < βx < < βh < β, and let N be the
number of vertices with L(υ) = β and with the following property:
if VQ9V\9 ... 9Vβ = v is the path connecting υ with the root, then
D{υβχ) = = D(vβh) = 1. Then N < ahn^~h .

Proof. We first take the case h = 1. Let V^ be the set of vertices

of degree 1 on the level β\, and for any υ in VJ}1\ let Tv be the

subtree of T generated by υ . Clearly, N = Σ V G F ( 1 ) ^υ , with Nv the

number of vertices of Tv having level β - β\ (in Tυ). 4.8.1 gives

us that Nυ < nfi-Pi (v e V^), and 4.8.2 that cardK^ < α ^ " 1

hence N < an^~ι.

We now make induction on h. Assume the lemma proved for all the

possible choices 1 < β\ < < β^ < β (β natural) and let us prove

it for a system 1 < β\ < < βh < ^ + 1 < β. Defining V^ as in

the preceding paragraph, we have again the formula N = J2vev
{ι) ^v >

h

where this time Nv is the number to be majorized with respect to the
tree Tv and the system 1 < β2 - β\ < < βh+ι - βi < β - β\.
Hence, by 4.8.2 and the induction hypothesis:

N < (an^-ι)(ahnP-^-h) = a

h+ιn^h+^ . D

4.8.4. PROPOSITION. Let T be a (1 , n)-regular rooted tree, with
the property stated at 4.8.2, and with the maximal value of the levels
a + 1. Let 0 < h < a be a fixed integer. For any vertex v with
L(v) = a, we consider the path VQ , V\, . . . , va — v connecting v to
the root. Then

C2iτά{v\L{v) = a, card{l < β < a\D(υβ) = 1} > h} <

Proof. For h = 0 we have to prove that the number of vertices of
level a is not greater than na (which is in 4.8.1). If h > 1, then for
any υ having card{l < β < a\D(Vβ) = 1} > h we choose a system
1 < β\ < < βh < a such that D{vβγ) = = D(vβh) = 1 after
that, we sum after all the possible choices of 1 < β\ < < βh < a,
and apply 4.8.3. D

4.9. End of the proof of Theorem 4.1. We were left to prove (11)
of 4.6. Let us fix / (k < I < a), and denote a -1 by h . We consider
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the tree T of the injective sequences, constructed at 4.7. To every
injective cycle ξ having Σ^Li cardRj(ξ) = / we associate the unique
vertex v of this tree such that: L(v) = α, and (e(v\), . . . , e(vα))
are the first α components of ξ (as usual, VQ, V\, ... ,vα = v is
the path connecting v to the root). Taking into account point 3°
of Proposition 4.7, we see that ξ -+ v is a one-to-one mapping into
the set of vertices {v\L(v) = α, card{l < β < α\D(υβ) = 1} = A}.
Hence:

card < £ injective cycle

< card{v\L(v) = α, card{l < j8 < α|£>(̂ /?) = 1} = h}

< card{v\L(υ) = α, card{l < jff

5. Asymptotic freeness in the case of Weyl groups. For any positive
integer n, let An be a closed subgroup of the circle (i.e., An = T
or ^ = Z/rnZ for some r Λ ), and let Gn be the semidirect product
A"xa Sn, where the action an of Sw on A" is

an{t)(zχ, . . . , zn) = ( V ! ( i ) ' - ' V 1 ^ ) )

We can view G« as a subgroup of U(n), by identifying ^ =
((z\, ... , zn), t) E Gn with the matrix having the (/, j) entry equal
to z, , if ί(7) = /, and to 0, if t(j) φ i. We have

THEOREM. ΓΛ^ assertions (i) am/ (ii) o/3.1 are true for the series

To see this, we only need to take πn: Gn -> Sn the projection, and
make the obvious remark that the inequality (12) appearing in the
next lemma is valid:

LEMMA. For n > 1, let Gn and Hn be closed subgroups of U(n),
and let πn be a continuous homomorphism of Gn onto Hn, with the
property that

(12) Trπ«(g) > \Ίtg\9 for any g in Gn.

In this situation, if(ϊ) and (ii) of3Λ are valid for the series
then they are also valid for the series {Gn)^Lx.
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Proof. Consider, for every n > 1, a standard-independent family

(fn,ω)ωeΩ of random unitaries in Gn .
Note first that (πn o fn,ω)ωeΩ *s standard-independent in Hn . In-

deed, for any ω\, . . . , ωm in Ω such that ωz Φ ω7 when i φ j , and
for any φ\9...9φm in C(/7n):

/ φi((πn°fn,ω)(x)) -φm((πn°fn,ω ){x))dP{x)

Jx
= / (φ\ o πn){fn9ωx{x)) - ( ^ ° ^)(/n,^(x)) dP(x)

J X

(2) of 2.7 TΓT f , w , ,

On the other hand, for any ω\ Φ ωj φ φ ωm in Ω and
a\9 ... , am in Z\{0} we have

\τnU n\ωι ' ' ' f n"!ωm)\

( < 2 ) i ί Ίv((πno(fa

n\ωι ••./":„ ))(x))dP(x)
n Jx

= τ « ( ( π n o fn,ωxY
ι '"(πno fn,ωm)am)

Taking into account the considerations of 3.2, the last inequalities
clearly finish the proof. D
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