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A SPECTRAL THEORY FOR SOLVABLE LIE ALGEBRAS

OF OPERATORS

E. BOASSO AND A. LAROTONDA

The main objective of this paper is to develop a notion of joint
spectrum for complex solvable Lie algebras of operators acting on a
Banach space, which generalizes Taylor joint spectrum (T.J.S.) for
several commuting operators.

I. Introduction. We briefly recall the definition of Taylor spectrum.
Let f\(Cn) be the complex exterior algebra on n generators β\9 . . . 9en,
with multiplication denoted by /\. Let E be a Banach space and
a = (a\, . . . , an) be a mutually commuting n-tuple of bounded lin-
ear operators on ls(m.c.o.). Define /\k(E) = /\k(Cn) ®c E, and for
k>l, Dk_λ by:

Dk_x ]\
k h-\

7=1

where ~ means deletion. Also define Dk = 0 for k < 0.
It is easily seen that DkDk+x = 0 for all k, that is, {/\k(E), Dk}keZ

is a chain complex, called the Koszul complex associated with a and
E and denoted by R(E, a). The n-tuple <z is said to be invertible or
nonsingular on E, if i?(£\ α) is exact, i.e., KerZ)^ = r a n ^ + 1 for
all k. The Taylor spectrum of a on £ is Sp(α, E) = {λeCn: a-λ
is not invertible}.

Unfortunately, this definition depends very strongly on a\, . . . , an

and not on the vector subspace of L(E) generated by then (= (a)).
As we consider Lie algebras, and then naturally involve geometry,

we are interested in a geometrical approach to spectrum which de-
pends on L rather than on a particular set of operators.

This is done in II. Given a solvable Lie subalgebra of L(E), L, we
associate to it a set in L*, Sp(L, E).
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This object has the classical properties. Sp(L, E) is compact. If
L' is an ideal of L, then Sp(Z/, E) is the projection of Sp(L, E) in
L'*. Sp(L, E) is non-empty.

Besides, it satisfies other interesting properties.
If x e L2, then Sp( c) = 0. If L is nilpotent, one has the inclusion

Sp(L, E) c {fe [L, L]x|Vx e L, \f(x)\ < \\x\\}.

However the spectral mapping property is ill behaved.

II. The joint spectrum for solvable Lie algebras of operators. First of
all, we establish a proposition which will be used in the definition of

From now on, L denotes a complex finite dimensional solvable Lie
algebra, and U(L) its enveloping algebra.

Let / belong to L* such that f([L, L]) = 0, i.e., / is a character
of L. Then / defines a one dimensional representation of L denoted
by C(/) . Let e(f) be the augmentation of U(L) defined by / :

e(f):U(L)-+C(f),

*(/)(*) = /(*) (xeL).

Let us consider the pair of spaces and maps V{L) = (U(L)®f\ L, dp-.\),

where dp-χ is the map defined by:

__ P P - 1

dp-ι: U(L)®/\L-+U(L)® /\L.

If P> 1

\<k<l<p

where Λ means deletion. If p < 0, we also define dp = 0. Then

PROPOSITION 1. The pair of spaces and maps V(L) is a chain com-
plex. Furthermore, with the augmentation e(f), the complex V(L) is
a U(L)-free resolution of C(/) as a left U(L) module.

We omit the proof of Proposition 1 because it is a straightforward
generalization of Theorem 7.1 of [3, XIII, 7].

Let L be as usual, from now on, E denotes a Banach space on
which L acts as right continuous operators, i.e., L is a Lie subalgebra
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of L{E) with the opposite product. Then, by [3, XIII, 1], E is a right
U(L) module.

If / is a character of L, by Proposition 1 and elementary homolog-
ical algebra, the #-homology space of the complex, (E ® [\L, d(f))
is Tor^L )(i< , C(/)) (=Hq(L9E<g> C(/)).

We now state our definition.

DEFINITION 1. Let L and E be as above the set {/ e L*, f(L2) =
0|Jϊ*((L, E®C(f))) is non-zero}, is the spectrum of L acting on E,
and is denoted by Sp(L, E).

By Proposition 1 and Definition 1, it is clear that, if L is a com-
mutative algebra Sp(L, E) reduces to Taylor joint spectrum.

Let us see an example. Let (E, || ||) be (C 2 , || | |2) and a, b the
operators

- ( - • . - • . ) •

It is easily seen that [b, a] = b, and then, the vector space C(b) Θ
C(α) = L is a solvable Lie subalgebra of L(C2).

Using Definition 1, a standard calculation shows that Sp(L, is) =
{/ G (C2)*|/(/>) = 0 f(a) = i , f(a) = -\}.

Observe that, | |α|| = \\ however, Sp(L,E) is not contained in
{/G(C2)*|VXGC2|/(X)|<||X||}.

III. Fundamental properties of the spectrum. In this section, we shall
see that the most important properties of spectral theory are satisfied
by our spectrum.

THEOREM 2. Let L and E be as usual Then Sp(L, E) is a com-
pact set of L*.

Proof. Let us consider the family of spaces and maps (E ® /\ι L,

di-i(f)) f G L2± , where L2± = {/ e L*|/(L2) = 0}. This family

is a parameterized chain complex on L2 . By Taylor [6, 2.1] the set

{/ G L2±\(E (8) Λ ' L , <*ί-i(/)) is exact} = Sp(L, £ ) c is an open set

in L2 . Then, Sp(L, E) is closed in L2 and hence in L*.
To verify that Sp(L, E) is a compact set we consider a basis of

L2 and we extend it to a basis of L, {Xi}\<i<n . If K = dimL 2 and
n = dimL let Lf be the ideal generated by {Xj)\<j<njφi, i>K+l.

Let / be a character of L and represent it in the dual basis of

{Xi)\<i<n , {/}i</<« / = Σni=κ+\ ζίfi F o r e a c h z ' ' t h e r e i s a Positive
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number r, such that if ξt > r,,

Ύoτ%lL\E, C(f)) = HP(E®/\L, di-xifλ = 0 Vp.

To prove our last statement, we shall construct an homotopy oper-
ator for the chain complex (E ® f\pL, dp-\(f)) (f(L2) = 0).

First of all we observe that

\
i\ f\{Xi).

As Li is an ideal of L, dp-X{E®(\pLi) C E®/\p-χ Lt. On the other
hand, there is a bounded operator Lp_i such that

dp-x(f){a Λ (Xt))

aeE®

It is easy to see that, for each p, there is a basis of f\p L, , {F

1 < j < dim y\p L;, such that if we decompose

l<j<άim/\p Lt

then JLP has the following form

0 / > j where α/y G C.

Besides, let Kp be a positive real number such that

l<J<dim/\pLt

and Ni — maxo<p<rt-i{jKp}. Then, as Lp has a triangular form, a
standard calculation shows that Lp is a topological isomorphism of
Banach spaces if & > iV/.
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Outside 7?[0, JV, ] we construct our homotopy operator

P

Sp: E ® f\ L -» E ® f\ L,

Sp:E® /\LiΛ(Xi) = 0,

p P

Sp: E ® /\Li -> E ® l\Li Λ

From the definition of 7^ , we have the following identity:

The above identity and a standard calculation shows that Sp in an
homotopy operator, i.e., dpSp + Sp-\dp-ι = / and then SP(L9 E) is
a compact set.

THEOREM 3 {Projection property). Let L and E be as usual and I
an ideal of L. Let π be the projection map from L* onto 7*, then

Proof. By [2, 5, 3], there is a Jordan Holder sequence of L such
that / is one of its terms. Then, by means of an induction argument,
we can assume dim(L/7) = 1.

Let us consider the connected simply connected complex Lie group
G(L) such that its Lie algebra is L [5, LG, V].

Let Ad* be the coadjoint representation of G(L) in L*: Ad*(g)f =
fAd(g~ι), where g e G{L), / e L* and Ad is the adjoint represen-
tation of G(L) in L.

Let / belong to Sp(7, E). Then, as 7 is an ideal of L, by
[7, 2.13.4], Ad*(<g

p)/ belongs to 7*; besides, it is a character of 7.
Then, one can restrict the coadjoint action of G(L) to 7*. Moreover,
Sp(7, E) is invariant under the coadjoint action of G(L) in 7*, i.e.:
if / G Sp(7, E), Ad'(g)/ G Sp(7 ,E) Vg G G(L).

In order to prove this fact, it is enough to see:

(I) Tor?{I)(E, C(f)) = Ύoτίu{I)\E, C(*))

where h = Ad*(g)f9 geG(L).
Let Γ be the ring (7(7) and φ the ring morphism

C/(7).
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Let us consider the augmentation modules (C(/), E(f)) and
(C(A), £(*)).

Then, a standard calculation shows that the hypothesis of [3, VIII,
3.1] are satisfied, which implies (I).

Thus, if / € Sp(7, E), the orbit G(L) / C Sp(7, E). However,
Sp(7, E) is a compact set of /*.

As the only bounded orbits for an action of a complex connected
Lie group on a vector space are points; G(L) / = / . _

Let / be an extension of / to L*, and consider a = G(L) / , the
orbit of / under the coadjoint action of G(L) in L*.

As G(L) / = / , as an analytic manifold

(II) d i m α < l .

Now suppose / is not a character of L: i.e., f(L2) Φ 0.
Let LL be the following set: LL = {x e L\J([X, L]) = 0}, and let

n be the dimension of L.
As I is an ideal of dimension n - 1, f(I2) = 0 and f{L2) Φ 0,

by [2, 5, 3], [1, IV, 4.1] and [4, 1, 1.2.8], we have: ZΛ c /, and
άimLL = n-2.

Let us consider the analytic subgroup of G(L) such that its Lie
algebra is LL. _

As the Lie algebra of the subgroup G(L)j = {g e GL\Ad*(g)f = /}

is LL, the connected component of the identity of G(L)j is GiL 1).

However, by [7, 2.9.1, 2.9.7] a = G(L) •/ satisfies the following
properties: a = G(L)/G(L)j9 and dimα = dimG(L) - dim G(L)j =
dimCr(L) - dim^L- 1)) = dimL - dimL 1 = 2, which contradicts
(II).

Then / is a character of L.
Thus, any extension / of an / in Sp(/, E) is a character of L.
However, as in [6], there is a short exact sequence of complexes

0^ (/\I®E9d{f))

/\L®E,d(f)\ - ί/\/®£,rf(/)j - 0 .

As t/(/) is a subring with unit of U(L) and the complex involved in
Definition 1 differs from the one of [6] by a constant term, Taylor's ar-
gument of [6, 13, 3.1] still applies and then Sp(7, E) = Π(Sp(L, E)).

As a consequence of Theorem 3 we have
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THEOREM 4. Let L and E be as usual Then Sρ(L, E) is non-void.

IV. Some consequences. In this section we shall see some conse-
quences of the main theorems.

Let £ b e a Banach space and L a complex finite dimensional solv-
able Lie algebra acting on E as bounded operators.

One of the well known properties of Taylor spectrum for an n-tuple
of m.c.o. acting on E is Sp(α, E) c Πl?[0, | |α/| |]. In the noncommu-
tative case, as we have seen in §11, this property fails.

However, if the Lie algebra is nilpotent, it is still true.

PROPOSITION 5. Let L be a nilpotent Lie algebra which acts as
bounded operators on a Banach space E.

Then, Sp(L,E) C {/ e L* | \f(x)\ < \\x\\, x e L}.

Proof. We proceed by induction on dim L. If dim L = 1, we have
nothing to verify.

We suppose true the proposition for every nilpotent Lie algebra L'
such that dim L1 < n .

If dimL = n, by [2, 4, 1], there is a Jordan Holder series S =
(Li)0<i<n , such that [L, Lz] C Lt_x.

Let {Xi}\<i<n be a basis of L such that {Xj}\<j<i generates L z .
Let L'n_x be the vector subspace generated by {^/}i</<«. As

[L, L'n_λ] c Ln_2 C L'n_x, L'n_χ is an ideal. Besides, Ln_x + L'n_γ =
L.

Then, by means of Theorem 4 and the inductive hypothesis, we
complete the inductive argument and the proposition.

Now, we deal with some consequences of the projection property.

PROPOSITION 6. Let L and E be as usual.
If I is an ideal contained in L2, then Sp(/, E) = 0. In particular

Proof. By the projection property, Sp(/, E) = Π(Sp(L, E)), where
Π is the projection from L* on /*. However, as Sp(L, E) is a subset
of characters of L, f\j = 0, if / c L2 .

PROPOSITION 7. Let L and E be as in Proposition 5.
// Sp(L, E) = 0, then Sp( c) = 0 V J C G L .

Proof. By means of an induction argument, the ideals Ln_\, L'n_χ

of Proposition 5 and Theorem 3, we conclude the proof.
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PROPOSITION 8. Let L and E be as usual. Then, ifxeL2: Sp(x) =
0.

Proof. First of all, recall that if L is a solvable Lie algebra, L2

is a nilpotent one. Then by Proposition 6 Sp(L2, E) = 0, and by
Proposition 7 Sp(x) = 0 \/x € L2.

V. Remark about the spectral mapping theorem. Note that the exam-
ple of §11 shows that the projection property fails for subspaces which
are not ideals (take / = {x)). Clearly this implies that the spectral
mapping theorem also fails in the noncommutative case.
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