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NON-UNIQUENESS OF THE METRIC
IN LORENTZIAN MANIFOLDS

G. K. MARTIN AND G. THOMPSON

This paper is concerned with the correspondence between a
Lorentzian metric and its Levi-Civita connection. Although each met-
ric determines a unique compatible symmetric connection, it is possi-
ble for more than one metric to engender the same connection. This
non-unigqueness is studied for metrics of arbitrary signature and for
Lorentzian metrics is shown to arise either from a de Rham-Wu de-
composition or a local parallel null vector field. A key ingredient in the
analysis is the construct of a submersive connection in which a con-
nection passes to a quotient space. Finally, two examples of metrics
are given, the first of which shows that the metric may be non-unique
even though a null vector field exists only locally. The second exam-
ple indicates that for metrics of higher signature non-uniqueness need
not result from the existence of a de Rham decomposition or parallel
null vector fields.

The fundamental lemma of Riemannian or pseudo-Riemannian ge-
ometry asserts that a non-degenerate metric g determines a unique
compatible symmetric connection, the so-called Levi-Civita connec-
tion. Nonetheless, it is possible for more than one metric to engender
the same connection. For example, suppose that V is the Levi-Civita
connection of a metric g on a manifold M. (By the term “met-
ric” shall be meant a symmetric type (0, 2) non-degenerate tensor
of arbitrary signature, although the main concern of this paper will
be with Lorentzian metrics.) Suppose, further, that K is a vector
field on M which is parallel with respect to V, that is, VxK is zero
for all vector fields X on M. Denote by a the 1-form dual to K
by g and by a ® a its symmetric square. Then provided it is non-
degenerate, g +Aa®a , where A € R, is another metric which has V
as its Levi-Civita connection. The main concern of this article is to
give a description of all possible metrics that are compatible with the
Levi-Civita connection of a Lorentz metric.

Another situation in which there is non-uniqueness in the metric de-
scription is when (M, g) admits a de Rham decomposition. In that
case M is diffeomorphic to a product M; x M, of manifolds and g
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decomposes as a sum g; + g, with g; and g, metrics on M; and
M, , respectively. Then provided it is non-degenerate, A;g; + 428>,
where 41, A, € R, yields the same connection as g; + g . In the
case of Riemannian manifolds, that is, where g is positive definite,
whenever the holonomy group of g leaves invariant a proper non-
trivial subspace it leaves the complementary subspace invariant and
hence (M, g) admits a local de Rham decomposition. It follows eas-
ily in the positive definite case that g is unique up to a multiplicative
constant if it admits no local de Rham decomposition.

The situation for indefinite metrics, however, is different. If the
holonomy group of an indefinite metric g leaves invariant a subspace
that is non-degenerate then (A, g) will admit a de Rham decomposi-
tion as before. See [13, 14]. It may happen though that the holonomy
group leaves invariant a degenerate subspace in which case the exis-
tence of a local de Rham decomposition is not guaranteed. One refers
to these contrasting situations as non-degenerate and degenerate de-
composability of the holonomy representation, respectively.

This article is mainly devoted to investigating the uniqueness prob-
lem for metrics in the context of Lorentzian manifolds. It will be ap-
parent that many of the results will be applicable to metrics of other
signatures, but the more general problem is considerably more com-
plicated. The main result which will be proved is as follows:

THEOREM. Let (M, g) be a simply connected Lorentzian manifold
and V its Levi-Civita connection. Suppose that (M, g) admits no
local de Rham decomposition but admits an alternative metric g’ that
is not just a constant multiple of g. Then (M, g) has a parallel null
vector field K and g' is of the form g + Ao ® o, where A€ R and o
is the 1-form dual to K via g.

It should be pointed out that other authors have studied the non-
uniqueness problem for metrics [1-5, 9, 12]. Most noteworthy in this
regard perhaps are the results of Hall and his co-workers [1-4]. For the
most part Hall is concerned with 4-dimensional Lorentzian manifolds.
He uses Schell’s classification of the subalgebras of o(3, 1) [7] to study
the correspondence between metric and curvature. In particular Hall
has already established the validity of the main result proved here
in the special case of 4 dimensions. However, his techniques do not
lend themselves readily to #» dimensions let alone metrics of higher
signature.
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In §2 we state two results from linear algebra concerning a pair
of quadratic forms. Section 3 gives the necessary background in dif-
ferential geometry and studies in particular submersive connections.
Section 4 gives the proof of the main theorem and considers briefly
the uniqueness problem for metrics of higher signature. Throughout
the paper it will be assumed that all geometric objects are smooth, that
is, of class C*.

2. Linear algebra of a pair of quadratic forms. In this section the
linear algebra of a pair of quadratic forms g and g’ on a vector space
V of dimension n of which g is Lorentzian, will be investigated. It
is assumed that g’ is not simply a multiple of g. A similar technique
has been used in [3].

LEMMA 2.1. There exists a linear combination of g and g' which
is degenerate.

Proof. The space of non-degenerate quadratic forms of a fixed sig-
nature forms an open set in the space of all quadratic forms. Consider
then the 1-parameter family of forms g(¢) given by tg+ (1 —¢#)g’.
We may assume of course that both g and g’ are non-degenerate and
further that the signatures of g and g’ are different; for if g and
g’ both are Lorentzian with signature (n — 1, 1) we may replace g’
by —g’. Thus g(0) and g(1) are non-degenerate and have different
signatures. Let ¢y be the supremum of values of ¢ such that, for
0 <t <ty, g(t) has the same signature as g. Then g(¢y) will be
degenerate.

The next piece of theory we shall require is in essence due to Weier-
strass [11]. For a more recent reference see [8, 9]. The general problem
is that of finding a simultaneous matrix normal form for a pencil of
quadratic forms g + Ag’, which contains a non-degenerate form. For
our purposes we may assume that g is Lorentzian. The result we shall
need is as follows:

THEOREM 2.2. Let g be a Lorentzian quadratic form on V" and
g' a second quadratic form. Then there exists a basis of V" relative
to which g and g' after scaling g and g' and adding an appropriate
multiple of g to g' correspond to the following symmetric matrices,
AMyoeeshnoa, a, B, y and & being real,
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Furthermore, either (i) 6 = —a, y = f with o+ % #0 (i) a=f =
y=0,d0=1({i) a=Bf=y=6=0o0r(iv)a=f=y=0=1.

Denoting the contravariant inverse of g by G and the linear trans-
formation obtained by contracting G with g’ by T, the above the-
orem can be proved by putting 7 into real Jordan normal form and
then casting G into normal form.

3. Submersive connections. In this section we provide the back-
ground differential geometry that will be needed in the proof of the
main theorem. In particular we consider submersive connections, a
construction originally introduced as a special case of submersive sec-
ond order vector fields. See [6]. The account given here will be self-
contained.

Again M will denote a smooth m-dimensional manifold and we let
V denote a given smooth connection on M , which need not be a Levi-
Civita connection. Suppose further that D is a foliation on M whose
leaves are of dimension m—n. Then V is said to be submersive if the
following condition holds: whenever the vector fields X and Y are
projectable to D, the vector field VxY is also projectable to M/D.
[Note that this condition is stronger than saying that D is totally
geodesic which would give VxY € D whenever X, Y € D.] If also
the quotient space M/D has the structure of a smooth Hausdorff
manifold denoted by N, then we say that V is projectable. In that
case we can define the connection V on N to which V projects as
follows. Let p: M — N be the projection map and let X and Y
be vector fields on M which are projectable to X and Y on N,
respectively, that is, p,X =X and p,Y =Y. Then V is determined
by

(3.1) V%Y = pu(VxY).

One may check that V thus defined is a symmetric connection on N .
The following two theorems are the main results about submersive
connections. The curvature tensor of V is denoted by R.
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THEOREM 3.1. A symmetric connection ¥V on M is submersive if
and only if there exists a distribution D on M such that for vector
fields V tangent to D and X and Y arbitrary,

(i) VxV eD,

(ii) R(V, X)Y €D.

Proof. First of all, let V be a connection which satisfies conditions
(1) and (i1). It follows easily from (i) and the fact that V is symmetric,
that D is integrable. What we need to establish now is that the Lie
bracket [VxY, V] is tangent to D, where V' is tangentto D and X
and Y are both projectable to the quotient space M/D. We may then
use (3.1) to define V on M/D, since VxY will pass to the quotient.

Using the fact that V is symmetric, we have

(3.2) [VxY,V]=Vy yV -VyVxY
=Vy yV —R(V,X)Y =VxVyY - Viy Y

by the definition of R. Once again using the symmetry of R one
obtains

(3.3) [VxY,V]=Vy yV =RV, X)Y = VxVyV - Vy[V, X]
- Vx[V, X]1-1IV, X], Y].

Now (3.3), conditions (i) and (ii) above and the fact that X and Y
are projectable, imply that [VxY, V] is tangent to D.

Conversely, let (N, V) be a manifold with symmetric connection,
p: M — N asubmersion and suppose that V and V are related by
(3.1). Then we must show that V satisfies (i) and (iii) with D being
the integrable distribution corresponding to the fibres of p. For (i) it is
enough to show that p,(Vx V) = 0 in the cases where X is projectable
and vertical, respectively. But in either case, X is projectable and
(3.1) implies that p.(VxV) is zero.

Finally, (ii) follows from (3.1) and the identity (3.3).

THEOREM 3.2. Let V be the Levi-Civita connection of some metric
g and suppose that D is a distribution satisfying hypotheses (i) and
(ii) in Theorem 3.1. Then conditions (i) and (ii) hold for the orthog-
onal distribution D+ and the distributions D N D' and D + D+ =
(DNDH)L.

Proof. Suppose that W is tangent to D+ . Then by definition, if ¥
is tangent to D,

(3.4) gV, W)=0.
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Now differentiate (3.4) along an arbitrary vector field X to find

(3’5) g(VXV’W)+g(V’VXW)=03
whence by (i) of Theorem 3.1
(3.6) gV,VxW)=0.

From (3.4) we have that VyW is tangent to D' as required.

Next suppose that ¥ and W are tangent to D and D+, respec-
tively, and let X and Y be arbitrary. Then one has the identity

(3.7) gRW,X)Y,V)=g(RV,Y)X, W)

from which it follows by condition (ii) of Theorem 3.1 that R(W, X)Y
is tangent to D+ . Thus conditions (i) and (ii) hold for D! and it is
easy to see that they apply also to DN D+ and D+ D+.

Next suppose that V admits a parallel, uniformly degenerate metric
h, by which we mean that /# is degenerate at each point but that the
degenerate distribution D is smooth and of constant dimension. We
shall show that D is integrable and that V submerses to the quotient
space M/D.

Note then that V' is tangent to D if and only if for arbitrary X,

(3.8) h(V,X)=0.
Computing the Lie derivative of (3.8) along a second field, Y gives
(3.9) hVyV,X)=0

using (3.8) and the fact that 4 is compatible with V. From (3.9),
we obtain condition (i) of Theorem (3.1) and hence also that D is
integrable.

We note next that the following identity holds despite the fact that
h is degenerate:

(3.10) hR(V,X)Y,Z)=hR(Y,Z)V, X).

Taking V' tangent to D, (3.10) shows that condition (ii) of Theo-
rem (2.1) holds. Thus V submerses to the quotient space M /D and
indeed the connection on M/D is the Levi-Civita connection of the
metric induced by 4 on M/D, assuming that AM/D has the structure
of a smooth manifold.

We remark finally in this section that Theorem 3.1 can be used to
derive a proof of the local de Rham-Wu Theorem, which is simple
and instructive.
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4. Proof of the main theorem. We can now proceed to the proof
of the main theorem as stated in §1. We may assume that g is a
Lorentzian metric and that % is a uniformly degenerate metricon M .
The degenerate distribution of # will be denoted by D. If (M, g)
is not to be a de Rham product then D must be a degenerate distri-
bution, that is, g restricted to D is singular. The one-dimensional
distribution D N D+ is parallel in the sense that the line field is in-
variant by parallel transport. However, something stronger is true.

PROPOSITION 4.1. The distribution D N D+ is spanned locally by a
parallel, null vector field K and if M is simply connected K spans
DN D+ globally.

Proof. If DN D+ is spanned locally by K, it is sufficient to show
that R(X, Y)K is zero, where X and Y are arbitrary vector fields
on M . For in that case K may be scaled by a function so as to obtain
a parallel, null vector field.

In the neighborhood of some point choose a vector field L which
satisfies g(K, L) = 1. Then L is complementary to D + D+ . It will
suffice to show for X, Y and Z arbitrary that g(Z, R(X, Y)K) is
zero. This is certainly so if Z € D 4+ D+ because by submersiveness,
R(X,Y)K € DnD*. Similarly, if X or Y € D + D+ we have
g(Z,R(X,Y)K)=—-g(K,R(X,Y)Z) and again this latter term is
zero by submersiveness. Finally since R(L, L)K is zero by skew-
symmetry it follows generally that R(X, Y)K is zero.

The condition that R(X, Y)K is zero ensures that the line bundle
D N D! can be spanned locally by a parallel null vector field. If in
addition M is simply connected, then D N DL is orientable and a
global parallel null field exists.

We consider now the endomorphism field 7" = G o & (the contrac-
tion of G with 4, G being the cometric dual to g). Clearly T is a
parallel tensor field. We shall need the following lemma.

LEMMA 4.2. The eigenvalues of T are constant.

Proof. The tensor T induces an endomorphism of the k-vector
bundle /\k(T M) where 1 <k < n. Denote the corresponding tensor
field on M by /\k T . For any vector field X on M we have, since
V commutes with contractions,

o x(m(n)-m(o ()
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where Tr denotes the trace of an endomorphism field. Since /\k T is
parallel and X arbitrary we conclude that Tr(A* T) is constant. It
follows that the coefficients of the characteristic polynomial of T are
constant and hence the eigenvalues of 7 are constant.

Note that a vector field X is in the kernel of 7', that is, is an eigen-
vector field to the eigenvalue 0 if and only X € D. Suppose next that
A is a non-zero real eigenvalue of 7" and denote the eigendistribution
associated to A by E;. Thus X € E; ifandonlyif TX =AX.If Y
is an arbitrary vector field on M , we have since T is parallel

(4.2) T(VyX) = AVyX,

and hence E; is a parallel distribution. Furthermore, E; must be
non-degenerate in the sense that g restricted to E; is non-singular;
otherwise E; would contain a non-zero null vector field Y. However,
since A is non-zero and

(4.3) Ag(E;, D) = h(E), D)

we have that E; C D+ and hence Y would be a multiple of X which
would contradict the assumption that Y € E; .

Suppose finally that y + id with § # 0 is an eigenvalue of 7.
Associated to y + id is an eigendistribution and we denote by E, 5
the corresponding real distribution. There are pairs of vector fields
X, Y which span E, ; and that satisfy

(4.4) TX =yX +4Y,
TY = —6X +7Y.

Since T is parallel, it follows easily that E, ; is parallel. Further-
more, (4.4) is equivalent to the equality of the 1-forms

(4.5) v8(X,-)+0g(Y,-)=h(X,-),
—0g(X,-)+yg(Y,-)=h(Y,-).

Hence, since y% + &2 is not zero, one has that X € D1 and Y € D+.
Thus a linear combination of X and Y is in D1 and, if null, in
DN D+ from which it follows that E, s is non-degenerate.

From the foregoing discussion, if (M, g) is not to split as a de
Rham product, we may assume that all the eigenvalues of T are zero.
Now we invoke Theorem 2.2 with g and 4 in a single tangent space
of M, though the Jordan normal form of 7 applies to the whole of
M . That normal form corresponds to Go g’ with g and g’ as in
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Theorem 2.2 where also 4;,...,4,_2, a, B, y arezeroand 6 = 1.
In particular we conclude that # must be of rank one.

Since 4 has rank one, we have that DX ¢ D and that D! is
spanned by the parallel null field K. Moreover %~ passes to the quo-
tient space M/D. Consider now the 1-form « which is dual to K
via g. Clearly a is parallel and thus closed. Also since « annihilates
any vector field tangent to D, a must pass to the quotient M/D. It
follows that # and a® a can differ by only a multiplicative constant.
Thus the proof of the theorem is complete. We remark also that for
all values of A, g + Aa ©® a are Lorentz metrics all having the same
Levi-Civita connection.

We next give an example to show that the vector field K appearing
above may exist only locally if M is not simply connected. On R X
S! x R with coordinates (x, 6, r) consider the metric

(4.6) g =2dxdr+ (r* + 1)(2 +5in26)(d6)?.

Then g is invariant under the involution (x, 8, r) — (-x, 0+mn, —r)
and hence passes to the resulting quotient space as does

(4.7) h = (dr)?.

However, by construction the distribution D+ is not orientable and
3

3% 1s only a local, parallel null vector field.

It is apparent that many of the conclusions about non-uniqueness
of the metric carry over from the Lorentz to the higher signature case.
Thus, denoting the original metric by g and an alternative metric
compatible with the Levi-Civita connection V of g by 4, we can
argue as before that the eigenvalues of 7" are all zero and in particular
that # is degenerate. It is reasonable to conjecture that 4 is always
associated to a set of k, parallel, null, orthogonal, vector fields of g of
which the main theorem here corresponds to the case k = 1. Indeed

such metrics g necessarily have the following local normal form (see
[10]),

(4.8)  0;;dx'dz) + A,pdy*dy? + 2H,;dy*dz' + B;jdz' dz) .

Here the coordinates are (x’, y®, z!) with Latin indices ranging from
1 through r Greek indices from r+ 1 through n —r and the summa-
tion convention on repeated indices applies. Furthermore, 4, and
B;; are symmetric matrices which, as well as H,;, are independent of
the x’. The parallel, null, orthogonal vector fields are the /9x’ and
an alternative degenerate metric is given by C;;dz'dz/ where Cj; is
a constant symmetric matrix.



186 G. K. MARTIN AND G. THOMPSON

Finally, we give an example of a metric which provides a counterex-
ample to the conjecture made in the previous paragraph. On R* with
coordinates (x!, x2, x3, x4) the metric g is given by

(4.9) dx'dx® + dx*dx* + (xzaa—)j4 - x‘;—;) (dx3)?

-2 (xl(,f—;; + x2%> dx3dx?*

A OA
+ (xl‘gx? - xzé—g> (dx4)2

and the metric 4 is given by e?*((dx3)?+(dx*)?), where A is an arbi-
trary smooth function of x3 and x*. Thus g and 4 have signature
(2,2) and (2, 0), respectively, and & passes to the two-dimensional
quotient space obtained by reducing along the 8/8x! and 9/0x? di-
rections. In particular, A may be chosen so as to make % correspond
to any Riemannian metric on R?.
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