WITT RINGS UNDER ODD DEGREE EXTENSIONS

Robert W. Fitzgerald

Abstract

For a separable odd degree field extension K / F the kernel of a Scharlau transfer of Witt rings $s_{*}: W K \rightarrow W F$ is a $W F$-module. We compute the prime ideals attached to ker s_{*} and deduce that $W K$ is not a projective $W F$-module if an ordering on F extends uniquely to K. An example shows $W K$ may be a free $W F$-module if F is real and no ordering extends uniquely. For non-real, non-rigid F we show that K / F Galois and $W K$ noetherian implies $W K$ is not a projective $W F$-module.

If K / F is a finite extension of fields (characteristic not 2) then each non-trivial linear functional $s: K \rightarrow F$ induces a Scharlau transfer $s_{*}: W K \rightarrow W F$ on the Witt rings. When $K=F(\sqrt{d})$ the kernel and image of s_{*} are well known. We restrict our attention to separable odd degree extensions, where s_{*} is surjective but little is known of ker s_{*}. The map induced by inclusion $r_{*}: W F \rightarrow W K$ is injective and we view $W F$ as a subring of $W K$. Then $W K$ and ker s_{*} are $W F$-modules and our approach is module theoretic.
$W F$ need not be noetherian and ker s_{*} need not be finitely generated over $W F$. So the usual theory of prime ideals associated to modules must be replaced by the notion of attached primes (in the sense of Dutton). We show no $P(\alpha, p)$ is attached to ker $s_{*}, P(\alpha)$ is attached iff α has more than one extension to K and $I F$ is attached iff $W_{t} K \cap$ ker $s_{*} \neq 0$. As a consequence, $W K=W F$ iff each ordering on F extends uniquely to K and $W_{t} K \cap \operatorname{ker} s_{*}=0$. Another consequence is that $W K$ is finitely generated over $W F$ if F has only finitely many orderings and $I F$ is not attached to ker s_{*}.

The main result deduced from the work on attached primes is that $W K$ is not a projective $W F$-module if some ordering on F extends uniquely to K. WK may be projective, however, if F is real and no ordering extends uniquely. We present an example where K / F is Galois, F is real, both $W K$ and $W F$ noetherian rings and $W K$ is a free $W F$-module. When F is non-real and non-rigid we show the same conditions (K / F Galois, $W K$ and $W F$ noetherian) implies $W K$ is not a free $W F$-module. Weaker results hold under fewer restrictions on K / F.

The first section gives basic results and several examples. The last section concerns the possible values of $[G(K): G(F)]$ when this is finite (here $G(E)=E^{\cdot} / E^{\cdot 2}$). Two sample results: If K / F is Galois and $[K: F]=p$ a prime then p divides $[G(K): G(F)]-1$. If K / F has a real normal closure then $[K: F] \leq[G(K): G(F)]$.
$\operatorname{Hom}(K, F)^{\cdot}$ denotes the non-trivial linear functionals $s: K \rightarrow F$. The set of orderings on a field E is denoted X_{E}. If $\alpha \in X_{F}$ then $X(\alpha)=\left\{\beta \in X_{K}|\beta| F=\alpha\right\}$. For $\alpha \in X_{F}$ and an odd prime p we write $P(\alpha, p)$ for $\left\{r \in W F \mid \operatorname{sgn}_{\alpha} r \equiv 0(\bmod p)\right\}$ and $P(\alpha)=\{r \in$ $\left.W F \mid \operatorname{sgn}_{\alpha} r=0\right\}$. These ideals, with $I F=\{r \in W F \mid \operatorname{dim} r \equiv 0$ $(\bmod 2)\}$, are the prime ideals of $W F$.
$W_{t} F$ denotes the torsion part of $W F$. The height of $F, h(F)$, is the least positive k such that $2^{k} \cdot W_{t} F=0$ (or infinity if no such k exists). If R_{1} and R_{2} are Witt rings then the fiber product $R_{1} \sqcap R_{2}=$ $\left\{\left(r_{1}, r_{2}\right) \mid r_{i} \in R_{i}, \operatorname{dim} r_{1} \equiv \operatorname{dim} r_{2}(\bmod 2)\right\}$ is again a Witt ring. If C is a group of exponent two then the group ring $R_{1}[C]$ is again a Witt ring.

1. Basic facts.

Definition. (i) $m(K / F)=\bigcap \operatorname{ker} s_{*}$, over all $s \in \operatorname{Hom}(K, F)^{\cdot}$.
(ii) $M(K / F)=\sum \operatorname{ker} s_{*}$, over all $s \in \operatorname{Hom}(K, F)^{\cdot}$.

Lemma 1.1. Let $s \in \operatorname{Hom}(K, F)^{\text {. }}$.
(1) $\operatorname{ker} s_{*}$ is a $W F$-submodule of $W K$.
(2) If $t \in \operatorname{Hom}(K, F)^{\bullet}$ then $\operatorname{ker} s_{*}=\langle z\rangle \operatorname{ker} t_{*}$ for some $z \in K^{\cdot}$.
(3) $m(K / F)=\left[\operatorname{ker} s_{*}: W K\right]$ is an ideal of $W K$.
(4) $M(K / F)$ is the ideal generated by $\operatorname{ker} s_{*}$.
(5) There exists $t \in \operatorname{Hom}(K, F)^{\cdot}$ with $t_{*}\langle 1\rangle=\langle 1\rangle$.
(6) If $s_{*}\langle 1\rangle=\langle 1\rangle$ then $W K \approx W F \oplus \operatorname{ker} s_{*}$.
(7) If $s_{*}\langle 1\rangle=\langle 1\rangle$ then $\operatorname{ker} s_{*}$ is generated (over WF) by $\{\langle x\rangle-$ $\left.s_{*}\langle x\rangle \mid x \in K^{*}\right\}$.

Proof. (1) s_{*} is additive and if $\phi \in \operatorname{ker} s_{*}$ and $r \in R$ then $s_{*}(r \phi)$ $=r s_{*}(\phi)=0$. Thus ker s_{*} is a $W F$-submodule of $W K$.
(2) There exists $z \in K^{\cdot}$ such that $s(x)=t(z x)$ for all $x \in K$. Then $s_{*}(\phi)=t_{*}(\langle z\rangle \phi)$ for all $\phi \in W K$ and so $\operatorname{ker} s_{*}=\langle z\rangle \operatorname{ker} t_{*}$.
(3) Let $\phi \in m(K / F)$ and $z \in K^{\prime}$. Define $t(x)$ to be $s(z x)$ for all $x \in K$. Then $\phi \in \operatorname{ker} t_{*}=\langle z\rangle \operatorname{ker} s_{*}$. Since z was arbitrary, we have $\phi \in\left[\operatorname{ker} s_{*}: W K\right]$. Conversely, if $\phi \in\left[\operatorname{ker} s_{*}: W K\right]$ then for every $z \in K^{\cdot},\langle z\rangle \phi \in \operatorname{ker} s_{*}$ and $\phi \in\langle z\rangle \operatorname{ker} s_{*}=\operatorname{ker} t_{*}$, for some
$t \in \operatorname{Hom}(K / F)^{\cdot}$. Thus $\phi \in m(K / F)$. Clearly [ker $s_{*}: W K$] is an ideal.
(4) $M(K / F)=\sum \operatorname{ker} t_{*}=\sum\langle z\rangle \operatorname{ker} s_{*}$ is the ideal generated by $\operatorname{ker} S_{*}$.
(5) We may write $K=F(x)$ since K is separable over F. Take $t \in \operatorname{Hom}(K, F)^{\cdot}$ with $t(1)=1$ and $t(x)=\cdots=t\left(x^{n-1}\right)=0 \quad(n=$ [$K: F]$]. Then $t_{*}\langle 1\rangle=\langle 1\rangle$ by [15, II 5.8].
(6) If $s_{*}\langle 1\rangle=\langle 1\rangle$ then the exact sequence $0 \rightarrow \operatorname{ker} s_{*} \rightarrow W K \rightarrow$ $W F \rightarrow 0$ splits. This also proves (7).

There are few examples of Witt rings under odd degree extensions in the literature. We present several to illustrate the range of possible $m(K / F)$ and $M(K / F)$.

Examples. (1) The definitions of $m(K / F)$ and $M(K / F)$ make sense for any finite extension $F \subset K$. Consider $K=F(\sqrt{d})$ and define $s: K \rightarrow F$ by $s(1)=0, s(\sqrt{d})=1$. Then ker $s_{*}=r_{*}(W F)$. Since $\langle 1\rangle \in \operatorname{ker} s_{*}$ we have $M(K / F)=W K$. Also, $m(K / F)=$ $\operatorname{ann}_{W F}\left(\operatorname{ann}_{W F}\langle 1,-d\rangle\right) \otimes K$ by [5, 2.12]. Note that if $W F$ is Gorenstein (e.g., a group ring extension of a Witt ring of local type) then $\operatorname{ann}_{W F}\left(\operatorname{ann}_{W F}\langle 1,-d\rangle\right)=(\langle 1,-d\rangle)$ and hence $m(K / F)=0$ (cf. [9]).
(2) Let $F=\mathbf{Q}_{2}$ and $K=\mathbf{Q}_{2}(e)$ where e is a root of $x^{3}+$ 2. Then $K^{\cdot} / K^{\cdot 2}$ may be represented by the group generated by $\langle 2\rangle,\langle 3\rangle,\langle 5\rangle,\langle\alpha\rangle,\langle\beta\rangle$ where $\alpha=2+e^{2}$ and $\beta=1+e^{2}$. Define $s: K \rightarrow F$ by $s(1)=1, s(e)=0$ and $s\left(e^{2}\right)=0$. Then $s_{*}\langle 1\rangle=$ $\langle 1\rangle, s_{*}\langle\alpha\rangle=\langle 3\rangle, s_{*}\langle\beta\rangle=\langle 5\rangle$ and $s_{*}\langle\alpha \beta\rangle=\langle 2\rangle\langle 1,-7,-14\rangle \simeq$ $\langle 2\rangle\langle 1,1,2\rangle \simeq\langle 1,1,1\rangle$ (see [15, p. 188]). Set $\rho=4 \cdot\langle 1\rangle$ and $\chi=3 \cdot\langle 1\rangle$.

We verify that $m(K / F)=0$. Let $\phi=r_{1}+r_{2}\langle\alpha\rangle+r_{3}\langle\beta\rangle+r_{4}\langle\alpha \beta\rangle \in$ $m(K / F)$ with $r_{i} \in W F$. From $s_{*} \phi=0, s_{*}\langle\alpha\rangle \phi=0$ and $s_{*}\langle\beta\rangle \phi=0$ we obtain:

$$
\begin{aligned}
r_{1}+\langle 3\rangle r_{2}+\langle 5\rangle r_{3}+\chi r_{4} & =0 \\
\rho r_{3}+\rho r_{4} & =0 \\
\rho r_{2}+\rho r_{4} & =0
\end{aligned}
$$

The last two equations imply $\operatorname{dim} r_{2} \equiv \operatorname{dim} r_{3} \equiv \operatorname{dim} r_{4}(\bmod 2)$. The first equation yields $\phi=\langle\alpha,-3\rangle r_{2}+\langle\beta,-5\rangle r_{3}+(\langle\alpha \beta\rangle-\chi) r_{4}$. When all $r_{i}(2 \leq i \leq 4)$ are even dimensional then $\phi \in I^{2} K$. When all r_{i} are odd dimensional then $d(\phi)=1$ and again $\phi \in I^{2} K$. But $I^{2} K=\{0, \rho\}$ and $s_{*}(\rho)=\rho \neq 0$. Thus $\phi=0$.

Lastly, $M(K / F)=(\langle 1,-3 \alpha\rangle,\langle 1,-5 \beta\rangle)$. Namely, $M(K / F)$ is
generated by $\langle 1,-3 \alpha\rangle,\langle 1,-5 \beta\rangle$ and $\chi-\langle\alpha \beta\rangle$. Now $\rho \in\langle 1,-3 \alpha\rangle I K$ and $\chi-\langle\alpha \beta\rangle=\rho-\langle 1, \alpha \beta\rangle=\rho-\langle 15\rangle(\langle 1,-3 \alpha\rangle+\langle 3 \alpha\rangle\langle 1,-5 \beta\rangle)$.
(3) Let $F=\mathbf{C}(x)$. It is easy to see $t^{3}+x t+x$ is irreducible over F. Let α be a root and let $K=F(\alpha)$. Pick $s \in \operatorname{Hom}(K, F)^{\cdot}$ with $s_{*}\langle 1\rangle=\langle 1\rangle$. Now for all $u \in K, s_{*}\langle u\rangle=\left\langle N_{K / F}(u)\right\rangle+\phi$, for some $\phi \in$ $I^{2} K=0$. We are using here that K is a C_{1}-field for every finite extension [15, II 15.2]. So $s_{*}\langle u\rangle=\left\langle N_{K / F}(u)\right\rangle$, and s_{*} is a ring homomorphism. Thus $m(K / F)=\operatorname{ker} s_{*}=M(K / F)=\left\{\langle 1,-u\rangle \mid N_{K / F}(u)=1\right\}$.

This is the only example (of the three) for which $m(K / F) \neq 0$. To verify this it is enough to show $-x \alpha \notin K^{2}$ as $N_{K / F}(-x \alpha) \in F^{2}$. But if $-x \alpha=\left(a+b \alpha+c \alpha^{2}\right)^{2}$ then $b=a^{2} / 2 c x$ and $(a / c)^{4}+8(a / c) x^{2}=4 x^{3}$. However $t^{4}+8 x^{2} t-4 x^{3}$ has no roots in F.
(4) In $\S 3$ an extension $F \subset K$ will be constructed with $W F \approx \mathbf{Z}$ and $W K \approx \mathbf{Z}^{3}$. Here $\dot{F} / \dot{F}^{2}=\{ \pm 1\}$ and $\dot{K} / \dot{K}^{2}=\{ \pm 1, \pm \alpha, \pm \beta$, $\pm \alpha \beta\}$. Here α corresponds to $(1,-1,-1) \in \mathbf{Z}^{3}$ and β corresponds to $(-1,1,-1)$. There is, by a later result (1.4), an $s \in \operatorname{Hom}(K, F)^{\circ}$ with $s_{*}\langle 1\rangle=\langle 1\rangle, s_{*}\langle\alpha\rangle=\langle 1\rangle, s_{*}\langle\beta\rangle=\langle 1\rangle$ and $s_{*}\langle\alpha \beta\rangle=-3\langle 1\rangle$. Thus ker s_{*} is generated by $\langle 1,-\alpha\rangle,\langle 1,-\beta\rangle,\langle 1,1,1, \alpha \beta\rangle$. Using $\langle 1, \alpha, \beta, \alpha \beta\rangle=0$ it is straightforward to show $m(K / F)=0$ and $M(K / F)=(\langle 1,-\alpha\rangle,\langle 1,-\beta\rangle)$.

For any field E let $G(E)=E \cdot / E^{2}$. Set $U=\left\{\langle x\rangle \in G(K) \mid N_{K / F}(x)\right.$ $\left.\in \dot{F}^{2}\right\}$.

Lemma 1.2. $G(K) \approx U \times G(F)$.
Proof. The sequence $1 \rightarrow U \rightarrow G(K) \rightarrow G(F) \rightarrow 1$ is exact and splits since for $a \in F$. we have $N_{K / F}(a)=a^{m}$ where $m=[K: F]$ is odd and so $N_{K / F}(a) \in a \dot{F}^{2}$.

Lemma 1.3. If $s_{*}\langle 1\rangle=\langle 1\rangle$ and $\operatorname{dim}\left(s_{*}\langle x\rangle\right)_{a n}=1$ for some $x \in K^{*}$ then $S_{*}\langle x\rangle=\left\langle N_{K / F}(x)\right\rangle$.

Proof. Suppose $[K: F]=2 k+1$. Then $s_{*}\langle 1\rangle \simeq k \cdot\langle 1,-1\rangle+\langle 1\rangle$ so that $\operatorname{det}\left(s_{*}\langle 1\rangle\right)=(-1)^{k}$. Hence $\operatorname{det}\left(s_{*}\langle x\rangle\right)=(-1)^{k} N_{K / F}(x)$ [15, II 5.12] and so $s_{*}\langle x\rangle=\left\langle N_{K / F}(x)\right\rangle$.

Proposition 1.4. Let $s \in \operatorname{Hom}(K, F)^{\cdot}$ with $s_{*}\{1\rangle=\langle 1\rangle$. Set $L(s)=\left\{\langle y\rangle \in G(K) \mid N_{K / F}(y) \in F^{2}\right.$ and $\left.s_{*}\langle y\rangle=\langle 1\rangle\right\}$. Then:
(1) $\{\langle 1,-y\rangle \mid y \in L(s)\} \subset$ ker s_{*}, and
(2) $L(s) L(s)=U$.

Proof. (1) is clear as is the inclusion $L(s) L(s) \subset U$. Suppose then that $\beta \in U$ and set $E=F(\beta)$. Define $v: E \rightarrow F$ by $v(1)=1$ and $v\left(\beta^{i}\right)=0,1 \leq i<[E: F]$. Then $v_{*}\langle 1\rangle=\langle 1\rangle$ and $v_{*}\langle\beta\rangle=\langle 1\rangle$ [15, II 5.8] (note $N_{E / F}(\beta)=1$ as $1=N_{K / F}(\beta)=N_{E / F}\left(N_{K / E}(\beta)\right)=$ $N_{E / F}(\beta)$, modulo squares). Pick any $u \in \operatorname{Hom}(K, E)^{\cdot}$ with $u_{*}\langle 1\rangle=$ $\langle 1\rangle$. Then $(v u)_{*}\langle 1\rangle=\langle 1\rangle$ and $(v u)_{*}\langle\beta\rangle=v_{*}\left(u_{*}\langle\beta\rangle\right)=v_{*}\langle\beta\rangle=\langle 1\rangle$, as $\beta \in E$. Thus $\{1, \beta\} \subset L(v u)$. Now there exists $z \in K^{\cdot}$ with $v u(x)=s(z x)$ for all $x \in K$. Note $\langle 1\rangle=(v u)_{*}\langle 1\rangle=s_{*}\langle z\rangle$ so that $N_{K / F}(z) \in F^{2}$ by (1.3). Also $z L(v u)=L(s)$. Thus $z, z \beta \in L(s)$ and $\beta \in L(s) L(s)$.

Proposition 1.5. $m(K / F) \subset W_{t} K$, the torsion ideal of $W K$.
Proof. If $x \in K^{\cdot}$ and $\phi \in m(K / F)$ then $\operatorname{tr}_{*}(\langle x\rangle \phi)=0$ where tr is the trace map $\operatorname{tr}_{K / F}$. Let $Q \in X_{K}$ and let $P=Q \cap F$. Since $X(P)$ is finite, we may find a Pfister form p and integer m with $\operatorname{sgn}_{Q}(p)=2^{m}$ and $\operatorname{sgn}_{Q^{\prime}}(p)=0$ for $Q^{\prime} \in X(P)-\{Q\}$. Then by [15, III 4.5]:

$$
0=\operatorname{sgn}_{p} \operatorname{tr}_{*}(p \phi)=\sum_{Q^{\prime} \in X(P)} \operatorname{sgn}_{Q^{\prime}}(p \phi)=2^{m} \operatorname{sgn}_{Q}(\phi)
$$

Thus $\operatorname{sgn}_{Q}(\phi)=0$ and as Q was arbitrary, we have $\phi \in W_{t} K$.
Proposition 1.6. Suppose $s \in \operatorname{Hom}(K, F)^{\cdot}$ satisfies $s_{*}\langle 1\rangle=\langle 1\rangle$. Let $m=[K: F]$ and set $k=(m-1) / 2$ and $n=m-(-1)^{k}$. Let $J \subset W K$ be the ideal generated by $\{\langle 1,-y\rangle \mid y \in U\}$. Then:
(1) $M(K / F)=J+\left(\left\{\langle 1\rangle-s_{*}\langle y\rangle \mid y \in U\right\}\right)$.
(2) If K / F is Galois then $n \cdot\langle 1\rangle \in M(K / F)$.
(3) If K / F is Galois then $M(K / F)=J$.

Proof. (1) $J \subset M(K / F)$ by (1.4). If $N_{K / F}(y) \in F^{2}$ then $\langle y\rangle-$ $s_{*}\langle y\rangle \in \operatorname{ker} s_{*} \subset M(K / F)$ and $\langle 1\rangle-s_{*}\langle y\rangle=\langle 1,-y\rangle+\langle y\rangle-s_{*}\langle y\rangle \in$ $M(K / F)$. Conversely, $M(K / F)$ is generated by ker s_{*}, by (1.1), which is generated by $\langle y\rangle+s_{*}\langle y\rangle$, for $y \in U$. And $\langle y\rangle-s_{*}\langle y\rangle=$ $-\langle 1,-y\rangle+\left(\langle 1\rangle-s_{*}\langle y\rangle\right) \in J+\left(\left\{\langle 1\rangle-s_{*}\langle y\rangle \mid y \in U\right\}\right)$.
(2) Let $G=\operatorname{Gal}(K / F)$. Let $\operatorname{tr}=\operatorname{tr}_{K / F}: K \rightarrow F$. There exists $z_{0} \in K^{\cdot}$ with $\operatorname{tr}_{*}\left\langle z_{0}\right\rangle=s_{*}\langle 1\rangle=\langle 1\rangle$. So $(-1)^{k}=\operatorname{det} \operatorname{tr}_{*}\left\langle z_{0}\right\rangle=$ $\left(\operatorname{det} \operatorname{tr}_{*}\langle 1\rangle\right) N_{K / F}\left(z_{0}\right)=N_{K / F}\left(z_{0}\right)$, as $\operatorname{tr}_{*}\langle 1\rangle=m\langle 1\rangle$. Set $z=(-1)^{k} z_{0}$. Then $N_{K / F}(z) \in F^{2}$ and $\operatorname{tr}_{*}\langle z\rangle=\left\langle(-1)^{k}\right\rangle$. Thus $\left\langle(-1)^{k}\right\rangle=\sum_{G}\langle g(z)\rangle$ and $\sum_{G}\langle 1,-g(z)\rangle=|G|\langle 1\rangle-\left\langle(-1)^{k}\right\rangle=n\langle 1\rangle \in J \subset M(K / F)$.
(3) If $N_{K / F}(y)=1$ then we need to show $\langle 1\rangle-s_{*}\langle y\rangle \in J$. Pick z_{0} and $z=(-1)^{k} z_{0}$ as in (2). Then $\langle 1\rangle-s_{*}\langle y\rangle=\langle 1\rangle-\operatorname{tr}_{*}\left\langle y z_{0}\right\rangle=\langle 1\rangle-$ $\sum_{G}\left\langle g\left(y z_{0}\right)\right\rangle=\langle 1\rangle-(-1)^{k} \sum\langle g(y z)\rangle=\langle 1\rangle+(-1)^{k} \sum\langle 1,-g(y z)\rangle-$ $(-1)^{k} m\langle 1\rangle$. As $N_{K / F}(y z)=1$ we have each $\langle 1,-g(y z)\rangle \in J$. Also $\left(1-(-1)^{k} m\right)\langle 1\rangle \in J$ by the proof of (2) and so $\langle 1\rangle-s_{*}\langle y\rangle \in J$.

Corollary 1.7. Suppose K / F is Galois and $s_{*}: W K \rightarrow W F$ is a ring homomorphism. Let $m=[K: F]$ and $k=(m-1) / 2$. Then $\left(m-(-1)^{k}\right)\langle 1\rangle=0$. In particular, F is non-real.

Proof. Here $\left(m-(-1)^{k}\right)\langle 1\rangle \in M(K / F)=\operatorname{ker} s_{*}$, using (1.6). Yet $s_{*}\langle 1\rangle=\langle 1\rangle$, so that $\left(m-(-1)^{k}\right)\langle 1\rangle=0$.

Corollary 1.8. Suppose K / F is Galois. Let $m=[K: F], k=$ $(m-1) / 2$ and $n=m-(-1)^{k}$. Let 2^{a} be the largest 2-power dividing n. If $\left|X_{K}\right|<\infty$ and the height $h(K)$ is finite then $2^{a} \in M(K / F)$.

Proof. Write $n=2^{a} \cdot b$, where b is odd. If K is non-real then $b\langle 1\rangle$ is a unit in $W K$ and so $2^{a} \in M(K / F)$ by (1.6)(2). Suppose then that K is real. Let $Q \in X_{K}$. We Claim $U \not \subset \mathrm{pc}(Q)$, the positive cone of Q. Namely, suppose $U \subset \mathrm{pc}(Q)$. Then $\mathrm{pc}(Q)=U \cdot \mathrm{pc}(P)$ where $P=Q \cap F$. If $S \in X(P)-\{Q\}$ (and such an S exists as $|X(P)|=$ [K : F]) then $\mathrm{pc}(S)=g(\mathrm{pc}(Q))$ for some $g \in \operatorname{Gal}(K / F)$. But $g(U)=U$ and g fixes F so that $\mathrm{pc}(S)=g(U \cdot \mathrm{pc}(P))=U \cdot \mathrm{pc}(P)=$ $\mathrm{pc}(Q)$, a contradiction.

The Claim shows that the only prime ideal to contain $M(K / F)=$ $(\{\langle 1,-y\rangle \mid y \in U\})$ is $I F$. By primary decomposition $[8,2.3], M(K / F)$ is $I F$-primary. Since no power of b is in $M(K / F) \subset I F$ we have $2^{a} \in M(K / F)$.
2. Attached primes. For modules M over non-noetherian rings R there are several notions of associated primes (cf. [10]). We will use three:

$$
\begin{aligned}
& \operatorname{Ass}(M)=\left\{P \in \operatorname{Spec}(R) \mid P=\operatorname{ann}_{R}(m), \text { some } m \in M\right\} \\
& \operatorname{Asf}(M)=\{P \in \operatorname{Spec}(R)\left.\mid P \text { minimal over some } \operatorname{ann}_{R}(m)\right\} \\
& \operatorname{Att}(M)=\{P \in \operatorname{Spec}(R) \mid \text { for all f.g. ideals } I \subset P, \text { there } \\
&\left.\quad \text { exists } m \in M \text { with } I \subset \operatorname{ann}_{R}(m) \subset P\right\}
\end{aligned}
$$

Ass (M) is given by the usual definition of associated primes in the noetherian case. $\operatorname{Asf}(M)$ is denoted by $\operatorname{Ass}_{f}(M)$ in [10] and $\operatorname{Att}(M)$
is denoted by $s K(M)$ there. Primes in $\operatorname{Att}(M)$ are called primes attached to M (following Dutton [3]).

Lemma 2.1. Let R be a commutative ring and M an R-module.
(1) $\operatorname{Ass}(M) \subset \operatorname{Asf}(M) \subset \operatorname{Att}(M)$, with equality if R is noetherian.
(2) $\operatorname{Asf}(M) \neq 0$ iff $M \neq 0$.
(3) If $s, t \in \operatorname{Hom}(K, F)^{\cdot}$ then $\mathscr{A}\left(\operatorname{ker} s_{*}\right)=\mathscr{A}\left(\operatorname{ker} t_{*}\right)$ for $\mathscr{A}=$ Ass, Asf and Att.

Proof. (1) and (2) are clear cf. [10, p. 346]. For (3) note that ker $s_{*}=\langle z\rangle \operatorname{ker} t_{*}$ for some $z \in K^{*}$ by (1.1) and $\operatorname{ann}_{W F}(\langle z\rangle m)=$ $\operatorname{ann}_{W F}(m)$.

We remark that equality in $(2.1)(1)$ can fail at either place for nonnoetherian R, cf. [10].

Lemma 2.2. Let M be a WF-submodule of $W K$. No $P(\alpha, p)$ is attached to M (where $\alpha \in X_{F}, p$ an odd prime).

Proof. $W K$ contains no odd dimensional zero-divisors, hence $p m \neq 0$ for all $0 \neq m \in M$. Thus if $\operatorname{ann}_{W F}(m) \subset P(\alpha, p)$ then $m \neq 0$ and $(p) \not \subset \operatorname{ann}_{W F}(m)$. So $P(\alpha, p) \notin \operatorname{Att}(M)$.

Proposition 2.3. Let M be a W F-submodule of $W K$. The following are equivalent:
(1) $M \cap W_{t} K \neq 0$.
(2) $I F \in \operatorname{Att}(M)$.
(3) $I F \in \operatorname{Asf}(M)$.
(4) $z d(M)=I F$.

Proof. (1) \rightarrow (2). By [3, Cor. to Prop. 6], $z d(M)=\bigcup_{P \in \operatorname{Att}(M)} P$. If $M \cap W_{t} K \neq 0$ then $2^{k} \in z d(M)$ for some k and so $2^{k} \in P$, for some prime P attached to M. But then $P=I F$.
$(2) \rightarrow(4)$. By (2.2) we have that $\operatorname{Att}(M)$ consists of some $P(\alpha)$ and possibly $I F$. Thus every $P \in \operatorname{Att}(M)$ is contained in $I F$. If $I F \in \operatorname{Att}(M)$ then $I F=\bigcup_{\operatorname{Att}(M)} P=z d(M)$.
(4) $\rightarrow(1)$ is clear as then $2 \in z d(M)$. (3) \rightarrow (2) is clear by (2.1). For (1) \rightarrow (3) note that we have $2^{k} m=0$ for some $m \in M$. $I F$ is minimal over $2^{k}\langle 1\rangle$ so that $I F \in \operatorname{Asf}(M)$.

Corollary 2.4. Let M be a WF-submodule of $W K$. Then $\operatorname{Asf}(M)=\operatorname{Att}(M)$.

Proof. We need only show $\operatorname{Att}(M) \subset \operatorname{Asf}(M)$ by (2.1). Let $P \in$ $\operatorname{Att}(M) . \quad P$ is not any $P(\alpha, p)$ by (2.2) and if $P=I F$ then $P \in$ $\operatorname{Asf}(M)$ by (2.3). So suppose $P=P(\alpha)$ for some $\alpha \in X_{F}$. Then for some $m \in M \quad$ ann $_{W F}(m) \subset P(\alpha)$ and clearly $P(\alpha)$ is minimal over $\operatorname{ann}_{W F}(m)$. Thus again $P \in \operatorname{Asf}(M)$.

Theorem 2.5. Let $s \in \operatorname{Hom}(K, F)^{\cdot}$ and let $\alpha \in X_{F}$. Then $P(\alpha)$ is attached to $\operatorname{ker} s_{*}$ iff $|X(\alpha)|>1$.

Proof. Suppose first that $|X(\alpha)|>1$. Let $\beta, \gamma \in X(\alpha)$ be distinct and choose $e \in K^{\cdot}$ with $e>_{\beta} 0$ and $e<_{\gamma} 0$. We may assume $s_{*}\langle 1\rangle=\langle 1\rangle$ by (1.1) and (2.1). Thus $x=\langle 1, e\rangle-s_{*}\langle 1, e\rangle \in \operatorname{ker} s_{*}$ and $\operatorname{sgn}_{\beta} x=2-\operatorname{sgn}_{\alpha} s_{*}\langle 1, e\rangle$ while $\operatorname{sgn}_{\gamma} x=-\operatorname{sgn}_{\alpha} s_{*}\langle 1, e\rangle$. Hence $x \notin P(\beta) \cap P(\gamma)$. We may assume $x \notin P(\beta)$.

We claim $\operatorname{ann}_{W F}(x) \subset P(\alpha)$. Suppose $r \in W F$ and $r x=0$. Then $r x \in P(\beta)$ and so $r \in P(\beta) \cap W F=P(\alpha)$. This proves the claim, and since $P(\alpha)$ is a minimal prime, shows $P(\alpha) \in \operatorname{Asf}\left(\operatorname{ker} s_{*}\right)=$ $\operatorname{Att}\left(\operatorname{ker} S_{*}\right)$.

Next, suppose $P(\alpha) \in \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$. Assume, if possible, that $|X(\alpha)|$ $=1$. Denote by α also its unique extension to K. Suppose $\operatorname{ann}_{W F}(x)$ $\subset P(\alpha)$ for some $x \in \operatorname{ker} s_{*}$. We may assume $s=\operatorname{tr}_{K / F}$ by (2.1). Thus $0=\operatorname{sgn}_{\alpha} s_{*}(x)=\operatorname{sgn}_{\alpha} x$ by [15, III 4.5]. Hence $x \in P(\alpha)$.

Let $A=\left\{\delta \in X_{K} \mid x \in P(\delta)\right\} ; A$ is clopen. The complement A^{\prime} is clopen and so is $B=\varepsilon_{K / F}\left(A^{\prime}\right)$, where $\varepsilon_{K / F}(Q)=Q \cap F$, by the Open Mapping Theorem [6, 4.9]. By the Normality Theorem [4, 3.2], there exists an $r \in W F$ such that $\operatorname{sgn}_{\delta} r=0$ if $\delta \in B$ and $\operatorname{sgn}_{\delta}(r)=2^{n}$ if $\delta \notin B$ (some fixed n). We note that $\alpha \notin B$ since $\alpha \in A, \alpha \notin A^{\prime}$ and $\varepsilon_{K / F}^{-1}(\alpha)=\{\alpha\}$ is disjoint from A^{\prime}.

Let $\delta \in X_{K}$. If $\delta \in A^{\prime}$ then $\beta \equiv \varepsilon_{K / F}(\delta) \in B$ and so $\operatorname{sgn}_{\delta}(r x)=0$, as $\operatorname{sgn}_{\delta}(r)=\operatorname{sgn}_{\beta}(r)=0$. If $\delta \in A$ then $\operatorname{sgn}_{\delta}(r x)=0$ as $\operatorname{sgn}_{\delta}(x)=$ 0 . Hence $r x \in W_{t} K$ and $2^{k} r x=0$ for some k. That is, we have $2^{k} r \in \operatorname{ann}_{W F}(x) \subset P(\alpha)$. But $\operatorname{sgn}_{\alpha}\left(2^{k} r\right)=2^{k+n}$, as $\alpha \notin B$, a contradiction.

Corollary 2.6. Suppose $\operatorname{ker} s_{*} \neq 0$. The following are equivalent:
(1) $\operatorname{ker} s_{*} \subset W_{t} K$.
(2) $M(K / F) \subset W_{t} K$.
(3) Every ordering on F extends uniquely to K.
(4) $\operatorname{tr}_{*}\langle 1\rangle$ is a unit.
(5) $\operatorname{Att}\left(\operatorname{ker} s_{*}\right)=\{I F\}$.

Proof. (1) \leftrightarrow (2) follows as ker s_{*} generates $M(K / F)$ by (1.1). (3) $\leftrightarrow(4)$ is [15, III 4.5] and [11, VIII 6.4].
$(1) \rightarrow(3)$. Let $\alpha \in X_{F}$ and let $\beta_{1}, \beta_{2} \in X(\alpha)$. Choose any $e \in K^{\cdot}$. We assume $s_{*}\langle 1\rangle=\langle 1\rangle$. Then $\langle e\rangle-s_{*}\langle e\rangle \in \operatorname{ker} s_{*} \subset W_{t} K$ and so $0=\operatorname{sgn}_{\beta_{1}}\langle e\rangle-\operatorname{sgn}_{\alpha} s_{*}\langle e\rangle$ for $i=1,2$. Thus $\operatorname{sgn}_{\beta_{1}} e=\operatorname{sgn}_{\beta_{2}} e$ for all $e \in K^{\cdot}$. Hence $\beta_{1}=\beta_{2}$.
(3) \rightarrow (1). Let $\alpha \in X_{K}$ and set $\beta=\alpha \cap F$. Then $\operatorname{sgn}_{\beta} \operatorname{tr}_{*}(m)=$ $\operatorname{sgn}_{\alpha}(m)$ for any $m \in W K$ (tr is the trace $\operatorname{tr}_{K / F}$). Thus if $m \in \operatorname{ker} s_{*}$ then $\operatorname{sgn}_{\alpha} m=0$ and so $m \in W_{t} K$. Thus ker $\operatorname{tr}_{*} \subset W_{t} K$ and hence $\operatorname{ker} s_{*} \subset W_{t} K$.
(3) \rightarrow (5). We have $\operatorname{Att}\left(\operatorname{ker} s_{*}\right) \neq \varnothing$ by (2.1). But (2.2) and (2.5) show only $I F$ could be attached to ker s_{*}. Lastly, (5) \rightarrow (3) is (2.5).

For a field E and form $\phi \in W E$ we write $D(\phi)$, or $D_{E}(\phi)$ if we need more precision, for the elements of E represented by ϕ. For a positive integer m we will write $D(m)$ for $D(m\langle 1\rangle)$. Lastly, $D(\infty)=\bigcup_{n \geq 1} D(m)$.

Corollary 2.7. Let $s \in \operatorname{Hom}(K, F)^{\cdot}$ and suppose $s_{*}\langle 1\rangle=\langle 1\rangle$. Suppose also that $\operatorname{dim}\left(s_{*}\langle x\rangle\right)_{a n}=1$ for all $x \in K^{*}$. Then:
(1) s_{*} is a ring homomorphism.
(2) $m(K / F)=\operatorname{ker} s_{*}=M(K / F)=(\{\langle 1,-y\rangle \mid y \in U\})$.
(3) $U \subset D_{K}(\infty)$.
(4) Every ordering on F extends uniquely to K.
(5) $\operatorname{Att}\left(\operatorname{ker} S_{*}\right)=\{I F\}$.
(6) For $a \in G(F), D_{K}\langle 1,-a\rangle=D_{F}\langle 1,-a\rangle\left(D_{K}\langle 1,-a\rangle \cap U\right)$.

Proof. We have $s_{*}\langle x\rangle=\left\langle N_{K / F}(x)\right\rangle$ by (1.3) and so s_{*} is a ring homomorphism. Then ker s_{*} is an ideal which gives (2) by (1.1) and (1.6), noting that $\langle 1\rangle-s_{*}\langle y\rangle \in \operatorname{ker} s_{*} \cap W F=0$. By (1.5) $m(K / F) \subset$ $W_{t} K$ and so if $y \in U$ then $\langle 1,-y\rangle \in W_{t} K$. Hence $U \subset D_{K}(\infty)$. Parts (4), (5) follow from (2.6) as ker $s_{*} \subset W_{t} K$.

Lastly, let $b x \in D_{K}\langle 1,-a\rangle$ where $b \in G(F)$ and $x \in U$. Then $\langle\langle-a,-b\rangle\rangle=\langle\langle-a,-x\rangle\rangle$. Apply s_{*} to get

$$
\langle\langle-a,-b\rangle\rangle=s_{*}\langle\langle-a,-b\rangle\rangle=\langle\langle-a\rangle\rangle s_{*}\langle\langle-x\rangle\rangle=0 .
$$

Hence $b \in D_{K}\langle 1,-a\rangle \cap G(F)=D_{F}\langle 1,-a\rangle$. Then $x \in D\langle 1,-a\rangle$ $\cap U$.

Remark. (2.7) applies in the following cases:
(1) $I^{2} F=0$ (e.g. tr. d.C $F=1$). Here we may write any $s_{*}\langle x\rangle=$ $\left\langle N_{K / F}(x)\right\rangle+\phi$ where $\phi \in I^{2} F=0$.
(2) $G(K)=\{1, a\} G(F)$. This follows from (1.4).

Corollary 2.8. If every ordering on F extends uniquely to K then $G(K) / G(F) \approx D_{K}(\infty) / D_{F}(\infty)$.

Proof. We may assume $W K \neq W F . \operatorname{Att}(W K / W F)=\{I F\}$ by (2.6) and so $W F$ is an $I F$-primary submodule of $W K$. In particular, multiplication by $2\langle 1\rangle$ is locally nilpotent on $W K / W F$. That is, if $x \in G(K)$ then $2^{m}\langle x\rangle \in W F$ for some m. Hence $a x \in D_{K}\left(2^{m}\right)$ for some $a \in G(F)$. So $G(K)=G(F) D_{K}(\infty)$ and $G(K) / G(F) \approx$ $D_{K}(\infty) / D_{K}(\infty) \cap G(F)=D_{K}(\infty) / D_{F}(\infty)$.

The condition (2.3) telling when $I F$ is attached to ker s_{*} is not easy to check. We give some examples. Clearly $I F \in \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$ if F is non-real and $W K \neq W F$. For an example with F real, take $F=\mathbf{Q}$ and $K=\mathbf{Q}(\sqrt[3]{2}) . \mathbf{Q}$ has a unique ordering α which extends uniquely, so $P(\alpha) \notin \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$ by (2.6). Also ker $s_{*} \neq 0$ as $\sqrt[3]{2} \notin \mathbf{Q} \cdot K^{2}$. Thus $\operatorname{Att}\left(\operatorname{ker} s_{*}\right)=\{I F\}$.

For an example with $I F \notin \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$, consider the Pythagorean SAP field K with automorphism σ of odd order n constructed by Ware [16]. If $F=K^{\sigma}$ then K / F is Galois of degree n. As $|X(P)|>$ 1 for $P \in X_{F}$ we have $W K \neq W F$, while the fact that $W_{t} K=0$ implies $I F \notin \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$.

In general, the property $I F \notin \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$ is restrictive. We close this section by examining some of its consequences.

Lemma 2.9. Let $[K: F]=2 k+1$ and choose s such that $s_{*}\langle 1\rangle=$ $\langle 1\rangle$. Suppose $I F \notin \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$. Then:
(1) $D_{K}(\infty)=D_{F}(\infty) K^{2}$.
(2) If $N_{K / F}(w) \in(-1)^{k} F^{\cdot 2}$ then $D_{F}(\infty) \subset D_{K}\langle 1,-w\rangle$.
(3) $W_{t} K=W_{t} F$.

Proof. (1) Let $w \in D_{K}(\infty)$ so that $\langle 1,-w\rangle \in W_{t} K$. Now $s_{*}\langle 1,-w\rangle \in W_{t} F$. Thus $\langle 1,-w\rangle-s_{*}\langle 1,-w\rangle \in W_{t} K \cap \operatorname{ker} s_{*}=0$ by (2.3). Then $s_{*}\langle 1,-w\rangle=\langle 1,-w\rangle, w \in F^{\cdot} K^{\cdot 2}$ and $w \in D_{F}(\infty) K^{\cdot 2}$.
(2) We have $\operatorname{det}\left(s_{*}\langle w\rangle\right)=N_{K / F}(w)=(-1)^{k}$. Then

$$
\operatorname{det}\left(\langle w\rangle-s_{*}\langle w\rangle\right)=(-1)^{k+1} w \quad \text { and } \quad d\left(\langle w\rangle-s_{*}\langle w\rangle\right)=w
$$

Hence $\langle w\rangle-s_{*}\langle w\rangle=\langle 1,-w\rangle+\phi$ for some $\phi \in I^{2} K$. If $x \in D_{F}(\infty)$
then $\langle 1,-x\rangle\left(\langle w\rangle-s_{*}\langle w\rangle\right) \in \operatorname{ker} s_{*} \cap W_{t} K=0$. By the Arason-Pfister theorem, $\langle 1,-x\rangle\langle 1,-w\rangle=0$ and $x \in D_{K}(\langle 1,-w\rangle)$.
(3) $W_{t} K$ is generated by $\langle 1,-w\rangle, w \in D_{K}(\infty)$. Apply (1).

Corollary 2.10. If IF $\notin \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$ then $m(K / F)=0$. In particular, WK embeds into a fiber product of copies of $W F$. If $\left|X_{F}\right|<\infty$ then we need only finitely many copies.

Proof. If $\phi \in m(K / F), \phi \neq 0$ then $\phi \in W_{t} K$ by (1.5) and $\phi \in \operatorname{ker} s_{*}$. This contradicts (2.3). Thus $m(K / F)=0$. Write $G(K)=$ $\operatorname{gr}\{x i \mid i \in I\} \cdot G(F)$, where $\operatorname{gr}(S)$ is the group generated by S. Set $s_{i}(y)=\operatorname{tr}_{K / F}\left(x_{i} y\right)$ for all $y \in K$. Then $W K \rightarrow \Pi_{I} W F$ by $\phi \mapsto$ $\left(\ldots,\left(s_{i}\right)(\phi), \ldots\right)$ is injective.

Suppose $\left|X_{F}\right|<\infty$. Then $\left|X_{K}\right|<\infty$ also. Write $X_{K}=\left\{Q_{1}, \ldots\right.$, $\left.Q_{n}\right\}$. Now $\cap Q_{i}=D_{K}(\infty)=D_{F}(\infty) \dot{K}^{2}$ by (2.9). Hence

$$
[G(K): G(F)] \leq\left[\dot{K}: \bigcap Q_{i}\right] \leq 2^{n}
$$

Thus $W K$ embeds into n copies of $W F$.
Corollary 2.11. Suppose $I F \notin \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$.
(1) If $\left|X_{F}\right|<\infty$ then $W K$ is a finitely generated $W F$-module.
(2) If $W F$ is noetherian then so is $W K$.

Corollary 2.12. $W F \approx W K$ iff every ordering on F extends uniquely and $\operatorname{ker} S_{*} \cap W_{t} K=0$.

Proof. By (2.2), (2.3) and (2.5) we have $\operatorname{Att}\left(\operatorname{ker} s_{*}\right)=0$. Then ker $s_{*}=0$ by (2.1).

Remark. There is a partial converse to (2.8). If $W_{t} K=W_{t} F$ then $I F \notin \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$. Namely, if $\phi \in W_{t} K \cap \operatorname{ker} s_{*}$ then $\phi \in W F$ and so $\phi=s_{*}(\phi)=0$. Thus $W_{t} K \cap \operatorname{ker} s_{*}=0$ and $I F \notin \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$.

3. $\operatorname{ker} s_{*}$ as a projective module.

Lemma 3.1. (1) $\operatorname{ker} s_{*}$ is projective iff $W K$ is projective.
(2) If $\operatorname{ker} s_{*}$ is free then $W K$ is free.

Proof. We may assume $s_{*}\langle 1\rangle=\langle 1\rangle$ by (1.1). Then both parts follow from $W K \approx W F \oplus \operatorname{ker} s_{*}$.

The trace of an R-module M is:

$$
\operatorname{tr} M=\left\{\sum f_{i}\left(m_{i}\right) \mid f_{i} \in \operatorname{Hom}_{R}(M, R), \quad m_{i} \in M\right\}
$$

We refer to [7] for basic facts about $\operatorname{tr} M$.
Proposition 3.2. Suppose $\operatorname{ker} s_{*}$ is projective and $\operatorname{ker} s_{*} \neq 0$. Then:
(1) $\operatorname{tr}\left(\operatorname{ker} s_{*}\right)=W F$,
(2) $a n n_{W F}\left(\operatorname{ker} s_{*}\right)=0$.

Proof. (1) $\operatorname{tr}\left(\operatorname{ker} s_{*}\right)$ is an ideal so if $\operatorname{tr}\left(\operatorname{ker} s_{*}\right) \neq W F$ then $\operatorname{tr}\left(\operatorname{ker} s_{*}\right)$ is contained in a maximal ideal of $W F$. We check the two cases.

Suppose $\operatorname{tr}\left(\operatorname{ker} s_{*}\right) \subset I F$. Choose $x \in K$ such that $s_{*}\langle 1\rangle=s_{*}\langle x\rangle=$ $\langle 1\rangle$. (This is possible by (1.4) since otherwise $L(s)=\{\langle 1\rangle\}$ and $U=$ $\{\langle 1\rangle\}$. But then for any $x \in K^{\cdot}, x \in N_{K / F}(x) K^{\cdot 2} \subset F^{\cdot} K^{\cdot 2}$, as $N_{K / F}\left(x N_{K / F}(x)\right) \in K^{\cdot 2}$. This implies $W K=W F$ and ker $s_{*}=$ 0 , contrary to the assumption). Then $\langle 1,-x\rangle \in \operatorname{ker} s_{*}$. We have $I F \cdot \operatorname{ker} s_{*}=\operatorname{ker} s_{*}$ by $[7,3.30($ a $)]$ while $\langle 1,-x\rangle \in \operatorname{ker} s_{*} \backslash I^{2} K$ and $I F \cdot \operatorname{ker} s_{*} \subset I^{2} K$. Thus $\operatorname{tr}\left(\operatorname{ker} s_{*}\right) \not \subset I F$.

Next suppose $\operatorname{tr}\left(\operatorname{ker} s_{*}\right) \subset P(\alpha, p)$ for some $\alpha \in X_{F}$ and odd prime p. Let $m \geq 1$ be the largest integer with $\operatorname{tr}\left(\operatorname{ker} s_{*}\right) \subset P\left(\alpha, p^{m}\right)$; a maximum exists since $\bigcap_{m} P\left(\alpha, p^{m}\right) \subset P(\alpha) \subset I F$. Now $\operatorname{tr}\left(\operatorname{ker} s_{*}\right)=$ $\left(\operatorname{tr} \operatorname{ker} s_{*}\right)^{2}$ by $[7,3.30(\mathrm{a})]$. Hence $\operatorname{tr}\left(\operatorname{ker} s_{*}\right) \subset P\left(\alpha, p^{m}\right)^{2} \subset P\left(\alpha, p^{2 m}\right)$, a contradiction. Thus $\operatorname{tr}\left(\operatorname{ker} s_{*}\right) \not \subset P(\alpha, p)$ and so $\operatorname{tr}\left(\operatorname{ker} s_{*}\right)=W F$.
(2) Clearly $\operatorname{tr}\left(\operatorname{ker} s_{*}\right)=W F$ is a finitely generated ideal, so $\operatorname{ann}_{W F}\left(\operatorname{ker} s_{*}\right)$ is generated by an idempotent $[7,3.30(\mathrm{~b})]$. Only 0 and 1 are idempotent in $W F\left[11\right.$, VIII 6.8] and clearly $\operatorname{ann}_{W F}\left(\operatorname{ker} s_{*}\right) \neq R$ as ker $s_{*} \neq 0$. Thus ann ${ }_{W F}\left(\operatorname{ker} s_{*}\right)=0$.

Theorem 3.3. Suppose F is real and $\operatorname{ker} s_{*} \neq 0$. If some ordering on F extends uniquely to K then $\operatorname{ker} s_{*}$ is not projective.

Proof. Suppose ker s_{*} is projective. Then ann ${ }_{W F}\left(\operatorname{ker} s_{*}\right)=0$ by (3.2). Let P be a prime ideal attached to $W F \approx W F / \operatorname{ann}_{W F}\left(\operatorname{ker} s_{*}\right)$. Now $\left(\operatorname{ker} s_{*}\right)_{P}$ is $(W F)_{P}$-free and so:

$$
\operatorname{ann}_{(W F)_{P}}\left(\operatorname{ker} s_{*}\right)_{P}=0=\left(\operatorname{ann}_{W F}\left(\operatorname{ker} s_{*}\right)\right)(W F)_{P}
$$

Then P is attached to ker $s_{*}[13$, Lemma 2]. That is, $\operatorname{Att}(W F) \subset$ $\operatorname{Att}\left(\operatorname{ker} s_{*}\right)$.

To complete the proof we need only check that every $P(\alpha), \alpha \in$ X_{F}, is attached to $W F$, viewed as a $W F$-module. This would yield a contradiction to (2.5). Let $\alpha \in X_{F}$ and choose $a>_{\alpha} 0$ with $a \notin F^{2}$. Then $0 \neq\langle 1,-a\rangle \in \operatorname{ann}\langle 1, a\rangle$ and $\operatorname{ann}\langle 1, a\rangle \subset P(\alpha)$. Since $P(\alpha)$ is a minimal prime ideal we have $P(\alpha) \in \operatorname{Att}(W F)$. In the case that
$a>_{\alpha} 0$ implies $a \in F^{\cdot 2}$ we have $X_{F}=\{\alpha\}$ and $G(F)=\{ \pm 1\}$. Thus $W F=\mathbf{Z}, P(\alpha)=\{0\}=$ ann 2 , so that again $P(\alpha) \in \operatorname{Att}(W F)$.

Corollary 3.4. Suppose $\operatorname{ker} s_{*}$ is a non-zero projective $W F$ module. If $W_{t} F \neq 0$ then $\operatorname{ker} s_{*} \cap W_{t} K \neq 0$.

Proof. The proof of (3.3) shows $\operatorname{Att}(W F) \subset \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$. If $W_{t} F \neq 0$ then $I F \in \operatorname{Att}(W F)$ by (2.3) and so $I F \in \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$. This implies ker $s_{*} \cap W_{t} K \neq 0$ by (2.3).

If no ordering on F extends uniquely to K (for example if K / F is Galois) then it is possible for $\operatorname{ker} s_{*}$ to be $W F$-projective-even for $W K$ to be $W F$-free.

Proposition 3.5. There is a real field F and a Galois extension K of F of degree 3 such that:
(1) $W F$ and $W K$ are noetherian,
and
(2) $W K$ is $W F$-free.

Proof. Let $\alpha=\alpha_{1}, \alpha_{2}, \alpha_{3}$ be the roots of $x^{3}-3 x+1 \in \mathbf{Q}[x]$. Note that $\mathbf{Q}(\alpha) / \mathbf{Q}$ is Galois. Let F be a maximal field in $\overline{\mathbf{Q}} \cap \mathbf{R}$ not containing $\alpha(\overline{\mathbf{Q}}$ is the algebraic closure of $\mathbf{Q}) . F$ is real with the ordering induced by \mathbf{R}. Moreover $G(F)=\{ \pm 1\}$. Namely, if $a \in F$, $a>0$ then $F(\sqrt{a}) \subset \overline{\mathbf{Q}} \cap \mathbf{R}$ and $\alpha \notin F(\sqrt{a})$ as deg $\alpha=3$. Hence, by maximality, $F(\sqrt{a})=F$ and $a \in F^{2}$.

Let $K=F(\alpha)$. Since $x^{3}-3 x+1$ is irreducible over F, by construction, K / F is Galois of degree 3. We claim that K is Pythagorean. Suppose not. Let $\beta \in \sum K^{2}, \beta \notin K^{2}$. Note that $\beta \notin F$, as $\beta \in \sum K^{2}$ implies $\beta>0$ and so $\beta \in F$ would yield $\beta \in F^{2}$. Thus $F(\alpha)=F(\beta)=K$. Let σ generate $\operatorname{Gal}(K / F)$ and set $\beta_{i}=\sigma^{i}(\beta)$, $i=0,1,2\left(\beta_{0}=\beta\right)$. We note that each β_{i} is in $\sum K^{2}$. If $g(x)=$ $\operatorname{irr}(\beta, F)$ then $\left.g\left(x^{2}\right)\right)=\operatorname{irr}(\sqrt{\beta}, F)$. Thus $L=F\left(\sqrt{\beta_{0}}, \sqrt{\beta_{1}}, \sqrt{\beta_{2}}\right)$ is Galois over F, contains $K=F(\beta)$ and is contained in $\overline{\mathbf{Q}} \cap \mathbf{R}$.

Now $[L: F]=3 \cdot 2^{r}$ for some $r=1,2$ or 3. Let P be a Sylow 3-subgroup and let $F(Q)$ be the fixed field. Then $F(Q) \subset \overline{\mathbf{Q}} \cap \mathbf{R}$ and $\alpha \notin F(Q)$ as $\operatorname{deg} \alpha=3$ while $\operatorname{deg} Q=2^{r}$. This contradicts the maximality of F.

Hence K is Pythagorean, and SAP since $K \subset \overline{\mathbf{Q}}$ [4, Example 1, p. 1177]. F has a unique ordering so K has 3 orderings. Hence $|G(K)|=8$ and $W K \approx \mathbf{Z} \sqcap \mathbf{Z} \sqcap \mathbf{Z}$ which is free over $\mathbf{Z} \approx W F$.

The example of (3.5) yields another case where $I F \notin \operatorname{Att}\left(\operatorname{ker} s_{*}\right)$. Indeed $\operatorname{Att}\left(\operatorname{ker} s_{*}\right)=\{P(\alpha)\}$. Also (3.5) is another example of a Pythagorean field with an automorphism of odd order (cf. [16]).

We will show that the situation of (3.5), namely, K / F Galois, $W K$ noetherian and $W K W F$-free, is impossible if F is non-real and non-rigid. Weaker results hold with fewer restrictions on K and F so we begin with no assumptions on K or F.

Lemma 3.6. Suppose $W K$ is a free $W F$-module. Then for some index set I there exists $\phi_{i} \in W K$ for $i \in I$ such that:
(1) $W K=\bigoplus_{I} W F \cdot \phi_{i}$,
(2) $\phi_{i}=\left\langle\alpha_{i}\right\rangle+\psi_{i}$ where $\alpha_{i} \in K$ and $\psi_{i} \in I^{2} K$, and
(3) $G(K)=A \times G(F)$, where A is the group generated by the α_{i}, $i \in I$.

Proof. We have $W K=\bigoplus_{I} W F \cdot \phi_{i}$ for some collection $\left\{\phi_{i} \in\right.$ $W K \mid i \in I\}$. Clearly at least one ϕ_{i}, say ϕ_{1}, is odd dimensional. For any even dimensional ϕ_{j} replace ϕ_{j} by $\phi_{j}-\phi_{1}$. We may thus assume (1) and (2) hold.

Now $G(K)=A \cdot G(F)$ since if $x \in G(K)$ then $\langle x\rangle=\sum r_{i} \phi_{i}$ and so $x=\operatorname{det}\langle x\rangle= \pm \Pi \operatorname{det}\left(r_{i}\right) \alpha_{i} \in A \cdot G(F)$. We claim that by replacing some ϕ_{i} by $a \phi_{i}, a \in G(F)$, we may assume $A \cap G(F)=1$.

This is clearer if we write the \mathbf{Z}_{2}-vector space $G(K)$ additively. We wish to show that there exist $a_{i}(i \in I)$ in the subspace $G(F)$ such that span $\left\{\alpha_{i}+a_{i} \mid i \in I\right\} \cap G(F)=\{0\}$. Choose any complementary subspace $G(F)^{\prime}$. Then every α_{i} has a unique expression $\alpha_{i}=a_{i}+a_{i}^{\prime}$ for some $a_{i} \in G(F)$ and $a_{i}^{\prime} \in G(F)^{\prime}$. Use these a_{i}.

Proposition 3.7. Suppose F is non-real and $W K$ is a free $W F$ module. Then for all $f \in G(F), f \neq 1$, we have $D_{K}\langle 1,-f\rangle=$ $D_{F}\langle 1,-f\rangle$.

Proof. Write $W K=\bigoplus_{I} W F \cdot \phi_{i}$ as in (3.6). Each odd dimensional form is a unit as F is non-real. Multiplication by ϕ_{1}^{-1} is an $W F$-module isomorphism and $\left\{\phi_{1}^{-1} \phi_{i} \mid i \in I\right\}$ satisfies (1), (2), (3) of (3.6). We may thus assume $\phi_{1}=\langle 1\rangle$. The result is clear if $W K=W F$ so we may assume $|I| \geq 2$. Write $G(K)=A \times G(F)$ as in (3.6) and let $\alpha \in A$.

Claim. $\quad W K=W F \cdot\langle 1\rangle \oplus W F \cdot\langle\alpha\rangle \oplus M$, for some $W F$-module M.

We have $\langle\alpha\rangle=r_{1}\langle 1\rangle+\sum_{i \geq 2} r_{i} \phi_{i}$. If all $r_{i}(i \geq 2)$ are even dimensional then by determinants $\alpha \in G(F)$, contradicting (3.6). We may thus assume r_{2} is odd dimensional. Since F is non-real, r_{2} is a unit in $W F$. We have:

$$
r_{2}^{-1}\langle\alpha\rangle=r_{2}^{-1} r_{1}\langle 1\rangle+\phi_{2}+\sum_{i \geq 3} r_{2}^{-1} r_{i} \phi_{i}
$$

Set $M=\bigoplus_{i \geq 3} W F \cdot \phi_{i}$. Then $\phi_{2} \in W F \cdot\langle 1\rangle+W F \cdot\langle\alpha\rangle+M$, hence $W K=W F \cdot\langle 1\rangle+W F \cdot\langle\alpha\rangle+M$. Moreover, if:

$$
s_{1}\langle 1\rangle+s_{2}\langle\alpha\rangle+m=0 \quad(m \in M)
$$

then

$$
\begin{gathered}
s_{1}\langle 1\rangle+s_{2}\left(r_{1}\langle 1\rangle+r_{2} \phi_{2}+m^{\prime}\right)+m=0 \\
\left(s_{1}+s_{2} r_{1}\right)\langle 1\rangle+s_{2} r_{2} \phi_{2}+s_{2} m^{\prime}+m=0 .
\end{gathered}
$$

But $\langle 1\rangle=\phi_{1}$ and $\phi_{i}(i \geq 2)$ are independent. Thus $s_{2} r_{2}=0$. Again r_{2} is a unit so $s_{2}=0$. Thus $s_{1}=0$ and $m=0$. This proves the Claim.

Now say $f \in G(F), f \neq 1$. Let $x \in D_{K}\langle 1,-f\rangle, x \notin G(F)$. Then $x=g \alpha$ for some $g \in G(F)$ and $\alpha \in A, \alpha \neq 1$. But then $\langle 1,-f\rangle\langle 1\rangle=\langle g\rangle\langle 1,-f\rangle\langle\alpha\rangle$ contradicting the Claim. Thus $D_{K}\langle 1,-f\rangle \subset G(F)$ and so $D_{K}\langle 1,-f\rangle=D_{F}\langle 1,-f\rangle$.

In the following, $B(F)$ denotes the basic part, namely those $a \in F$ with either $a= \pm 1, a$ or $-a$ not rigid (cf. [12]).

Theorem 3.8. Suppose F is non-real and $G(F)$ is finite. If ker s_{*} is a finitely generated projective $W F$-module then either:
(1) $W K \approx W F[A]$ where $A=G(K) / G(F)$ or
(2) $B(F)=\{ \pm 1\}$ and $W F \approx \mathbf{Z}_{n}[C]$ with $n=2$ or 4 and $C a$ group or exponent two.

Proof. $\quad W F$ is a local ring so ker s_{*}, hence $W K$, is finitely generated free. Suppose $B(F) \neq\{ \pm 1\}$. Choose $f \in B(F) \backslash\{ \pm 1\}$. Set $X_{1}(K)=D_{K}\langle 1,-f\rangle$. Then $X_{1}(K)=X_{1}(F)=D_{F}\langle 1,-f\rangle$ by (3.7). For $i \geq 2$ and a field E let $X_{i}(E)=\bigcup D_{E}(1,-a\rangle$, over $a \in X_{i-1}(E) \backslash\{1\}$. Then by [2, 2.4]

$$
B(K)= \pm\left(X_{1}(K) X_{2}(K)^{2} \cup-X_{1}(K) X_{3}(K)\right)=B(F) \subset G(F)
$$

The result is then standard, see $[\mathbf{1 2}, 5.19]$. And if $B(F)=\{ \pm 1\}$ then $W F$ is classified as given [12, 5.21].

Remark. If $W K=W F[A]$, as in (3.8)(1), then $W K$ is clearly a free $W F$-module. Suppose $B(F)=\{ \pm 1\}$ as in (3.8)(2) and $B(K) \cap$ $G(F)=\{ \pm 1\}$. We may write $G(K)=B \times C$ where $B(K) \subset B$ and $G(F)= \pm C$. Then any form in $W K$ may be written uniquely as $\sum\left\langle b_{i} c_{i}\right\rangle=\sum\left\langle c_{i 1}\right\rangle \cdot\left\langle b_{1}\right\rangle+\sum\left\langle c_{i 2}\right\rangle \cdot\left\langle b_{2}\right\rangle+\ldots$. Thus again $W K$ is a free $W F$-module. However, we know of no example of an odd degree extension K / F with $W K \neq W F$ and either (3.8)(1) or (2) occurring.

We obtain a slightly weaker result if $W F$ is not noetherian.
Lemma 3.9. Let $W K=\oplus_{I} W F \cdot \phi_{i}$ as in (3.6). Let $\alpha, \beta \in A \backslash\{1\}$ be distinct and let $a, b, c, d \in G(F)$. If $b \alpha \in D\langle 1,-a \beta\rangle$ and $d \alpha \in$ $D\langle 1,-c \beta\rangle$ then $b=d$ and $a=c$.

Proof. We have

$$
\begin{aligned}
0 & =\langle\langle-c \beta,-d \alpha\rangle\rangle \equiv\langle\langle-a c,-d \alpha\rangle\rangle-\langle\langle-a \beta,-d \alpha\rangle\rangle \\
& \equiv\langle\langle-a c,-d \alpha\rangle\rangle-\langle\langle-a \beta,-b d\rangle\rangle\left(\bmod I^{3} K\right) .
\end{aligned}
$$

Thus $\langle\langle-a c,-d \alpha\rangle\rangle=\langle\langle-b d,-a \beta\rangle\rangle$. Apply linkage [12, 1.14]:

$$
\langle\langle-a c,-d \alpha\rangle\rangle=\langle\langle-a c,-x\rangle\rangle=\langle\langle-b d,-x\rangle\rangle=\langle\langle-b d,-a \beta\rangle\rangle
$$

for some $x \in K^{\cdot}$. Now $x \in D\langle 1,-a b c d\rangle$. If $a c \neq b d$ then $x \in$ $G(F)$ by (3.7). But $x d \alpha \in D\langle 1,-a c\rangle$ which forces $a=c$, by (3.7) again. Similarly $x a \beta \in D\langle 1,-b d\rangle$ yields $b=d$. Suppose then that $a c=b d$. Now $x d \alpha \in D\langle 1,-a c\rangle$ gives $x \in \alpha G(F)$ (unless $a=c$ and so $b=d$). And $x a \beta \in D\langle 1,-b d\rangle$ gives $x \in \beta G(F)$ (unless $b=d$ and so $a=c$). But $\alpha G(F) \cap \beta G(F)=\varnothing$. Hence $a=c$ and $b=d$.

Theorem 3.10. Suppose F is non-real and $G(F)$ is infinite. If $\operatorname{ker} s_{*}$ is a finitely generated projective $W F$-module then either:
(1) $W K \approx W F[A]$, with $A=G(K) / G(F)$ or
(2) $|B(F)|<\infty$ and $R=R_{0}[C]$ for some Witt ring R_{0} and infinite group C of exponent 2.

Proof. If $|B(F)|<\infty$ then R is as described [12, 5.19]. Suppose $B(F)$ is infinite. Let $\alpha \in A, \alpha \neq 1$. We will show α is bi-rigid.

Suppose α is not rigid (the argument for $-\alpha$ is similar). Then $\alpha \in B(K)$ and for all $f \in B(F), f \alpha$ is not bi-rigid. Hence there exist infinitely many f with f_{α} not rigid (that is, if f_{α} is rigid then $-f \alpha$ is not rigid). But A is finite, as $W K$ is finitely generated over $W F$, so there exist distinct f, g in F and $\beta \in A \backslash\{1, \alpha\}$ such
that $b \beta \in D\langle 1,-f \alpha\rangle, d \beta \in D\langle 1,-g \alpha\rangle$ for some $b, d \in F$. This contradicts (4.9).

Lemma 3.11. If t_{1}, \ldots, t_{n}, and all $t_{i} t_{j}(i \neq j)$ are rigid then $D\left\langle t_{1}, \ldots, t_{n}\right\rangle=\left\{t_{1}, \ldots, t_{n}\right\}$.

Proof. By induction on n. Suppose $n=2$.

$$
D\left\langle t_{1}, t_{2}\right\rangle=t_{1} D\left\langle 1, t_{1} t_{2}\right\rangle=t_{1}\left\{1, t_{1} t_{2}\right\}=\left\{t_{1}, t_{2}\right\}
$$

For $n>2$ we have by induction:

$$
D\left\langle t_{1}, \ldots, t_{n}\right\rangle=\bigcup_{i=1}^{n-1} D\left\langle t_{i}, t_{n}\right\rangle=\left\{t_{1}, \ldots, t_{n}\right\}
$$

Lemma 3.12. Let K / F be finite Galois (not necessarily of odd degree). Let $t \in K \backslash F K^{2}$. Then at least one of $t, t t^{g} \quad(g \in \operatorname{Gal}(K / F))$ is not rigid.

Proof. Suppose t and all $t t^{g}$ are rigid. Note t^{g} is rigid as $D\langle 1, t\rangle^{g}=D\left\langle 1, t^{g}\right\rangle$. Also if $g, h \in \operatorname{Gal}(K / F)$ are distinct then $t^{g} t^{h}=g\left(t t^{h g^{-1}}\right)$ is rigid. Hence by (3.11) $D\left(\sum_{G}\left\langle t^{g}\right\rangle\right)=\left\{t^{g} \mid g \in\right.$ $\operatorname{Gal}(K / F)\}$. But $\sum\left\langle t^{g}\right\rangle=\operatorname{tr}_{*}\langle t\rangle \in W F$. Hence some $t^{g} \in G(F)$. But then $t \in G(F)$, a contradiction.

Theorem 3.13. Let F be non-real and suppose that either (i) $G(F)$ is finite and $B(F) \neq\{ \pm 1\}$ or (ii) $G(F)$ is infinite and $B(F)$ is infinite. Let K / F be Galois of odd degree. Then neither $W K$ nor $\operatorname{ker} s_{*}$ are finitely generated projective $W F$-modules.

Proof. If $W K$ is a finitely generated projective $W F$-module then (3.8), (3.10) imply $B(K) \subset F K^{2}$ and hence if $t \in K \backslash F K^{2}$ with $K=F(t)$ then t and all $t t^{g}(g \in \operatorname{Gal}(K / F))$ are bi-rigid. Namely if $t t^{g} \in F K^{2}$, say $t^{g}=a t$, then $g^{2}(t)=a(a t)=t$. Thus t is fixed by g^{2}. As g has odd order, t is fixed by g. But then $K \neq F(t)$. This contradicts (3.12).

Ware $[16,1.6]$ shows a rigid field cannot be the Galois odd degree extension. (3.13) improves this slightly: even the case $W K \approx W F[A]$, $A=G(K) / G(F)$ cannot arise.

In a different direction we have:

Proposition 3.14. Suppose $W K$ is a noetherian, injective $W F$ module. Then F is non-real and WF is Gorenstein (that is, $|\operatorname{ann} I F|$ $=2$).

Proof. $\quad W K$ injective implies its direct summand $W F$ is injective. Thus $W F$ has injective dimension 0 and so Krull dimension 0. Thus F is non-real. Further, $W F$ is Gorenstein (cf. [1], [9]).
4. Noetherian extensions. We have given several examples of odd degree extensions K / F where $W K$ is a finitely generated $W F$ module. This is necessarily the case when X_{F} is finite and $I F \notin$ $\operatorname{Att}\left(\operatorname{ker} s_{*}\right)$ by (2.11). We collect here several results on the possible values of $[G(K): G(F)]$.

Proposition 4.1. Let $[K: F]=p$ be an odd prime and suppose K / F is Galois. If $[G(K): G(F)]=2^{k}$ then $p \mid 2^{k}-1$.

Proof. Let $G=\operatorname{Gal}(K / F)$ and let σ generate $G . G$ acts on $G(K) / G(F)$. Suppose $x G(F)$ is a fixed point. Then $N_{K / F}(x) \in$ $x^{p} G(F)=x G(F)$ and so $x \in G(F)$. If $x \notin G(F)$ then the orbit $\left\{\sigma^{i}(x G(F)) \mid i \in \mathbf{Z}\right\}$ has order p (there is no stabilizer as G is simple). Thus p divides $2^{k}-1$.

Example. Let p be an odd prime and set $n=2^{p}-1$. Let K be \mathbf{Q}_{2} with the nth roots of unity adjoined. Then K / \mathbf{Q}_{2} is $\mathrm{Ga}-$ lois of degree p [14, Prop. 16, p. 77]. By [11, p. 161] we have $\left[G(K): G\left(\mathbf{Q}_{2}\right)\right]=2^{p-1}$. This gives the minimal value of $[G(K)$: $G(F)$] for p such that the order of $2 \bmod p$ is $p-1$ (thus for $p=3,5,11,13,19,29,37,53,59$ etc.).

Corollary 4.2. Let $[K: F]=p_{1} p_{2} \cdots p_{t}$ with the p_{i} 's prime (not necessarily distinct). Let k_{i} be the least positive integer such that $p_{i} \mid 2^{k_{i}}-1$. If K / F is Galois and $G(K) \neq G(F)$ then $[G(K): G(F)] \geq$ 2^{w}, where $w=k_{1}+\cdots+k_{t}$.

Proof. We use induction on t. The case $t=1$ is (4.1) and if $t>1$ then choose an intermediate normal extension L and apply the result to K / L and L / F.

When p is a Mersenne prime (i.e., $p=2^{k}-1$) then the minimal (non-trivial) square class extension for a Galois extension of degree p is $p+1$. In this case we may improve (1.5).

Proposition 4.3. Suppose K / F is Galois and that $[K: F]=p$ where $p=2^{k}-1$ is a prime. If $[G(K): G(F)]=p+1$ then $m(K / F) \subset$ $\operatorname{ann}\left(2^{k}\langle 1\rangle\right)$.

Proof. Choose $s \in \operatorname{Hom}(K, F)$ with $s_{*}\langle 1\rangle=\langle 1\rangle$. There is an $x \in G(K)$ with $\operatorname{tr}_{*}\langle x\rangle=s_{*}\langle 1\rangle=\langle 1\rangle$. Now $(-1)^{p-1 / 2}=\operatorname{det} \operatorname{tr}_{*}\langle x\rangle=$ $N_{K / F}(x)$. Since $p=2^{k}-1 \quad(k \geq 2)$ we have $N_{K / F}(x)=-1$. Write $G(K)=U \times G(F)$ as in $\S 1$. There is only one (non-trivial) orbit in $G(K) / G(F)$. Thus $U=\left\{1, x_{1}, \ldots, x_{p}\right\}$ where $\sigma\left(x_{i}\right)=x_{i+1}$ (here σ generates $\operatorname{Gal}(K / F)$ and $\left.x_{p+1} \equiv x_{1}\right)$. We may assume $x_{1}=-x$ and so $\operatorname{tr}_{*}\left\langle x_{1}\right\rangle=\langle-1\rangle$.

Let $\psi=\phi_{0}+\sum_{i=1}^{p}\left\langle x_{i}\right\rangle \phi_{i} \in m(K / F)$, where $\phi_{0}, \ldots, \phi_{p} \in W F$. Then:

$$
\begin{aligned}
& 0=\operatorname{tr}_{*} \psi=p \phi_{0}-\sum_{i=1}^{p} \phi_{i} \\
& 0=\operatorname{tr}_{*}\left\langle x_{1}\right\rangle \psi=p \phi_{1}-\phi_{0}-\sum_{i=2}^{p} \phi_{i}
\end{aligned}
$$

Subtraction yields $p\left(\phi_{0}-\phi_{1}\right)-\left(\phi_{1}-\phi_{0}\right)=0$ and so $2^{k}\left(\phi_{0}-\phi_{1}\right)=0$. Similarly, $2^{k}\left(\phi_{i}-\phi_{j}\right)=0$ for all i, j.

Now $\langle-1\rangle=\operatorname{tr}_{*}\left\langle x_{1}\right\rangle=\left\langle x_{1}, x_{2}, \ldots, x_{p}\right\rangle$. Thus $\left\langle x_{p}\right\rangle=-\left\langle 1, x_{1}, \ldots\right.$, $\left.x_{p-1}\right\rangle$. Then $\psi=\phi_{0}+\left\langle x_{1}\right\rangle \phi+\cdots+\left\langle x_{p-1}\right\rangle \phi_{p-1}-\left\langle 1, x_{1}, \ldots, x_{p-1}\right\rangle \phi_{p}$ $=\left(\phi_{0}-\phi_{p}\right)+\left\langle x_{1}\right\rangle\left(\phi_{1}-\phi_{p}\right)+\cdots+\left\langle x_{p-1}\right\rangle\left(\phi_{p-1}-\phi_{p}\right)$. Thus $2^{k} \psi$ $=0$.
(4.3) applies when $[K: F]=3$ and $[G(K): G(F)]=4$. See after (4.1) for an example of such an extension. We can improve (4.3) in this case (see the second example after (1.1)).

Corollary 4.4. Suppose K / F is Galois with $[K: F]=3$ and $[G(K): G(F)]=4$. Write $U=\{1, x, y, x y\}$. Then:
(1) $m(K / F)=\left\{\phi_{0}\langle x\rangle+\phi_{2}\langle y\rangle \mid \phi_{i} \in W F, 4 \phi_{i}=0\right.$ and $\phi_{0}+\phi_{1}+\phi_{2}=$ $0\}$.
(2) $m(K / F)=0$ iff $D_{F}(4) \subset D_{K}\langle 1,-x\rangle \cap D_{K}\langle 1,-y\rangle$.
(3) If F is non-real and $m(K / F)=0$ then $x, y \in D_{K}(2)$.

Proof. (1) Follows from the proof of (4.3). Suppose $m(K / F)=$ 0 . If $w \in D_{F}(4)$ then for $\phi=\langle 1,-w\rangle$ we have $4 \phi=0$ and $\langle 1,-x\rangle \phi \in m(K / F)=0$. Thus $w \in D_{K}\langle 1,-x\rangle$, and similarly $w \in D_{K}\langle 1,-y\rangle$.

If $D_{F}(4) \subset D_{K}\langle 1,-x\rangle \cap D_{K}\langle 1,-y\rangle$ and $\psi=\phi_{0}+\phi_{1}\langle x\rangle+\phi_{2}\langle y\rangle \in$ $m(K / F)$ then

$$
\begin{aligned}
\psi & =\phi_{0}+\phi_{1}\langle x\rangle-\left(\phi_{0}+\phi_{1}\right)\langle y\rangle \\
& =\phi_{0}\langle 1,-y\rangle+\langle x\rangle \phi_{1}\langle 1,-x y\rangle=0+0=0
\end{aligned}
$$

as $\phi_{i} \in \operatorname{ann}(4)$ which is generated by $\langle 1,-w\rangle, w \in D_{F}(4)$. Thus $m(K / F)=0$, proving (2).

To prove (3) note that (2) implies $D_{F}\left(2^{2+k}\right) \subset D_{K}\left(2^{k}\langle\langle-x\rangle\rangle\right)$ $\cap D_{K}\left(2^{k}\langle\langle-y\rangle\rangle\right)$. If $D_{F}(4)=G(F)$ then $-1 \in D_{K}\langle 1,-x\rangle \cap D_{K}\langle 1,-y\rangle$ and $x, y \in D(2)$. Otherwise, say $D_{F}\left(2^{k+1}\right) \neq G(F)$ and $D_{F}\left(2^{k+2}\right)=$ $G(F)$ for some $k \geq 1$. Then $-1 \in D\left(2^{k}\langle\langle-x\rangle\rangle\right)$ and $2^{k+1}\langle\langle-x\rangle\rangle=$ 0 . Thus $x \in D\left(2^{k+1}\right) \subset D\left(2^{k-1}\langle\langle-x\rangle\rangle\right)$. So $-1 \in D\left(2^{k-1}\langle\langle-x\rangle\rangle\right)$ and $2^{k}\langle\langle-x\rangle\rangle=0$. Continue until $2\langle 1,-x\rangle=0$. Similarly $2\langle 1,-y\rangle$ $=0$.

We have only a few results for non-Galois extensions.
Proposition 4.5. Let L be the normal closure of K / F. If L is real then $[K: F] \leq[G(K): G(F)]$.

Proof. Let $X_{E}(P)$ denote the set of extensions of an ordering P to a field E. Let $Q \in X_{L}$ and set $P=Q \cap F, V=Q \cap K$. Then $\left|X_{L}(p)\right|=[L: F]$ as L / F is Galois, and $\left|X_{L}(V)\right|=[L: K]$. Then $\left|X_{K}(P)\right|=[L: F] /[L: K]=[K: F]$.

Let $h(S)$ denote the number of subgroups of $G(K)$ of index 2 containing a set S. Let $P \in X_{F}$. Then $h(P)=|G(K) / P|-1=$ $2[G(K): G(F)]-1$. Also $h(P \cup\{-1\})=[G(K): G(F)]-1$. Thus there are $[G(K): G(F)]$ many subgroups of index 2 in $G(K)$, containing P but missing -1 . These are the only possible choices for extensions of P to K. Hence $[K: F]=\left|X_{K}(p)\right| \leq[G(K): G(F)]$.

We close with a detailed study of the smallest possible case: $[K: F]$ $=3$ and $[G(K): G(F)]=2$. We know of no such extensions.

Lemma 4.6. Suppose $[K: F]=3$ and K / F is separable but not Galois. Let L be the normal closure of K. Then:
(1) There exists a field E such that $F \subset E \subset L,[L: E]=3$ and L / E is Galois.
(2) $[G(K): G(F)]=\frac{[G(L): G(E)]}{\left[D_{K}(1,-g\rangle: D_{F}(1,-g\rangle\right]}$, for some $g \in G(F)$.
(3) $[G(K): G(F)] \leq[G(L): G(E)]$.

Proof. We have $[L: F]=6$. Thus there exists a normal subgroup H of $\operatorname{Gal}(L / F)$ of order 3. Let E be the fixed field of H. Then $[L: E]=3$ and $E=F(\sqrt{g})$ for some $g \in G(F) \backslash\{1\}$. Suppose $K=F(e)$. Then $e \notin E$ and so $L=F(\sqrt{g})$. By [11, VII, 3.4]:

$$
\begin{aligned}
& {[G(E): G(F)]=\frac{1}{2}\left|D_{F}\langle 1,-g\rangle\right|} \\
& {[G(L): G(K)]=\frac{1}{2}\left|D_{K}\langle 1,-g\rangle\right|}
\end{aligned}
$$

Hence the formula in (2) holds. (3) follows from (2).
Lemma 4.7. Suppose $G(K)=\{1, a\} G(F)$. Set $H=D\langle 1,-a\rangle \cap$ $G(F)$. Then for $f \in G(F)$:

$$
\begin{aligned}
D_{K}\langle 1,-f\rangle & = \begin{cases}D_{F}\langle 1,-f\rangle & \text { if } f \notin H \\
\{1, a\} D_{F}\langle 1,-f\rangle & \text { if } f \in H\end{cases} \\
D_{K}\langle 1,-a f\rangle & =\{1,-a f\}\left(D_{F}\langle 1,-f\rangle \cap H\right)
\end{aligned}
$$

Proof. By (1.4) there is an $s \in \operatorname{Hom}(K / F)$ with $s_{*}\langle 1\rangle=s_{*}\langle a\rangle=$ $\langle 1\rangle$. (2.7)(6) then gives the computation of $D_{K}\langle 1,-f\rangle$. Clearly $D_{K}\langle 1,-a f\rangle=\{1,-a f\}\left(D_{K}\langle 1,-a f\rangle \cap G(F)\right)$. Then $g \in D_{K}\langle 1,-a f\rangle$ $\cap G(F)$ iff $a f \in D_{K}\langle 1,-g\rangle$ iff $g \in D_{F}\langle 1,-f\rangle$ and $g \in H$. Thus $D_{K}\langle 1,-a f\rangle=\{1,-a f\}\left(D_{F}\langle 1,-f\rangle \cap H\right)$.

Proposition 4.8. Suppose $[K: F]=3$ and $G(K)=\{1, a\} G(F)$. Then:
(1) $|D\langle 1,-a\rangle \cap G(F)| \neq 1$;
(2) If $|D\langle 1,-a\rangle \cap G(F)|=2$ then either:
(i) $\operatorname{rad}(F) \neq 1$, or
(ii) $W F$ and $W K$ are group ring extensions, or
(iii) There is a non-real Witt ring R_{0} such that $W F=\mathbf{Z} \sqcap R_{0}$ and $W K=\mathbf{Z} \sqcap R_{0}[\{1, a\}]$. In particular, $\left|X_{F}\right|=\left|X_{K}\right|=1$.

Proof. (1) Suppose $|D\langle 1,-a\rangle \cap G(F)|=1$. Then (4.7) implies a is bi-rigid. Thus $W K=W F[\{1, a\}]$ is a group ring extension. Let L be the normal closure of K. Then $L=K(\sqrt{g})$ for some $g \in G(F)$. Set $E=F(\sqrt{g})$. Now $D_{K}\langle 1,-g\rangle=D_{F}\langle 1,-g\rangle$ so that $[G(K): G(F)]=[G(L): G(E)]$ by (4.6). But (4.1) implies $[G(L): G(E)] \geq 4$, a contradiction.
(2) Write $D\langle 1,-a\rangle \cap G(F)=\{1, f\}$ and suppose $\operatorname{rad}(F)=1$; in particular, $D_{F}\langle 1,-f\rangle \neq G(F)$. If $x \in G(F)-D_{F}\langle 1,-f\rangle$ then
$D\langle 1,-a x\rangle=\{1,-a x\}$ by (4.7). Thus if there exists $g,-g \in G(F)-$ $D_{F}\langle 1,-f\rangle$ then $a g$ is bi-rigid. Now $f \in D\langle 1,-a\rangle$ so a is not birigid and hence $g=a \cdot a g$ is bi-rigid. From $D_{K}\langle 1,-g\rangle=D_{F}\langle 1,-g\rangle$ we see that both $W F$ and $W K$ are group rings (with $\{1, g\}$ the group). This gives (ii).

So we may assume for all $g \in G(F)$ that either g or $-g$ is in $D\langle 1,-f\rangle$. Thus $\left[G(F): D_{F}\langle 1,-f\rangle\right]=2$ and $-1 \notin D_{F}\langle 1,-f\rangle$. In particular, $D_{F}\langle 1,-f\rangle$ is an ordering on F. From $G(F)=\{1, f\} \times$ $D_{F}\langle 1,-f\rangle$ we get $W F=\mathbf{Z} \sqcap R_{0}$ for some Witt ring R_{0}.

We also have that $D_{K}\langle 1,-f\rangle=\{1, a\} D_{F}\langle 1,-f\rangle$ has index 2 , in $G(K)$, and misses -1 . Thus $D_{K}\langle 1,-f\rangle$ is an ordering. Again, $G(K)=\{1, f\} \times D_{K}\langle 1,-f\rangle$. Now in $D_{K}\langle 1,-f\rangle, D\langle 1, a\rangle=\{1, a\}$ and $D\langle 1,-a f\rangle=\{1,-a f\}$. Hence $W K=\mathbf{Z} \sqcap R_{0}[\{1, a\}]$.
Lastly, (2.7) implies $\operatorname{Att}\left(\operatorname{ker} s_{*}\right)=\{I F\}$. Then (2.7) and (2.8) yield $\left|D_{K}(\infty) / D_{F}(\infty)\right|=2$. Now $D_{F}(\infty)=1 \times D_{L}(\infty)$, where $R_{0}=W L$, and $D_{K}(\infty)=1 \times D_{L}(\infty)$ unless $a \in D_{L}(\infty)$. But this only occurs if $-1 \in D_{L}(\infty)$. Hence R_{0} is non-real and $\left|X_{K}\right|=\left|X_{F}\right|=1$.

References

[1] H. Bass, On the ubiquity of Gorenstein rings, Math. Z., 82 (1963), 8-28.
[2] A. Carson and M. Marshall, Decomposition of Witt rings, Canad. J. Math., 34 (1982), 1276-1302.
[3] P. Dutton, Prime ideals attached to a module, Quart. J. Math. (2), 29 (1978), 403-413.
[4] R. Elman and T.-Y. Lam, Quadratic forms over formally real fields and pythagorean fields, Amer. J. Math., 94 (1972), 1155-1194.
[5] , Quadratic forms under algebraic extensions, Math. Ann., 219 (1976), 2142.
[6] R. Elman, T.-Y. Lam, and A. Wadsworth, Orderings under field extensions, J. Reine Angew. Math., 306 (1979), 7-27.
[7] C. Faith, Algebra: Rings, Modules and Categories I, Grundlehren Math. Wiss., vol. 190, Springer-Verlag, New York/Heidelberg/Berlin, 1973.
[8] R. Fitzgerald, Primary ideals in Witt rings, J. Algebra, 96 (1985), 368-385.
[9] _, Gorenstein Witt rings, Canad. J. Math., 60 (1988), 1186-1202.
[10] J. Iroz and D. Rush, Associated prime ideals in non-noetherian rings, Canad. J. Math., 36 (1984), 344-360.
[11] T.-Y. Lam, The Algebraic Theory of Quadratic Forms, Benjamin, Reading, Mass., 1980.
[12] M. Marshall, Abstract Witt rings, Queen's Papers in Pure and Appl. Math., vol. 57, Kingston, Ont., 1980.
[13] D. G. Northcott, Remarks on the theory of attached prime ideals, Quart. J. Math. (2), 33 (1982), 239-245.
[14] J.-P. Serre, Local Fields, Graduate Texts in Math., vol. 67, Springer-Verlag, New York/Heidelberg/Berlin, 1979.
[15] W. Scharlau, Quadratic and Hermitian Forms, Grundlehren Math. Wiss., vol. 270, Springer-Verlag, Berlin/Heidelberg/New York/Tokyo, 1985.
[16] R. Ware, Automorphisms of pythagorean fields and their Witt rings, Comm. Algebra 17 (4) (1989), 945-969.

Received December 1, 1990 and in revised form July 8, 1991.
Southern Illinois University
Carbondale, IL 62901-4408

