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WITT RINGS UNDER ODD DEGREE EXTENSIONS

ROBERT W. FITZGERALD

For a separable odd degree field extension K/F the kernel of a
Scharlau transfer of Witt rings s* : WK -» WF is a JΓF-module.
We compute the prime ideals attached to ker s* and deduce that WK
is not a projective WF -module if an ordering on F extends uniquely
to K. An example shows WK may be a free WF-moάvXt if F is
real and no ordering extends uniquely. For non-real, non-rigid F we
show that K/F Galois and WK noetherian implies WK is not a
projective WF-moάvle.

If K/F is a finite extension of fields (characteristic not 2) then each
non-trivial linear functional s: K —> F induces a Scharlau transfer
s*: WK -> PFF on the Witt rings. When K = F(y/d) the kernel and
image of s* are well known. We restrict our attention to separable
odd degree extensions, where s* is surjective but little is known of
ker s*. The map induced by inclusion r* : WF —> WK is injective
and we view WF as a subring of WK. Then WK and ker s* are
PFF-modules and our approach is module theoretic.

WF need not be noetherian and ker s* need not be finitely gen-
erated over WF. So the usual theory of prime ideals associated to
modules must be replaced by the notion of attached primes (in the
sense of Dutton). We show no P(a, p) is attached to ker s*, P(a) is
attached iff a has more than one extension to K and IF is attached
iff WtKπ ker s* Φ 0. As a consequence, WK — WF iff each or-
dering on F extends uniquely to K and WtKr\kQrs* = 0. Another
consequence is that WK is finitely generated over WF if F has only
finitely many orderings and IF is not attached to ker s*.

The main result deduced from the work on attached primes is that
WK is not a projective WF -module if some ordering on F extends
uniquely to K. WK may be projective, however, if F is real and
no ordering extends uniquely. We present an example where K/F is
Galois, F is real, both WK and WF noetherian rings and WK is
a free WF-module. When F is non-real and non-rigid we show the
same conditions (K/F Galois, WK and WF noetherian) implies
WK is not a free WF-module. Weaker results hold under fewer
restrictions on K/F.
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The first section gives basic results and several examples. The last
section concerns the possible values of [G(K) : G(F)] when this is
finite (here G(E) = E'/E'2). Two sample results: If K/F is Galois
and [K : F] = p a prime then p divides [G(K): G(F)] - 1. If K/F
has a real normal closure then [K:F]< [G(K): G(F)].

Horn (K, Fy denotes the non-trivial linear functional s : K —> F .
The set of orderings on a field E is denoted X^. lϊ a e Xf then
X(o ) = {/? G X/^l^li7 = α} . For α € l f and an odd prime p we
write P(a,p) for {r G ίFF|sgnαr = 0 (mod/?)} and P(α) = { r e
WF\sgnar = 0}. These ideals, with IF = {r e ^ F | d i m r = 0
(mod 2)}, are the prime ideals of WF.

W î*7 denotes the torsion part of WF. The height of F, A(JF), is
the least positive k such that 2k W î7 = 0 (or infinity if no such k
exists). If R\ and i?2 are Witt rings then the fiber product i?i nR2 =
{(fi» ^2)|rι ^ -^i»' dim r! = dim r2 (mod 2)} is again a Witt ring. If
C is a group of exponent two then the group ring R\[C] is again a
Witt ring.

1. Basic facts.

DEFINITION, (i) m(K/F) = f|ker 5*, over all s e Hom(A:? F)'.
(ii) M(K/F) = Σ ker 5*, over all s e Hom(K, F ) ' .

LEMMA 1.1. Lei 5 e Hom(A:, F)'.

(1) ker 5* is a WF-submodule of WK.
(2) // ί € Hom(K, Fy then ker̂ * = (z) kerί* /or M ^ z eK\
(3) m(A7F) = [ker5*: WK] is an ideal of WK.
(4) M{K/F) is the ideal generated by kers*.
(5) There exists t e Hom(K, F)' with /*(1) = (1).
(6) Ifs*(l) = {l) then WKπWF@kcrs*.
(7) If s*(l) = (1) then kevs* is generated (over WF) by {(x) -

s*(x)\x e K'}.

Proof. (1) 5* is additive and if 0 e k e r s * and reR then s*(rφ)
= r5*(^) = 0. Thus ker 5* is a WjF-submodule of ίOΓ.

(2) There exists z e K' such that s(x) = t(zx) for all x e K.
Then s*(0) = U{{z)φ) for all 0 e H^ϋ: and so ker 5* = (z) ker /*.

(3) Let φ € m{K/F) and z e K\ Define ί(jt) to be s(zx) for
all x G K. Then 0 e ker U = {z) ker s*. Since z was arbitrary, we
have φ G [ker s* : WK]. Conversely, if φ G [ker s* : PFÂ ] then for
every z e K\ {z)φ G ker s* and <̂  G (z)ker s* = ker ί*, for some
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t e Hom(K/Fy. Thus φ e m(K/F). Clearly [ker s* : WK] is an
ideal.

(4) M(K/F) = Σ ker ί* = £ (z)ker 5* is the ideal generated by
ker 5*.

(5) We may write K = F(x) since K is separable over F. Take
t € Hom(#, F)' with ί(l) = 1 and t(x) = ••• = t{xn~x) = 0 (n =
[X : F ] ) . Then U{\) = (1) by [15, II 5.8].

(6) If 5*{1) = (1) then the exact sequence 0 —• ker s* —• WK -*
WF -* 0 splits. This also proves (7). D

There are few examples of Witt rings under odd degree extensions
in the literature. We present several to illustrate the range of possible
m{K/F) and M(K/F).

EXAMPLES. (1) The definitions of m(K/F) and M(K/F) make
sense for any finite extension F c K. Consider K = F(\fd) and
define s : K-> F by s{\) = 0, s{yfd) = 1. Then ker 5* = r*{WF).
Since (1) e kers, we have M(K/F) = WK. Also, m{K/F) =
a n n ^ a n n ^ l , -d))®K by [5, 2.12]. Note that if WF is Goren-
stein (e.g., a group ring extension of a Witt ring of local type) then
ann^ f (ann^ F (l, -d)) = ((1, -d)) and hence m(K/F) = 0 (cf. [9]).

(2) Let F = Q2 and K = Qι{e) where e is a root of x3 +
2. Then K'/K'2 may be represented by the group generated by
(2), (3), (5), (a), (β) where a = 2 + e2 and β = 1 + e2 . Define
s : K ^ F by s(l) = 1, s(e) = 0 and s(e2) = 0. Then $,(1) -
(1), s*(a) = (3), 5*(/?> = (5) and s.(aβ) = (2}(1, - 7 , -14) ĉ
(2)(1, 1,2) ~ ( 1 , 1 , 1 ) (see [15, p. 188]). Set p = 4 (1) and
Z = 3 . ( l > .

We verify that m(K/F) = 0.Let φ = n+ r2(a) + r3(β) + r4(aβ) e
m(K/F) with rt e WF. From s*φ = 0, 5*(α)^ = 0 and s*(β}φ = 0
we obtain:

pr2 + pr4 = 0.

The last two equations imply dim r2 = dim rj, = dim r4 (mod 2).
The first equation yields φ = (a, -3)r 2 + (β, -5>r3 + ((α^> - χ)r 4 .
When all r( (2 < z < 4) are even dimensional then φ € I2K. When
all r, are odd dimensional then d{φ) = 1 and again 0 e 72AΓ. But
I2K = {0, p} and s*(/>) = ρφθ. Thus 0 = 0.

Lastly, M(K/F) = ((1, -3α>, (1, —5jff>). Namely, M(K/F) is
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generated by (1, - 3 α ) , (1, -5β) and χ-{aβ). Now pe{l, -3a) IK
and χ - (aβ) = p-(l,aβ) =p- (15)((1, -3α) + (3α)(l, -5/?)).

(3) Let F = C(x). It is easy to see ί3 + xt + x is irreducible over
F. Let a be a root and let # = F ( α ) . Pick s e Hom(K, i 7 ) ' with
^(1) = (1). Now for all ueK, s*{u) = {NK/F{u)) + 0, for some 0 G
I2K — 0. We are using here that K is a Ci-field for every finite exten-
sion [15, II 15.2]. So s*(u) = (NK/F(u)), and s* is a ring homomor-
phism. Thus m(#/F) = ker s* = M(K/F) = {(1, -u)\Nκ/F(u) = 1} .

This is the only example (of the three ) for which m(K/F) Φ 0. To
verify this it is enough to show - i α ^ ΛΓ2 as NK/F(-xa) e F 2 . But if
-xoL = (α+όα+cα 2 ) 2 then b = a2/2cx and (<z/c)4 + 8(α/c);c2 = 4x 3 .
However t4 4- 8x2ί - 4x 3 has no roots in F.

(4) In §3 an extension F c K will be constructed with WF « Z
and ί O : « Z 3 . Here F / F 2 = {±1} and K/K2 = {±1, ± α , ±jff,
±αyff}. Here a corresponds to (1, - 1 , -1) G Z 3 and β corresponds
to ( - 1 , 1, - 1 ) . There is, by a later result (1.4), an s e Hom(A:, F)'
with ^(1) = (1), *.(<*) = (1), s*(β) = (1) and s*(aβ) = -3(1).
Thus ker s* is generated by (1, —α), (1, —β) , ( 1 , 1 , 1 , aβ). Using
(1, α, β, aβ) = 0 it is straightforward to show m(K/F) = 0 and

For any field E let G{E) = E'/E'2 . Set U = {(x) G G(K)\NK/F(x)

LEMMA 1.2. G(A ) « C/ x

The sequence 1 -^ C/ -• G(A") -> G(F) -• 1 is exact and
splits since for ae F9 we have NK/F(a) = am where m = [K : i7] is
odd and so NKιF(a) G aF2 . D

LEMMA 1.3. If s*(l) = (1) αnβf dim(s*(x))an = 1 for some x e K'
then s*{x) = {Nκ/F(x)).

Proof Suppose [A:: F] = 2 / : + l . Then ^(1) - ifc.(l, -1) + (1)
so that det(j*<l» = (-1)^ . Hence det(j*(jc» = (-1)^Λ^//Γ(Λ:) [15, II
5.12] and so s*(x) = (NκfF(x)). D

PROPOSITION 1.4. Let s e Hom(K, F)' with s*{l) = (1). Set
L(s) = {(y) G G{K) I Λ^ / F(y) G F 2 ands*{y) = (1)}. Then:

(1) { < |
(2) I
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Proof. (1) is clear as is the inclusion L(s)L(s) C U. Suppose
then that β e U and set E = F(β). Define v: E -»• F by v(l) = 1
and υ{βι) = 0, 1 <i<[E: F]. Then v»(l) = (1) and v*(β) = (1)
[15, II 5.8] (note NE/F(β) = 1 as 1 = Nκ/F(β) = NE/F(NK/E(β)) =
NE/F{β), modulo squares). Pick any u € Hom(#, £)* with w*(l) =
(1). Then (vu)*{l) = (1) and (υw)*(£) = v*{u*{β)) = υ*<£) = (1),
as β e E. Thus {1, /?} c L(υu). Now there exists z e Γ with
•y«(x) = ί(zjc) for all x e K. Note (1) = (vu)*{l) = ί*(z) so that
NK/F{Z) e .F2 by (1.3). Also zL(vw) = L( ί ) . Thus z, zβ e L{s)
and ^ € L(ί)L(ί). π

PROPOSITION 1.5. m(K/F) c WtK, the torsion ideal of WK.

Proof. If JC € K' and 0 € m{K/F) then tr*((x)^) = 0 where
tr is the trace map XΪK/F Let β ^ XK

 a n d l e t P = QπF. Since
X(P) is finite, we may find a Pfister form ^ and integer m with
sgnβCp) = 2m and sgnβ-(/>) = 0 for Q e X{P) - {Q}. Then by [15,
III 4.5]:

0 = sgnp tr*(pφ) = Σ s&nQ'(PΦ) = 2wsgn β(0).
(2'6ΛΓ(J>)

Thus sgng((/») = 0 and as Q was arbitrary, we have φ e W ϋ̂Γ. D

PROPOSITION 1.6. Suppose s e Hom(K, F)' satisfies J*(1) = (1).
Let m = [K : F] and set k = {m- l)/2 αmf « = m - (-1)*. Let
J c WK be the ideal generated by {{\, -y)\y <E U}. Then :

(1) M(K/F) = J + ({(l)-s*(y)\yeU}).
(2) // jRΓ/F is Galois then n (1) e M(K/F).
(3) // ^ / F is Gα/ots ίΛe« M(K/F) = J.

Proof. (I) JC M(K/F) by (1.4). If Nκ/F(y) e F 2 then (y) -
j»(y> € ker 5* c M(K/F) and (1) - s^y) = (1, -y) + (y) - j*(y) €
M(K/F). Conversely, M(K/F) is generated by ker 5*, by (1.1),
which is generated by (y) -*• 5*(y), for y € U. And (y) - s*(y) =
- ( 1 , -y) + «1) - 5,<y» e / + ({(1) - s,(y)|y e t/}).

(2) Let G = Gsd(K/F). Let tr = tr^ /F : K -> F. There ex-
ists z0 e #• with tr*(z0) = ί»(l) = (1). So (-l) f c = det tr*(z0) =
(denr*(l))Nκ/F(zo) = Nκ/F(zo),as tr,(l) = m(l). Set z = (-l) fcz0.
Then Nκ/F(z) e F2 and tr,(z) = ((-1)*>. Thus <(-l)fc) = ΣG(8^))

and ΣG(1 , -g(z)) = \G\(l) - {(-l)k) = n(l) e / c M(K/F).
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(3) If Nκ/F{y) = 1 then we need to show (1) - s*(y) e J. Pick z0

and z = (-l)*z 0 as in (2). Then (1) - s*(y) = (1) - tn(yz0) = (1) -
_ _ _ . . . . . 1 . . . I .

(-l)km(l). As NK/F(yz) = 1 we have each (1, -g(^z)) e / . Also

(1 - (-l)*m)(l) G / by the proof of (2) and so (1) - s*{y) eJ. α

COROLLARY 1.7. Suppose K/F is Galois and s* : WK --• WΓF /s
α rm# homomorphism. Let m = [K : F] and k = (m - l)/2. ΓΛ^n
(m - (~l)/r)(l> = 0. /ft particular, F is non-real

Proof. Here (m - (~l)k){l) e M(K/F) = ker^, using (1.6).
Yet ^(l) = (l),sothat (m - (-1)*)(1) = 0. α

COROLLARY 1.8. Suppose K/F is Galois. Let m = [K : F], k -
(m - l)/2 and n = m - (—1)*. L^ί 2α be the largest 2-power dividing
n. If \XK\ < oo and the height h(K) is finite then 2a e M{K/F).

Proof. Write n = 2α 6, where 6 is odd. If i£ is non-real then
b{\) is a unit in WK and so 2aeM{K/F) by(1.6)(2). Suppose then
that K is real. Let Q e XK - We Claim U <£ ρc(Q) ? the positive cone
of Q. Namely, suppose U c p c ( 0 . Then pc(β) = U pc(P) where
P = QΠF. If S e X{P) - {Q} (and such an S exists as \X(P)\ =
[1C : F]) then pc(S) = g(pc(Q)) for some g e G2L\{K/F) . But
g(U) = 1/ and g fixes F so that pc(5) = ̂ (C/ pc(F)) = C/ pc(P) =
pc(β), a contradiction.

The Claim shows that the only prime ideal to contain M(K/F) =
({(1, -y)\yeU}) is IF. By primary decomposition [8, 2.3], M(K/F)
is JΓF-primary. Since no power of b is in M(K/F) c / F we have
2a e M(K/F). α

2. Attached primes. For modules M over non-noetherian rings R
there are several notions of associated primes (cf. [10]). We will use
three:

Ass(M) = {P € Spec(JR) | P = annjR(m), some meM}

Asf(Λf) = { P E Spec(iί) | P minimal over some annκ(ra)}

Att(Af) = {P e Spec(i?) | for all f.g. ideals / c P, there

exists meM with / c arni/^m) c P}

Ass (M) is given by the usual definition of associated primes in the
noetherian case. Asf (M) is denoted by Assy(Aί) in [10] and Att (M)
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is denoted by sK(M) there. Primes in Att (M) are called primes
attached to M (following Dutton [3]).

LEMMA 2.1. Let R be a commutative ring and M an R-module.
(1) Ass(M) c Asf(Λf) c Att(Λf), with equality if R is noetherian.
(2) Asf(M)^0 iffMφO.
(3) If s,t e HomCfi:, F)9 then j/(kers*) = J^(kerί*) for tf =

Ass, Asf and Att.

Proof. (1) and (2) are clear cf. [10, p. 346]. For (3) note that
ker s* = (z)ker U for some z e K' by (1.1) and a n n ^ ((z)m) =

) . D

We remark that equality in (2.1)(1) can fail at either place for non-
noetherian R, cf. [10].

LEMMA 2.2. Let M be a WF-submodule of WK. No P(a, p) is
attached to M (where ae X?, p an odd prime).

Proof. WK contains no odd dimensional zero-divisors, hence
pm Φ 0 for all 0 Φ m e M. Thus if ann^ j F(m) c P(a,p) then
m Φ 0 and (p) (jL ?amWF(m). So P{a, p) & Att(M). α

PROPOSITION 2.3. Let M be a WF-submodule of WK. The fol-
lowing are equivalent

(l) Mnwtκφθ.
(2) IF e Att(AΓ).
(3) IFeAsf(M).
(4) zd(M) = IF.

Proof (1) - , (2). By [3, Cor. to Prop. 6], zd(M) = UPGAtt(M)P

If M n WtK φ 0 then 2k e zd(M) for some k and so 2k e P, for

some prime P attached to M. But then P = IF.
(2) -* (4). By (2.2) we have that Att(M) consists of some P(a)

and possibly IF. Thus every P e Att(M) is contained in IF. If
IF e Att(M) then IF = U A t t ( M ) P = zrf(M).

(4) -> (1) is clear as then 2 e zrf(M). (3) -> (2) is clear by (2.1).
For (1) —> (3) note that we have 2^m = 0 for some m e M. IF is
minimal over 2*(1) so that IF e Asf(Λf). D

COROLLARY 2.4. Let M be a WF-submodule of WK. Then
Asf(M) = Att(Aί).



128 ROBERT W. FITZGERALD

Proof. We need only show Att(Af) c Asf(M) by (2.1). Let P e
Att(M). P is not any P{a,p) by (2.2) and if P = IF then P e
Asf(Λf) by (2.3). So suppose P = P(a) for some a G XF . Then for
some m eM annWF(m) c P(a) and clearly P(α) is minimal over

). Thus again P G Asf(M). D

THEOREM 2.5. Let s e Hom(K, F)' and let a e XF. Then P(a)
is attached to kers* iff \X{a)\ > 1.

Proof. Suppose first that |ΛΓ(α)| > 1. Let β, γ e X(a) be distinct
and choose e e 1C with e >β 0 and e <γ 0. We may assume
^(1) = (l) by (1.1) and (2.1). Thus x = (1, e) - s*(\, e) e ker 5*
and sgn^x = 2 - sgnα5*(l, e) while sgn?x = -sgnα5*(l, e). Hence
x g P(β) Π P(γ). We may assume x & P(β).

We claim ann^f(x) c P{a). Suppose r e WF and rx = 0. Then
rx G P(/?) and so r e P(β) Π WF = P{a). This proves the claim,
and since P(a) is a minimal prime, shows P(a) E Asf(kers*) =
Att(ker 5*).

Next, suppose P(ά) G Att(ker 5*). Assume, if possible, that \X(a)\
= 1. Denote by a also its unique extension to K. Suppose ann^^(x)
C P(ά) for some x E ker 5*. We may assume s = WK/F by (2.1).
Thus 0 = sgnα5*(x) = sgnα;c by [15, III 4.5]. Hence x e P(a).

Let A = {δ G XA:|X G P(<5)} 4̂ is clopen. The complement A1 is
clopen and so is B = εK/F(A'), where εK/F(Q) = Qf)F, by the Open
Mapping Theorem [6, 4.9]. By the Normality Theorem [4, 3.2], there
exists an r G WF such that sgn^r = 0 if δ G B and sgn(5(r) = 2n if
<5 £ B (some fixed «). We note that a jL B since aeA, a£Af and
ε^L(α) = {α} is disjoint from A1.

Let (5 G X*:. If 5 G ^ ' then β = eκ/F(δ) e B and so sgnδ(rx) = 0,
as sgn^(r) = sgn^(r) = 0. If δ e A then sgnδ(rx) = 0 as sgn^(x) =
0. Hence rx e WtK and 2krx = 0 for some k. That is, we
have 2kr e a n n ^ x ) c P(a). But sgnα(2^r) = 2k+n, as a $ B,
a contradiction. D

COROLLARY 2.6. Suppose ker^* ^ 0. The following are equivalent:
(1) k e r ^ c ^ .
(2) M{K/F)cWtK.
(3) £Ver>> ordering on F extends uniquely to K.
(4) tr*(l) w α
(5)
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Proof. (1) <-*• (2) follows as ker s* generates M(K/F) by (1.1).
(3) «-> (4) is [15, III 4.5] and [11, VIII 6.4].

(1) -+ (3). Let α e I f and let β\, β2 e X(a). Choose any
e e K'. We assume s*(l) = (1). Then (e) - s*(e) e ker s* c WtK
and so 0 = sgn^ (e) - sgaas*(e) for i = 1, 2. Thus sgn^ e = sgn^ e
for all *? G K'. Hence β\= β2.

(3) -•• (1). Let α e l j f and set β = aΠF. Then sgn^tr*(m) =
sgnα(m) for any m G WϋΓ (tr is the trace tτκ/f). Thus if m e ker s*
then sgnαm = 0 and so m e WtK. Thus kertr* c WtK and hence
ker a, c fΓίii:.

(3) -» (5). We have Att(ker ί,,) / 0 by (2.1). But (2.2) and (2.5)
show only IF could be attached to ker s*. Lastly, (5) —• (3) is
(2.5). D

For a field E and form φ e WE we write D(φ), or DE(φ) if
we need more precision, for the elements of E represented by φ.
For a positive integer m we will write D(m) for D{m{\)). Lastly,

COROLLARY 2.7. Let s e Hom(K, F)' and suppose s*(l) = (1).
Suppose also that dim(s*{x))an = 1 for all x e K'. Then:

(1) 5* is a ring homomorphism.
(2) m(K/F) = kerί* = M(K/F) = ({(1, -y)\y € U}).
(3) UcDκ(oo).
(4) Every ordering on F extends uniquely to K.
(5) Att(kers,) = {/F}.
(6) For a e G(F), Dκ{\, -a) =DF{\, -a){Dκ{\, -a) n t/).

Proof. We have 5*(x) = {NK/F{x)) by (1.3) and so 5* is a ring
homomorphism. Then ker s* is an ideal which gives (2) by (1.1) and
(1.6), noting that (1) -ί*(y) e ker ί* n WF = 0. By (1.5) m{K/F) c
H^ϋ: and so if y € t/ then (l,-y) e H 7 ^ . Hence £/ c 2>A (OO).
Parts (4), (5) follow from (2.6) as ker s* c W7;^.

Lastly, let bx e Dκ(l, -a) where b e G(F) and x e U. Then
((-α, -b)) = ( (-α, - x ) ) . Apply 5* to get

J « - α , -6)) = ((-α))5,((-x)) = 0.

Hence b e I>Λ:(1 , -β> n (/(i^) = I>F(1 , - a ) . Then x G Z)<1, -α)
nt/. D
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REMARK. (2.7) applies in the following cases:
(1) I2F = 0 (e.g. tr.d.c/ 7 = 1). Here we may write any s*(x) =

(NK/F(X)) + Φ where φ e I2F = 0.
(2) G(K) = {1, a}G(F). This follows from (1.4).

COROLLARY 2.8. If every ordering on F extends uniquely to K then
G{K)/G(F)κ Dκ(oc)/DF(oo).

Proof. We may assume WK φ WF. Att(WK/WF) = {IF} by
(2.6) and so WF is an IF-pήmary submodule of WK. In particular,
multiplication by 2(1) is locally nilpotent on WK/WF. That is, if
x e G{K) then 2m(x) e WF for some m. Hence ax e Dκ(2m)
for some a e G{F). So G(K) = G(F)Dκ(oo) and G(K)/G(F) «
Dκ(oo)/Dκ(oo) Π G(F) = Dκ(oo)/DF(oo). D

The condition (2.3) telling when IF is attached to ker s* is not easy
to check. We give some examples. Clearly IF e Att(ker s*) if F is
non-real and WK Φ WF. For an example with F real, take F = Q
and K = Q(v^2). Q has a unique ordering a which extends uniquely,
so P(a) & Att(ker a,) by (2.6). Also ker s* φ 0 as \/2 <£ QK2 . Thus
Att(ker s*) = {IF} .

For an example with IF g Att(ker 5*), consider the Pythagorean
SAP field K with automorphism σ of odd order n constructed by
Ware [16]. If F = Kσ then K/F is Galois of degree n. As \X{P)\ >
1 for P e XF we have WK φ WF, while the fact that WtK = 0
implies IF g Att(ker s*).

In general, the property IF g Att(kers*) is restrictive. We close
this section by examining some of its consequences.

LEMMA 2.9. Let [K : F] = 2k + 1 and choose s such that s*(l) =
(1). Suppose /F£Att(kers*). Then:

(1) Dκ(oo) = DF(oo)K2 .
(2) // Nκ/F(w) e {-\)kF*2 then DF(oo) c Dκ(l, -w).
(3) WtK = WtF.

Proof. (1) Let w e Dκ(oo) so that (1, -w) G H^A:. NOW
J * ( 1 , -w)e WtF. Thus (1, - ^ ) - ^ ( l , - t y ) e W ^ ^ n k e r ^ = 0 by
(2.3). Then s*(l, -tι;> = {1, - w ) , tϋ G F ^ 2 and ti; G DF(oo)K'2 .

(2) We have det(s*(w)) = Nκ/F{w) = (- l ) f c . Then

det((tu) -5*(tt;)) = (-l)k+ιw and rf((^) - J*(IU)) = w.

Hence (w) - s*(w) = (1, -w) + φ for some φ G I2K. If x G DF(OO)
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then (1, -x)({w) -s*(w))e ker s* Π WtK = 0. By the Arason-Pfister
theorem, (1, -x)(l, -w) = 0 and x G Dκ((ί, -w)).

(3) WtK is generated by (1, —w), w G Dκ(oo). Apply (1). D

COROLLARY 2.10. / f / F £ Att(kers*) then m(K/F) = 0. In partic-
ular, WK embeds into a fiber product of copies of WF. If \XF\ < 00

we need only finitely many copies.

Proof. If φ e m(K/F), φ φ 0 then 0 € WtK by (1.5) and
0 G ker 5*. This contradicts (2.3). Thus m(K/F) = 0. Write G(K) =
gτ{xi\i G /} G(F), where gr(*S) is the group generated by S. Set

Si(y) = trκ/F(Xiy) for all >> G A:. Then Ŵ A: -+ Π/ίFF by 0 »-•
(... , (Si)(φ)9 . . . ) isinjective.

Suppose \Xf\ < 00. Then |ΛΓĵ | < oc also. Write XK = {Q\, .. ,
β«}. Now Π Qi = ̂ ( o c ) = DF(oo)K2 by (2.9). Hence

Thus M̂ JRΓ embeds into n copies of WF. D

COROLLARY 2.11. Suppose IF g Att(ker5*).
(1) //* \Xp\ < oc ί/2̂ « ^A^ is a finitely generated WF-module.
(2) J^ Wi7 w noetherian then so is WK. D

COROLLARY 2.12. WF « PΓA: iff every ordering on F extends
uniquely and ker s* n Ŵ ϋΓ = 0.

Prao/. By (2.2), (2.3) and (2.5) we have Att(ker 5*) = 0. Then
ker 5* = 0 by (2.1). D

REMARK. There is a partial converse to (2.8). If WtK = WtF then
IF £ Att(ker s+). Namely, if φ G H^A: Π ker s* then ζί> G H^F and so
φ = 5*(0) = 0. Thus ί^A: n ker s* = 0 and / i 7 ̂  Att(ker 5*).

3. ker 5* as a projective module.

LEMMA 3.1. (1) ker 5* is projective iff WK is projective.
(2) If ker 5* is free then WK is free.

Proof. We may assume s*(l) = (1) by (1.1). Then both parts
follow from WK « WF Θ ker 5*. D

The trace of an i?-module M is:
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We refer to [7] for basic facts about tr M.

PROPOSITION 3.2. Suppose kers* is projective and kers* Φ 0. Then:
(1) tr(kers*) = WF,
(2) annwF(k&τs*) = 0.

Proof. (1) tr(kers*) is an ideal so if tr(kers*) Φ WF then
tr(ker s*) is contained in a maximal ideal of WF. We check the
two cases.

Suppose tr(ker s*) cIF. Choose x £ K such that s*(l) = s*(x) =
(1). (This is possible by (1.4) since otherwise L(s) = {(1)} and U =
{(1». But then for any JC G Γ , x e Nκ/F(x)K'2 c F'lC2, as
Nκ/F(xNκ/F(x)) e IC2. This implies WK = WF and ker a, =
0, contrary to the assumption). Then (1, -x) e ker 5*. We have
IF ker 5* = ker 5* by [7, 3.30(a)] while (l,-x) e ker s*\/ 2# and
/ F ker s* c 72i^. Thus tr(kers*) <jt IF.

Next suppose tr(ker s*) c P(a, p) for some α G X^ and odd prime
p . Let m > 1 be the largest integer with tr(ker^) c P(a,pm); a
maximum exists since f]m P(a, pm) c P{a) c IF. Now tr(ker s*) =
(tr ker ̂ ) 2 by [7, 3.30(a)]. Hence tr(ker s*)cP(α, /? m ) 2 cP(α ? p

2 m ) ,
a contradiction. Thus tr(ker s*) φ P(a9 p) and so tr(ker s*) = WF.

(2) Clearly tr(ker 5*) = WF is a finitely generated ideal, so
ann^/r(ker 51*) is generated by an idempotent [7, 3.30(b)]. Only 0 and
1 are idempotent in WF [11, VIII 6.8] and clearly ann^F(ker s*) Φ R
as ker s*φθ. Thus ann^/τ(ker s*) = 0. D

THEOREM 3.3. Suppose F is real and kers* Φ 0. If some ordering
on F extends uniquely to K then ker 5* is not projective.

Proof. Suppose ker s* is projective. Then ann^/?(ker 5*) = 0 by
(3.2). Let P be a prime ideal attached to WF « WF/annn/^ker 5*).
Now (kerΛ1*)^ is (WF)P-free and so:

ann(^F ) / )(ker 5*)p = 0 = (annp^ker 5*))(W/i7)p.

Then P is attached to ker 5* [13, Lemma 2]. That is, Att(WF) c
Att(kers*).

To complete the proof we need only check that every P(a), a e
XF , is attached to WF, viewed as a Wi7-module. This would yield a
contradiction to (2.5). Let a e XF and choose a >a 0 with a <£ F2 .
Then 0 ?έ (1, -α) e ann(l, α) and ann(l, a) c P(α). Since P(a)
is a minimal prime ideal we have P(ά) e Att(WF). In the case that
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a >a 0 implies a e F'2 we have Xp = {α} and G(F) = {±1} . Thus
WF = Z, P(α) = {0} = ann 2, so that again P(α) e Att{WF). D

COROLLARY 3.4. Suppose kers* w (2 non-zero projective WF-
module. If WtF φ 0 then ker 5* n WtK φ 0.

The proof of (3.3) shows Att(H^F) c Att(ker s*). If
WtF φ 0 then IF e K\X{WF) by (2.3) and so IF e Att(kers*).
This implies ker 5* Π WtK φ 0 by (2.3). D

If no ordering on F extends uniquely to K (for example if K/F
is Galois) then it is possible for ker s* to be WF -projective—even
for WK to be WF-ϊrze.

PROPOSITION 3.5. There is a real field F and a Galois extension K
of F of degree 3 such that:

(1) WF and WK are noetherian,
and

(2) WK is WF-free.

Proof. Let a = a\, aι, 0:3 be the roots of x3 - 3x + 1 G Q[x].
Note that Q(α)/Q is Galois. Let F be a maximal field in Q n R not
containing a (Q is the algebraic closure of Q). i 7 is real with the
ordering induced by R. Moreover G(F) = {±1}. Namely, if a e F,
a > 0 then i^v^α) c Q n R and a & F(yβ) as deg a = 3. Hence, by
maximality, F(yfa) = i 7 and aeF2.

Let K = F(a). Since x 3 - 3 x + l is irreducible over i 7 , by construc-
tion, AΓ/i7 is Galois of degree 3. We claim that K is Pythagorean.
Suppose not. Let β e Σ ^ 2 > £ g # 2 . Note that jff g i 7 , as
β eΣK2 implies j8 > 0 and so j? G F would yield β <Ξ F2. Thus
F(α) = F(j8) = ^ . Let σ generate Gal(^/F) and set j8/ =
1 = 0, 1, 2 (β 0 = β ). We note that each βt is in X) A:2 . If
irr(£, F) then ^(x2)) = irr(^ff, F ) . Thus L = F(V]8ό, v ^ "
is Galois over i 7 , contains K = -F(y?) and is contained in Q n R.

Now [L : F] = 3 2r for some r = 1, 2 or 3. Let P be a Sylow
3-subgroup and let F(Q) be the fixed field. Then F(Q) c Q n R and
a & F(Q) as deg a = 3 while deg Q = 2r. This contradicts the
maximality of F.

Hence AT is Pythagorean, and SAP since K c Q [4, Example 1,
p. 1177]. F has a unique ordering so K has 3 orderings. Hence
\G(K)\ = 8 and WK ^ Z π Z π Z which is free over Z « WF . f - •
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The example of (3.5) yields another case where IF £ Att(ker s*).
Indeed Att(ker s*) = {P(a)}. Also (3.5) is another example of a
Pythagorean field with an automorphism of odd order (cf. [16]).

We will show that the situation of (3.5), namely, K/F Galois, WK
noetherian and WK WF-ϊτtt, is impossible if F is non-real and
non-rigid. Weaker results hold with fewer restrictions on K and F
so we begin with no assumptions on if or F .

LEMMA 3.6. Suppose WK is a free WF-module. Then for some
index set I there exists φi G WK for i G / such that:

(1) WK = ®IWF φi,
(2) φι = (cti) + ψi where a\ G K and ψι G I2K, and
(3) G(K) = A x G(F), where A is the group generated by the α/,

iel.

Proof We have WK = φ 7 WF φt for some collection {φf e
WK\i G /}. Clearly at least one φι, say φ\, is odd dimensional. For
any even dimensional φj replace φj by φj — φ\. We may thus assume
(1) and (2) hold.

Now G(K) = A . G(F) since if x e G(K) then (x) = Σ nΦi and
so x = det(x) = ± Π det(r;)α; G A G(F). We claim that by replacing
some φi by aφi, α G G(.F), we may assume A n ^(i 7 ) = 1.

This is clearer if we write the Z2-vector space G(K) additively. We
wish to show that there exist <Z; (/ G /) in the subspace G(F) such
that span {α/ + at \ i G /} n G(F) = {0}. Choose any complementary
subspace G(F)'. Then every αz has a unique expression α, = α, + α|
for some αz G G(F) and a!i e G(F)'. Use these α/. D

PROPOSITION 3.7. Suppose F is non-real and WK is a free WF-
module. Then for all f e G(F), f φ 1, we have Dκ{\, - / ) =
D(lf)

Proof. Write WK = 0 7 WF φt as in (3.6). Each odd di-
mensional form is a unit as F is non-real. Multiplication by φ^1

is an WF -module isomorphism and {φ[ιΦi\i G /} satisfies (1), (2),
(3) of (3.6). We may thus assume φ\ = (1). The result is clear if
WK = WF so we may assume |/| > 2. Write G(K) = Ax G{F) as
in (3.6) and let a G A.

C/α/m. WTί: = JFF . (1) Θ WF . (α) θ Af, for some
ule M .
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We have (a) = r\ (1) + Σi>2

 riΦi ^ a ^ r* (* ^ 2) are even dimen-
sional then by determinants α G G{F), contradicting (3.6). We may
thus assume ^ is odd dimensional. Since F is non-real, r2 is a unit
in WF. We have:

ι>3

Set M = φ;> 3 WF 0/. Then φ2eWF-(l) + WF-(a)+M, hence
=WF-(l) + WF-(a)+M. Moreover, if:

^i(l) + s2(a) + m = 0 (meM)

then

+ m = 0

+ m = 0.

But (1) = 0i and 0/ (i > 2) are independent. Thus $2*2 = 0. Again
Γ2 is a unit so s2 = 0. Thus si = 0 and m = 0. This proves the
Claim.

Now say / e G{F), f φ \. Let x e Dκ(ί, - / ) , x ^ G(F).
Then x = ga for some g e ^(^) and α G A, α ^ 1. But
then (1,-/)(1) = (g)(l,-/)(α) contradicting the Claim. Thus

, ~/) C G(F) and so Dκ(l, -/> = Z)F(1, - / ) . D

In the following, B(F) denotes the basic part, namely those a e F
with either a = ± 1 , α or -a not rigid (cf. [12]).

THEOREM 3.8. Suppose F is non-real and G(F) is finite. Ifker s*
is a finitely generated projective WF-module then either:

(1) WK « ίFFμί] where A = G(K)/G(F) or
(2) 5( f ) = {±1} αnrf WF « Zrt[C] wiίΛ n = 2 or 4 and C a

group or exponent two.

Proof. WF is a local ring so ker 5*, hence WK, is finitely
generated free. Suppose B{F) φ {±1}. Choose / e J?(F)\{±1}.
Set XX(K) = Dκ(l,-f). Then ^(ΛΓ) = ^ ( F ) = DF(l,-f) by
(3.7). For 1 > 2 and a field E let X/(£) = U ^ ( l ? -a), over
α G X/_i(£)\{l}. Then by [2, 2.4]

B(K) = ±{XX{K)X2{K)2 U - X K ^ ^ W ) = B(F) C

The result is then standard, see [12, 5.19]. And if B(F) = {±1} then
WF is classified as given [12, 5.21]. b
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REMARK. If WK = WF[A], as in (3.8)(1), then WK is clearly a
free WF-module. Suppose B(F) = {±1} as in (3.8)(2) and B(K) n
G(JF) = {±1}. We may write G(K) = B xC where B(K) c 5 and

= ±C. Then any form in WK may be written uniquely as
i) = Σ(cn) (bι) + Σ(cn) fo> + .. . . Thus again WK is a

free FKF-module. However, we know of no example of an odd degree
extension K/F with WK φ WF and either (3.8)(1) or (2) occurring.

We obtain a slightly weaker result if WF is not noetherian.

LEMMA 3.9. Let WK^φjWF φi as in (3.6). Let a,βeA\{l}
be distinct and let a, b, c, d e G{F). If baeD(l, -aβ) and da e
D(l, -cβ) then b = d and a = c.

Proof. We have

0 = ((-cβ, -da)) = ((-ac, -da)) - ((-aβ, -A*))

= «-αc, -da)) - ((-aβ, -bd))(mod I3K).

Thus ((-ac, -da)) = «-W, -aβ)). Apply linkage [12, 1.14]:

((-ac, -da)) = ((-ac, -x)) = ((-bd, -x» = ((-bd, -aβ))

for some x e K\ Now x e Z>(1, -abed). \ϊ ac Φ bd then x e
G(F) by (3.7). But xda e D(l, -ac) which forces a = c, by (3.7)
again. Similarly xα/? G Z>(1, -bd) yields b = d. Suppose then that
ac = bd. Now jedα G D(\, -ac) gives JC G aG(F) (unless α = c
and so b = d). And xαjff G D ( l , ~Z)rf) gives x G βG(F) (unless
b = d and so α = c). But aG(F) Π βG(F) = 0 . Hence α = c and

THEOREM 3.10. Suppose F is non-real and G(F) is infinite. If
kers* is a finitely generated projective WF-module then either:

(1) WK » J^F[Λ], wi'/A ̂  = G(K)/G(F) or
(2) ^ ( i 7 ) ! < oo am/ i? = i?0[C] for some Witt ring Ro and infinite

group C of exponent 2.

Proof. If \B(F)\ < oo then R is as described [12, 5.19]. Suppose
2?(F) is infinite. Let aeA, a φ 1. We will show a is bi-rigid.

Suppose α is not rigid (the argument for -a is similar). Then
a G B(K) and for all / G 2?(F), fa is not bi-rigid. Hence there
exist infinitely many / with fa not rigid (that is, if fa is rigid
then -fa is not rigid). But A is finite, as WK is finitely generated
over WF, so there exist distinct / , g in F and β G ̂ 4\{1, a} such
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t h a t bβ eD(l, - f a ) , dβ e D{\, -ga) f o r s o m e b,d e F. T h i s
contradicts (4.9). D

L E M M A 3.11. If t\, . . . , tn, and all titj (i Φ j) are rigid then

D(tu... ,tn) = {tu... ,tn}.

Proof. By induction on n. Suppose n = 2.

D(h , h) = txD(\, M2> = ίi{l, ht2} = {ίi, ί2}.

For n > 2 we have by induction:

Λ - l

1 = 1

LEMMA 3.12. Let K/F be finite Galois {not necessarily of odd de-
gree). Let t e K\FK2. Then at least one of t, tt8 (g e Gal(K/F))
is not rigid.

Proof. Suppose t and all tt8 are rigid. Note t8 is rigid as
D(l,t)8 = D(l, t%). Also if g, h e Gz\(K/F) are distinct then
tnh = g(tth8~ι) is rigid. Hence by (3.11) D(ΣG(

tg)) = {^1^ e

Ga\(K/F)} . But Σ(*g) = t Γ*(0 € WF. Hence some t8 e G{F). But
then t e G(F), a contradiction. α

THEOREM 3.13. Let F be non-real and suppose that either (i)
is finite and B(F) φ {±1} or (ii) G(F) w ϊ/i/ϊn/te and B(F) is in-
finite. Let K/F be Galois of odd degree. Then neither WK nor
kers* are finitely generated projective WF-modules.

Proof. If WK is a finitely generated projective WF-moάvλe then
(3.8), (3.10) imply B(K) C FK2 and hence if t e K\FK2 with
K = F(ί) then t and all »^ (ge Gύϊ(K/F)) are bi-rigid. Namely if
tt8 e FK2, say tg = at, then # 2(ί) = α(αί) = ί. Thus t is fixed by
g2. As g has odd order, ί is fixed by g. But then K ψ F(t). This
contradicts (3.12). D

Ware [16, 1.6] shows a rigid field cannot be the Galois odd degree ex-
tension. (3.13) improves this slightly: even the case WK « WF[A],
A = G(K)/G(F) cannot arise.

In a different direction we have:
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PROPOSITION 3.14. Suppose WK is a noetheήan, injective WF-
module. Then F is non-real and WF is Gorenstein {that is, \zxmIF\
= 2).

Proof. WK injective implies its direct summand WF is injec-
tive. Thus WF has injective dimension 0 and so KruU dimension 0.
Thus F is non-real. Further, WF is Gorenstein (cf. [1], [9]). α

4. Noetherian extensions. We have given several examples of odd
degree extensions K/F where WK is a finitely generated WF-
module. This is necessarily the case when Xp is finite and IF £
Att(ker s*) by (2.11). We collect here several results on the possible
values of [G(K): G(F)].

PROPOSITION 4.1. Let [K : F] = p be an odd prime and suppose
K/F is Galois. If [G{K): G(F)] = 2k then p\2k - 1.

Proof Let G = Gύl(K/F) and let σ generate G. G acts on
G(K)/G(F). Suppose xG(F) is a fixed point. Then Nκ/F{x) e
χPG(F) = χG(F) and so x e G(F). If x £ G(F) then the orbit
{σι(xG(F))\i e Z} has order p (there is no stabilizer as G is sim-
ple). Thus p divides 2k - 1. D

EXAMPLE. Let p be an odd prime and set n = 2P - 1. Let K
be Q2 with the nth roots of unity adjoined. Then K/Q2 is Ga-
lois of degree p [14, Prop. 16, p. 77]. By [11, p. 161] we have
[G(K) : G(Q2)] = 2P-1. This gives the minimal value of [G(K) :
G(F)] for p such that the order of 2 mod p is p - 1 (thus for
p = 3, 5, 11, 13, 19, 29, 37, 53, 59 etc.).

COROLLARY 4.2. Let [K : F]= pχp2 Pt with the pi's prime (not
necessarily distinct). Let kt be the least positive integer such that
Pi\2ki - 1. If K/F is Galois and G{K) φ G(F) then [G(K): G(F)] >
2W, where w = k\Λ \-kt.

Proof. We use induction on t. The case t — 1 is (4.1) and if
t > 1 then choose an intermediate normal extension L and apply the
result to K/L and L/F. D

When p is a Mersenne prime (i.e., p = 2k — 1) then the minimal
(non-trivial) square class extension for a Galois extension of degree p
is p + 1. In this case we may improve (1.5).
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PROPOSITION 4.3. Suppose K/F is Galois and that [K : F] = p
where p = 2k-l is a prime. If[G(K): G(F)] =/?+l then m(K/F) c
ann(2*(l)).

Proof. Choose s e Hom(K, F) with s*(l) = (1). There is an
x e G(K) with tr*(x) = s*(l) = (1). Now (-1)*-1/2 = det tr*(x) =
NK/F(X) - Since p = 2k - 1 (A: > 2) we have Nκ/F(x) = ~ 1 . Write
( J ( ^ ) = U x G(F) as in §1. There is only one (non-trivial) orbit in
G(K)/G(F). Thus C/ = {1, JCI , . . . , x^} where σfo ) = x/+i (here
σ generates Gal (K/F) and x p +i = Λ:I ). We may assume Xi = -x
and so tr*(Xi) = (-1).

Let ψ = φo + ΣPi=i(χi)Φi € m(K/F), where 0O, . . . , ^ e WF.
Then:

0 = tr* ̂  = pφo - ^ 0/,
ι = l

ί=2

S u b t r a c t i o n y i e l d s j?(<^>o - φ \ ) — {Φ\— Φo) = 0 a n < i s o 2k(Φo~Φ\) = ®
S i m i l a r l y , 2 f c(<£ ; - ^ ) = 0 f o r a l l i,j.

N o w ( - 1 ) = t r * ( x 1 ) = { x 1 , x 2 , ••• , * / > ) • T h u s (xp) = -{l,χu . . . ,
x p _ ! ) . T h e n ^ = Φo + {xi)Φ + • + {xp-\)φp-\ - ( 1 , X i , . . . , xp-\)ΦP

= (Φo - ΦP) + (xiKΦi -φp) + - + (xp-χ)(φp-\ - φp). Thus 2kψ

= 0. D

(4.3) applies when [K : F] = 3 and [G(K) : G(F)] = 4. See after
(4.1) for an example of such an extension. We can improve (4.3) in
this case (see the second example after (1.1)).

COROLLARY 4.4. Suppose K/F is Galois with [K : F] = 3 and
[G(K): G(F)] = 4. Write U = {1, x, y, xy}. Then:

(1) m(K/F) = {Φo(x)+Φ2(y)\Φi € WF, 4φi = 0 and Φ0+Φ1+Φ2 =
0}.

(2) m(K/F) = 0 iffDF(4)cDK(\,-x)nDK{\,-y).
(3) / / F is non-real and m(K/F) = 0 then x,ye D κ ( 2 ) .

Proof. (1) Follows from the proof of (4.3). Suppose m(K/F) =
0. If w €. A F ( 4 ) then for φ = (1, -w) we have 4φ = 0 and
(1, -x)φ e m(K/F) = 0. Thus w e Dκ(l, -x), and similarly
weDκ(l,-y).
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If DF(4)cDκ(l,-x)nDκ(\,-y} and ψ = Φo + Φι(x) + φ2{y)
m(K/F) then

ψ = Φo + Φι{x) - (Φo + Φι)iy)

= Φo(U -y) + (χ)Φi{i, -xy) = 0 + 0 = 0,

as φi € ann(4) which is generated by (1 , —w), w e Dp(4). Thus
m(K/F) = 0, proving (2).

To prove (3) note that (2) implies DF(22+k) c Dκ(2k({-x)))
f)Dκ(2k((-y))). If DF(4) = G(F) then -1 e Dκ{\, -x)Γ\Dκ{l, -y)
and x, y € D{2). Otherwise, say DF(2k+ι) ψ G(F) and DF{2k+1) =
G(F) for some k > 1. Then - 1 e D{2k({-x))) and 2k+ι({-x)} =
0. Thus x € D(2k+ι) c D(2k-ι{(-x))). So -1 e D(2k~ι{{-x)))
and 2k((-x)) = 0. Continue until 2(1, -x) = 0. Similarly 2(1, -y)
= 0. D

We have only a few results for non-Galois extensions.

PROPOSITION 4.5. Let L be the normal closure of K/F. If L is
real then [K:F]< [G(K): G(F)].

Proof. Let XE{P) denote the set of extensions of an ordering P
to a field E. Let Q e XL and set P = QnF, V = QnK. Then
\XL{P)\ = [L:F] as L/F is Galois, and \XL(V)\ = [L : K]. Then
\XK(P)\ = [L:F]/[L:K] = [K:F].

Let h(S) denote the number of subgroups of G(K) of index 2
containing a set S. ijtX P & XF. Then h{P) = |G(ϋ:)/.P| - 1 =
2[G(K): G(F)]-l. Also h(Pυ{-l}) = [G{K): G(F)]-l. Thus there
are [G(K) : G(F)] many subgroups of index 2 in G(K), containing
P but missing - 1 . These are the only possible choices for extensions
oΐ P lo K. Hence [K : F] = \Xκ(p)\ < [G(K): G(F)]. D

We close with a detailed study of the smallest possible case: [K : F]
= 3 and [G(K): G(F)] = 2. We know of no such extensions.

LEMMA 4.6. Suppose [K : F] = 3 and K/F is separable but not
Galois. Let L be the normal closure of K. Then:

(1) There exists afield E such that F cE cL, [L : E] = 3 and
L/E is Galois.

(2) [G(K): G(F)] = [D ^ g i f f f f _,» , for some g e G(F).
(3) [G(K): G(F)] < [GK(L): G(E)].
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Proof. We have [L : F] = 6. Thus there exists a normal sub-
group H of Gal (L/F) of order 3. Let E be the fixed field of H.
Then [L :E] = 3 and £ = F(y/g) for some £ € <j(f)\{l}. Suppose
K = F(e). Then e <£ E and so L = F(y/g). By [11, VII, 3.4]:

[G(L):G(K)]=ί\Dκ(l,-g)\.

Hence the formula in (2) holds. (3) follows from (2). o

LEMMA 4.7. Suppose G{K) = {1, a}G(F). Set H = D{\, -a) n
G{F). Then for feG(F):

D n -Λ^/^ 1 ' "- 0 ίff*H'
KK ' y / \{l,α}Z)F(l,-/> iff EH,

Dκ{\ ,-af) = {\, -af}(DF{\, -f) n//).

By (1.4) there is an 5 € Hom(A:/i7) with s*(l) = 5*(α) =
(1). (2.7)(6) then gives the computation of Dκ{\, - / ) . Clearly
Dκ(l, -af) = {l, -af}{Dκ{\, -af)ΠG(F)). Then ^ € ^ { 1 , -af)
Π G(F) iff α/ G Z>κ(l, -^) iff g G Z>F(1, -/) and g € ί ί . Thus
Dκ{\, -af) = {1, -β/}(ZV<l ,-f)ΠH). Ώ

PROPOSITION 4.8. Suppose [K : F] = 3 αmj? G(J5Γ) = {1, α

(1) \D(l,-a)nG(F)\ϊl;
(2) // |Z>(1, -a) n (?(f)| = 2 then either:

(i) radCF) ^ 1, or
(ii) WF and WK are group ring extensions, or

(iii) There is a non-real Witt ring RQ such that WF = Z π RQ and
WK = Zπi?0[{l, a}]. In particular, \XF\ = \XK\ = 1.

Proof. (1) Suppose |Z><1, -a) Π G(F)\ = 1. Then (4.7) implies
a is bi-rigid. Thus WK = fF.F[{l, a}] is a group ring extension.
Let L be the normal closure of K. Then L = K(^fg) for some
g e G(f). Set £ = F(vf) . Now Dκ(l,-g) = DF(l,-g) so
that [G(K) : G(F)] = [G(L) : (?(£)] by (4.6). But (4.1) implies
[G(L): G{E)] > 4, a contradiction.

(2) Write D{\, -a) n G(F) = {1, /} and suppose rad(F) = 1
in particular, DF(l, -f) φ G(F). If x e G(F) -DF(\,-f) then
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, -ax) = {1, -ax) by (4.7). Thus if there exists g, -g e G(F)-
DF(l, -/) then ag is bi-rigid. Now / e D(l, -a) so a is not bi-
rigid and hence g = a-ag is bi-rigid. From Dκ(l, -g) = 2)^(1, -g)
we see that both ff̂ F and WK are group rings (with {1, g} the
group). This gives (ii).

So we may assume for all g e G(F) that either g or -g is in
£><1, - / ) . Thus [G(F) : DF(ί, -/)] = 2 and -1 g Z)F(1, - / ) . In
particular, DF(l, -/) is an ordering on F . From G(F) = {1, /} x
Z>ir(l, -/) we get WF = ZπR0 for some Witt ring Ro .

We also have that Dκ{l,-f) = {1, α}JD/r(l, -/) has index 2,
in G(K), and misses - 1 . Thus D#(l, -/) is an ordering. Again,
G(K) = {1, /} x Dκ(l, - / ) . Now in Dκ(l, -/}, D(\ 9 a) = {I, a}
and Z>(1, -af) = {1, -α/} . Hence H^ί: = Zπi? 0[O , «}]•

Lastly, (2.7) implies Att(ker J*) = {IF} . Then (2.7) and (2.8) yield
\Dκ{oo)/DF{oc)\ =2. Now DF{oo) = 1 x DL(oo), where i?0 = W7^,
and Dχ(oo) = 1 x DL(oo) unless <z G Dι(oo). But this only occurs if
- 1 E DL(oc). Hence i?0 is non-real and |X^| = \XF\ = 1. D
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