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SZEGO MAPS AND HIGHEST WEIGHT
REPRESENTATIONS

M. G. DAVIDSON AND R. J. STANKE

Let G be a connected noncompact simple Lie group with finite
center and let A be a maximal compact subgroup of G. Assume the
space G/K is Hermitian symmetric. We associate to each irreducible
representation τ of K a principal series representation W(τ) and
a (7-equivariant Szegό-type integral operator Sτ such that Sτ maps
the K-finite vectors in W(τ) onto an irreducible highest weight $-
module L(τ). Of primary concern here are those representations τ
which are reduction points. For such τ , we construct certain systems
3lτ of ΰ-equivariant differential operators and then utilize 3fτ to
establish the infinitesimal irreducibility of the image of Sτ.

1. Introduction. Let G be a connected noncompact simple Lie
group with finite center and let K be a maximal compact subgroup
of G. Assume the space G/K is Hermitian symmetric. The main
purpose of this article is to realize each irreducible highest weight
representation of G as the image of a G-equivariant quotient map
defined on principal series representations. To make this more pre-
cise, recall that each irreducible highest weight representation πτ of
G is parametrized by an irreducible unitary representation τ of K.
Let C°°(G, τ) denote the space of τ-covariant C°°-functions on G.
We associate to τ a principal series representation W(τ) and a Szego
map Sτ: W(τ) -> C°°(G, τ) having the property that the ^-finite
vectors in W(τ) are mapped onto an irreducible g-module equiva-
lent to the derived action of πτ. In the case of discrete series and
limits thereof, this type of result was proved by Knapp and Wallach
[16] in the general setting where G is a semisimple equirank Lie group
with finite center. The main result here is that the irreducibility of the
image of *Sτ persists for all highest weight representations. Moreover,
for certain τ called reduction points, the irreducibility of Image(Sτ)
is proved by showing this space is annihilated by a system Qίτ of G-
equivariant differential operators. The system 3τ somewhat parallels
the role of the Schmid operator in the Knapp and Wallach result.

The realization of distinguished representations as irreducible im-
ages of quotient maps is a recurring theme in the literature which
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appears in somewhat different contexts. For example, Okamoto [19]
realizes both discrete series representations and limits thereof in this
way when (G, K) is a Hermitian symmetric pair. By inducing from a
maximal parabolic, Inoue [13] identifies generalized limits of discrete
series representations as Hardy-type spaces and views the Szegό map-
ping as projection onto the irreducible Hardy space. For semisimple
equirank G, both Knapp and Wallach [16] and Blank [1] realize dis-
crete series representations as the image of such quotient mappings.
Limits of complementary series are obtained by Gilbert, Kunze, Stan-
ton and Tomas [9] in an analogous way. We refer also to [5], [6] and
[8].

The main feature contrasting our results and the results cited above
is that we work in the Hermitian symmetric setting with the set of
all highest weight representations of G. In particular, unitarity is not
assumed. Our results are most significant in the case of exceptional
highest weight representations. By this we mean the representations
π τ such that τ lies in the set Kr of reduction points. To explain the
notion of reduction point, we briefly recall a standard realization of
the highest weight representation space (cf. §5). Define left translation
on the space C°°(G, τ ; p_) of functions on G which are smooth,
vector-valued, annihilated by left invariant vector fields r{X), X e
p_ , and which satisfy a transformation property by τ . Then τ e Kr

if and only if the subspace C£°(G, τ ; p_) of A -̂finite vectors forms
a reducible g-module.

This characterization of Kr reveals why it is natural to focus on
those highest weight representations parametrized by τ in Kr. For
given an irreducible unitary representation τ of K, Theorem (6.1)
[16] gives appropriate inducing parameters (σ, v) so that the cor-
responding Sτ maps the nonunitary principal series W(σ9u) G-
equivariantly and nontrivially into C°°(G, τ ; p_). If τ £ Kr, then
C£°(G, τ p_) is irreducible and thus the image of the ^-finite vectors
in W(σ9 v) is an irreducible g-module. If τ e Kr however, the space
C£°(Gy τ ; p_) is reducible and yet the infinitesimal irreducibility of
the image of Sτ persists. To prove this result we turn to gradient-type
differential operators.

A gradient-type differential operator d is a G-equivariant homoge-
neous differential operator d: C°°(G, τ) -> C°°(G9 ζ) (cf. §7). For
τ G Kr, we construct a finite system QJτ — {d\, . . . , dr} of such oper-
ators and show that the subspace of C£°(G, τ ρ_) annihilated by all
the df is irreducible. In the case where τ corresponds to a unitariz-
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able highest weight representation, it is shown in [3] that 2τ can be
chosen to consist of a single differential operator. This distinguished
operator, called a covariant differential operator, arises as the dual of a
0-mapping between generalized Verma modules. The irreducibility of
the kernel in that case is immediate from duality and a special submod-
ule property resulting from unitarity (cf. [2], [3]). Here we avoid dual-
ity arguments and prove the irreducibility of Ker(^ τ ) Π Q°(G, τ p_)
directly.

From the above comments it is clear that the proof of the infinitesi-
mal irreducibility of the image of Sτ reduces to showing that Sτ maps
into the kernel of 3fτ. It is natural to attempt to prove Sτ maps into
YLsτ(9fτ), τ e Kr, by combining an induction argument on the degree
of di with the calculational techniques found in the proof of (6.1)
[16]. This approach forces one to deal with the fact that the kernel
function sτ defining St is initially expressed in terms of an Iwasawa
decomposition while the operator 2τ is expressed in terms of a Car-
tan decomposition. This fact, coupled with the indefinite order of the
operators in 2τ, leads to some computational problems which we find
to be intractable.

To circumvent these difficulties, we utilize a particularly useful re-
formulation of sτ in terms of a factor of automorphy Jτ. This refor-
mulation is well-suited for our purposes since the factor Jτ is defined
in terms of the Cartan decomposition. The precise connection be-
tween sτ and Jτ involves a distinguished point b in the Bergmann-
Shilov boundary and is given explicitly in §4. A connection of this
kind had been previously observed by Inoue [13] in the context of
"generalized" limits of discrete series. There the image of the Szegό
map Sτ is viewed as a Hardy space H2 and the associated G-action is
the restriction of a holomorphically induced multiplier representation
T to H2.

In our context, the multiplier representation T plays an important
role as well. This is because the proof that the image of Sτ is annihi-
lated by each 5/ in 2τ (cf. §8) reduces to showing <9/sτ = 0, <9Z e 3fτ.
Since both sτ and T are defined in terms of Jτ, the function diSτ

can be conveniently expressed in terms of the derived action of T.
The precise formulation is given in §6.

The authors thank Professor Ray A. Kunze for helpful discussions
regarding quotient maps and Professor Larry Smolinsky for illuminat-
ing conversations on covering spaces. We also express our appreciation
to the referee for offering suggestions that greatly enhanced the clarity
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and scope of this paper. In particular, our original version dealt only
with unitary highest weight representations. The referee suggested that
our differential operator techniques may extend to the nonunitary set-
ting as well. We found this to indeed be true and have subsequently
dropped the unitarity assumption from the final version.

2. Preliminaries. Let G denote a connected noncompact simple
Lie group with finite center. Let AT be a maximal compact subgroup
and assume G/K is a Hermitian symmetric space. Choose a com-
pact Cartan subgroup T c K and let go , 60 and to denote the Lie
algebras of G, K and T. Fix a Cartan decomposition g0 = ϊ0 Θ po.
We adopt the convention that the removal of the subscript o denotes
complexification. By our assumptions there exists a decomposition
g = p + 0 1 © p_ where p+ and p_ are ad(t)-invariant abelian subal-
gebras of p. The subalgebra t is a Cartan subalgebra of g and we let
Φ be the roots corresponding to (g, t ) . Let Φc and Φn denote the
set of compact and noncompact roots, respectively. We denote the
root space corresponding to a G Φ by gα and choose a positive sys-
tem of roots Φ+ so that p+ = 0 α € φ + &a and ρ_ = φaeΦ; βa where
φ+ = φ+ n Φn and Φ~ = (-Φ+) Π Φn .

If θ denotes Cartan involution and B denotes the Killing form,
then we choose root vectors Ea e ga, a e Φ, so that B(Ea, E-a) =
2/(α, a) and ΘEa = -E-a. The bar here is conjugation of g with
respect to g0 and ( , •) is the standard inner product on the real space
of linear functionals on t taking purely imaginary values on to. We
put Ha = [Ea, E-a].

Let r be the split rank of G. We inductively define a maximal
set {γ\, . . . , γr} of strongly orthogonal positive noncompact roots by
setting γ\ = largest root of Φ and y7+i = largest root in Φ+ which
is strongly orthogonal to 7 1 , . . . , ? ; . Then Eγ + E-γ lies in p0 for
each 1 < j < r and

(2.1) α o =

is a maximal abelian subspace of p o . Let R = R{a0) denote the set
of restricted roots with respect to α0 and let R+ denote the positive
roots with respect to the lexicographic ordering induced by the ordered
basis {E7i + E-?i, . . . , Eγ r+ E-γ} of α 0. If n0 denotes the sum of
positive restricted root spaces, then g0 = 60 θ α0 θ n 0 gives an Iwasawa
decomposition of g0 with corresponding decomposition G = KAN
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of G. For g eG,we write

(2.2) g = κ(g)eH^n(g)

where *:(#) € K, H(g) e αo and n(g) eN.
We now recall the definition of the principal series representations

of G. Let M denote the centralizer of αo in K and let σ be an ir-
reducible unitary representation of M with representation space Hσ .
Set 2p = ]ζμG£+(dimμ)μ and let v denote a complex-valued lin-
ear function on α o . We induce the representation σ ® ep <g> 1 of the
minimal parabolic subgroup P — MAN to a representation of G.
Let C(i/, σ) denote the space of continuous functions f:G-+Hσ

satisfying the property

(2.3) f(gman) = e"^+^H^σ(myιf(g).

Let W{y, σ) denote the completion of C{y, σ) with respect to the
norm

(2.4) | | / | | 2 = I \f{k)\2dk.
JK

The representation L = L{v, σ) of G on W(z/, σ) is given by left
translation: (L(^)/)(x) = f{g~ιx), xeG. Then for each g e G the
operator L(g) is bounded and for each / e Wr(i>, σ), the mapping
g —> L(g)f is continuous . The parameters are arranged so that L is
unitary if v is imaginary.

3. Quotient maps. We briefly discuss some basic facts about quo-
tient maps which are needed for our purposes. We refer the reader
to [8] and [18] for a more comprehensive exposition and some ex-
plicit examples. Let (τ, Vτ) (resp. (σ, Hσ)) be an irreducible uni-
tary representation of K (resp. M) on the complex vector space Vτ

(resp. Hσ). Let Hom i^(//σ, Vτ) denote the complex space of linear
maps C: Hσ --> Vτ satisfying Cσ(rn) = τ(m)C for all rn e M. For
C € H o n i M ^ , Fτ) we define Bc: Vτ -> W{y, σ) by

(3.1) 5 c v ( £ ) = e-("+riHWC*τ(κ(g))-ιυ, ί ; E F T .

Then JBC is a continuous mapping into C[y, σ) which satisfies
L(k)Bc = # cτ(λ:) for all J t e J f . The adjoint map # £ : ϊF(i/, σ) -*
Fr is easily seen to be

(3.2) BZf= I τ(k)Cf(k)dk.
JK

Let C(G, τ) denote the space of continuous functions / : G -> Vτ

satisfying f(gk) = τ(k)~ιf(g) for all g EG and k e K. Following
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Kunze [18], we define the quotient map Sc' W{v, σ) —> C(G, τ) by
Scf{x) = B*cL(x~ι)f. For / e JF(i/, σ) and * e G, then

(3.3) *;/(*) = [ τ(k)Cf(xk)dk.
JK

It is clear that left translation L(g), g eG, leaves the space C(G, τ)
invariant and we have L(g)Sc = ScL(g). Moreover, the equation
ScBcv(l) = BςBcv, for t; € KT, implies that the C-linear map
C —• Sc is injective.

For each x eG and function / e C(v, σ), the function Fx\ K ->
jy^ defined by î c(fc) = τ{k)Cf(xk) is right M-invariant and so we
may apply the integral formula [15, p. 170]

f F(k)dk= ί e-2PH^~x^F{κ{g-χk))dk, geG,
JK JK

to the function Fx and write Scf{x) in (3.3) as

S f(x)= ί e-2^H^~l^Fx(κ(g-ιk))dk
JK

= f e-2^g~lkh(κ(g-ιk))Cf(xκ(g-ιk))dk
JK

= ί
JKK

χ

If we let x = g and observe that κ(gκ(g~ιk)) = k and H{gκ{g~λk))
= -H(g-ιk) we obtain

(3.4) (Scf)(g) = ί
JK

Define sc: G -+ Hom(//σ, Vτ) by sc(g) = e~^
for g e G. Then

(3.5) (Scf)(g) = ί sc(k-ιg)f(k)dk.
JK

For a fixed representation (σ, i/σ) of Λf, let av denote the repre-
sentation of P = MAN on /fσ given by

(3.6) σu{man) = e(j/-p)H{a)σ(m).

Let K{y, σ , τ) denote the space of functions s\G -* Hom(7/ σ , J^)
satisfying the transforming property

(3.7) s(pgk) = τ(k)-ιs(g)σιy(p)-1

for all p e P, ^ e G and k e K. We call #(i/, σ, τ) the 5pαc^ o/
kernel functions associated to {y, σ, τ).
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(3.8) PROPOSITION. The map Γ: Hom M (// σ , Vτ) -> K(v, σ, τ)
by Γ(C) = ^c w an isomorphism of ΊΆovciM(Hσ, J^)

Proof. We first show that Sc satisfies (3.7). Using the Iwasawa
decomposition G = ANK, write g e G as g = eH^g\g)n\{g)κ\(g)
where Jfi(g) e α o, nχ(g) e N and κ\(g) e K. One has

Since A normalizes N 9 the two Iwasawa decompositions are related

by the formulas Hx(g) = -H(g~l) 9 nx(g) =.
and κχ(g) = K(g~1)-1. Hence sc(g) =
Since MA normalizes N we have K\{mang) = mκ\{g) and
= aeHι(g) = eHWeHi(g) for all man G MAN and g eG. Then

sc(mangk) = τ(k-ι)sc(mang)

This shows that Γ maps into K{y, σ, τ). If s e K[y, σ, τ) 9 then
(3.7) implies s(l) = s(m-χ\m) = τ(m)~ιs(l)σ(m) so that 5(1) e
HomM(HσyHτ). Moreover, Γ(s(l))(ank) = τ ( fc)- 1 ^- z / ) i / (^( l ) =
s(ank) and since G = ^Λ ĴRΓ , it follows that Γ is onto. Finally, the
equation Γ(C)(1) = C implies Γ is injective and so the proof is
complete.

Let λ = λ(τ) be the highest weight of (τ, Vτ) and let φχ e Vτ

denote a nonzero highest weight vector. We define a representation
(σ, /i^) of M as follows:

f i/σ = span c {τ(m)^: m e M} and

\ σ is the restriction of τ to M on Hσ .

Since we are in the Hermitian symmetric setting we know by [17] and
Proposition 5.5 [16; p. 176] that (σ, Hσ) is an irreducible represen-
tation of M.
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Let W{τ) denote the nonunitary principal series representation
with a = σ(τ) chosen as in (3.9) and v — u(τ) chosen to satisfy

(3.10) (u

The inclusion map Cτ: Hσ —• Vτ is clearly a nonzero element of
Hom^(/7σ , Vτ) and we let Sτ (resp. sτ) denote the associated quo-
tient map (resp. kernel function). We call Sτ the Szegό map associ-
ated to τ. Note that since the map C —» Sc is injective, Sτ is not
the zero map.

4. Factors of automorphy and kernel functions. We begin by re-

calling some standard facts on covering groups. The details that are
omitted here may be found in [12] and [20]. Since G has finite center
it covers a group G° which admits a faithful matrix representation.
(One may take for example G° — G/Z , where Z is the center of G.
Then G° is isomorphic to the adjoint group Ad(G).) Let γ: G —• G°
denote the covering map and & the kernel of γ. Then ^ is con-
tained in the center of G. The image K°, A0 and N° of K, A
and N is an Iwasawa decomposition of G° and A and N are diίfeo-
morphic to A0 and TV0, respectively. Furthermore, since the center
of G is contained in the center of K, the restriction γκ: K —• K°
is a covering map with kernel W. Let ^ , Kc and G^ denote the
complexifications of K°, Â  and G°, respectively. Since K°, Γ̂ and
G0 admit faithful finite dimensional representations, we can and do
identify each group with its image in the complexification. Further-
more, we identify K£ with the connected component of G^ whose
Lie algebra is t and note that γκ: K -+ K^ extends to a covering map,
again denoted by γκ , of Kc onto K£ . The kernel of this extension is
also Ψ. By identifying G° (resp. K£) with the quotient G/%? (resp.
Kcl^), we assume the differential of γ (resp. γκ) at the identity
element 1 of G (resp. Kc) to be the identity map. In particular,
if exp: g0 —> G (resp. exp0: g0 -+ G°) denotes the exponential map,
then y(exp(ΛΓ)) = expo(X) for all X e flo.

Recall the Harish-Chandra realization [10] of G/K as a bounded
domain in p+. If P± = expo(p±) in G£, then the map p+ x K£x
p_ -> Gg defined by (a, k, b) -> expo(α)/:expo(&) is a holomorphic
diffeomorphism onto a dense open set Ω = P+K^P- of Gfc. We
uniquely write each x e Ω a s the product

(4.1) x = π+(x)πo(x)π_(jc), where π±(x) G P± and πo(x) G Kfc.
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One knows G° c Ω and the map ζ: Ω -> p+ defined by ζ(x) =
log(π+(jt)) induces a holomorphic difFeomorphism of G°/K° = G/K
onto ζ(G°). The set £> = ζ{G°) is a bounded domain in p+ and
we identify D with G/K. In particular, the coset K in G/K is
identified with the origin 0 in p+ .

For each (g, z) e G£ x p+ for which g expo(z) e Ω we set

(4.2) g.z = logπ+(gexpo(z)) and

(4.3) 7'0(£, z) = 7Γo(<?expo(z)).

It is known that if g G G° and z e D then #exp(z) G Ω. Conse-
quently, (4.2) defines a Go-action on D (the closure of D in p+).
This action lifts to G through the covering map and we denote it in
the same way: g.z = y(g).z, g G G and z e ~D. The map 7Ό
satisfies

(4.4) Mk,z) =

(4.5) 7o(/?, z) = 1 for all (p, z) e P+ x p+ ,

(4.6)

where (4.6) holds for all gx, gi^G^ and zeρ+ for which
and g2exp(z) both lie in Ω.

(4.7) PROPOSITION. The map j o : G° x Z) —• JS^ /(/?5 uniquely to a
continuous map j : G x Z> —> Â c satisfying

(1) γκU(g,z))=Mv(g),z),fora!l(g9z)eGxD,
(2) j(fc, z) = k,forall (fc, z) e K x D, _
(3) 7"Uift, ^) = 7(^i, g2 z)j{g2, z), for all gx, g2eG, zeD,
(4) 7 w C°° OΛ G αAẑf holomorphic on D.

Proof. A norm | | can be defined on p + so that D = {X G ρ+: |X| <
1} (cf. [14]). Since D is connected and simply connected, so is
D. Since AN is simply connected, the map-lifting theorem states
that there is a unique continuous map j : AN x D —• ^ c satisfying
7(1, 0) = 1 and γκ(j(an > z)) = jo(y{an), z ) . Now extend 7 to GxD
by j(kan, z) = kj(an, z). Such an extension is clearly continuous.
Moreover,

ϊκϋ(kan, z)) = yκ{k)γκ{j(an, z))

= yκ(k)jo(γ(an), z) = jo(γκ(k)γ(an), z) - jo(γ{kan), z).

Thus 7 satisfies (1).
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By (4.5) 7o(l, z) = 1 for all z e ΰ SO that by (1), z-*j{\9z) is a
continuous ^-valued function on 5 and hence a constant function.
Since j ( l , 0) = 1, we have j(l9 z) = I for all z e D. This implies
(2).

Let g, h e G and z e D. By (4.6) and (1) we have j(gh, z) =
j(g9h.z)j(h9 z)F(g9 h9 z)9 where i 7 is a continuous ^-valued
function on GxGxD. Since G and Z> are connected, it follows that
F is constant. But F(\, 1, 0) = j ( l , 0)" 1 = 1 so that (3) follows.

Property (4) follows from the fact that j o is C°° on G° and holo-
morphic on D. Finally, a continuous function y: GxD -* Kc satis-
fying (l)-(4) is unique. This completes the proof.

We define the Cayley transform c £ G£ to be

(4.8)

One easily finds

exp (-ad (ϊ(£,, ,,))) ( , ,,) { ^ £ _ ? < ^ J

Consequently we have

(4.9) A d ί c " 1 ) ^ + E-7j) = - ^ , 1 < / < r.

Let t" = 0 ' = 1 RH?i. Then r e t and it" c to . Recall the Iwasawa
decomposition j o = t o θ α o θ n 0 chosen in §2.

(4.10) LEMMA. We have

(i) Ad(c~1)α0 = r
(ii) ι

Proof. Part (i) follows from (4.9). To prove (ii), let l)~ denote the
subspace of t0 annihilated by {γj•: 1 <j<r}. Then clearly ί)~ c m0

and to = f}̂  θ zt~. It follows that f)~ is maximal abelian in m 0 .
The abelian subalgebra ϊ)0 = IfcΓ θ *θo is a Cartan subalgebra of the
compact form uo = to®ipo and we form the root space decomposition
of 0 = u = h®ΣseA(Q fj)u^ w ^ r e s P e c t to f). By the definition of f)~ ,
Ad(c - 1) is the identity on fj~ . From (i) we have Ad(c~ι)(f)~ θ /α0) =
f)o~ θ it" = t 0 . If Ad(c)' denotes the transpose of Ad(c), then it
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follows Ad(c)': Δ(g, ϊj) -> Φ is a bijection and Ad(c~ι)us = flAd(c)'<?
for all ί eΔ(fl,fj).

Let wμ denote the root space corresponding to the restricted root
μ. Since n0 = 0 j U >o wμ > it suffices to show that

wμ c Ad(c)

for each positive μ. The restricted roots R are the nonzero restric-
tions of the roots Δ(g, f)) to α 0 . For μ G R, let Δ(μ) = {δ G
Δ(g, ()): J restricted to αo is μ} and let Uμ = ζBseA(μ)u^ Since
Wμ = flo (Ί Uμ, it suffices to show uj c Ad(c)(X)αGφ+ g_α) for all
δ G Δ(μ) with μ > 0. Since u^ = Ad(c)(gAd(Cy^), we need only show
the root Ad(c)'<$ lies in Φ~, or equivalently, that Ad(cYδ cannot
lie in Φ + . First note that since μ is positive with respect to the
lexicographic ordering induced by {E7χ + E-7χ, . . . , Eγr + E-γ}, if
/ G {1, . . . , r} is the smallest integer for which μ(Eγ_ +E-γ.) φ 0 then
μ(E7i +E-7ι) > 0. Consequently, for this integer /, (Ad(cYδ)(Hγ.) =
δ(Ad(c)Hγij = -δ(E7i + E-y) = -μ(E7i + E-7) < 0 by (4.9). Let
π: \! —• (t~); denote restriction to t " . From Lemma 16 [10; p. 588]
one knows that

υ{±π(γi±γj): 1 < i < j < r} U { π ( y 7 ) : 1 <j<r}.

(See also [13; p. 82].) In particular, the nonzero elements π(a), a G
Φ + , have the property that if / G {1, . . . , r} is the smallest integer
for which π(a){Hγ) φ 0, then π(a)(Hγ.) > 0. Since π(Ad(c)'<5) φθ,
it follows that Ad(cYδ cannot lie in Φ + . This completes the proof
of (ii).

Let 7£ and B^ (resp. Tc and Be) be the connected subgroups of
K^ (resp. Kc) whose Lie algebras are t and 0 α € φ + Q-a - We then
have from (4.10) the following result.

(4.11) COROLLARY. (1) c~ιA°ccT° and (2) c~ιN°c c B°CP. .

Thestrongorthogonality of the y7 along with an explicit calculation
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in SL(2, C) gives

(4.12) exp (
i = l

= exp ί tan(ί) ]Γ Eγ_ J exp [ - ln(cos(ί)) ] ζ Hy, J
V 1=1 7 \ ι=i /

x exp I - tan(ί) ]P E-γ_ j ,
V i=i /

for ί e R. In particular if ί = f then ceΩ = P+K^P- and c.O =
logπ+(c) = Σ / = i ^ 7 ; Consequently we have Goc = K°A°N°c =
iί: o c(c-U o c)(c- 1 iV o c) c K°cK^P. . Since c G Ω , we conclude G°c c
Ω . Thus if b = Σr

i==ι Eγ , then g . δ is defined for each g eG° and
by extension for each g EG.

(4.13) LEMMA. The stability subgroup Gb of b = J2r

i=ι E7ι in G
contains MAN.

Proof. To show an-b — b for ύf«G^4iV?it suffices to show that
c~ιanc 0 = 0 for an e ^°iVo. But this follows from (4.11) and
the fact that K^P- -0 = 0. To show m - b = b we first observe
that k z = Ad(k)z for all k e K and z e p+. Since p+ and p_
are Ad(i£)-invariant, M c K and (6 + b) G α 0, we have b + b =
Aά(m)(b + b) = Ad{m)(b)+Aά(m)(b) so that m-b = Ad(m)(b) = b.
This completes the proof.

(4.14) REMARKS. (1) In general, MAN is properly contained in
Gb. (2) By the cocycle property (4.7.3) and by (4.13) the function
g —> 7(g, 6), ^ G G^, is a homomorphism.

Throughout the remainder of the paper we assume that τ is an ir-
reducible unitary representation of K on the space Vτ with highest
weight λ and we fix a nonzero highest weight vector φλ. The repre-
sentation τ extends to a holomorphic representation of Kc on Vτ.
We define the factor of automorphy Jτ by Jτ(g9 z) = τ(j(g9 z)) for
(g, z) e G xD. By (4.14.2) the map ω: Gb -> GL(Fτ) given by
ω(g) == Λ ( ^ J ̂ ) * - 1 , g e Gb, defines a representation of Gb and
hence of MAN.

Choose the representation σ = σ(τ) as in (3.9) and the linear
functional v — v(τ) satisfying (3.10), i.e. (u - p)(Eγ + E-γ) =
2(A, 7j)/(7j, 7j) = A(//y) for 1 < 7 < r. Keeping in mind these
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choices for σ and v , recall the definition (3.6) of the corresponding
irreducible representation av of MAN on Hσ .

(4.15) LEMMA. For each geMAN, the operator ω(g) leaves the
subspace Hσ invariant. Moreover, the restriction of ω(g), g e MAN,
to Hσ is σy(g).

Proof. Recall that Hσ is the span of τ(m)φλ, m e M. Since M
commutes with A and normalizes N, the lemma will follow if we
show ω(g)φχ = θv{g)Φλ f° r all £ in M , yl, and N. Now for
meM, ω(m)ψ = ov(m)ψ for ψ e Hσ by (4.7.2).

We now show ω(a)φχ = σv{a)φλ. Let α E / . Then by (4.6)
and (4.13), one has jo(c~ιac, 0) = jo(c~ι, c 0)jo(a, b)jo(c, 0). By
(4.11) and (4.12), jo(c-lac,0) and ;Ό(c,O) are in 7^. Since
jo{cx ,c.0)= jo(c, 0)" 1 and Γ^ is abelian, it follows that jo{a,b) =
jo(c'ιac9 0) - c - ^ c . If a = e x p ( ^ ^ ( ^ +^-y,)) (0/ € R), then
7o(y(α), 6) = c-^ίαjc = exp o (Σ -atHy) e T£ by (4.9). From this it
follows that j(a, b) = exp(^-aiHγ) . We now obtain

= JΊ(a,b)*-ιφλ

φλ

by (3.10)

= σv(a)φλ.

We now show ω{n)φχ = σv{ή)φχ for all n e N. As in the pre-
ceding paragraph, we have jo(n, b) = jo(c, 0)jo{c~{nc, 0)jo(c, 0)" 1 ,
for n e N°. By (4.11), c~ιNc e 5gP_ so that jo{c'ιnc, 0 ) G ^ .
Since jo(c, 0) e T£ and T£ normalizes B£ it follows that jo(n, b) e
£ £ . Therefore, for n e N, j{n, b) e γ^{Bl) by (4.7.1). On the
other hand, j(n, b) is in the connected component of the identity of
γ^ι(B^.) because j(l, b) = 1, iV is connected and n —> j(n, b) is
continuous. Thus j(n, b) e BQ. But then ω(n)φχ = Jτ(n, b)*~{φχ =
τ(j(n, b))*~ιφχ = φx since φλ is a highest weight vector. However
σv(n)φχ = φλ for n€N. This completes the proof.
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(4.16) PROPOSITION. Let Cτ: Hσ -> Vτ denote inclusion. Then
sτ(g) = Mg-{, b)*~ιCτ for all geG.

Proof. Let J(g) = Jτ(g'1, 6)*"1Cτ. By (3.8) it suffices to show
that / satisfies transforming property (3.7) and /(I) = sτ(l). We
have

J(mang) = Mg'1 (man)'1, *)*- !C τ

1 1 ^ 1 , b)*-χCτ by (4.7.3)

by (4.13)

= J(g)σv{manYι by (4.15)

for all geG and man G MAN. By (4.7.2) we also have /(gfc) =
Mk-ιg-\bγ-ιCτ = T ^ - 1 ) * - 1 / , ^ - 1 ^ ) * - 1 ^ = τί/c"1)/^) for
all # G G and fceί. Finally, observe that /(I) = Cτ = sτ(l).

5. Holomorphic-type functions on G. The purpose of this section
is to show that the Szego operator Sτ defined in §3 takes its values in
a standard realization of a highest weight representation space.

With τ as in §4, let C°°(G? τ) denote the subspace of C°° func-
tions in C(G, τ). On C°°(G, τ) we define left-invariant vector fields
r(X) for X e 0o by (r(X)f)(g) = £tf(gexp(tX))\t==0 where geG.
For ΛΓ = Xi + iX2 with X7 G g0, 7 = 1, 2, we set r(X) = r{Xλ) +
/r(X2) Put

(5.1) C°°(G, τ; p_) = {/ G C°°(G, τ): r ( * ) / = 0 for all Xep-}.

Clearly C°°(g? τ; p_) is L(G)-invariant. We call C°°(G, τ; p_) the
space of holomorphiC'type functions on G determined by τ.

Note that from (4.7.3) and (4.7.2) one has

Mg~ιk, b)*-ιCτ = Mg'1, k bγ~ιJτ{k, bγ~ιCτ

= Jτ(g-\k*by-ιτ(k)Cτ.

It then follows from (3.5) and (4.16) that the Szegό map Sτ may be
written in the form

(5.2) Sτf(g) = ί Jτ(g-\k bγ-ιτ(k)Cτf(k)dk,
JK

feW(τ),geG.

(5.3) PROPOSITION. The Szegό operator Sτ maps W(τ) into
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Proof, Since the kernel function sτ is C°° , it follows that Sτ maps
W{τ) into C°°(G, τ) . By G-equivariance, it suffices to show that
(r(X)Sτf)(l) = 0 for all / e W(τ) and X e p-. However, from
(5.2) it suffices to show r{X)Jτ{g, z)*" 1 \ g = ϊ = 0 for all z e D. By the
assumptions of §4, the differentials of γ and JK are the identity maps.
Since γκ(j(S > ^)) = jo(γ(g), z), for all (g,z) eGxD, it follows
that for each zeD, r(X)j(g, z)\g=ι = r(X)jo(γ(g), z)\g=sϊ for all
l e g . But for each z e D, there exists a neighborhood 7VZ of the
identity in (?£ on which g —• j o ( g , z) is holomoφhic. For 7 G p+
we consequently have r(Y)jo(g, z)\g=ι = ^; o (exp(/Γ), z)\ί=0 = 0
since jo{p, z) is the identity for all (p, z) e P+ x p+ by (4.5). Thus
for X e p_ we find r(X)Λ(#, ^ ) * - Ί ^ i = ( K ^ ) Λ ( ί , ^)-1)*U=i =
0. This completes the proof.

(5.4) REMARKS. (1) The proof of (5.3) given here depends on the
results thus far developed and reflects the special nature of the Her-
mitian symmetric setting. Proposition (5.3) is however an immediate
consequence of the more general Theorem (6.1) [16]. One only needs
to check that parameters may be chosen in a consistent way.

(2) It is shown in [21] that the choice of imbedding parameters of
irreducible highest weight (g, 6)-modules in principal series is unique.
Thus the parameters chosen in §3 for the Szegδ map Sτ are the only
parameters possible.

6. Holomorphically induced multiplier representations. In order to
apply certain G-equivariant differential operators to the kernel func-
tion sτ, we first need to compute the action of left-invariant vector
fields by elements of p+ on the factor of automorphy Jτ. The factor
Jτ also appears as a multiplier in the definition of the holomorphic
representation T of G induced by τ . This section shows that the de-
sired p+-action can be conveniently expressed in terms of the derived
action of T.

We begin by reviewing some basic facts concerning holomorphically
induced multiplier representations. We refer the reader to [10] and
[15] for more details.

Let (τ, Vτ) be an irreducible unitary representation of K and let
O(D, Vτ) denote the space of Fτ-valued holomoφhic functions on
D. The associated multiplier representation T of G on O(D, Vτ) is
defined by the formula

(6.1) (T(g)F)(ζ) = Jτ(g~ι, ζ)~ιF(g-1 0 ,
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where F e O(D, Vτ), g e G and ζ e D. The ̂ -finite vectors in
O(D, Vτ) are the polynomial functions. Since D is open in p+, we
may identify the .fif-finite vectors with the g-module Vτ of Vτ-valued
polynomials on p+ . We will again denote the derived representation
of 0 on Vτ by T. To give the β-action explicitly, we first define
the differential operator δ(x), x e p+, as follows: for / e Vτ and
x e ρ+ set

(6.2) S(x)f(z) = ̂ f(z + tx)\t=o, zep+.

Then for / e Vτ one has

(6.3) T(x)f(z) = - δ(x)f(z), xGp+,

T(x)f(z) = c/τ(x)/(z) - <5([x,

) = dτ([x,z])f(z)

Let V{ denote the space of homogeneous polynomials of degree j in
Vτ. Then it is clear from (6.3) that

(6.4) T{x):V{-+v{-\ xep + ,

T(x):VJ

τ-+VJ

τ

+ι, xep_,

for all integers j > 0. (Here it is understood that V~ι =0.)
For φ e Vτ, let l^G V° denote the constant function with value

φ. Recall from §4 that λ (resp. φλ) denotes the highest weight (resp.
highest weight vector) for (τ, Vτ). Let L(τ) denote the g-module
generated by the constant functions V°. Then (6.4) implies every
nontrivial submodule of Vτ contains L(τ) and thus L(τ) is irre-
ducible. Clearly L(τ) is a highest weight module with highest weight
vector \φ and highest weight λ.

We now define a Hermitian product on Vτ which makes the T(K)-
action unitary. Normalize Lebesgue measure dv on p + so that

?-\v\2 dv = 1

where | | is the norm given by the standard Hermitian inner product

on g. Put dm(υ) = e~^ dv and set

(6.5) (/, g) = J (f(v), g(v))dm{v), f,geVτ.
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Note that with this normalization, the inner product on the space of
constant functions V° agrees with the inner product on Vτ. Also note
that if / € Vτ, then from (6.1) it follows that

(6.6) T(k)f(z) = τ(k)f(Ad(k-ι)z), keK,zep+.

Hence, T(k), k e K, is unitary with respect to the inner product in
(6.5) and each subspace V{ is invariant under T(K). Finally, observe
that for keK, T(k) is equivalent to τ(k) on V°, i.e.

(6.7) T(k)lφ=lτ{k)φ9 keK.

Let ε denote the conjugate linear antiautomorphism of £/($j) in-
duced by the map X —> -X on the real form g0 of Q . Equipping
S(p±) = U(p±) c U(Q) with the usual grading, we let *S/(p±) denote
the homogeneous elements of degree j. Since ε(p±) = pT , note that
s(Sj(p±)) = Sj(pT) for all j > 0 .

(6.8) LEMMA. Let φ, ψ eVτ and Y, Z e 5y(ρ+) /or j > 1. Then

, T(Y)T(ε(Z))lψ) = (T(Z)T(ε(Y))lφ, lψ).

Proof. The proof proceeds by induction on j . For brevity, we
suppress the use of T. Let Y, Z e5Ί(p+). Then since ρ+ annihilates
V°, we have

= (ε([7,ε(Z)])V \ψ) since [ r , e ( Z ) ] e ί

Now suppose j > 1. By linearity, we may assume both Z and Y
are monomials in S/(p+). Write Y = Y'y where y e ρ + and 7' €
Sj-ι(ρ+). We have

y) = (1^, Y'{yε{Z)-ε{Z)y)\ψ)

= (lφ,Y'[y,ε(Z)]lψ).

It is readily checked that [y, ε(Z)] = ί + Σ/ί/fc/ for ί, ί, e 5}_i
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and fc/Gt. Since e(Sj-ι(p-)) c S/_i(p+), induction gives

γ'siUκ)ψ) by (6.7)

= {\φ, Tε{ε{t))\ψ) + Σ{\φ, Y'ε{ε{Si))\τ(k)ψ)
i

= {ε{t)ε{T)\φ, \ψ) + Σ{ε{Si)ε(Y')\φ, ίτ{kj)ψ)
i

= (ε(t)ε(Y')lφ, IJ + ΣMkinsiMY'Vφ, \ψ)

= ([Z,ε(y)]ε(Y')lφ,lψ)

= (Zε(y)ε(Y')lφ, lψ)-(e(y)Ze(Y')lφ, \ψ).

By (6.4) we know Zε(Y')lφ = 0. Since ε(y)e(Y') = ε(Y), the proof
is complete.

(6.9) LEMMA. Let φ, ψ e Vτ. Then for all integers j > 1,

(φ,(T(zγiψ)(y)) = ((T(y)Hφ)(z), ψ) for all z, y ep+.

Proof. Set

and f2(z,y) = ((T(yyiφ)(z),ψ).

For i = 1,2, note that fi(z ,y) is a homogeneous polynomial in z
of degree j and a homogeneous polynomial of degree j in y. It
suffices to show therefore that all ./th order partial derivatives of f\
and fz agree. Choose z\,... , Zj, y\,... , yj in p+ and set d =
Πi=i <>(zi) Πjt=1 ^(yfc) where J(z, ) (resp. ί(y^)) differentiates with
respect to the z (resp. y) variable. Using (6.3) and the linearity of
T we find

dfx = (-l)jβ(Φ, T(Y)T(Z)lψ(0)) and

where T(Y) = Π{ = 1 T{yk) and Γ(Z) = Π L i τ(zk) Consequently,
dfy = ; ! ( 1 ^ , Γ(7)Γ(ε(Z))V) and df2 = 7 ! (Γ(Z)Γ(β(r)) l^ V ) .
By (6.8), we conclude ί//ΐ = dfi. Since z i , . . . , z}r, >̂  , . . . , yj are
arbitrary in p + it follows that fχ= h This completes the proof.
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(6.10) PROPOSITION. If φeVτ and y e D, then

r(zyjτ(g-1, yy~ιφ\g=ι = (T(yyiφ)(z)

for all z G p+ and integers j > 1.

Proof. Let φ9 ψ e Vτ. Then for z G p+ and y e D we have

^ ) ? ^ ) by (6.9).

Since ψ G J^ is arbitrary, the proof of the proposition is complete.

We conclude this section with a brief discussion of the (/-isomor-
phism of the spaces O(D, Vτ) and C°°(G, τ; p_). In particular, we
give a characterization of the unique irreducible g-module in
C°°(G, τ; p_) which is used in connection with the differential op-
erators defined in §7.

For fe O(D, Vτ), define the function ΘF on G by the formula

It is readily checked that ΘF e C°°(G, τ; p_) and ST(g) = L(g)θ.
The mapping θ is invertible with inverse given by

θ-1/(C) = Λ ( ί , 0 ) / U ) , C e ί ) ,

where g e G satisfies g 0 = ζ.
Let Q 0 ^ , τ; p_) denote the J^-finite vectors in C°°(G, τ; p_).

Then θ(Vτ) = CO°°(G, τ; p_) and we put Z,(τ)~ = θ(L(τ)).

(6.11) PROPOSITION. 4̂/I element fe C£°(G, τ; ρ_) Λes m L(τ)"
if and only if the function z -> (r(z)7/)(l), z e p+, //^ m L(τ) /̂b

7 > 0.

Prao/. Let F eVτ and z G p+ . By the proof of (5.3) one has
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where VJF(0) denotes the 7th derivative of F at 0. By Taylor's the-
orem, F(z) = Σ^0V^(0)(z,...,z)/j! = ΣT=o(r(z)JθFKι)/JΊ

Setting / = ΘF gives

00 *

0"1/(^) = E7[( r(z)'/)(1)' for/eCΠG,τ;p_).

Since θ""1(L(τ)~) = L(τ) and L(τ) is graded, the proposition now
follows.

7. Gradient-type differential operators. Gradient-type differential
operators are distinguished differential operators which intertwine the
G-actions on spaces of jRΓ-covariant functions on G (cf. [3], [11]).
First order gradient-type operators were used in connection with cer-
tain unitary representations of SU(p, q) [4]. For our purposes we
require systems of such operators. These systems may be viewed as
Gr-equivariant analogues of the systems given in (2.9) of [2]. Here
we associate to certain representations τ of K a finite system 2$τ

of gradient-type operators and show that the jfiΓ-finite vectors in the
kernel of this system is an irreducible highest weight g-module. In
the context of unitarity, it was shown in [3] that Qίτ can be chosen to
consist of a single operator.

Let K denote the set of irreducible unitary representations of K.
For (τ, Vτ) in K, let p+ act trivially on the 6-module Vτ and form
the generalized Verma module <sV{τ) = Ufa) ®u{t®p+) vτ - Identifying
ρ_ with the dual of p+ gives a E-isomorphism Λ'(τ) —> Vτ. Denote
the g-structure on Vτ arising from JV(τ) by juxtaposition. The g-
module jV(τ) contains a unique maximal submodule; let Mτ denote
its image in Vτ. Define the subset Kr of K by

(7.1) Kr = {τ G K: Mτ φ 0) .

Since Kr corresponds to the representations of K for which Jf{τ)
is reducible, we call Kr the set of reduction points. This terminology
is taken from the Enright, Howe and Wallach classification of unitary
highest weight modules (cf. [7]). Those τ £ Kr for which L(τ) is
unitanzable appear in that classification as either the endpoint of a
half-line or as isolated equally spaced points.

The g-structure on Vτ arising from JV(τ) is the conjugate dual of
T given in (6.3). To make this terminology more precise, we recall
the inner product (6.5) on Vτ. The two g-structures on Vτ are then
related by the formula
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(7.2) (T(ε(x))f9 A) = (/, xA), x e U(Q) , / , A e Vτ,

where ε is the anti-automorphism given in §6. It follows from (7.2)
that the orthogonal complement of a g-module is a Γ(g)-module and
vice versa. In particular, note that L(τ) = M%- is properly contained
in Vτ if and only if τ e Kr.

Using the Killing form, we identify the dual of p_ with p+ . Let
{Xi} denote a basis of p_ and let {Xfi c p+ denote the dual
basis. Following [3], we define the operator V: C°°(G, τ) ->
C°°(G, τ Θ Ad | p ) by the formula

(7.3)

Then V is easily seen to be independent of the basis {Xi} and clearly
intertwines the left G-actions. For each integer j > 1, VJf(g) is a
symmetric 7-tensor and thus may be regarded as homogeneous poly-
nomial of degree j on p+ . One readily checks the formula

(V/(*))(z) = r(zy'f(g), g e G, z e p + .

Let W c Vτ denote an irreducible Γ(AΓ)-space and let τ ^ de-
note the restriction of T(K) to W. Since the space of homogeneous
polynomials of a fixed degree is Γ(JRΓ)-invariant, there exists a unique
integer j > 0 such that W c V{ . Let i V denote orthogonal projec-
tion of V{ onto W. We then have

(7.4) τw(k)Pw = PwT(k), keK.

We refer to the differential operator dW' C°°(G, τ) -• C°°(G, τw)
defined by

(7.5) dwf(g,.) = Pw(r(.yf(g))

as a gradient-type differential operator.
We henceforth assume that τ e Kr. Since Vτ, viewed as a S(p-)-

module, is Noetherian, it follows that the submodule Mτ is finitely
generated over S(p-). Let {m/: 1 < i < r} be generators of Mτ

over S(p-) and let Ŵ  denote the ^-invariant space generated by
{mi}. Decompose ίF into AΓ-irreducible spaces W\, . . . , Ws and
put dj = dwr We call 3fτ = {9\9 ... 9 ds] a system of gradient-type
differential operators associated to τ. We remark that the notation
for a system 2ίτ does not reflect its dependence on the choice of
generators {m/}. However, the next result shows that the kernel of
such a system 3τ in C£°(G, τ ; p_) is in fact independent of the
generators.
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(7.6) PROPOSITION. Let τ e Kr and let 2$τ be any system of
gradient-type differential operators associated to τ. Then the kernel
of 2τ in Co°°((?? τ ;p_) is L{τ)~.

Proof. Let 3fτ be any system of gradient-type differential operators
associated to τ . Suppose / e Ker(^τ)πCo°°(G, τ p_). Then dtf = 0
for all / = 1, . . . , s. With the notation of the preceding paragraph,
let ji denote the positive integer for which Wt c v£ . We then have
(r(')j'f(g), Wi) = 09 1 < i < s. Since V^ is orthogonal to Vψ for
j' φ ra, we have (r( ) y /(g), Wt) = 0, 1 < i < s and j > 0. In
particular, since {mi, . . . , mr] c 0/ = i Wi we have

(7.7) (r(-)jf(g), m, ) = 0, 1 < / < r, j > 0.

Now let y e p + . By (6.2) and (6.3) one has

(7.8) r(y)r(z)Jf(g) = ^ Γ ( j ; ) ( r ( z y + 1 /(g)), z e p + .

Let x e Sk(p-). Since deg(raz ) > 0, if k > j then {r{-)jf{g)\xnii) =
0. If k < j , then we have

{r{.γ f{g)\χmi) = (T(ε(x))(r( yf(g)), m,) by (7.2)

= C(r(β(x))r( y- fc/(«p),^/), C G R , by (7.8)

= Cr(ε(x))(r( y-kf(g), m/) = 0 by (7.7).

Now Mx is the linear span of elements of the form xmi and L(τ) =
M ^ . It follows that for each j > 0 and g e G, the function z —>
r(z)Jf(g), z G p + , lies in L(τ). Letting g = 1, we conclude by
(6.11) that feL(τ)~. Thus Ker(^ τ ) n Q ° ( g , τ ; p_) c L(τ)~ .

Since /^(τ)^ is irreducible, it remains to show that the g-module
Ker(^T)nC0°°(G, τ; p_) is nontrivial. Let Bτ: Vτ -> W{τ) denote the
map defined in §3 which corresponds to the inclusion map C τ : Hσ —•
Vτ. The vector SτBτφλ is clearly a nonzero J^-finite vector. The ex-
plicit calculation in the proof of (8.1) shows in particular that SτBτφχ
e ¥jzτ(βτ). Consequently, the space Ker(^ τ) n C%°(G9 τ p_) equals

8. Irreducibility of the image of Sτ. In §7 we let Kr denote the
irreducible unitary representations of K such that the irreducible g-
module L(τ) generated by the constant polynomials V° is properly
contained in Vτ. The relevancy of the set Kr of reduction points is
apparent for the following reason. If τ is not a reduction point, then
the subspace C£°(G, τ p_) of ^-finite vectors is canonically isomor-
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phic to L(τ). Since the (nonzero) image of Sτ lies in C°°(Gy τ ; p_)
by (5.3), it follows from the G-invariance of Sτ that the space of K-
finite vectors in the image of Sτ is C£°(G, τ p_). Thus the ^-finite
vectors in the image of Sτ form an irreducible highest weight space
with highest weight λ = λ(τ). The main theorem here extends this
result to the case where τ is a reduction point. The proof of this
result utilizes the system 3fτ defined in section seven.

Recall from §3 that W(τ) denotes the nonunitary principal series
representation with imbedding parameters σ and v chosen according
to (3.9) and (3.10). As in §7, we let 3rτ = {dχ9...9 ds} be any system
associated to τ e Kr.

(8.1) THEOREM. The Szegό operator Sτ associated to τeKr maps
W(τ) into the kernel of 2Jτ and the K-finite vectors in W(τ) are
mapped g-equivariantly onto an irreducible highest weight module with
highest weight λ = λ(τ).

Proof. By (5.3), Sτ maps into C°°(G, τ ; p_). We now show that
each di e 2Sτ annihilates the image of Sτ. Let dt e S$τ. With the
notation of §7, we have dif(g9 •) = Pi(r( )J>f(g)) where P(: vj' ^ Wt

denotes projection. Since 9, and Sτ are both G-equivariant, it suffices
to show that (d;Sτ/)(l) = 0 for all / in W{τ).

Let cg\ G -> G denote conjugation by g: cg{x) = gxg~ι. Then
for k G K and integers j > 1, one has

(8.2) r(zy'(f o Ck) = (r(Ad(k)zYf) ock, fe C»(G).

For / in W(τ) we compute

{diSτf){\)= ί di(sτ(k
JK

= ί di(sτ(k-ιgkk-ι))\g=ιf(k)dk
JK

= ί diMkXsrOc^XgW^AQdk by (3.7)
J K

= f PiT{k){r{-)Hsτock-,)){g)\g^f{k)dk
J K

= f
JK

f
K

1 y by (8.2)f ί
K

y * , by (6.6)

= f
JK

K

k by (7.4),
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where τ, (fc) denotes the restriction of T{k) to Wι. It suffices to
show that for each φ e Hσ we have di(sτ(g)φ)\g=\ = 0. But by
Propositions (4.16) and (6.10) we find

di(sτ(g)φ)\g=ι = di(jτ(g-
1, by~ιφ)\g=ι = Pi(τ(5y< \φ).

Since T(b)ji\φ e L{τ) and Pt projects onto Wt c Mτ = L(τ)L, we
conclude Pi(T(b)J'Ίφ) = 0 for all φ e Hσ . This proves the image of
Sτ lies in Ker(^ τ ) . By (7.6), Sτ maps the space of ΛΓ-finite vectors
in W{τ) to a nonzero g-module in Ker(&τ)nC%°(G, τ p_) = L(τ)~ .
Since L{τ)~ is irreducible, the theorem now follows.

REFERENCES

[I] B. E. Blank, Knapp-Wallach Szegό integrals and generalized principal series
representations: the parabolic rank one case, J. Funct. Anal., 60 (1985), 127-
145.

[2] M. G. Davidson, T. J. Enright and R. J. Stanke, Differential operators and
highest weight representations, Memoirs Amer. Math. Soc, 455 (1991).

[3] , Covariant differential operators, Math. Ann., 288 (1990), 731-739.
[4] M. G. Davidson and R. J. Stanke, Gradient-type differential operators and uni-

tary highest weight representations of SU(p, q), J. Funct. Anal., 81 (1988),
100-125.

[5] K. M. Davis, J. E. Gilbert and R. A. Kunze, Harmonic analysis and exceptional
representations of semisimple groups, Proceedings of the Centre for Mathemat-
ical Analysis, Australian National University, 16 (1988), 58-78.

[6] , Invariant differential operators in harmonic analysis on real hyperbolic
space, Proceedings of the Centre for Mathematical Analysis, Australian Na-
tional University, 16 (1988), 79-91.

[7] T. J. Enright, R. Howe and N. Wallach, A classification of unitary highest weight
modules, Proceedings of the University of Utah Conference 1982, Birkhauser,
Boston (1983), 97-143.

[8] J. E. Gilbert, R. A. Kunze and P. A. Tomas, Intertwining kernels and invariant
differential operators in representation theory, in Probability Theory and Har-
monic Analysis, eds. J. A. Chao and W. Woyczynishi, Marcel Dekker (1985),
91-112.

[9] J. E. Gilbert, R. A. Kunze, R. J. Stanton and P. A. Tomas, Higher gradients and
representations of Lie groups, in Conference on Harmonic Analysis in Honor of
A. Zygmund, Vol. II, Wadsworth, Belmont, CA (1983), 416-436.

[10] Harish-Chandra, Representations of semi-simple Lie groups VI, Amer. J. Math.,
78 (1956), 564-628.

[II] M. Harris and H. P. Jakobsen, Covariant differential operators, in Group Theo-
retical Methods in Physics, Lecture Notes in Physics, Vol. 180, Springer-Verlag,
(1983), 16-34.

[12] G. P. Hochschild, The Structure of Lie Groups, Holden-Day, San Francisco,
1965.

[13] T. Inoue, Unitary representations and kernel functions associated with bound-
aries of a bounded symmetric domain, Hiroshima Math. J., 10 (1980), 75-140.



SZEGOMAPS 91

[14] M. Ise and M. Takeuchi, Lie Groups I, II, Transl. Math. Monographs, Vol. 85,
AMS, Providence, R.I., 1991.

[15] A. W. Knapp, Representation Theory of Semisimple Lie Groups: An Overview
Based on Examples, Princeton University Press, Princeton, N.J., 1986.

[16] A. W. Knapp and N. R. Wallach, Szegό kernels associated with discrete series,
Invent. Math., 34 (1976), 163-200.

[17] , Correction and addition to Szegό kernels associated with discrete series,
Invent. Math., 62 (1980), 341-346.

[18] R. A. Kunze, Quotient representations, in Topics in Modern Analysis, Vol. 1,
Proceedings of a seminar held in Torino and Milano, Istituto Nazionale Di
Alta Mathematica, (1982), 57-80.

[19] K. Okamoto, Harmonic analysis on homogeneous vector bundles, in Conference
on Harmonic Analysis, Springer-Verlag Lecture Notes in Math., Vol. 266, Berlin-
Heidelberg-New York, 1972.

[20] V. S. Varadarajan, Lie Groups, Lie Algebras and Their Representations,
Springer-Verlag, Berlin-Heidelberg-New York, 1984.

[21] N. Wallach, The asymptotic behavior ofholomorphic representations, Soc. Math.
de France, 2e serie, Memoire, 15 (1984), 291-305.

Received November 8, 1990 and in revised form December 15, 1991. The first named
author was supported in part by the Louisiana Education Quality Support Fund 86-
LBR-016-04 and LEQSF (1991-94)-RD-A-04. The second named author was sup-
ported in part by a research grant from Baylor University.

LOUISIANA STATE UNIVERSITY

BATON ROUGE, LA 70803

AND

BAYLOR UNIVERSITY

WACO, TX 76798






