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SIMPLE GROUP ACTIONS ON HYPERBOLIC
RIEMANN SURFACES OF LEAST AREA

S. ALLEN BROUGHTON

It is shown that if a simple group G acts conformally on a hy-
perbolic surface of least area (or alternatively, on a Riemann surface
of least genus σ > 2 ) , then G is normal in Aut(5) and the map
Aut(*S) —> Aut((j) induced by conjugation is injective. For the pre-
ponderance of these minimal actions the group Aut(S)/G is isomor-
phic to a subgroup of Σ3. It is shown how to compute Aut(S) purely
in terms of the group-theoretic structure of G, in these cases. As ex-
amples and as part of the proof, the minimal actions and the groups
Aut(iS) are completely worked out for A5, SL3(3), Mn and

1. Introduction. If G is a finite group, then G can act as a group
of conformal (i.e. biholomorphic) automorphisms of a closed Rie-
mann surface for infinitely many genera. Several authors, [C], [G-Sl],
[G-S2], [HI], [M], [T] and [W], have considered the question of de-
termining the least genus of a surface on which a given group can
act conformally. Tucker [T] calls this least genus the strong symmetric
genus of the group, though we will adopt the terminology of H. Glover
and call this least genus the action genus. Actions on such surfaces we
shall call genus actions. Conder [C] has determined the action genera
of all the alternating groups. Glover and Sjerve [G-Sl], [G-S2] have
determined the action genera for PSI^j?^), p a prime. Harvey [HI]
and McLachlan [M] have worked out procedures to easily determine
genus actions of cyclic and abelian groups, respectively.

If the surface S has genus σ > 2, then Aut(S) is finite and, ac-
cording to Hurwitz's famous theorem, |Aut(S)| < 84(cr - 1). In this
paper we consider the following question for simple groups (all our
simple groups are non-abelian) acting on surfaces with genus > 2.

If the simple group G acts conformally on the closed
Riemann surface S, of least genus, then how large a
subgroup of Aut(*S) is G ?

It turns out that G is a normal subgroup of Aut(5) of very small
index. This is our main result, Theorem 1.1 below. On the other
hand for e > 2, and a prime p > 2e + 1 there are genus actions of
G = (Zp)

2e on surfaces S of genus a = (e - \)p2e + 1 such that
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N\ut(s)(G)/G c* Aat(S/G) and S/G is conformally equivalent to a
given surface of genus e (see end of §4 for a proof sketch). Thus,
the hypothesis of simplicity on G leads to strong properties for genus
actions of G. Incidentally, Greenberg [Gr] has proven that for any
finite group G there is a surface S for which G ~ Aut(S), but in
general the genus of S is much larger than the action genus of G. In
[W], Woldar proves a theorem similar to Theorem 1.1, but only for
simple groups which are images of triangle groups. Our Theorem 1.1
improves Woldar's result, and its proof uses quite different methods.

We are going to restrict our attention to surfaces of genus σ > 2
for reasons which we explain now. Any surface S of genus σ may
be represented as a quotient D/U where D is a simply-connected
Riemann surface and Π is a discontinuous, torsion-free subgroup of
Aut(D), the group of biholomorphic transformations of D. There are
3 cases:

elliptic: σ = 0, D = S2 = Riemann sphere, Aut(Z)) = PSL2(C),

parabolic: σ = l , D = C, Aut(Z)) = {z -+ az + b: b e C, a e C * } ,

hyperbolic: a > 2, D = H = upper half plane, Aut(D) = PSL2(R).

The finite groups of automorphisms of an elliptic Riemann surface are
simply the finite subgroups of PSL2(C), so the only action of a simple
group that occurs is A5, acting as the group of orientation-preserving
symmetries of a regular icosahedron inscribed in a sphere (or the
orientation-preserving symmetries of a soccer ball). For parabolic Rie-
mann surfaces the only groups of automorphisms are finite quotients
of the two dimensional orientation-preserving crystallographic groups
and no simple group actions occur here (cf. [Z]). Thus, we restrict our
attention to the hyperbolic case, i.e., σ > 2 and speak of hyperbolic
action genus and hyperbolic genus actions. In the hyperbolic case,
each biholomorphic automorphism in Aut(H) = PSL2(R) is also an
isometry with respect to the hyperbolic Poincare metric on H . Since
S = H/Π, S also carries a metric for which the area of S is 2π(σ-1),
if the invariant area form on H is taken to be dx dyjy1. The action
of G on S will also be isometric. In this terminology we have:

THEOREM 1.1. Let G be a non-abelian simple group and let S be
a hyperbolic surface of least area on which G acts conformally. Then
G < Aut(S) and the canonical map Aut(£) -+ Aut(G), induced by
conjugation, is injective.

The proof is given in §3. The idea of the proof is to use topological
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considerations to show that any counterexample gives rise to a certain
doubly transitive permutation representation of degree < 42 of some
simple group, satisfying some additional conditions. Using results of
Conder [C], Sinkov [Sin], Sims [Si] and Liebeck and Saxl [L-S] we
show this cannot happen. Our proof depends heavily on the following
fact about simple groups, proven by Aschbacher and Guralnick [A-G].

PROPOSITION 1.2. Every non-abelian simple group is generated by
two elements.

A much simpler proof can be given for simple groups G which
satisfy:

HYPOTHESIS 1.3. The non-abelian simple group G is generated by
an involution and another element

According to Gorenstein [Go2] and Kantor [K] this generation hy-
pothesis is very likely true for all simple groups though a formal proof
has not been written down in every case. A large number of cases in
which it is true are given in the paper by Aschbacher and Guralnick
cited above. In [W], Woldar also makes heavy use of two-element
generation of simple groups, in fact, he adopts Hypothesis 1.3 above
for Theorem B in [W].

The classification theorem of simple groups is used in two ways to
prove Theorem 1.1. First, the result of Aschbacher and Guralnick,
Proposition 1.2, depends on the classification theorem; second, the
results of Liebeck and Saxl [L-S] on primitive groups also depend on
the classification theorem. If the Hypothesis 1.3 were assumed to be
true, then it would not be necessary to use the results of Liebeck and
Saxl (see Remark 3.1). The remainder of this paper is organized as
follows. In §2 we recall some facts about conformal actions of groups
on surfaces, show how to compute the number of genus actions and
also how to compute Aut(S) for a wide class of genus actions. In §3 we
prove Theorem 1.1. In §4 we work out some examples, A5, SL3(3),
Mn and Mi 2, in order to complete some details of the proof in §3
and to illustrate some of the ideas in §2. For contrast, we also work
out, at the end of §4, the case of elementary abelian groups referred
to above. In the paper we will use Zn , Σn , An and F^ to denote the
cyclic group of order n, the symmetric group and alternating groups
on n letters and the finite field of order q, respectively. All other
notation is standard.
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2. Conformal group actions on surfaces. We recall some facts about
conformal actions of groups and establish some notation. For back-
ground and any basic unreferenced results we use, we refer the reader
to [Be], [F-K], [H2] and [Z]. We say that the group G acts conformally
on the Riemann surface S of genus σ if there is given a monomor-
phism ε: G —> Aut(S), where Aut(S') is the group of biholomorphic
transformations of S. If there will be no confusion we will simply
consider G as a subgroup of Aut(S).

We may represent S as D/Π, Π c Aut(D) as described in §1.
An element x e NAut^(Π) induces an automorphism x of S, and
every automorphism of S arises in this way. For H c Aut(S) let
F = {JC€ NAut{D)(U) :xeH} and G* = (ε(G))*. We have:

and G ^ * / Π .

All our work depends on the following presentation of G* (cf. [Z]),

(2.1) (F = (al9...9aτ9βl9...9βτ9γι9...9γt:

The integers τ and n}?, j = 1, ... , ί, have topological interpre-
tations; in fact the presentation may be established by topological
means. The quotient space T = D/G* ~ S/G is a Riemann surface,
its genus is τ which is < σ. The quotient map q: D —• T is branched
(ramified) over t points Q\, ... , Qt G Γ. The points Q\, ... , Qt
may be ordered so that for each P e q~ι{Qj), the isotropy subgroup
Gji = {x € G*: xP = P} is conjugate to the cyclic subgroup of G*
generated by y,. Also,

(2.2) o(γj) = nj inG*.

The integer Πj is called the branching order at Qj . Reorder Qγ, . . . ,
Q,, if necessary, so that n\<-'<nt. Let B = {(Qι9nχ), . . . ,(β/, πr)}
denote the branching set with branching orders. We call the (t + 1)-
tuple (τ: # i , ... , nt) the signature of G* or the branching data of G
acting on 5 . For convenience we write (rt\9 ft2 > > fy) instead of
(0: «i, . . . , nt) since this type of branching data occurs so often.

The branching data and the order of G are related by the Riemann-
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Hurwitz equation [F-K], [Z]:

Define μ(G*), μ(G, 5 ) , and μ(τ: «!, . . . , nt) by:

(2.4) //((?*) = //(G, 5) = μ(τ: nx, . . . , Λ f ) = 2 τ - 2

According to (2.3) S is elliptic (σ = 0), parabolic (σ = 1) or hy-
perbolic (σ > 2) if and only if μ(G*) < 0, μ(G*) = 0 or //(<?*) >
0, respectively. We call the branching data (τ: n\, . . . , n )̂ elliptic,
parabolic or hyperbolic according to whether μ(τ: fti, . . . , nt) < 0,
= 0, or > 0. From the Riemann-Hurwitz equation it immediately
follows that if H c G then,

(2.5) μ(H,S) = [G:H]μ{G9S).

Let ζ: G* —> Aut(S) be the map induced by the action of G* on
Z)/Π, the kernel of this map is Π. We may define η: G* —• G by
η = e~ι oξ. Define the elements α z, b\, C/ of G by:

(2.6) ai = η ( a i ) , l < i < τ 9

These elements generate

(2.7) Π
i = l 7 = 1

and

(2.8) o(Cj) = nj9

because of (2.1), (2.2) and since Π = ker(^) is torsion free.

DEFINITION 2.1. We call a (2τ + ί)-tuple {ax, . . . , aτ, b\, . . . , bτ,
Ci, . . . , ct) of elements of G, satisfying (2.7)-(2.8), a (τ: n\, . . . , n^)-
vector. Such a vector is called a generating (τ: «i, . . . , nt)-vector if
G = (αi, . . . , aτ, 6i, . . . , bτ, C\, . . . , ct).

From the above we have Riemann's existence theorem (cf. [HI],

PΊ).
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PROPOSITION 2.1. The group G acts conformally on a genus σ sur-

face S, with branching data (τ : n\, . . . , nt) if and only if 2σ - 2 =

\G\μ(τ: n\>... ,nt) and G has a generating (τ: n\, ... , nt)'Vector.

REMARK 2.1. The (hyperbolic) action genus equals the minimum
value of the quantity 1 + \G\μ(τ: nx, . . . , nt)/2 as we vary over all
generating hyperbolic (τ: n\9 ... , fl/)-vectors. For later use, we have
recorded in Table 2.2, in increasing order, all the values of μ(G> S)
satisfying 0 < μ(G, S)<l/4.

REMARK 2.2. As mentioned in the introduction, there are no para-
bolic actions of simple groups and the only elliptic action of a simple
group is the ( 2 , 3 , 5)-action of A5 on a sphere.

Equivalent Actions. If a group G acts on a surface S of genus
σ, then there are two related questions to consider: (1) How many
"inequivalent" actions are there? (2) What is the full automorphism
group of iS? First we define equivalent actions. If ε': G —• Aut(5") is
a conformal action of G on another surface, then we say that e and
ε' are (conformally) equivalent actions if there is an ω € Aut(G) and
conformal equivalence h: S -» S' such that

(2.9) ε'(g) = hε(ω(g))h-1 for geG.

Let Π', {G*)f, V and Bι denote the groups, surface and branch
set, analogous to Π, Cr*, T and B, but defined with respect to the
G-action on S'. The two surfaces S and Sr will be conformally
equivalent, via the conformal equivalence h above, if and only if there
is a y G Aut(D) such that Π ; = yΐly~ι and such that h equals the
induced map y: S -» Sf defined by y(Ώx) = Tl'yx. The G-actions
on the two surfaces will be conformally equivalent if and only if this
transformation y satisfies {G*)' = yG*y~ι. The transformation y
on D induces a conformal equivalence y of JD/G* ~ S/G ~ T to
D/(G*Y ~ S/(G*Y ~ V, which maps branch points to branch points
and preserves branching orders, i.e., y(B) = Bf. On the other hand,
if k: D/G* —• D/(G*)f is any conformal map, mapping branch points
to branch points and preserving branching orders, then k lifts to a
covering map y e Aut(D) such that (G*)r = yG*y~ι and k = j).
However, we do not necessarily have ΓΓ = yTly~ι.

The conformal equivalence classes of G actions with the same
branching data may be classified by two sets of "invariants", one set
consisting of continuous moduli, the other is a discrete set of invari-
ants refining the moduli. Consider the set of all conformal equivalence
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classes of Riemann surfaces with a branch set B, where the location of
the branch points are allowed to vary but not the branching orders, and
where the conformal equivalences are supposed to map branch sets to
branch sets, preserving branching orders. This set forms a complex
algebraic variety called the moduli space. As a set, the moduli space
may be also described as the set of conjugacy classes of discrete sub-
groups of Aut(Z>) with the presentation in (2.1). For the branching
data (n\, ri2, n$) and (n\, ri2, n^, n$) these moduli spaces are, re-
spectively, a single point and the complex plane, possibly with some
punctures. These are the cases most likely to occur for genus actions
of simple groups. Woldar [W] has shown that for a genus action of
a simple group satisfying Hypothesis 1.3, τ = 0 and t = 3 or 4. By
a similar argument, using Proposition 1.2, a genus action of any sim-
ple group must satisfy τ = 0, 3 < ί < 5 or τ = 1, ί = 1. Now,
suppose we look at all actions of G on S with prescribed branching
data and such that G/S is conformally equivalent to a fixed surface
T with fixed branch set B (we say that S lies over T with branch
set B). This corresponds to a single point in the moduli space, or
a single conjugacy class of groups G*. Therefore, every action of G
on a surface S with T ~ S/G and branch set B is determined by a
homomorphism η: G* -+ G where G* is a fixed subgroup of Aut(Z>).

There may be several inequivalent actions corresponding to a point
in the moduli space or, equivalently, the fixed group G* above. We
can give an explicit description of the various classes with the help of
the following definitions. Let Jf = NAut(D)(G*). The group Aut(G) x
jy acts on the set {η: G* —• G, η surjective, ker(//) torsion free} via
the formula:

(2.10) */' = ωof/oAd -i, (ω,y) eAut(G) xyΓ,

where Ad -ι(x) = y~ιxy. By the formulae (2.6) we may transfer
this action to the set of generating (τ: Π\, . . . , π^-vectors. The group
Aut(G) acts freely on the set of generating (τ: n\, . . . , ^)-vectors,
since an automorphism fixing the generators of a group must be trivial.
Let %? denote the orbit space of this action. The group Aut(G) x JV
acts on this set, clearly the kernel of this action contains Aut(G) x G*.
Thus we get an action of yr/G* ~ (Aut(G) x Λ0/(Aut(G) x G*) on
8?. Let Aut(7\ B) denote the group of automorphisms of T = D/G*
which preserves the branch set B . It is easy to prove that Aut(Γ, B)
is naturally isomorphic to yΓ/G*, and hence that it acts on Sf. We
have:
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PROPOSITION 2.2. Let all notation be as immediately above. Then
the equivalence classes of G-actions on surfaces S lying over T with
branch set B are in 1-1 correspondence with the Aut(Γ, B)~orbits on
8?. Moreover if XQ G Sf corresponds to the surface S and action ε
then NAut^(ε(G))/e(G) is canonically isomorphic to the stabilizer of
Xo under the Aut(Γ, B) action.

Proof sketch. The proposition may be easily proven by standard
techniques; however since the author was unable to locate a direct
statement in the literature we give a sketch of the proof. One may
identify, in a 1-1 manner, the various equivalence classes of surfaces
S with G-action, lying over T with branch set B, with the various
kernels of surjective homomorphisms η: G* —> G, where G* is held
fixed. The action of Aut(Γ, B) on Sf may be identified with the
action of JV on these kernels. Once this identification is made the
remainder of the proof is straightforward.

If the branching data is (n\, n2, ni), so that G* is a so-called
triangle group, then the moduli space is a single point. Therefore,
only the discrete invariants play a role. Since results in this case are
simple to state and since most genus actions for simple groups are of
this form, we give the complete result.

PROPOSITION 2.3. Suppose that G acts on the surface S with branch-
ing data {ri\, n2 >

 n2>) Then, by restriction of action, Aut(Γ, B) may
be identified with the symmetry group of B, i.e., those permutations
of {Q\, Qi 9 Q3} preserving the branching orders {nx, n2, n3}. The
action of Aut(Γ, B) on the space Sf of Aut(G)-equivalence classes of
generating (n\, n2, n^-vectors is given in Table 2.1 below.

TABLE 2.1

Aut(Γ, i?)-actions for branching data (nγ, n2, n3)

i , n2

<n2

= n2

< n2

= n2

<

<

=

Hi

n3

Π3

Π3

Aut(Γ,

(1>

Z 2 = ((1

Z 2 = ((2

Σ3

B)

,2)}

,3)) (2

(1,

Action on T

(1

> 3

(1

2,

trivial

, 2 ) : l - z

!) :z/( l-2

, 2 ) : l - z

3): 1/(1 -

:)

Effect on (ci, C2, £3)

1

( C 3 C l C

{Cl

trivial

1 , C^C^Ci)

•ςι,c3,c2)

1, cf'cjc,)

, Cl, Cl)



SIMPLE GROUP ACTIONS ON HYPERBOLIC RIEMANN SURFACES 31

Notes on Table 2.1. (1) The branch points are assumed to be: Q\ =

0 , g 2 = l , g 3 = oo.
(2) In the third column g: φ(z) means that g acts via the Mόbius

transformation φ(z).

Proof sketch. For the same reasons as in Proposition 2.2 we give a
sketch of the proof. Since τ = 0, then T is a sphere. The auto-
morphism group of T is sharply triply transitive which immediately
establishes the identification of Aut(Γ, B) with the symmetry group
of B. In Table 2.1 we have assumed that Q\ = 0, Q2 = 1, Qi = oc,
and the elements of Aut(Γ, B) are given as explicit Mδbius trans-
formations. The action on generating vectors may be computed as
follows. Let T — B denote T with punctures at the branch points
in B . Pick a fourth point Qo in the triply punctured sphere T — B .
Select three loops δ\, δ2, δ^ e nx[T-B, Qo)

 s u c h that J, loops once
around Qj and δ\δ2δ^ is null-homotopic. Now let D° — q~ι(T - B)
under the map q: D -* D/G*. The group G* is the group of cov-
ering transformations of D° —> T - B, and hence there is a map
n\(T — B, Qo) -^ ^* The image of δj is y7 under this map. The
action of an element Aut(Γ, B) on each δj may now be explicitly
calculated, using the given Mόbius transformations. Then, the action
may be transferred to Cj via y7. In some cases the computed action
has been composed with an inner automorphism so that the resultant
action has a simple form.

REMARK 2.3. If Π\ < n2 < n^ then:

n 2 , π3)-vectors
#genus(tti, n2, n3)-actions -

|Aut(G)|

REMARK 2.4. If the branching data is {n\,n2,n^, ΪΪΔ) , then T is
a sphere with four branch points. The structure of group Aut(Γ, B)
now depends on the modulus

as well as on the equality relations among the branching orders. The
group is trivial for all but a finite set of moduli. The most compli-
cated group occurs when λ is a primitive sixth root of unity and the
branching orders are all equal. The group is then isomorphic to A$,
realized as the orientation-preserving symmetries of a regular tetrahe-
dron inscribed in a sphere. A table similar to Table 2.1 is not hard to
construct, but it is somewhat complicated so we omit it for the sake of
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brevity. Moreover, the author knows of no genus action of a simple
group that is branched over four points.

Homology Representation, (See also [Sc], [Sy].) If G acts on S
then G also acts on the homology group Hi (S,C). This action, in
particular the inequality (2.13) below, can be exploited in showing
that certain types of actions do not exist. The action of G on S
is uniquely determined by some generating (τ: n\, . . . , w^-vector of
G, say, (aΪ9 . . . ,aτ,bu . . . 9bτ9cΪ9 . . . ,ct). It is shown in [Brl]
that the character η of the homology representation on H\ (S, C) is
given by:

t

(2.11) η = 2χQ + {2τ-2 + t)P-YjPj,

7 = 1

where XQ is the principal character, p is the character of the regular
representation and pj for j = 1, . . . , t is the permutation character
of G on the coset space G/(CJ) . For any character χ and g e G let

, o{g)

it equals the multiplicity of the trivial character χo\(g) in x\(g) By
Frobenius reciprocity, it follows that if χ is a non-principal irre-
ducible character of G, then the multiplicity of χ in η is

(2.12)
7=1

This inequality gives us a Brauer trick for proving that certain groups
cannot act with a given branching data. In particular, to prove that the
(«i, #2 9 #3)-vector (c\, Cι, c$) is not a generating vector, it suffices
to find an irreducible non-trivial character θ such that:

(2.13) ί 2 3

This inequality will be used in the proof of Proposition 3.9 and in
some of the sample computations of genus actions in §4.

3. Proof of Theorem 1.1. We prove a series of propositions cul-
minating in the proof of Theorem 1.1. Until further notice G is a
simple, non-abelian group acting conformally on a hyperbolic surface
S of least area and R is any other hyperbolic surface on which G
acts. Let μo(G) = μ(G, S), observe μo(G) < μ(G, R).
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PROPOSITION 3.1. IfG~A5 then Aut(S)~Σ 5 and G<Aut(S).

Proof. This calculation is done as Example 4.1.

PROPOSITION 3.2. Let a simple group G act on a hyperbolic surface
R and suppose G is not normal in Aut(i?). Then:

(i) If μ(G, R) < 1/4 then G is isomorphic to one of A$, A6, AΊ,
^ 8 ? ^ 9 ? P S L 2 ( 7 ) or PSL2(8).

(ii) // μ(G, R) < 1/6 then G~A5.

Proof Suppose first that μ(G, R) < 1/4. Let M = Aut(R), by Ta-
ble 2.2 μ(M, R) > 1/42 and [M : G] = μ(G9 R)/μ(M, R) < 42/4.
Consider the permutation representation of M on M/G restricted
to G. At least one G-orbit is trivial, and since G is simple every
non-trivial orbit has at least 5 points. If G is not normal then there is
a non-trivial G-orbit of size m, 5 < m < 9. Since G is simple we get
a primitive permutation representation of G whose degree is in the
same range. From Sims' list of primitive groups of degree < 20, G
can only be one of the groups listed in (i). The proof of (ii) is similar.

PROPOSITION 3.3. // G ~ An, n > 5 or G ~ Έ>SL2(pk), pk > 4
or G is a simple non-trivial permutation group of degree < 20, then

Proof. G ~ An. By Proposition 3.1, we may assume n > 6. Conder
[C] has shown that any such alternating group has a genus action whose
branching data is one of (2, 3, 7), (2, 3, 8), (2, 3, 9), (2, 3, 10),
(2, 3, 11), (2, 3, 12), (2, 4, 5), (2, 4, 6), (2, 4, 7), or (2, 5, 7). Thus
μo{An) < 1/6 for n > 6 and we appeal to Proposition 3.2.

G ~ ?SL2(pk): If pk = 5 or 9 then PSL2(/^) ^ A5 or A6 which
have already been considered. According to Sinkov [Sin] PSL2(p/c)
has a generating ( 2 , 3 , rf)-vector unless pk < 4 or pk = 9. Since
the only non-hyperbolic simple group action is the ( 2 , 3 , 5)-action
of A5, we may assume that d > 7. Thus, μo{¥SL2{pk)) < 1/6, if
pk ^ 5 or φ 9. Now argue as above.

G is a permutation group. If G is a simple permutation group
of degree < 20, then it has a primitive permutation representation
of degree < 20 and occurs in Sims' list. If we ignore those groups
isomorphic to PSL^/?^) or An we have only SL3(3), Mn , and Λf12

to consider. In §4 we will compute μo(SL3(3)) = 1/12, μ(M\\) =
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21/132, μ(M\2) = 1/15; these cases then follow from Proposition
3.2 and the first two parts of this proposition.

PROPOSITION 3.4. The index [Aut(S): G] < 42.

Proof. Because G is simple, G is generated by two elements C\, c2 >
according to Proposition 1.2. Let C3 = {c\Cι)~x and nj = o(c/);
then (ci, C2, £3) is a generating (ΛJ , «2> ^-vector. (If we do not
have Π\ < ri2 < n$ we may choose instead the (#2, #i > «3)-vector
(ci^cf1, Ci, c3) or the (n 3, ^ , «2)-vector (c2, c 3, Q ) etc.) By Prop-
osition 2.1, G acts on a surface i? with branching data (n\, /12, ^3).
This branching data cannot be elliptic or parabolic, according to Re-
mark 2.2, since we may safely assume G φ A$. Thus μo(G) =
μ(G,S)<μ(G9R) = 1 —1/nj — l/n2—l/n3 < 1. But now [Aut(S): G]
= μ(G9 S)/μ{Aut(S),S) < 1-42 since μ(A\A(S),S) > 1/42 by Table
2.2. More specifically we have:

Branching Data of Aut(S) on S [Aut(S): G]

(3.1)
(2,3,7)

(2,3,8)

everything else

<42

<24

<20

PROPOSITION 3.5. If G is not normal in Aat(S) then the permu-
tation representation of Aut(S) on Aat(S)/G is doubly transitive of
degree n with 22<n<4ί and Aut(S) φ An .

Proof. Let M = Aut(S) and assume that G is not normal in M.
Consider the permutation representation of M on the coset space
M/G, restricted to G. If there is more than one fixed point, then G is
strictly smaller than NM(G) , and then the permutation representation
of G on the coset space M/NM(G) has an orbit of length < 19,
because of Proposition 3.4. But now, by Proposition 3.3, G<Aut(S),
a contradiction. If there are more than two (j-orbits or [M : G] <
21, G has a faithful permutation representation of degree < 20 and
again Proposition 3.3 yields a contradiction. Thus M acts doubly
transitively and 22 < [M : G] < 41. To see that M φ An observe
that G ~ An_χ by order considerations and apply Proposition 3.3.

REMARK 3.1. If Hypothesis 1.3 is assumed then we may take n\ —
2 in the proof of Proposition 4.1. Thus μo(G) < 1/2, implying
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TABLE 2.2

Branching data and μ(nχ, ... , ^-values, t = 3, 4, μ < ±

μ Branching DataBranching Data

(2,3,7)

(2,3,8)

(2,4,5)

(2,3,9)

(2,3,d), d= 10,11

(2,3,12), (2,4,6), (3,3,4) ^

(2,3,d), d=13,14

(2,3,15), (2,5,5)

(2,3,16)

(2,4,7)

(2,3,17)

(2,3,<0, 1 8 < d < 2 3

(2,3,24), (2,4,8)

(2,3,(0, 2 5 < d < 2 9

(2,3,30), (2,5,6), (3,3,5) ^

(2,3,d), 31<<i<35

(2,3,36), (2,4,9)

(2,3,d), 3 7 < d < 5 9

(2,3,60), (2,4,10)

(2,3, if), 61 <d < 104

(2,3,105), (2,5,7)

(2,3,cQ, 106 <d< 131

(2,3,132), (2,4,11)

(d-6)
6d

A.
20

(d-6)
6d

11
70

(d-6)

Branching Data

(2,3,d), cί > 133

(2,4,12),(2,6,6),(3,3,6)

(3,4,4), (2,2,3,3)

(2,4,13)

(2,5,8)

(2,4,cί), 1 4 < d < 16

(2,5,9)

(2,6,7), (3,3,7)

(2,4,d), 17 < d < 19

(2,4,20), (2,5,10)

(2,4,(0, 2 1 < d < 2 3

(2,4,24), (2,6,8), (3,3,8)

I (2,5,11)

U=p- (2,4,d), 2 5 < ( i < 2 7

(2,4,28), (2,7,7)

(2,4,29) fft

(2,4,30), (2,5,12), (3,4,5) J§

(2,4,(0, 3 1 < d < 3 5

(2,4,36),(2,6,9),(3,3,9)

(2,4,37)

(2,5,13)

(2,4,(0, 38<d<46

24

.23.
110

(d-4)
4d

14

(d-4)
4d

9

29
130

(d-4)
Ad

(2,5,14)

(2,4,<0, 47<<i<55

(2,4,56), (2,7,8)

(2,4,(i), 5 7 < d < 5 9

(2,4,60), (2,5,15)

(3,6,10), (3,3,10)

(2,4,(0, 61 <<f <79

(2,4,80), (2,5,16)

(2,4,(0, 81 < d < 113

(2,5,17)

(2,4,(0, 114 <d< 131

(2,4,132),(2,6,11),(3,3,11)

(2,4,d), 133 <d< 179

(2,4,180), (2,5,18)

(2,4,(0, 181 < d < 251

(2,4,252),(2,7,9)

(2,4,d), 253 < rf < 379

(2,4,380), (2,5,19)

(2,4,(0, d>381

(2,5,20),(2,6,12),(2,8,8)

(3,3,12), (2,4,6), (4,4,4)

(2,2,2,4)

13
56

(d-4)
Ad

13
56

(d-4)
Ad

(d-4)
4d

11
45

(d-4)
4d

-3L
126

(d-4)
Ad

[Aut(5): G] < 42/2 = 21. Theorem 1.1 would now follow from the
last proposition.

PROPOSITION 3.6. Suppose that the permutation representation of
Aut(S) on AvA(S)/G is primitive and G is not normal in Aut(S),
then Aut(S) is simple.

Proof. We may assume G φA5. Again let M = Aut(5) and let N
be a non-trivial normal subgroup of M. Since G is simple, NnG =
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(1) or G. The group M/N acts on S/N. If GnN = (1) then
G acts effectively on S/N. If G φ A$ then S/iV is hyperbolic by
Remark 2.2, and from the Riemann-Hurwitz equation (2.3) it follows
that S/N has smaller genus than S, and hence smaller area than S.
This contradiction shows that Gn N = G. Since G is a maximal
subgroup and is not normal then N = M and M is simple.

PROPOSITION 3.7. Suppose that G is not normal in Aut(*S) then
Aut(*S) is simple and one of the following holds.

(i) The branching data of Ant(S) on S is (2, 3, 7), n = [Aut(S):
G] satisfies 22 < n < 41, Aut(S) ^ ΛlΛ am/ Aut(S) acts doubly
transitively on Aat(S)/G.

(ii) The branching data of Aut(S) o/i 5 is (2, 3, 8), /ι = [Aut(S):
G] = 22, 23, Aut(*S) φ An and Aut(S) acts doubly transitively on
Aat(S)/G.

Proof. This is a direct consequence of the information in (3.1) and
Propositions 3.5 and 3.6.

PROPOSITION 3.8. Let Gf Aut(S) be as in (i) or (ii) of Proposition
3.7. Then Aut(S) must be one of the groups listed in Table 3.1 below.
In the table the index [Aut(S): G] and the order of an element of prime
order of G are given.

Proof. We use the classification results of Liebeck and Saxl [L-S] for
primitive non-alternating groups with elements of large prime order.
Their classification applies to those groups of degree n — mp + k with
an element of cycle type \kpm, m < p, p a prime. For those with
branching data (2, 3, 7), we may take p = 7 since n < 42 = 6-7. For
those with branching data (2, 3, 8) we take p = 11 or 23 and n = 22
or 23 respectively. Then we simply run through the tables given in
[L-S] looking for groups of degree n for 22 < n < 41 with an element
of the correct prime order. In [L-S] the groups are classified by socle
so we need only to consider Tables 2 and 3 of [L-S] where the socles
are non-abelian simple. In each case M will equal the listed socle.
The work involved is a straightforward, tedious, numerical calculation,
though the following remarks yield some shortcuts.

(a) For the ( 2 , 3 , 8)-cases we need only check Table 3 in [L-S]
where the prime p divides n.

(b) By construction the isotropy subgroups are isomorphic to the
simple group G, thus we may ignore the cases in the tables where the
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TABLE 3.1

Case

(i.l)

(i.2)

(i.3)

(i.4)

(i.5)

(i.6)

(i.7)

(i.8)

(i.9)

(i.10)

( i l l )

(i.12)

(i.l 3)

(ii.l)

(ii.2)

Aut(5)

(2,3,7) branching data

M22

M24

SP6(2)

PSU3(3)

Ω 6

+ (2)~PSL 4 (2)~Λ 8

PSL2(8)

Λ
A l

PSL4(2) ~ A%

PSU 3 (3)

Sp6(2)

A9

(2,3,8) branching data

M22

M

[Aut(5 ): G]

22

23

24

28

28

28

28

28

35

36

36

36

36

22

23

Pπn

7

7

7

7

7

7

7

7

7

7

7

7

7

11

23

isotropy subgroups are obviously not simple e.g., PSL</(#) onthepro-
jective space of dimension d - 1. Thus we eliminate M = PSL2(/^),
n=pk + l and M = PSL5(2), n = 31 .

(c) In Table 3, in the case where the socle is 2Gι(q), the relevant
value of q is 3. But 2G2(3) is of the form Z 3 K 5X2(8) and so is not
simple [Gol, p. 75]. This gives us case i.7.

PROPOSITION 3.9. None of the cases in Proposition 3.7 gives rise to
a counterexample to Theorem 1.1.

Proof. It suffices to show that either there is not a generating vec-
tor of the required type or that the isotropy subgroup is not simple.
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To show that there are no generating ( 2 , 3 , 7)-vectors (generating
( 2 , 3 , 8)-vectors) we may either use Conder's results or just show that
for each ( 2 , 3 , 7)-vector ((2, 3, 8)-vector) (c\ ,€2,03) there is an ir-
reducible non-trivial character θ such that (2.13) holds. Throughout
this section and the next we use the notation nm, respectively n, to
denote the rath n-dimensional character, respectively the unique n-
dimensional character, occurring in a character table in [McK], where
the group will be the current group under discussion. For instance,
^(122) would denote lg(θ) where θ is the second twelve dimensional
character from the designated character table.

Cases (i.l), (i.2), (i.3), (ii.l), (ii.2). M = M 2 2 , M2i,M24. From
the character tables M22 [McK], A/23, [J> P 103] and M24 [Fr, p.
346] we compute lg(θ) for various θ and all q of order 1, 2, 3,
7 or 8 (M24 excepted) and list them in tables below. The notation
for conjugacy classes of elements is the cycle structure of elements in
the degree 24 permutation representation in the last two tables and
the standard notation in [McK] in the first table. By using (2.13) we
see that M22 and M23 have no generating (2 ,3 ,7) and ( 2 , 3 , 8)-
vectors, and that M24 has no generating ( 2 , 3 , 7)-vectors.

g \A 2A 3A 1A IB %A
M22

M

lg(2l) 21 13 9 3 3 3

g 1 1 8 2 8 16 3 6 1 3 7 | Pll 1 22.4 82

23
lg{22) 22 14 10 4

g 1 1828 2 1 2 1636 3 8

M24 lg(23) 23 15 Π Π 7 5 5~ •

/*(45i) 45 21 25 15 17 6 6

Coses (i.4), (i. 12). M = Sp6(2), n = 28, 36. The isotropy sub-
group has order 1,451,520/28 = 51,840 or 1,451,520/36 =
40,320 neither of which is the order of a simple group, according
to the list in [McK].

Cases (i.5), (i.l 1). M = PSU3(3), n = 28, 36. From [McK] we
form:

g \A 2A 3A 3B ΊA ΊB
/,(21ι) 21 13 9 7 3 3
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There are no generating ( 2 , 3 , 7)-vectors.

Cases (i.6), (i.8), (i.9), (i.10), (i.13). M ~ PSL4(2) (~ A*) 9A%,Al9

PSL4(2) (~ A%), A9 . By Conder [C] none of these alternating groups
have generating ( 2 , 3 , 7)-vectors.

Case (i.7). M = PSL2(8). The isotropy subgroup has order 18 and
is not simple.

We have now shown that for every simple group acting on a hy-
perbolic surface of least area that G < Aut(*S). To finish the proof
of Theorem 1.1 we need to show that Aut(*S) —• Aut(G) induced by
conjugation is injective. If this fails then there is 1 / g e Aut(S)
which centralizes G. Since G is centreless (g)nG= (1) and (g)xG
is a subgroup of Aut(S) hence acts on S. But then G acts effec-
tively on S/(g). If G φ A5 then S/(g) is hyperbolic and S/(g) has
smaller area by the Riemann Hurwitz equation, a contradiction. The
remaining case A5 is done in Example 4.1.

4. Examples. In this section we will determine all genus actions and
work out Aut(5) for A5, SL3(3) and the two Mathieu groups, Mn

and M\2, and a class of elementary abelian groups. These examples
were chosen to complete the proofs of Propositions 3.1 and 3.3, give a
proof sketch for the unproven assertion on elementary abelian groups
in § 1, and to illustrate various techniques.

Simple Group Examples. The results for the simple groups are sum-
marized in Table 4.1 (see next page). In the table we have recorded
a result for Aut(*S) only in those cases where G is not the full au-
tomorphism group of S. The orders of the automorphism groups of
the four groups considered are given in tables in [Gol]. Throughout
this section we make extensive use of the tables in [McK] and [F-M]
and we adopt the same notation for characters as in §3.

We next present two formulae that will allow us to calculate the
number generating (m , . . . , ^-vectors in a group. Let K\, ... , Kt

be t conjugacy classes in a finite group G, we call the (nγ, . . . , nt)-
vector (xi, . . . , xt) a (Kx, . . . , Kt)-vector if each Xj e Kj. Let
X{Kγ, . . . , Kt) be the set of all (K\, . . . , Kt)-vectors. It is a well
known result of character theory that the number of these vectors is
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TABLE 4.1

Genus actions of sample simple groups

G

A5

SL3(3)

Mu

Mi2

given by:

(4.1) \X(Kι

Branching Data

(2,

(3:

(2,

(2,

, . . «

, 5 , 5 )

, 3 , 4 )

4, 11)

3, 10)

• κt)\

\G\

Number of
Actions

1

3

2

1

t-\

Aut(S)

Σ5

Z 2 K SL3(3)

Branching Data
of Aut(S)

(2,4,5)

(2,3,8)

|Cent(*0| \Cent(xt)\

where the sum is over the irreducible characters of G.
For a subgroup L of G let XL{K\ , . . . , Kt) be the set of (AΓi, . . . ,

Λ^)-vectors that generate L. For convenience we shall abbreviate
XL{Kλ , . . . , K t ) t o XL a n d X(KX , . . . , K t ) t o X. T h e n u m b e r o f
generating (AΓi, . . . , Kt)-vectors is then given by:

(4.2) \XG\ = \X\

= |X| - \G\Σ{\XL\I\L\)[NG{L): L]~ι,

where L runs over a set of representatives of conjugacy classes of
proper subgroups of G for which XL is non-empty.

EXAMPLE 4.1. G = A5. Since G only has elements of order 2, 3
and 5, then from Table 2.2, the least possible value of μ(G9 S) is
1/10 with branching data (2, 5, 5). Every (2, 5, 5)-vector generates
G since the only proper subgroup of G whose order is divisible by
10 is the dihedral group D5 which has no (2, 5, 5)-vectors. In A5

there is one conjugacy class of involutions 2A, and two classes of el-
ements of order 5: 5A, 5B. Using (4.1) we get \X(2A, 5A, 5A)\ =
\X(2A9 55, 55)| = 0 and \X{2A, 5A, 5B)\ = \X(2A, 55, 5A)\ =
60. Thus, there are 120 = |Σ 5 | = |Aut(^5)| ( 2 , 5 , 5)-vectors. It
follows that the set Sf in Proposition 2.2 consists of a single point.
Thus there is only one hyperbolic genus action of A5 and the hyper-
bolic action genus is 4. From Table 2.2, Aut(Γ, B) ~ Z2, and acts on
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G by (c\, c2, C3) —> (c^C\C^1, C3, c2) . The action is by outer auto-
morphisms since it switches the two conjugacy classes 5A, 55 . Thus
Aut(S) ~ Σ 5 . From Table 2.2 and equation (2.5) this action must be
a ( 2 , 4 , 5)-action.

EXAMPLE 4.2. G = SL3(3). From [McK] we compute:

g IA 2A 3 A 35 A A 6 A SA SB 13 A 13C 13C 132)

lg(l2) 12 8 6 4 4 4 2 2 0 0 0 0 '

By applying (2.13) we conclude that there are no generating
(2, 3, d)9 (2, 4, 6), or ( 3 , 3 , 4)-vectors except possibly (2A, 3 5 ,
13X)-vectors, where X is one of A, 5 , C, D, or (35, 3 5 , 4Λ)-
vectors. By Table 2.2 we may ignore the ( 2 , 3 , 13)-vectors if we can
find any generating ( 3 , 3 , 4)-vectors. We will show that there are three
Aut(G)-classes of generating ( 3 , 3 , 4)-vectors and that Aut(Γ, 5) acts
trivially on these classes. Using (4.1) we calculate that the number of
(35, 3 5 , 4^)-vectors is 10|G|.

Let (c\, c2 > £3) be a (35, 3 5 , 4^4)-vector and let L = (c\, ci, c 3 ).
The subgroup L is contained in a maximal subgroup whose order is
divisible by 12. From [F-M] this maximal subgroup must be one of
Σ4, H\ or 7/2 where the last two subgroups are defined by:

X=

(4.3-ii) H2 = {gτ: g e Hx}, T = transpose.

The subgroup Σ 4 has no (3, 3, 4)-vectors because of the parity of the
permutations involved. Thus L is conjugate to a subgroup of H\ or
7/2- The group SL3(3) has a single non-trivial outer automorphism
^ : S —> (S~ι)τ which interchanges #1 and H2. Therefore, without
loss of generality, we may assume L c Hi, because λ(H\) = //2 Let
i7! = SL2(3) K F3 be the subgroup of elements of Hi with dct(A) = 1
in (4.3.i). Since (c\ ,c2,c^) is a ( 3 , 3 , 4)-vector the images of Cι, c2

and c3 in Z2 = /^l/i^i must all be trivial and, hence, LC.Fi.
We actually have L = Fι as follows. Let φ: Fι —• SL2(3), ^ —• g7

be the retraction onto the subgroup SL2(3). Since |ker(0)| = 9 and
o(c3) = 4 it follows that (c\9C29c^) is a (3, 3, 4)-vector. The
vector (a , C2 ? ̂ 3) m a Y be written ( c ^ i , ^2^2 > ^3^3) ? ^1 > ^2 ? ̂ 3 ^
V = ker(0). Now the map υ —• [t>, C3] is an automoφhism of
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F , since C3 has order 4, and acts without non-trivial fixed points
on K. It follows that {υc^v1 = [υ, C3JIC3: ^ € F} is the coset
FC3. Conjugating by an element of V we may transform our orig-
inal generating vector into (c\V4, V5C2, C3) for some v4, v5 e V.
Since C1C2C3 = 1 = C1C2C3 = C3C2C1, then conjugating by cj"1, we get
1 = T[xC\C2Cϊcχ = 4̂̂ 5C2C3Ci = ^4^5. Set v = ^4 so ^ 5 = t ; " 1 . Both

and V"1*^ have order 3 for any choice of c\ and Cι, both of or-

der 3 and any υ e V. Since ~c\ = ("L1 ^ ) then CyCivc^2 — C\V~ι e L\ = (L ^

and, hence, t;2 = ( c i ^ " 1 ) " 1 ^ ! ^ ) G L. Since C3 acts irreducibly on
F3 then L = F\ if and only if υ is not the identity element. An
element of order 3 in G lies in the conjugacy class 3B if and only if
the order of its centralizer is 9 which in turn occurs if and only if the
minimal polynomial of the element has degree 3. Therefore, C\v lies
in 3B if and only if v does not lie in the 1-eigenspace of c\ when
this element is considered as a linear transformation of V. It follows
that every (32?, 3 5 , 4A)-vector, generating a subgroup of H\, must
generate all of F\.

The intersection of the conjugacy class 3B with 2^ is a disjoint
union of two conjugacy classes K£ and Kg with representatives

1 1 1\ /I -1 1
0 1 1 I and I 0 1 1

,0 0 1/ \0 0 1

respectively. The group SL2(3) has a single conjugacy class of ele-
ments of order 4. Thus, the elements of order 4 in 2^ form a single
conjugacy class, namely A A = \JggV, where g runs over the ele-
ments of order 4 in SL2(3). We still denote this class by 4A. We may
calculate the number of (3B, 32?, 4yl)-vectors in 2^ by using (4.1)
to compute the number of (2Γ+, K+, 4A), (K+, K~ , 4A), (K~ , K+ ,
4A) and (Kβ , K# , 4^4)-vectors in F\. This calculation may be sim-
plified by making use of the following observations. For any element
g in any finite group G:

|Centσ(s)|= £ \χ{g)\2.
χelrτ{G)

Also, for any element g of order 4 in F\,

Therefore,

Σ ι*(*)i2= Σ ι
/'eIrr(SL2(3))
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But,

where the χf are characters of irreducibles which factor through
SL2(3) and χ" runs though the remaining characters of F\. The
two equations above imply that χ"{g) = 0 for any element g, of
order 4, and all χ". Thus, in computing the right-hand side of (4.1)
for the above types of vectors we get:

χ(cι)χ(c2)χ(c3)

|Cent(d)| |Cent(c2)|. |Cent(c3)|

where the centralizers are calculated in F\. Using the character table
of SL2(3) [I] we compute that,

\XFι(K+, K+, 4A)\ = \XFι{K; , K; , 4A)\ = 2\FX\9

and that there are no (K%, K$ , 4A) or (Kβ , Kβ , 4^4)-vectors. Thus,
both F\ and F2 have 4|Fi| generating (3JS, ΪB, 4^1)-vectors each.
From equation (4.2) we get:

\XG\ = 10|G| - 4|*i | ^ L - 4 | F 2 | . ^§- = 6\G\ = 3|Aut(G)|.

The set 3? of Aut(G!)-equivalence classes of generating vectors has
three classes. Representatives of these classes, obtained by a computer
search, are:

c3 =

c2 = I 1 0 2 ) , c 3 =

From Table 2.1 Aut(Γ, B) ~ Z 2 . If we compose the transformation
{c\ 9 Ci > c$) —> (c 2, c\, cj"1, C3C1), given in the table, with conjugation
by C\ we obtain the transformation v\ (c\9 c2, C3)-^(ciC2cf!, Ci, C3),
which induces the action of the non-trivial element of Aut(Γ, B) on
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classes of generating vectors. To show that Aut(Γ, B) acts trivially
on Sf it suffices to show that for each of the three given vectors
the z/-image of a vector is equivalent to the original vector by an
element of CentAUt(SL(3))(^3) This centralizer is generated by the
outer automorphism λ defined earlier and the inner automorphism
Ad* induced by the matrix:

For these three vectors the elements to choose that induce the equiva-
lence are, in order, Adχ6 o λ, Adχ6 o λ and Aάχ2 o λ, as may be verified
by direct calculation.

EXAMPLE

g
/g(100

Ull)

4.3.

\A

i 10
11

G = l

2A

6
7

IA

4
5

From

4A

4
3

[McK]

5A

2
3

6Λ

2
3

we have:

8Λ

2
1

85

2
1

UA

0
1

115

0
1

By applying (2.13), we conclude that there are no generating ( 2 , 3 , d\
(2, 4, d), (2, 5,5), (2, 5, 6), (3, 3, 4) or (3, 3, 5)-vectors except
possibly ( 2 , 4 , ll)-vectors. By Table 2.2, if a ( 2 , 4 , ll)-action of
Mn exists it will be a genus action. By formula (4.1) the number
of (2, 4, ll)-vectors is 2\G\. Let L be a subgroup generated by a
( 2 , 4 , ll)-vector. If L is not all of G, then L lies in a maximal
subgroup whose order is divisible by 44. From [F-M] the only max-
imal subgroup of Mn divisible by 44 is PSL2(11). Since the order
of an element of PSL2(11) divides 5, 6 or 11 then, PSL2(11) has no
( 2 , 4 , ll)-vectors. Therefore, L = G and all ( 2 , 4 , ll)-vectors of
Mi i are generating vectors. Since the outer automorphism group of
Mi i is trivial, there are two inequivalent genus actions of M π , by
Remark 2.3.

EXAMPLE 4.4. G = Mn. We calculate from [McK] the following
table:

g \A 2A 2B 3A 3B AA AB 5A

lg(llι) 11 5 7 5 3 5 3 3

lg(U2) 11 5 7 5 3 3 5 3
lg(162) 16 10 8 4 6 4 2 4
lg(66) 66 36 34 24 22 16 16 14
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g 6A 6B 8A 8B IQA \\A UB

' ,(110 1
1
4
12

3
3
2
12

3
1
2
8

1
3
1
8

1
1
2
8

1
1
1
6

1
1
1
6/*(66)

Using (2.13), there cannot be any generating (2, 3, 8), (2, 4, 5),
{2A, 3A, 10A),(2A, 3 5 , 10A) or (25, 3A, 10Λ)-vectors. If a gen-
erating (25, 3 5 , 10^4)-vector exists then all genus actions will be
(25, 3 5 , 10^4factions, by Table 2.2. By calculation, the number of
(25, 3 5 , 10^)-vectors is 2\G\ = |Aut(Afi2)|. Let (c\, c 2 , c3) be a
(25, 3 5 , 10^4)-vector which is not a generating vector and let L be
the proper subgroup generated by this vector. Since L must lie in
a maximal subgroup whose order is divisible by 60, L lies in a sub-
group isomorphic to one of Z 2 x Σ 5 , PSL2(11), Z 2 x M\$ or Mn ,
according to the tables in [F-M]. The two possibilities PSL2(11) and
Mn can be rejected since these subgroups do not have elements of
order 10, according to the tables in [McK].

Now let us eliminate Z 2 x M\Q . This subgroup has a normal sub-
group of index 4 isomorphic to A§ ~ PSL2(9). Since c2 has odd order
it must lie in A6 . By restricting characters of Mγi to A6 we will show
that c2 lies in the conjugacy class 3A of M 1 2 , a contradiction. The
restriction of any character θ of Mn to Aβ must be an Aut(^6)-
invariant character since A u t ^ ) — Z 2 K M 1 0 is an intermediate sub-
group. Suppose that the dimension of θ is 11. Then, using invariance
and dimension considerations, we see that the only possible decompo-
sitions for the restricted character Θ\A are 1 + 51 + 5 2 , 2 1 + 9, 1 + 10
or 11 1. Since the value of an 11-dimensional character on an ele-
ment of order 5 equals 1, then the case where θ restricts to the trivial
representation with character 11 1 must be excluded. In each of the
remaining cases the value of the restricted character at an element of
order 3 in A^ is 2. But from the character table of M\ι this can
only happen if the element of order 3 lies in the conjugacy class 3A,
yielding a contradiction.

Finally we eliminate Z 2 x Σ5 in a similar fashion. In Z 2 x Σ5 let
Z 2 = (x). Suppose that the (25, 3 5 , 10^)-vector {c\, c 2 , c3) lies
in Z 2 x Σ 5 , then (c\, c 2 , C3) = (xb\, £ 2 , xb^) where (b\, 6 2, 63) is
a generating ( 2 , 3 , 5)-vector of A5. The elements b\ and b2 lie in
the classes 25 and 35 of Mγι, respectively. For &2 = c2 and b\
is the square of an element of order 4, so, from the squaring maps
in McKay's tables, b\ lies in the conjugacy class 2 5 . If θ is the



46 S. ALLEN BROUGHTON

character above, then the dimension of θ is 11 and θ has the value
3 , - 1 and 1 on the elements of order 2, 3 and 5 in A5, respectively.
This information is sufficient to determine the restricted character
Θ\A5 uniquely, we get Θ\A = 1 + 2 - 5 . The order of Cent(x) is
divisible by 240 = |Z2 x Σ 5 | , so x lies in the class 2A and θ has
the value - 1 on x . Since x centralizes A5 then x acts as 1 or
- 1 on the irreducible constituents of Θ\A - Since the traces of x on
these subspaces must add up to - 1 , these traces can only be - 1 , 5
and - 5 . It now follows from the character table of A5 that xb\ will
have the traces — 1, 1,-1 on these subspaces and hence θ(c\) = — 1.
Thus C\ lies in the conjugacy class 2A, a contradiction. All is now
proven.

Elementary Abelian Groups. As supposed in the example in the in-
troduction, let e > 2, let p > 2e + 1 be a prime, let G = (Zp)

2e. Also
let σe = (e-l )p2e +1 note that (2σe - 2)/p2e = 2e - 2. The group G
clearly has a generating (e : -)-vector (a\, . . . , ae, b\, . . . , be) and so
acts on a surface of genus σe . In [Br2] it is shown that for any prime
p and exponent β there is a (τ: n\, . . . , /^)-vector {a\, . . . , aτ,
b\, . . . , bτ, C\, . . . , ct) of (Zp)P , if and only if the following hold:

* , τ > 0 , tφ\,

2σ-2=p*[(2τ-2 + t)-t/p],

β<2τ ifί = 0, β<2τ + t if t > 1.

Setting β = 2e and supposing ί > 0 we have 2τ + t = 2e + /, where
/ > 1 and t <2e + l. Let σ denote the genus of the surface on which
G acts via the generating vector (a\,... , aτ, b\, . . . , bτ, C\, . . . , ct).
Then,

.i L — Ίr — 2 4-1 —

p2e l + l

= le-l + l-t/p

>le-l + l-(le

= le-l +1(1-l/p)-le/p

>le-l + (\-l/p)-le/p

= le-l + (l-(le+ l)/p)
^ (lσe - 2)

pie •

It follows that all genus actions of G are given by (e : -)-vectors.
It is also clear that the (e : -)-vectors, which are simply vector space
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bases of G are Aut(G!)-equivalent? so there is only one genus action.
Now suppose that T is a surface of genus e and H = Aut(Γ).

There are many different possibilities for H obtained by varying the
conformal structure of T. See [Br3] for a classification for e = 2, 3.
Let S —• T be the covering space determined by the kernel of the map
Πi(!Γ) —> H\(T; Z) —• (Z^)2 e where the last map is reduction modp .
This is a regular covering space whose group of covering transforma-
tions is isomorphic to G. The resulting G-action is a genus action,
and every genus action can be derived in exactly this way. Via the cov-
ering projection S —> T one may pull back the conformal structure
on T to a conformal structure on S, such that G acts conformally.
Let M = NAut(S)(G), then covering space arguments may be used to
show that the natural map M —• Aat(S/G) = Aut(Γ) is surjective. It
would be interesting to see if there are any cases where M is a proper
subgroup of Aut(iS).
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