THE DUAL PAIR $(U(1), U(1))$ OVER A p-ADIC FIELD

Courtney Moen

Abstract

We find an explicit decomposition for the metaplectic representation restricted to either member of the dual reductive pair $(U(1)$, $U(1))$ in $\widetilde{\mathrm{SL}}(2, F)$, where F is a p-adic field, with p odd.

1. Introduction and preliminaries. Let F be a p-adic field of odd residual characteristic with q being the order of the residue class field. Let \mathscr{O} be the ring of integers, \mathscr{P} the prime ideal, \mathscr{U} the units, π a prime element, and ν the valuation on F. Let $G=\operatorname{SL}(2, F)$.
For $\sigma=\binom{a b}{c d} \in G$, let $x(\sigma)=c$ if $c \neq 0$, and let $x(\sigma)=d$ if $c=0$. Define a 2-cocycle on G by

$$
\alpha\left(g_{1}, g_{2}\right)=\left(x\left(g_{1}\right), x\left(g_{2}\right)\right)\left(-x\left(g_{1}\right) x\left(g_{2}\right), x\left(g_{1} g_{2}\right)\right) .
$$

This cocycle determines a nontrivial 2 -sheeted covering group \widetilde{G} of G [G1].

Let E be a quadratic extension of F, and $x \mapsto \bar{x}$ the Galois action. The group $U(1)$ which preserves the Hermitian form $(x, y) \mapsto x \bar{y}$ on E is isomorphic to the group N^{1} of norm one elements in E. The pair of subgroups ($U(1), U(1)$) of $\operatorname{SL}(2)$ form a dual reductive pair $[\mathrm{H}]$. This dual pair is one of the simplest examples over a p-adic field. Some other basic examples of dual reductive pairs are discussed in [G2]. In this paper we determine the decomposition of the oscillator representation of \widetilde{G} upon restriction to $U(1) \subset \widetilde{G}$.

The results in this paper have recently been applied by Rogawski to the problem of calculating the multiplicities of certain automorphic representations π of $U(\mathbf{A})$ in the discrete spectrum of $L^{2}(U(k) \backslash U(\mathbf{A}))$, where U is a unitary group in 3 variables defined relative to a quadratic extension of number fields K / k [R1, R2]. I would like to thank Rogawski for several stimulating conversations and for encouraging me to publish this paper.

Let τ be a character of F. Choose a normalized measure μ so that $\mu(\mathcal{O})=q^{\frac{\omega(\tau)}{2}}$, where $\omega(\tau)$ is the conductor of τ. Denote this measure by $d_{\tau} x$. Then if we define the Fourier transform on $S(F)$, the space of locally compact functions on F with compact support,
by

$$
\hat{f}(x)=\int f(y) \tau(2 x y) d_{\tau} y
$$

we have $\hat{\hat{f}}(x)=f(-x)$. For $a \in F$, we set $\tau_{a}(x)=\tau(a x)$. Let

$$
\kappa(\tau)=\lim _{m \rightarrow-\infty} \int_{\mathscr{P}^{m}} \tau\left(x^{2}\right) d_{\tau} x
$$

Recall [Sh] that $\kappa(\tau)=1$ if $\omega(\tau)$ even, and

$$
\kappa(\tau)=G(\tau)=q^{-\frac{1}{2}} \sum_{x \in \mathscr{O} / \mathscr{P}} \tau\left(\pi^{n-1} x^{2}\right)
$$

if $n=\omega(\tau)$ is odd. For $u \in \mathscr{U}$, let $\left(\frac{u}{\mathscr{P}}\right)=1$ if u is a square, and $\left(\frac{u}{\mathscr{P}}\right)=-1$ otherwise. Then we have $G(\tau)^{2}=\left(\frac{-1}{\mathscr{P}}\right)$ and $G\left(\tau_{u}\right)=$ $\left(\frac{u}{\mathscr{P}}\right) G(\tau)$ for $u \in \mathscr{U}$.

We now define the metaplectic representation $W=W^{\tau}$ of \widetilde{G} associated to the quadratic form $Q(x)=x^{2}$ by specifying the action on generators [G1]. Here $\zeta= \pm 1$, and $|a|$ is the absolute value on F.

$$
\begin{aligned}
& W\left(\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right), \zeta\right) f(x)=\zeta \tau\left(b x^{2}\right) f(x) \\
& W\left(\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right), \zeta\right) f(x)=\zeta|a|^{\frac{1}{2}} \frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} f(a x) \\
& W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \zeta\right) f(x)=\zeta \kappa(\tau) \hat{f}(x)
\end{aligned}
$$

The cocycle defining \widetilde{G} splits on the compact subgroup $K=\mathrm{SL}_{2}(\mathscr{O})$ by a function $s: K \rightarrow Z_{2} . K$ thus lifts as a subgroup of \widetilde{G} by $k \mapsto$ ($k, s(k)$), and we may thus restrict W to obtain a representation of K on $S(F)$. Note that $U(1) \subset K$. Our goal is to find the characters of $U(1)$ which appear in the restriction of W to $U(1)$.

Let $S\left(\mathscr{P}^{r}, \mathscr{P}^{s}\right)$ be the space of functions on F which have support on \mathscr{P}^{r} and which are constant on cosets of $\mathscr{P} s$ in $\mathscr{P} r$. Suppose $\omega(\tau)=n \geq 1$. Then $S\left(\mathscr{O}, \mathscr{P}^{n}\right)$ is invariant under W^{τ} restricted to K, and the group

$$
K_{n}=\left\{k \in K \left\lvert\, k \equiv\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \bmod \mathscr{P}^{n}\right.\right\}
$$

acts trivially on $S\left(\mathscr{O}, \mathscr{P}^{n}\right)$. We thus obtain a representation $W_{n}=$ W_{n}^{τ} of $K / K_{n} \cong \mathrm{SL}_{2}\left(\mathscr{O} / \mathscr{P}^{n}\right)$ on $S\left(\mathscr{O}, \mathscr{P}^{n}\right)$. Note that we may consider τ as a character of $\mathscr{O} / \mathscr{P}^{n}$.
2. Calculation of the trace. In this section we calculate the trace of $W_{n}(t)$, where t denotes either an element of T or its image in $\mathrm{Sl}_{2}\left(\mathscr{O} / \mathscr{P}^{n}\right)$, and

$$
T=\left\{\left.\left(\begin{array}{cc}
a & b \\
b \alpha & a
\end{array}\right) \right\rvert\, a^{2}-b^{2} \alpha=1\right\}
$$

is the torus in G corresponding to the quadratic extension $E=$ $F(\sqrt{\alpha})$. It will suffice to let $\alpha=\tau$ or $\alpha=\varepsilon$, a primitive $(q-1)$ st root of unity in \mathcal{O}.

Lemma 1. For $t=\left(\begin{array}{cc}a & b \\ b \alpha & a\end{array}\right) \in T$, we have the decomposition

$$
\begin{align*}
(t, s(t))= & \left(\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right), 1\right)\left(\left(\begin{array}{cc}
1 & 0 \\
b \alpha a & 1
\end{array}\right), 1\right)\left(\left(\begin{array}{cc}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right), 1\right) \tag{1}\\
& \times\left(\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \gamma(t)\right),
\end{align*}
$$

where $\gamma(t)=(a, b)$ if $\alpha=\varepsilon, b \in \mathscr{U}$, and $a \notin \mathscr{U}$, and $\gamma(t)=1$ otherwise. Also,

$$
\begin{align*}
\left(\left(\begin{array}{cc}
1 & 0 \\
b \alpha a & 1
\end{array}\right), 1\right)= & \left(\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), 1\right)\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right)\left(\left(\begin{array}{cc}
1 & -b \alpha a \\
0 & 1
\end{array}\right), 1\right) \tag{2}\\
& \times\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right)
\end{align*}
$$

Proof. Both statements are clearly true if $b=0$, so we suppose $b \neq 0$. A calculation shows that the right side of (1) equals $(t,(a, b \alpha a) \gamma(t))$. We must therefore show that $s(t)=(a, b \alpha a) \gamma(t)$ for $t \neq \pm I$. Recall [G] that $s(t)=(b \alpha, a)$ if $b \neq 0$ and $b \alpha \notin \mathscr{U}$, and $s(t)=1$ otherwise. First suppose $\alpha=\pi$. In this case $a \in \mathscr{U}$, so $(a, b \pi a)=$ $(a, b \pi)=s(t)$. Now suppose $\alpha=\varepsilon$. If $b \notin \mathscr{U}$, then $b^{2} \varepsilon \in$ $\mathscr{P}^{2} \Rightarrow a^{2}=1+b^{2} \varepsilon \in 1+\mathscr{P}^{2} \subset \mathscr{U} \Rightarrow a \in \mathscr{U}$. Then $\gamma(t)=1$, so $(a, b \varepsilon a) \gamma(t)=(a, b \varepsilon)=s(t)$. If $b \in \mathscr{U}$, then $s(t)=1$, so we must show ($a, b \varepsilon a) \gamma(t)=1$. If $a \in \mathscr{U}$, then $\gamma(t)=1$ so we need $(a, b \varepsilon a)=1$, which is true since $a \in \mathscr{U}$ and $b \in \mathscr{U}$. If $a \notin \mathscr{U}$, then $\gamma(t)=(a, b)$, so we must show $(a, b \varepsilon a)(a, b)=1 \Leftrightarrow(a, \varepsilon a)=1$. But $a \notin \mathscr{U} \Rightarrow a^{2} \in \mathscr{P}^{2} \Rightarrow 1+b^{2} \varepsilon \in \mathscr{P}^{2} \Rightarrow-b^{2} \varepsilon \in 1+\mathscr{P}^{2}$. This shows $-\varepsilon \in \mathscr{U}^{2}$, so $(a, \varepsilon a)=(a,(-\varepsilon)(-a))=(a,-\varepsilon)(a,-a)=(a,-a)=$ 1.

Lemma 2. Suppose $t=\left(\begin{array}{cc}a & b \\ b \alpha & a\end{array}\right) \in T$ and $a \in \mathscr{U}$. Then for $f \in$ $S\left(\mathscr{O}, \mathscr{P}^{n}\right)$,

$$
\left(W_{n}(t, s(t)) f\right)(x)=\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} \sum_{s \in \mathscr{O} / \mathscr{\mathscr { P }}^{n}} K_{b \alpha a}(a x, s) \tau\left(\frac{b}{a} s^{2}\right) f(s),
$$

where, for $c \in \mathscr{O}$,

$$
K_{c}(x, s)=q^{-n} \sum_{\mathscr{O} / \mathscr{P}^{n}} \tau\left(-c r^{2}\right) \tau(-2 x r) \tau(2 r s)
$$

Proof. For any $\phi \in S\left(\mathscr{O}, \mathscr{P}^{n}\right)$, we have, for $c \in \mathscr{O}$,

$$
\begin{aligned}
(W(& \left.\left.\left(\begin{array}{ll}
1 & 0 \\
c
\end{array}\right), 1\right) \phi\right)(x) \\
= & \left(W\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), 1\right) W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) W\left(\left(\begin{array}{cc}
1 & -c \\
0 & 1
\end{array}\right), 1\right)\right. \\
& \left.\quad \times W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) \phi\right)(x) \\
= & \frac{\kappa(\tau)}{\kappa\left(\tau_{-1}\right)}\left(W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) W\left(\left(\begin{array}{cc}
1 & -c \\
0 & 1
\end{array}\right), 1\right)\right. \\
& \left.\quad \times W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) \phi\right)(-x) \\
= & \frac{\kappa(\tau)^{2}}{\kappa\left(\tau_{-1}\right)}\left(W\left(\left(\begin{array}{cc}
1 & -c \\
0 & 1
\end{array}\right), 1\right) W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) \phi\right)(-x)
\end{aligned}
$$

But $\phi \in S\left(\mathscr{O}, \mathscr{P}^{n}\right) \Rightarrow \hat{\phi} \in S\left(\mathscr{O}, \mathscr{P}^{n}\right)$, so for $c \in \mathscr{O}$, we have

$$
W\left(\left(\begin{array}{cc}
1 & -c \\
0 & 1
\end{array}\right), 1\right) W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) \phi \in S\left(\mathscr{O}, \mathscr{P}^{n}\right)
$$

For any $\psi \in S\left(\mathscr{O}, \mathscr{P}^{n}\right)$, we have

$$
\begin{aligned}
\hat{\psi}(x) & =\int \psi(y) \tau(2 x y) d_{\tau} y=\int_{\mathscr{O}} \psi(y) \tau(2 x y) d_{\tau} y \\
& =\sum_{r \in \mathscr{O} / \mathscr{P}^{n}} \int_{\mathscr{P}^{n}} \psi(r+y) \tau(2 x(r+y)) d_{\tau} y \\
& =\sum_{r \in \mathscr{O} / \mathscr{P}^{n}} \psi(r) \tau(2 x r) \int_{\mathscr{P}^{n}} \tau(2 x y) d_{\tau} y
\end{aligned}
$$

But $y \mapsto \tau(2 x y)$ is trivial on $\mathscr{P}^{n} \Leftrightarrow x \in \mathscr{O}$, so $\hat{\psi}(x)=0$ if $x \notin \mathscr{O}$, and if $x \in \mathscr{O}$, we have

$$
\hat{\psi}(x)=q^{-\frac{n}{2}} \sum_{r \in \mathscr{O} / \mathscr{P}^{n}} \psi(r) \tau(2 x r)
$$

Therefore,

$$
\begin{aligned}
& \left.\left(W\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right), 1\right) \phi\right)(x) \\
& =\frac{\kappa(\tau)^{2}}{\kappa\left(\tau_{-1}\right)} q^{-\frac{n}{2}} \sum_{r \in \mathscr{O} / \mathscr{P}^{n}}\left(W\left(\left(\begin{array}{cc}
1 & -c \\
0 & 1
\end{array}\right), 1\right)\right. \\
& \left.\times W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) \phi\right)(r) \tau(-2 x r) \\
& =\frac{\kappa(\tau)^{2}}{\kappa\left(\tau_{-1}\right)} q^{-\frac{n}{2}} \sum_{r \in \mathscr{O} / \mathscr{P}^{n}} \tau\left(-c r^{2}\right)\left(W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) \phi\right)(r) \tau(-2 x r) \\
& =\frac{\kappa(\tau)^{3}}{\kappa\left(\tau_{-1}\right)} q^{-n} \sum_{r \in \mathscr{O} / \mathscr{P}^{n}} \tau\left(-c r^{2}\right) \tau(-2 x r) \sum_{s \in \mathscr{O} / \mathscr{P}^{n}} \phi(s) \tau(2 r s) .
\end{aligned}
$$

But

$$
\frac{\kappa(\tau)^{3}}{\kappa\left(\tau_{-1}\right)}=1
$$

so we get

$$
\left(W\left(\left(\begin{array}{ll}
1 & 0 \\
c & 1
\end{array}\right), 1\right) \phi\right)(x)=\sum_{s \in \mathcal{O} / \mathscr{P}^{n}} K_{c}(x, s) \phi(s)
$$

where for $c \in \mathscr{O}$,

$$
K_{c}(x, s)=q^{-n} \sum_{r \in \mathscr{O} / \mathscr{P}^{n}} \tau\left(-c r^{2}\right) \tau(-2 x r) \tau(2 r s)
$$

Now we calculate the action of $W_{n}(t, s(t))$ for $a \in \mathscr{U}$. Note that in this case, $\gamma(t)=1$. For $f \in S\left(\mathscr{O}, \mathscr{P}^{n}\right)$, we have

$$
\begin{aligned}
&\left(W_{n}\right.(t, s(t)) f)(x) \\
& \quad=\left(W\left(\left(\begin{array}{cc}
a & 0 \\
0 & a^{-1}
\end{array}\right), 1\right) W\left(\left(\begin{array}{cc}
1 & 0 \\
b \alpha a & 1
\end{array}\right), 1\right) W\left(\left(\begin{array}{cc}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right), 1\right) f\right)(x) \\
& \quad=\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)}\left(W\left(\left(\begin{array}{cc}
1 & 0 \\
b \alpha a & 1
\end{array}\right), 1\right) W\left(\left(\begin{array}{cc}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right), 1\right) f\right)(a x) \\
& \quad=\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} \sum_{s \in \mathscr{O} / \mathscr{P}^{n}} K_{b \alpha a}(a x, s) \tau\left(\frac{b}{a} s^{2}\right) f(s) .
\end{aligned}
$$

Here we used the fact that

$$
a \in \mathscr{U} \Rightarrow W\left(\left(\begin{array}{cc}
1 & \frac{b}{a} \\
0 & 1
\end{array}\right), 1\right) f \in S\left(\mathscr{O}, \mathscr{P}^{n}\right)
$$

This completes the proof of Lemma 2.

If $a \in \mathscr{U}$, the action of $W_{n}(t, s(t))$ is therefore given by the kernel

$$
\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} K_{b \alpha a}(a x, s) \tau\left(\frac{b}{a} s^{2}\right)
$$

We now use this kernel to calculate the trace of $W_{n}(t, s(t))$ when $a \in \mathscr{U}$. The kernel is a function defined on $\mathscr{O} / \mathscr{P}^{n} \times \mathscr{O} / \mathscr{P}^{n}$, so we have
(3) trace $W_{n}(t, s(t))=\sum_{s \in \mathcal{O} / \mathscr{P}^{n}} \frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} K_{b \alpha a}(a s, s) \tau\left(\frac{b}{a} s^{2}\right)$

$$
\begin{aligned}
& =\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} \sum_{s \in \mathscr{O} / \mathscr{P}^{n}} q^{-n} \sum_{r \in \mathscr{O} / \mathscr{P}^{n}} \tau\left(-b \alpha a r^{2}\right) \tau(2 r s(1-a)) \tau\left(\frac{b}{a} s^{2}\right) \\
& =\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} q^{-n} \sum_{r \in \mathcal{O} / \mathscr{P}^{n}} \tau\left(-b \alpha a r^{2}\right) \sum_{s \in \mathscr{O} / \mathscr{P}^{n}} \tau\left(\frac{b}{a} s^{2}+2 r(1-a) s\right) .
\end{aligned}
$$

Suppose $\nu(b)=k$. The inner sum can be written

$$
\begin{aligned}
& \sum_{u \in \mathscr{O} / \mathscr{P}^{n-k}} \sum_{v \in \mathscr{P}^{n-k} / \mathscr{P}^{n}} \tau\left(\frac{b}{a}(u+v)^{2}\right) \tau(2 r(1-a)(u+v)) \\
& \quad=\sum_{u \in \mathscr{O} / \mathscr{P}^{n-k}} \tau\left(\frac{b}{a} u^{2}\right) \tau(2 r(1-a) u) \sum_{v \in \mathscr{P}^{n-k} / \mathscr{P}^{n}} \tau(2 r(1-a) v)
\end{aligned}
$$

since $\frac{b}{a} u v \in \mathscr{P}^{n}$ and $\frac{b}{a} v^{2} \in \mathscr{P}^{n}$.
Consider the sum

$$
\sum_{v \in \mathscr{P}^{n-k} / \mathscr{P}^{n}} \tau(2 r(1-a) v)
$$

Since $a \in \mathscr{U}$, we may have $\nu(a-1)=0$ or $\nu(a-1)>0$. Suppose first that $\nu(a-1)=0$. Then $\tau_{2 r(1-a)}$ is trivial on $\mathscr{P}^{n-k} \Leftrightarrow \omega\left(\tau_{2 r(1-a)}\right) \leq$ $n-k \Leftrightarrow r \in \mathscr{P}^{k}$. If $r \notin \mathscr{P}^{k}$, we have

$$
\sum_{v \in \mathscr{P}^{n-k} / \mathscr{P}^{n}} \tau(2 r(1-a) v)=0
$$

and (3) therefore equals
(4) $\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} q^{-n} q^{k} \sum_{r \in \mathscr{P}^{k} / \mathscr{P}^{n}} \tau\left(-b \alpha a r^{2}\right) \sum_{u \in \mathscr{O} / \mathscr{P}^{n-k}} \tau\left(\frac{b}{a} u^{2}+2 r(1-a u)\right)$.

The inner sum in (4) equals

$$
\begin{align*}
& \sum_{u \in \mathcal{O} / \mathscr{P}^{n-k}} \tau\left(\frac{b}{a}\left(u^{2}+\frac{2 r(1-a) a}{b} u\right)\right) \tag{5}\\
& \quad=\tau\left(-\frac{r^{2}(1-a)^{2} a}{b}\right) \sum_{u \in \mathscr{O} / \mathscr{P}^{n-k}} \tau\left(\frac{b}{a}\left(u+\frac{r(1-a) a}{b}\right)^{2}\right)
\end{align*}
$$

Since $\nu(b)=k$ and $v \in \mathscr{P}^{k}$, we have $\nu\left(\frac{r(1-a) a)}{b}\right)=\nu(r)-\nu(b) \geq 0$, so $\left\{u+\frac{r(1-a) a}{b}\right\}=\mathscr{O} / \mathscr{P}^{n-k}$ and (5) equals

$$
\tau\left(-\frac{r^{2}(1-a)^{2} a}{b}\right) \sum_{u \in \mathscr{O} \mid \mathscr{P}^{n-k}} \tau\left(\frac{b}{a} u^{2}\right)
$$

So if $a \in \mathscr{U}, a-1 \in \mathscr{U}$, and $\nu(b)=k$, we have
(6) trace $W_{n}(t, s(t))=\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} q^{k-n} \sum_{r \in \mathscr{P}^{k} / \mathscr{P}^{n}} \tau\left(-b \alpha a r^{2}\right)$

$$
\begin{aligned}
& \times \tau\left(-\frac{r^{2}(1-a)^{2} a}{b}\right) \sum_{u \in \mathscr{O} \mid \mathscr{P}^{n-k}} \tau\left(\frac{b}{a} u^{2}\right) \\
= & \frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} q^{k-n} \sum_{r \in \mathscr{P}^{k} / \mathscr{P}^{n}} \tau\left(c r^{2}\right) \sum_{u \in \mathscr{O} \mid \mathscr{P}^{n-k}} \tau\left(\frac{b}{a} u^{2}\right),
\end{aligned}
$$

where $c=-\frac{2 a^{2}(a-1)}{b}$.
Now we consider the sum

$$
\sum_{v \in \mathscr{P}^{n-k} / \mathscr{P}^{n}} \tau(2 r(1-a) v)
$$

in the case when $\nu(a-1)>0$. We have $a^{2}-1=b^{2} \alpha \Rightarrow \nu(a-1)$ $+\nu(a+1)=2 \nu(b)+\nu(\alpha)$. Since $a-1 \in \mathscr{P}$, we have $a+1=$ $(a-1)+2 \in \mathscr{U}$, so $\nu(a-1)=2 \nu(b)+\nu(\alpha)$. We therefore have $\nu(a-1)>\nu(b)=k$. This shows that $\tau_{2 r(1-a)}$ is trivial on \mathscr{P}^{n-k} for all $r \in \mathscr{O} \mid \mathscr{P}^{n}$, and so (3) implies

$$
\text { trace } \begin{align*}
W_{n}(t, s(t))= & \frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} q^{k-n} \sum_{r \in \mathscr{O} / \mathscr{P}^{n}} \tau\left(-b \alpha a r^{2}\right) \tag{7}\\
& \times \sum_{u \in \mathscr{O} \mid \mathscr{O}^{n-k}} \tau\left(\frac{b}{a} u^{2}+2 r(1-a) u\right) .
\end{align*}
$$

Considering (5) again, we have $\nu\left(\frac{r(1-a) a}{b}\right)>0$, so if $a \in \mathscr{U}, a-1 \in$ \mathscr{P}, and $\nu(b)=k$, we have
(8) trace $W_{n}(t, s(t))=\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} q^{k-n} \sum_{r \in \mathcal{O} / \mathscr{P}^{n}} \tau\left(-b \alpha a r^{2}\right)$

$$
\begin{aligned}
& \times \tau\left(-\frac{r^{2}(1-a)^{2} a}{b}\right) \sum_{u \in \mathscr{O} \mid \mathscr{P}^{n-k}} \tau\left(\frac{b}{a} u^{2}\right) \\
= & \frac{\kappa(\tau)}{\kappa(\tau a)} q^{-n} q^{k} \sum_{r \in \mathscr{O} \mid \mathscr{P}^{n}} \tau\left(c r^{2}\right) \sum_{u \in \mathscr{O} \mid \mathscr{P}^{n-k}} \tau\left(\frac{b}{a} u^{2}\right),
\end{aligned}
$$

where $c=-\frac{2 a^{2}(1-a)}{b}$.
We summarize (6) and (8) as follows
Lemma 3. Suppose $a \in \mathscr{U}$ and $\nu(b)=k$. Let $c=-\frac{2 a^{2}(1-a)}{b}$. Then
(9) trace $W_{n}(t, s(t))=\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} q^{k-n} \sum_{r \in \mathscr{P}^{l} / \mathscr{P}^{n}} \tau\left(c r^{2}\right) \sum_{u \in \mathscr{O} / \mathscr{P}^{n-k}} \tau\left(\frac{b}{a} u^{2}\right)$,
where $l=k$ if $a-1 \in \mathscr{U}$ and $l=0$ if $a-1 \in \mathscr{P}$.
To calculate these sums we need
Lemma 4. If $\omega(\tau)=n$ then $\sum_{x \in \mathscr{O} \mid \mathscr{P}^{n}} \tau\left(x^{2}\right)=q^{\frac{n}{2}} \kappa(\tau)$.
Proof. Suppose n is even. Then

$$
\begin{aligned}
\sum_{x \in \mathscr{O} \mid \mathscr{P}^{n}} \tau\left(x^{2}\right) & =\sum_{u \in \mathscr{O} \left\lvert\, \mathscr{P}^{\frac{n}{2}}\right.} \sum_{v \in \mathscr{P}^{\frac{n}{2}} / \mathscr{P}^{n}} \tau\left((u+v)^{2}\right) \\
& =\sum_{u \in \mathscr{O} \left\lvert\, \mathscr{P}^{\frac{n}{2}}\right.} \tau\left(u^{2}\right) \sum_{v \mathscr{P}^{\frac{n}{2}} / \mathscr{P}^{n}} \tau(2 u v) .
\end{aligned}
$$

But $v \mapsto \tau(2 u v)$ is trivial on $\mathscr{P}^{\frac{n}{2}} / \mathscr{P}^{n} \Leftrightarrow u=0$, so the sum is just $q^{\frac{n}{2}}$ in this case.

If n is odd, then

$$
\sum_{x \in \mathscr{O} \mid \mathscr{P}^{n}} \tau\left(x^{2}\right)=\sum_{u \in \mathcal{O} / \mathscr{P}^{\frac{n+1}{2}}} \tau\left(u^{2}\right) \sum_{v \in \mathscr{P}^{\frac{n+1}{2}} / \mathscr{P}^{n}} \tau(2 u v) .
$$

In this case, $v \mapsto \tau(2 u v)$ is trivial on $\mathscr{P}^{\frac{n+1}{2}} \Leftrightarrow u \in \mathscr{P}^{\frac{n-1}{2}}$, so the sum equals

$$
q^{\frac{n-1}{2}} \sum_{u \in \mathscr{P}^{\frac{n-1}{2}} / \mathscr{P}^{\frac{n+1}{2}}} \tau\left(u^{2}\right) .
$$

Writing $u=\pi^{\frac{n-1}{2}}$, with $r \in \mathscr{O} / \mathscr{P}$, the sum equals

$$
q^{\frac{n-1}{2}} \sum_{r \in \mathcal{O} \mid \mathscr{P}} \tau\left(\pi^{n-1} r^{2}\right)=q^{\frac{n-1}{2}} q^{\frac{1}{2}} G(\tau)=q^{\frac{n}{2}} G(\tau) .
$$

This completes the proof of Lemma 4.
Now we apply Lemma 4 to the sums in (9). First, $\omega\left(\tau_{\frac{b}{a}}\right)=\omega(\tau)-$ $\nu\left(\frac{b}{a}\right)=n-k$, so

$$
\sum_{u \in \mathcal{O} \mid \mathscr{P}^{n-k}} \tau\left(\frac{b}{a} u^{2}\right)=q^{\frac{n-k}{2}} \kappa\left(\tau_{\frac{b}{a}}\right) .
$$

Suppose $\nu(a-1)=0$. Then

$$
\sum_{r \in \mathscr{P}^{k} / \mathscr{P}^{n}} \tau\left(c r^{2}\right)=\sum_{u \in \mathscr{O} / \mathscr{P}^{n-k}} \tau\left(c \pi^{2 k} u^{2}\right) .
$$

Since $\nu(c)=\nu\left(\frac{a-1}{b}\right)=-\nu(b)=-k, \omega\left(\tau_{c \pi^{2 k}}\right)=n-2 k-\nu(c)=n-k$, and we have

$$
\sum_{r \in \mathscr{P}^{k} / \mathscr{P}^{n}} \tau\left(c r^{2}\right)=q^{\frac{n-k}{2}} \kappa\left(\tau_{c \pi^{2 k}}\right)=q^{\frac{n-k}{2}} \kappa\left(\tau_{c}\right) .
$$

Now suppose $\nu(a-1)>0$ and consider

$$
\sum_{r \in \mathscr{O} \mid \mathscr{P}^{n}} \tau\left(c r^{2}\right) .
$$

If $\alpha=\varepsilon$ then $\nu(a-1)=2 \nu(b)=2 k$. We write

$$
\sum_{r \in \mathcal{O} \mid \mathscr{P}^{n}} \tau\left(c r^{2}\right)=\sum_{u \in \mathcal{O} \mid \mathscr{P}^{n-k}} \tau\left(c u^{2}\right) \sum_{v \in \mathscr{P}^{n-k} / \mathscr{P}^{n}} \tau(2 c u v) .
$$

But $\omega\left(\tau_{2 c u}\right)=n-\nu(c u) \leq n-k \Leftrightarrow \nu(c u) \geq k$, which is true for all $u \in \mathcal{O}$, so

$$
\sum_{r \in \mathcal{O} \mid \mathscr{P}^{n}} \tau\left(c r^{2}\right)=q^{k} \sum_{u \in \mathcal{O} \mid \mathscr{O}^{n-k}} \tau\left(c u^{2}\right)=q^{k} q^{\frac{n-k}{2}} \kappa\left(\tau_{c}\right),
$$

where we used Lemma 4 since $\omega\left(\tau_{c}\right)=n-k$.
If $\alpha=\pi$, then $\nu(a-1)=2 \nu(b)+1=2 k+1$. We write

$$
\sum_{r \in \mathscr{O} / \mathscr{P}^{n}} \tau\left(c r^{2}\right)=\sum_{u \in \mathscr{O} / \mathscr{P}^{n-k-1}} \sum_{v \in \mathscr{P}^{n-k-1} / \mathscr{P}^{n}} \tau\left(c(u+v)^{2}\right)
$$

and argue as above to obtain

$$
\sum_{r \in \mathcal{O} / \mathscr{P}^{n}} \tau\left(c r^{2}\right)=q^{k+1} q^{\frac{n-k-1}{2}} \kappa\left(\tau_{c}\right)
$$

Suppose that $a \in \mathscr{U}$ and $\nu(b)=k \geq 0$. We have now shown that if $\nu(a-1)=0$, then we have

$$
\text { trace } \begin{align*}
W_{n}(t, s(t)) & =\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} q^{k-n} q^{\frac{n-k}{2}} \kappa\left(\tau_{c}\right) q^{\frac{n-k}{2}} \kappa\left(\tau_{\frac{b}{a}}\right) \tag{10}\\
& =\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} \kappa\left(\tau_{c}\right) \kappa\left(\tau_{\frac{b}{a}}\right)
\end{align*}
$$

If $\nu(a-1)>0$ and $\alpha=\varepsilon$,

$$
\text { trace } \begin{align*}
W_{n}(t, s(t)) & =\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} q^{k-n} q^{k} q^{\frac{n-k}{2}} \kappa\left(\tau_{c}\right) q^{\frac{n-k}{2}} \kappa\left(\tau_{\frac{b}{a}}\right) \tag{11}\\
& =q^{k} \frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} \kappa\left(\tau_{c}\right) \kappa\left(\tau_{\frac{b}{a}}\right)
\end{align*}
$$

If $\nu(a-1)>0$ and $\alpha=\pi$,
(12) $\quad \operatorname{trace} W_{n}(t, s(t))=\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} q^{k-n} q^{k+1} q^{\frac{n-k-1}{2}} \kappa\left(\tau_{c}\right) q^{\frac{n-k}{2}} \kappa\left(\tau_{\frac{b}{a}}\right)$

$$
=q^{\frac{2 k+1}{2}} \frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} \kappa\left(\tau_{c}\right) \kappa\left(\tau_{\frac{b}{a}}\right)
$$

We can summarize (10), (11), and (12) as follows.
Lemma 5. If $a \in \mathscr{U}$ and $b \neq 0$, then

$$
\operatorname{trace} W_{n}(t, s(t))=q^{\frac{\nu(a-1)}{2}} \frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)} \kappa\left(\tau_{c}\right) \kappa\left(\tau_{\frac{b}{a}}\right)
$$

where $c=-\frac{2 a^{2}(1-a)}{b}$.
To calculate trace $W_{n}(t, s(t))$ when $a \in \mathscr{P}$ we need another decomposition. Note that since $a \in \mathscr{P}$, we have $\alpha=\varepsilon$ and $b \in \mathscr{U}$.

Lemma 6.

$$
(t, s(t))=\left(\left(\begin{array}{cc}
-\frac{1}{b e} & 0 \\
0 & \frac{1}{b e}
\end{array}\right), 1\right)\left(\left(\begin{array}{cc}
1 & a b \varepsilon \\
0 & 1
\end{array}\right), 1\right)\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right)\left(\left(\begin{array}{cc}
1 & \frac{a}{b e} \\
0 & 1
\end{array}\right), 1\right) .
$$

Proof. A calculation shows that the right side equals $(t, 1)$. Noting that $s(t)=1$ in this case completes the proof.

Suppose $\nu(a)=m \geq 1$ and $\omega(\tau)=n$. Choose $f \in S\left(\mathcal{O}, \mathscr{P}^{n}\right)$. Using Lemma 6 , we see that

$$
\begin{aligned}
& \left(W_{n}(t, s(t)) f\right)(x) \\
& =\left|-\frac{1}{b \varepsilon}\right|^{\frac{1}{2}} \frac{\kappa(\tau)}{\kappa\left(\tau_{-b \varepsilon}\right)}\left(W\left(\left(\begin{array}{cc}
1 & a b \varepsilon \\
0 & 1
\end{array}\right), 1\right)\right. \\
& \left.\times W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) W\left(\left(\begin{array}{c}
1 \\
\frac{a}{b} \frac{b}{b_{\varepsilon}} \\
0
\end{array}\right), 1\right) f\right)\left(-\frac{1}{b \varepsilon} x\right) \\
& =\frac{\kappa(\tau)}{\kappa\left(\tau_{-b \varepsilon}\right)} \tau\left(a b \varepsilon\left(-\frac{1}{b \varepsilon}\right)^{2}\right) \\
& \times\left(W\left(\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), 1\right) W\left(\left(\begin{array}{cc}
1 & \frac{a}{b_{\varepsilon}} \\
0 & 1
\end{array}\right), 1\right) f\right)\left(-\frac{1}{b \varepsilon} x\right) \\
& =\frac{\kappa(\tau)^{2}}{\kappa\left(\tau_{-b \varepsilon}\right)} \tau\left(\frac{a}{b \varepsilon} x^{2}\right) q^{-\frac{n}{2}} \sum_{s \in \mathcal{O} / \mathscr{P}^{n}}\left(W\left(\left(\begin{array}{c}
1 \\
\frac{a}{b \varepsilon} \\
0 \\
1
\end{array}\right), 1\right) f\right)(s) \tau\left(-\frac{2 s x}{b \varepsilon}\right) \\
& =\frac{\kappa(\tau)^{2}}{\kappa\left(\tau_{-b \varepsilon}\right)} \tau\left(\frac{a}{b \varepsilon} x^{2}\right) q^{-\frac{n}{2}} \sum_{s \in \mathcal{O} / \mathscr{P}^{n}} \tau\left(\frac{a}{b \varepsilon} s^{2}\right) \tau\left(-\frac{2 s x}{b \varepsilon}\right) f(s) \\
& =\sum_{s \in \mathcal{O} / \mathscr{\mathscr { F }}^{n}} K(x, s) f(s),
\end{aligned}
$$

where

$$
K(x, s)=q^{-\frac{n}{2}} \frac{\kappa(\tau)^{2}}{\kappa\left(\tau_{-b \varepsilon}\right)} \tau\left(\frac{a}{b \varepsilon} x^{2}\right) \tau\left(\frac{a}{b \varepsilon} s^{2}\right) \tau\left(-\frac{2 s x}{b \varepsilon}\right) .
$$

Since $\frac{a}{b \varepsilon} \in \mathscr{O}$ and $-\frac{2 s}{b \varepsilon} \in \mathcal{O}$,

$$
\text { trace } \begin{aligned}
W_{n}(t, s(t)) & =\sum_{s \in \mathscr{O} / \mathscr{P}^{n}} K(s, s) \\
& =q^{-\frac{n}{2}} \frac{\kappa(\tau)^{2}}{\kappa\left(\tau_{-b \varepsilon}\right)} \sum_{s \in \mathscr{O} / \mathscr{P}^{n}} \tau\left(\frac{a}{b \varepsilon} s^{2}\right) \tau\left(\frac{a}{b \varepsilon} s^{2}\right) \tau\left(-\frac{2 s^{2}}{b \varepsilon}\right) \\
& =q^{-\frac{n}{2}} \frac{\kappa(\tau)^{2}}{\kappa\left(\tau_{-b \varepsilon}\right)} \sum_{s \in \mathscr{O} / \mathscr{P}^{n}} \tau\left(c s^{2}\right),
\end{aligned}
$$

where $c=\frac{2(a-1)}{b \varepsilon}$. Since $\nu(c)=\nu(a-1)-\nu(b)=0$, we have $\omega\left(\tau_{c}\right)=$ n. Using Lemma 4, we have

Lemma 7. If $a \in \mathscr{P}$, then

$$
\operatorname{trace} W_{n}(t, s(t))=\frac{\kappa(\tau)^{2}}{\kappa\left(\tau_{-b \varepsilon}\right)} \kappa\left(\tau_{c}\right),
$$

where $c=\frac{2(a-1)}{b \varepsilon}$.
3. Further calculation of the trace. We now refine the formulas in Lemma 5 and Lemma 7. Suppose $E=F(\sqrt{\varepsilon})$. Letting $T_{n}=T \cap K_{n}$, we have a filtration $T \supset T_{1} \supset \ldots$, with $\left[T: T_{1}\right]=q+1$ and $\left[T_{i}:\right.$ $\left.T_{i+1}\right]=q$ for $i \geq 1$. Let $n=\omega(\tau)$.

Proposition 1. Suppose E / F is unramified.
(1) For $t \in T_{k}-T_{k+1}, k \geq 1$, trace $W_{n}(t, s(t))=(-1)^{n-k} q^{k}$.
(2) For $t \notin T_{1}$, trace $W_{n}(t, s(t))=\left(\frac{2(a-1)}{\mathscr{P}}\right)^{n}$.

Proof. Assume first $t \in T_{1}$. Then $a-1 \in \mathscr{P}$ and $b \in \mathscr{P}$. We have $\nu(a)=0$. If $t \in T_{k}-T_{k+1}$, then $\nu(b)=k \geq 0$. We apply Lemma 5. We have $\nu(c)=\nu\left(\frac{b}{a}\right)=k$. Also, $\nu(a-1)=2 \nu(b)=2 k$. If n is even, we have $\kappa(\tau)=\kappa\left(\tau_{a}\right)=1$. If in addition k is even, then $\kappa\left(\tau_{c}\right)=$ $\kappa\left(\tau_{\frac{b}{a}}\right)=1$ and so trace $=q^{k}$. If n is even and k is odd, $\kappa\left(\tau_{c}\right)=G\left(\tau_{c}\right)$ and $\kappa\left(\tau_{\frac{b}{a}}\right)=G\left(\tau_{\frac{b}{a}}\right)$, so trace $=q^{k} G\left(\tau_{c}\right) G\left(\tau_{\frac{b}{a}}\right)$. Letting $b=u \pi^{k}$ and $a-1=v \pi^{2 k}$, we have $c=-\frac{2 a^{2} v}{u}$, so trace $=q^{k}\left(\frac{-2 v u}{\mathscr{D}}\right)\left(\frac{u a}{\mathscr{D}}\right) G(\tau)^{2}=$ $q^{k}\left(\frac{2 v u^{2} a}{\mathscr{D}}\right)=q^{k}\left(\frac{2 v a}{\mathscr{D}}\right)$. But $a-1 \in \mathscr{P} \Rightarrow a \in \mathscr{U}^{2} \Rightarrow\left(\frac{a}{\mathscr{P}}\right)=1$. Also, $a^{2}=\left(1+v \pi^{2 k}\right)^{2}=1+2 v \pi^{2 k}+v^{2} \pi^{4 k}$, and $1+b^{2} \varepsilon=1+u^{2} \pi^{2 k} \varepsilon$. But $a^{2}=1+b^{2} \varepsilon$, so $u^{2} \pi^{2 k} \varepsilon=2 v \pi^{2 k}+v^{2} \pi^{4 k} \Rightarrow u^{2} \varepsilon=2 v+v^{2} \pi^{2 k} \Rightarrow$ $2 v=u^{2} \varepsilon-v^{2} \pi^{4 k}=u^{2} \varepsilon\left(1-\frac{v^{2} \pi^{2 k}}{u^{2} \varepsilon}\right) \in u^{2} \varepsilon(1+\mathscr{P}) \subset \varepsilon \mathscr{U}^{2}$, which implies $2 v$ is not a square $\Rightarrow\left(\frac{2 v}{\mathscr{D}}\right)=-1$, so trace $=-q^{k}$.

If n is odd then $\frac{\kappa(\tau)}{\kappa\left(\tau_{a}\right)}=\frac{G(\tau)}{G\left(\tau_{a}\right)}=\left(\frac{a}{\mathscr{D}}\right)$. If k is even, then $\kappa\left(\tau_{c}\right)=$ $G\left(\tau_{c}\right)$ and $\kappa\left(\tau_{\underline{b}}\right)=G\left(\tau_{\underline{b}}\right)$. Arguing as in the case of n even and k odd, we have trace $=q^{k}\left(\frac{a}{\mathscr{P}}\right) G\left(\tau_{c}\right) G\left(\tau_{\frac{b}{a}}\right)=q^{k}\left(\frac{2 v}{\mathscr{P}}\right)=-q^{k}$. If k is odd, then $\kappa\left(\tau_{c}\right)=\kappa\left(\tau_{\frac{b}{a}}\right)=1 \Rightarrow$ trace $=q^{k}\left(\frac{a}{\mathscr{P}}\right)$. But $a-1 \in \mathscr{P} \Rightarrow\left(\frac{a}{\mathscr{P}}\right)=1$, so trace $=q^{k}$. This completes the proof of (1) of Proposition 1 .

Now assume $t \notin T_{1}$. Then $a-1 \in \mathscr{U}$ or $b \in \mathscr{U}$. We consider various cases: (1) $a-1 \in \mathscr{U}, b \in \mathscr{U}$; (2) $a-1 \in \mathscr{U}, b \in \mathscr{P}$; (3) $a-1 \in$ $\mathscr{P}, b \in \mathscr{U}$. Case (3) cannot arise, since $a^{2}-1=b^{2} \varepsilon \Rightarrow \nu(a-1)$ $+\nu(a+1)=2 \nu(b)$. Then $\nu(a-1)>0 \Rightarrow \nu(b)>0$, which is a contradiction.

We first consider case (1). In this case, we have $\nu(a-1)=0$, $\nu(b)=0$, and we may have $a \in \mathscr{U}$ or $a \in \mathscr{P}$. Suppose first $a \in \mathscr{U}$. We use Lemma 5. If n is even, $\kappa(\tau)=\kappa\left(\tau_{a}\right)=1$. Also, $\nu\left(\frac{b}{a}\right)=$ $\nu(c)=0$, so $\kappa\left(\tau_{c}\right)=\kappa\left(\tau_{\underline{b}}\right)=1$. Since $\nu(a-1)=0$, trace $=1$. If n is odd, trace $=\frac{G(\tau)}{G\left(\tau_{a}\right)} G\left(\tau_{c}\right) G\left(\tau_{\frac{b}{a}}\right)=\left(\frac{a}{\mathscr{D}}\right)\left(\frac{c}{\mathscr{P}}\right)\left(\frac{b a}{\mathscr{P}}\right) G(\tau)^{2}=\left(\frac{2(a-1)}{\mathscr{P}}\right)$. Now suppose $a \in \mathscr{P}$. Then we must use Lemma 7. If n is even,
$\kappa(\tau)=\kappa\left(\tau_{-b \varepsilon}\right)=\kappa\left(\tau_{c}\right)=1$, so trace $=1$. If n is odd, trace $=$ $\frac{G(\tau)}{G(\tau-b)} G\left(\tau_{c}\right)=\left(\frac{c b b}{\mathscr{P}}\right)=\left(\frac{2(a-1)}{\mathscr{P}}\right)$.

We next consider case (2). Now we have $a-1 \in \mathscr{U}$ and $b \in \mathscr{P}$, so $a \in \mathscr{U}$ and we can use Lemma 5. If n is even, then $\kappa(\tau)=\kappa\left(\tau_{a}\right)=1$. If in addition $\nu(b)$ is even, then $\kappa\left(\tau_{c}\right)=\kappa\left(\tau_{\frac{b}{a}}\right)=1$, so trace $=1$. If $\nu(b)$ is odd, then trace $=G\left(\tau_{c}\right) G\left(\tau_{\frac{b}{a}}\right)$. Writing $b=u \pi^{2 k+1}$, this equals $\left(\frac{-2(a-1) u}{\mathscr{S}}\right)\left(\frac{u a}{\mathscr{L}}\right) G(\tau)^{2}=\left(\frac{2 a(a-1)}{\mathscr{D}}\right)$. We claim $\left(\frac{2 a(a-1)}{\mathscr{O}}\right)=1$. We have $\nu(a-1)+\nu(a+1)=2 \nu(b) \geq 2$, so $a-1 \in \mathscr{U} \Rightarrow a+1 \in \mathscr{P} \Rightarrow a=$ $-1+d, d \in \mathscr{P}$. This shows $a-1=-2+d=-2\left(1-\frac{1}{2} d\right) \in-2 \mathscr{U}_{1} \subset$ $-2 \mathscr{U}^{2}$, so $\left(\frac{a-1}{\mathscr{D}}\right)=\left(\frac{-2}{\mathscr{D}}\right)$. Also, $a=-1+d \in(-1) \mathscr{U}_{1} \Rightarrow\left(\frac{a}{\mathscr{D}}\right)=\left(\frac{-1}{\mathscr{D}}\right)$. Therefore, $\left(\frac{2 a(a-1)}{\mathscr{P}}\right)=\left(\frac{2}{\mathscr{D}}\right)\left(\frac{a}{\mathscr{P}}\right)\left(\frac{a-1}{\mathscr{P}}\right)=\left(\frac{2}{\mathscr{P}}\right)\left(\frac{-1}{\mathscr{P}}\right)\left(\frac{-2}{\mathscr{P}}\right)=1$, so in this case trace $=1$.
Now suppose n is odd. Then $\kappa(\tau)=G(\tau)$ and $\kappa\left(\tau_{a}\right)=G\left(\tau_{a}\right)$, so trace $=\left(\frac{a}{\mathscr{D}}\right) \kappa\left(\tau_{c}\right) \kappa\left(\tau_{\underline{b}}\right)$. If $\nu(b)$ is even, $b=u \pi^{2 k}$, then trace $=$ $\left(\frac{a}{\mathscr{P}}\right) G\left(\tau_{c}\right) G\left(\tau_{\frac{b}{a}}\right)=\left(\frac{a}{\mathscr{P}}\right)\left(\frac{\frac{a}{2(a-1) u}}{\mathscr{P}}\right)\left(\frac{u a}{\mathscr{P}}\right) G(\tau)^{2}=\left(\frac{2(a-1)}{\mathscr{P}}\right)$. If $\nu(b)$ is odd, $\kappa\left(\tau_{c}\right)=\kappa\left(\tau_{\frac{b}{a}}\right)=1$, so trace $=\left(\frac{a}{\mathscr{O}}\right)$. But we saw above that $\left(\frac{2 a(a-1)}{\mathscr{P}}\right)=$ 1 , so $\operatorname{trace}=\left(\frac{a}{\mathscr{\mathscr { D }}}\right)=\left(\frac{2(a-1)}{\mathscr{D}}\right)$. This finishes case (2) and thus completes the proof of Proposition 1.
Now we assume E / F is ramified, $E=F(\sqrt{\pi})$. We have a filtration $T \supset T_{0} \supset T_{1} \supset \ldots$, where $T_{n}=\left\{\left.\left(\begin{array}{cc}a & b \\ b \pi & a\end{array}\right) \right\rvert\, a \in 1+\mathscr{P}^{2 n+1}, b \in \mathscr{P}^{n}\right\}$. We have $\left[T: T_{0}\right]=2$ and $\left[T_{n}: T_{n+1}\right]=q$ for $n \geq 1$. Recall that we have a bijection $\phi: \mathcal{O} \rightarrow T_{0}$, where we identify $\left(\begin{array}{c}a \\ b \pi \\ b\end{array}\right) \in T_{0}$ with $a+b \sqrt{\pi} \in N^{1}[\mathbf{S}] . \phi$ is given by

$$
\phi(x)=\frac{1+\pi x^{2}}{1-\pi x^{2}}+\sqrt{\pi} \frac{2 x}{1-\pi x^{2}}
$$

$x \in \mathcal{O}$. Representatives for \mathscr{P}^{n} in \mathscr{O} can be taken to be $\left\{a_{0}+a_{1} \pi+\right.$ $\cdots+a_{n-1} \pi^{n-1} \mid a_{i}=0$ or $\left.a_{i}=\varepsilon^{j}, 0 \leq j \leq q-2\right\}$.

Proposition 2. Suppose E / F is ramified.
(1) Say $t \in T_{i}-T_{i+1}, t=\phi(x), x=a_{i} \pi^{i}+\cdots+a_{n-1} \pi^{n-1}$, with $a_{i}=\varepsilon^{j(t)}, 0 \leq j(t) \leq q-2$. Then

$$
\operatorname{trace} W_{n}(t, s(t))=q^{\frac{2+1}{2}}(-1)^{j(t)}\left(\frac{2}{\mathscr{P}}\right)\left(\frac{-1}{\mathscr{P}}\right)^{n+i+1} G(\tau) .
$$

(2) Say $t \in T-T_{0}$. Then trace $W_{n}(t, s(t))=\left(\frac{-1}{\mathscr{P}}\right)^{n}$.

Proof. We may use Lemma 5 in all cases. Assume first $t \in T_{i}-$ T_{i+1}. Suppose that n and i are both even. With $x=a_{i} \pi^{i}+$ $\cdots+a_{n-1} \pi^{n-1}, \nu(x)=i$. If $\phi(x)=a+b \sqrt{\pi}$, then $\nu(b)=i$, $\nu(a-1)=2 i+1$, and $\nu(c)=i+1$, where $c=-\frac{2 a^{2}(a-1)}{b}$. Then $\kappa\left(\tau_{c}\right)=$ $G\left(\tau_{c}\right)$ and $\kappa\left(\tau_{\underline{b}}\right)=1$. Therefore trace $W_{n}(t, s(t))=q^{\frac{z_{i+1}}{2}} G\left(\tau_{c}\right)$. But $G\left(\tau_{c}\right)=\left(\frac{-2}{\mathscr{T}}\right) G\left(\tau_{\frac{a-1}{b}}^{b}\right)$. Now, $\frac{a-1}{b}=\pi x$, so $G\left(\tau_{\frac{a-1}{b}}\right)=G\left(\tau_{\pi x}\right)=$ $\left(\frac{a_{i}+a_{i+1} \pi+\cdots+a_{n-1} n^{n-i-1}}{\mathscr{P}}\right) G(\tau)$. With $a_{i}=\varepsilon^{j(t)}, a_{i}+a_{i+1} \pi+\cdots+a_{n-1} \pi^{n-i-1}$ $\in \varepsilon \mathscr{U}^{2}$, so $G\left(\tau_{\frac{a-1}{b}}\right)=\left(\frac{\varepsilon^{j(t)}}{\mathscr{D}}\right) G(\tau)=(-1)^{j(t)} G(\tau)$. So

$$
\text { trace }=q^{\frac{2+1+}{2}}\left(\frac{-2}{\mathscr{P}}\right)(-1)^{j(t)} G(\tau)=q^{\frac{2+1}{2}}(-1)^{j(t)}\left(\frac{2}{\mathscr{P}}\right)\left(\frac{-1}{\mathscr{P}}\right)^{n+i+1} G(\tau) .
$$

If n is even and i is odd, then $\kappa\left(\tau_{c}\right)=1$ and $\kappa\left(\tau_{\frac{b}{a}}\right)=G\left(\tau_{\frac{b}{a}}\right)$, so trace $=q^{\frac{2+1}{2}} G\left(\tau_{c}\right) G\left(\tau_{\frac{b}{a}}\right)$. We have

$$
\begin{aligned}
\frac{b}{a} & =\frac{2 x}{1+\pi x^{2}} \\
& =\frac{2 a_{i} \pi^{i}}{1+\pi x^{2}}\left[1+\frac{a_{i+1}}{a_{i}} \pi+\cdots+\frac{a_{n-1}}{a_{i}} \pi^{n-i-1}\right] \in \frac{2 a_{i} \pi^{i}}{1+\pi x^{2}} \mathscr{U}^{2}
\end{aligned}
$$

so $G\left(\tau_{\frac{b}{a}}\right)=\left(\frac{2 a_{1}}{\mathscr{P}}\right) G(\tau)=\left(\frac{2 \varepsilon^{(t)}}{\mathscr{P}}\right) G(\tau)=\left(\frac{2}{\mathscr{P}}\right)(-1)^{j(t)} G(\tau)$. Therefore, trace $=q^{\frac{2 t+1}{2}}\left(\frac{2}{\mathscr{P}}\right)(-1)^{j(t)} G(\tau)$.

If n is odd and i is even,

$$
\operatorname{trace}=q^{\frac{2 i+1}{2}} \frac{G(\tau)}{G\left(\tau_{a}\right)} G\left(\tau_{\frac{b}{a}}\right)=q^{\frac{2 i+1}{2}}\left(\frac{2}{\mathscr{P}}\right)(-1)^{j(t)} G(\tau) .
$$

If n is odd and i is odd,

$$
\text { trace }=q^{\frac{2+1+}{2}} \frac{G(\tau)}{G\left(\tau_{a}\right)} G\left(\tau_{c}\right)=q^{\frac{2+1}{2}}\left(\frac{2}{\mathscr{P}}\right)\left(\frac{-1}{\mathscr{P}}\right)(-1)^{j(t)} G(\tau) .
$$

This completes the proof of (1).
Now suppose $t \notin T_{0}$. For elements of T / T_{0} we use $\{t\}=\{-r\}$, $r \in T_{0}$. We therefore write $t=\binom{-a-b}{-b \pi-a}$, with $a \in 1+\mathscr{P}, b \in \mathscr{O}$, and $c=-\frac{2 a^{2}(a+1)}{b}$. If n is even, then $\kappa(\tau)=\kappa\left(\tau_{a}\right)=1$. If in addition $\nu(b)$ is even, then $\kappa\left(\tau_{c}\right)=\kappa\left(\tau_{\underline{b}}\right)=1$, so trace $=1$. If $\nu(b)$ is odd, trace $=G\left(\tau_{-\frac{2(a+1}{b}}\right) G\left(\tau_{\frac{b}{a}}\right)$. Writing $b=u \pi^{2 l+1}$, this equals $\left(\frac{-1}{\mathscr{D}}\right)\left(\frac{-2(a+1) u}{\mathscr{P}}\right)\left(\frac{u a}{\mathscr{D}}\right)=\left(\frac{2 a(a+1)}{\mathscr{P}}\right)$. But $\nu(a-1)+\nu(a+1)=2 \nu(b)+1$, with $\nu(a+1)=0$ and $\nu(b)>0$, so $a-1 \in \mathscr{P} \Rightarrow a+1 \in 2+\mathscr{P} \subset 2 \mathscr{U}^{2} \Rightarrow$
$\left(\frac{a+1}{\mathscr{D}}\right)=\left(\frac{2}{\mathscr{D}}\right)$. Also, $a \in 1+\mathscr{P} \Rightarrow\left(\frac{a}{\mathscr{P}}\right)=1$, so $\left(\frac{2 a(a+1)}{\mathscr{P}}\right)=\left(\frac{a}{\mathscr{P}}\right)=1$, and therefore trace $=1$.

If n is odd, trace $=\frac{G(\tau)}{G\left(\tau_{-a}\right)} \kappa\left(\tau_{-\frac{2(a+1)}{b}}\right) \kappa\left(\tau_{\frac{b}{a}}\right)=\left(\frac{-1}{\mathscr{P}}\right) \kappa\left(\tau_{-\frac{2(a+1)}{b}}\right) \kappa\left(\tau_{\frac{b}{a}}\right)$. If $\nu(b)$ is even, write $b=u \pi^{2 k}$. Then trace $=\left(\frac{-1}{\mathscr{D}}\right)\left(\frac{-2(a+1) u}{\mathscr{P}}\right) G(\tau)\left(\frac{u}{\mathscr{P}}\right) G(\tau)$ $=\left(\frac{2(a+1)}{\mathscr{P}}\right)\left(\frac{-1}{\mathscr{D}}\right)$. But we still have $a+1 \in 2 \mathscr{U}^{2}$, so trace $=\left(\frac{-1}{\mathscr{D}}\right)$. If $\nu(b)$ is odd, $\kappa\left(\tau_{-\frac{2(a+1)}{b}}\right)=\kappa\left(\tau_{\frac{b}{a}}\right)=1$, so trace $=\left(\frac{-1}{\mathscr{D}}\right)$. For $t \notin T_{0}$, therefore, trace $=\left(\frac{-1}{\mathscr{D}}\right)^{n}$. This completes the proof of Proposition 2.
4. Calculation of multiplicities. In this section we choose $\chi \in \widehat{T}$ with conductor $c(\chi)$ less than or equal to n, and we calculate $\left\langle\chi, W_{n}\right\rangle$, the multiplicity of χ in W_{n}, χ and W_{n} being considered as representations of T / T_{n}.

Assume first that E / F is unramified. Let us say that the conductor of the trivial character of T is zero, and we let θ_{0} be the unique nontrivial character of conductor 1 such that $\theta_{0}^{2}=0$.

Lemma 8. For $t \notin T_{1}, t=\left(\begin{array}{cc}a & b \\ b \varepsilon & a\end{array}\right)$, we have $\left(\frac{2(a-1)}{\mathscr{P}}\right)=-\theta_{0}(t)$.
Proof. We identify $t \in T$ with $\lambda=a+b \sqrt{\varepsilon} \in N^{1}$. Let $|x|_{E}$ be the valuation on E. If $|1+\lambda|_{E}=1$, we can write $\lambda=\frac{1+x \sqrt{\varepsilon}}{1-x \sqrt{\varepsilon}}, x \in \mathscr{O}$. Then $\lambda+\lambda^{-1}+2=\frac{4}{1-\varepsilon x^{2}}$, and $2(a-1)=\lambda+\lambda^{-1}-2=\frac{4 \varepsilon x^{2}}{1-\varepsilon x^{2}}$. It is proved in [S-Sh] that if $|1+\lambda|_{E}=1$, then $\left(\frac{\lambda+\lambda^{-1}+2}{\mathscr{P}}\right)=\left(\frac{1-\varepsilon x^{2}}{\mathscr{P}}\right)=\theta_{0}(\lambda)$. Therefore, $\left(\frac{2(a-1)}{\mathscr{D}}\right)=\left(\frac{\lambda+\lambda^{-1}-2}{\mathscr{D}}\right)=\left(\frac{4 \varepsilon x^{2}\left(1-\varepsilon x^{2}\right)}{\mathscr{D}}\right)=-\left(\frac{1-\varepsilon x^{2}}{\mathscr{D}}\right)=-\theta_{0}(t)$. If $|1+\lambda|_{E}>0$, then $-\lambda \in 1+\mathscr{P}_{E}\left(\mathscr{P}_{E}\right.$ the prime ideal in $\left.E\right)$ and $\lambda=$ $-s^{2}, s \in N^{1}$. Write $s=c+d \sqrt{\varepsilon}$. Then $\lambda=-s^{2} \Rightarrow 2(a-1)=-4 c^{2}$, so $\left(\frac{2(a-1)}{\mathscr{P}}\right)=\left(\frac{-1}{\mathscr{D}}\right)$. But we also have $\lambda=-s^{2} \Rightarrow \theta_{0}(\lambda)=\theta_{0}\left(-s^{2}\right)=$ $\theta_{0}(-1)$, and it is proved in [S-Sh] that $\theta_{0}(-1)=-\left(\frac{-1}{\mathscr{P}}\right)$. Therefore, $\left(\frac{2(a-1)}{\mathscr{P}}\right)=\left(\frac{-1}{\mathscr{P}}\right)=-\theta_{0}(-1)=-\theta_{0}(\lambda)$. This completes the proof of Lemma 8.

Proposition 3. Suppose E / F is unramified and $c(\chi)=i$.
(1) If n is even and i is even, then $\left\langle\chi, W_{n}\right\rangle=1$.
(2) If n is even and i is odd, then $\left\langle\chi, W_{n}\right\rangle=0$.
(3) Say n is odd and i is even. Then $\left\langle\chi, W_{n}\right\rangle=0$ if $\chi \neq 1$, and $\left\langle 1, W_{n}\right\rangle=1$.
(4) Say n is odd and i is odd. Then $\left\langle\chi, W_{n}\right\rangle=1$ if $\chi \neq \theta_{0}$, and $\left\langle\theta_{0}, W_{n}\right\rangle=0$.

Proof. Suppose $n=\omega(\tau)$ is even and $c(\chi)=i>1$. Then

$$
\left\langle\chi, W_{n}\right\rangle=\frac{1}{(q+1) q^{n-1}}\left[q^{n}+\sum_{t \notin T_{1}} \bar{\chi}(t)+\sum_{m=1}^{n-1} \sum_{t \in T_{m}-T_{m+1}} \bar{\chi}(t)(-1)^{m} q^{m}\right]
$$

But $\sum_{t \notin T_{1}} \bar{\chi}(t)=\sum_{t \in T} \bar{\chi}(t)-\sum_{t \in T_{1}} \bar{\chi}(t)=0$, so

$$
\left\langle\chi, W_{n}\right\rangle=\frac{1}{(q+1) q^{n-1}}
$$

$$
\times\left[q^{n}+\sum_{m=1}^{i-2}\left[(-1)^{m} q^{m} \sum_{t \in T_{m}} \bar{\chi}(t)-(-1)^{m} q^{m} \sum_{t \in T_{m+1}} \bar{\chi}(t)\right]\right.
$$

$$
+\left[(-1)^{i-1} q^{i-1} \sum_{t \in T_{\imath-1}} \bar{\chi}(t)-(-1)^{i-1} q^{i-1} \sum_{t \in T_{i}} 1\right]
$$

$$
\left.+\sum_{m=i}^{n-1}\left[(-1)^{m} q^{m} q^{n-m}-(-1)^{m} q^{m} q^{n-m-1}\right]\right]
$$

$$
=\frac{1}{(q+1) q^{n-1}}\left[q^{n}-(-1)^{i-1} q^{i-1} q^{n-i}\right.
$$

$$
\left.+\sum_{m=i}^{n-1}\left[(-1)^{m} q^{n}-(-1)^{m} q^{n-1}\right]\right]
$$

$$
=\frac{1}{(q+1) q^{n-1}}\left[q^{n}-(-1)^{i-1} q^{n-1}+\left(q^{n}-q^{n-1}\right) \sum_{m=i}^{n-1}(-1)^{m}\right]
$$

If i is even, this equals one, and if i is odd, it equals zero.
If n is even and $c(\chi)=1$, then

$$
\begin{aligned}
\left\langle\chi, W_{n}\right\rangle & =\frac{1}{(q+1) q^{n-1}}\left[q^{n}+\sum_{t \notin T_{1}} \bar{\chi}(t)+\sum_{m=1}^{n-1} \sum_{t \in T_{m}-T_{m+1}}(-1)^{m} q^{m}\right] \\
& =\frac{1}{(q+1) q^{n-1}}\left[q^{n}-q^{n-1}-\left(q^{n}-q^{n-1}\right)\right]=0
\end{aligned}
$$

Also, if n is even, then

$$
\left\langle 1, W_{n}\right\rangle=\frac{1}{(q+1) q^{n-1}}\left[q^{n}+\sum_{t \notin T_{1}} 1+\sum_{m=1}^{n-1} \sum_{t \in T_{m}-T_{m+1}}(-1)^{m} q^{m}\right]=1
$$

This proves (1) and (2) of Proposition 3.

Now suppose n is odd. If $c(\chi)=i>1$ then

$$
\begin{aligned}
\left\langle\chi, W_{n}\right\rangle= & \frac{1}{(q+1) q^{n-1}} \\
& \times\left[q^{n}-\sum_{t \notin T_{1}} \bar{\chi}(t) \theta_{0}(t)+\sum_{m=1}^{i-1} \sum_{t \in T_{m}-T_{m+1}} \bar{\chi}(t)(-1)^{m+1} q^{m}\right. \\
& \left.+\sum_{m=i}^{n-1} \sum_{t \in T_{m}-T_{m+1}}(-1)^{m+1} q^{m}\right]
\end{aligned}
$$

But $\sum_{t \notin T_{1}} \bar{\chi}(t) \theta_{0}(t)=0$ and

$$
\sum_{m=1}^{i-2} \sum_{t \in T_{m}-T_{m+1}} \bar{\chi}(t)(-1)^{m+1} q^{m}=0
$$

SO
$\left\langle\chi, W_{n}\right\rangle=\frac{1}{(q+1) q^{n-1}}\left[q^{n}+(-1)^{i} q^{i-1} q^{n-i}+\left(q^{n}-q^{n-1}\right) \sum_{m=i}^{n-1}(-1)^{m+1}\right]$.
If i is even, this equals zero and if i is odd, it equals one.
If $c(\chi)=1$ or $\chi=1$, then

$$
\begin{aligned}
\left\langle\chi, W_{n}\right\rangle & =\frac{1}{(q+1) q^{n-1}}\left[q^{n}-\sum_{t \notin T_{1}} \bar{\chi}(t) \theta_{0}(t)+\sum_{m=1}^{n-1} \sum_{t \in T_{m}-T_{m+1}}(-1)^{m+1} q^{m}\right] \\
& =\frac{1}{(q+1) q^{n-1}}\left[q^{n}-\sum_{t \in T} \bar{\chi}(t) \theta_{0}(t)+\sum_{t \in T_{1}} \bar{\chi}(t) \theta_{0}(t)\right] \\
& =\frac{q^{n}}{(q+1) q^{n-1}}-\left\langle\chi, \theta_{0}\right\rangle+\frac{q^{n-1}}{(q+1) q^{n-1}} \\
& =1-\left\langle\chi, \theta_{0}\right\rangle
\end{aligned}
$$

This completes the proof of Proposition 3.
Now we assume E / F is ramified. Let θ_{0} be the unique nontrivial character of T / T_{0}.

Proposition 4. Let E / F be ramified. Then
(1) $\left\langle 1, W_{n}\right\rangle=1$ if n is even or $\left(\frac{-1}{\mathscr{D}}\right)=1$, and equals 0 otherwise.
(2) $\left\langle\theta_{0}, W_{n}\right\rangle=1-\left\langle 1, W_{n}\right\rangle$.

Proof. We have

$$
\begin{aligned}
\left\langle 1, W_{n}\right\rangle=\frac{1}{2 q^{n}}\left[q^{n}\right. & +\sum_{t \notin T_{0}}\left(\frac{-1}{\mathscr{P}}\right)^{n} \\
& \left.+\sum_{i=0}^{n-1} \sum_{t \in T_{i}-T_{l+1}} q^{\frac{2 t+1}{2}}(-1)^{j}\left(\frac{2}{\mathscr{P}}\right)\left(\frac{-1}{\mathscr{P}}\right)^{n+i+1} G(\tau)\right]
\end{aligned}
$$

where j was defined in Proposition 2. Consider $\sum_{t \in T_{i}-T_{t+1}}(-1)^{j}$. Since $a_{i}=\varepsilon^{j}$, and $h \neq i \Rightarrow a_{h}$ can assume the values $0,1, \varepsilon, \ldots$, ε^{q-2}, this sum is zero, so $\left\langle 1, W_{n}\right\rangle=\frac{1}{2 q^{n}}\left[q^{n}+\left(\frac{-1}{\mathscr{D}}\right)^{n} q^{n}\right]$, which gives the result.

Similarly, $\left\langle\theta_{0}, W_{n}\right\rangle=\frac{1}{2 q^{n}}\left[q^{n}+\left(\frac{-1}{\mathscr{P}}\right)^{n} \sum_{t \notin T_{0}} \theta_{0}(t)\right]$. But $\sum_{t \notin T_{0}} \theta_{0}(t)$ $=\sum_{t \in T} \theta_{0}(t)-\sum_{t \in T_{0}} \theta_{0}(t)=-q^{n}$, so $\left\langle\theta_{0}, W_{n}\right\rangle=\frac{1}{2}\left[1-\left(\frac{-1}{\mathscr{P}}\right)^{n}\right]$. This completes the proof of Proposition 4.

Proposition 5. Assume $c(\chi)=m>0$. Then $\left\langle\chi, W_{n}\right\rangle$ equals 0 or 1 , and exactly half of the characters χ of conductor m satisfy $\left\langle\chi, W_{n}\right\rangle=1$.

Proof. We have

$$
\begin{aligned}
\left\langle\chi, W_{n}\right\rangle=\frac{1}{2 q^{n}}\left[q^{n}\right. & +\sum_{t \notin T_{0}} \bar{\chi}(t)\left(\frac{-1}{\mathscr{P}}\right)^{n} \\
& \left.+\sum_{i=0}^{n-1} \sum_{T_{i}-T_{i+1}} \bar{\chi}(t) q^{\frac{2 t+1}{2}}\left(\frac{-1}{\mathscr{P}}\right)^{n+i+1}(-1)^{j(t)} G(\tau)\right]
\end{aligned}
$$

where $j(t)$ is as in Proposition 2. Since χ is nontrivial on T_{0}, $\sum_{t \notin T_{0}} \bar{\chi}(t)=0$, so

$$
\begin{aligned}
\left\langle\chi, W_{n}\right\rangle=\frac{1}{2 q^{n}}\left[q^{n}\right. & +\left(\frac{2}{\mathscr{P}}\right)\left(\frac{-1}{\mathscr{P}}\right)^{n+1} G(\tau) \\
& \times\left[\sum_{i=0}^{m-2}\left(\frac{-1}{\mathscr{P}}\right)^{i} q^{\frac{2 i+1}{2}} \sum_{t \in T_{i}-T_{t+1}} \bar{\chi}(t)(-1)^{j(t)}\right. \\
& +\left(\frac{-1}{\mathscr{P}}\right)^{m-1} q^{\frac{2 m-1}{2}} \sum_{t \in T_{m-1}-T_{m}} \bar{\chi}(t)(-1)^{j(t)} \\
& \left.\left.\quad+\sum_{i=m}^{n-1}\left(\frac{-1}{\mathscr{P}}\right)^{i} q^{\frac{2++1}{2}} \sum_{t \in T_{i}-T_{i+1}}(-1)^{j(t)}\right]\right]
\end{aligned}
$$

As before, $\sum_{t \in T_{i}-T_{i+1}}(-1)^{j(t)}=0$ for $m \leq i \leq n-1$. Now consider $\sum_{t \in T_{i}-T_{i+1}} \bar{\chi}(t)(-1)^{j(t)}$ for $0 \leq i \leq m-2$. Write this sum as

$$
\sum_{S_{1}} \sum_{S_{2}} \bar{\chi}\left(\phi\left(a_{i} \pi^{i}+\cdots+a_{n-1} \pi^{n-1}\right)\right)(-1)^{j(t)}
$$

where $S_{1}=\left\{a_{i}, a_{i+1}, \ldots, a_{m-2} \mid a_{i} \neq 0\right\}, S_{2}=\left\{a_{m-1}, \ldots, a_{n-1}\right\}$, and ϕ is the map on \mathscr{O} to T_{0} which was recalled above. If $x \in \mathscr{P}^{n}$, then $\phi(x) \in T_{n}$. If $x, y \in \mathscr{O}$,

$$
\frac{\phi(x) \phi(y)}{\phi(x+y)}=\frac{a-b \sqrt{\pi}}{a+b \sqrt{\pi}}=c+d \sqrt{\pi}
$$

where $a=1-\pi\left(x^{2}+x y+y^{2}\right), b=\pi x y(x+y), c=\frac{a^{2}+b^{2} \pi}{a^{2}-b^{2} \pi}$, and $d=-\frac{2 a b}{a^{2}-b^{2} \pi}$. Let $x=a_{i} \pi^{i}+\cdots+a_{m-2} \pi^{m-2}$ and $y=a_{m-1} \pi^{m-1}+\cdots+$ $a_{n-1} \pi^{n-1}$. Then $\nu(x)=i$ and y either equals 0 or satisfies $\nu(y) \geq$ $m-1$. We need only consider the case $y \neq 0$. Then $\nu(x+y) \geq i$, so $\nu(c) \geq 2 m+1$ and $\nu(d) \geq m$. Therefore, $c+d \sqrt{\pi} \in T_{m}$. Since $\chi \equiv 1$ on T_{m}, we have $\chi(\phi(x)) \chi(\phi(y))=\chi(\phi(x+y))$. This shows that

$$
\sum_{t \in T_{i}-T_{i+1}} \bar{\chi}(t)(-1)^{j(t)}=\sum_{S_{1}} \bar{\chi}(\phi(x))(-1)^{j(t)} \sum_{S_{2}} \bar{\chi}(\phi(y))
$$

But

$$
\sum_{S_{2}} \bar{\chi}(\phi(y))=\sum_{t \in T_{m-1}} \bar{\chi}(t)=0
$$

since $\chi \not \equiv 1$ on T_{m-1}. Therefore,

$$
\sum_{t \in T_{i}-T_{i+1}} \bar{\chi}(t)(-1)^{j(t)}=0
$$

for $0 \leq i \leq m-2$.
Next, consider

$$
\sum_{t \in T_{m}-T_{m+1}} \bar{\chi}(t)(-1)^{j(t)}
$$

Here, $t=\phi\left(a_{m-1} \pi^{m-1}+\cdots+a_{n-1} \pi^{n-1}\right)$, with $a_{m-1}=\varepsilon^{j(t)}, 0 \leq$ $j(t) \leq q-2$. Let $x=a_{m-1} \pi^{m-1}, y=a_{m} \pi^{m}+\cdots+a_{n-1} \pi^{n-1}$. As before,

$$
\frac{\phi(x) \phi(y)}{\phi(x+y)} \in T_{m}
$$

which makes

$$
\begin{align*}
\sum_{t \in T_{m}-T_{m+1}} \bar{\chi}(t)(-1)^{j(t)} & =\sum_{S_{2}} \bar{\chi}(\phi(x)) \bar{\chi}(\phi(y))(-1)^{j(t)} \tag{13}\\
& =q^{n-m} \sum_{a_{m-1} \neq 0} \bar{\chi}\left(\phi\left(a_{m-1} \pi^{m-1}\right)\right)(-1)^{j(t)}
\end{align*}
$$

since $\phi(y) \in T_{m}$ and $\chi \equiv 1$ on T_{m}.
We have a map

$$
\mathscr{P}^{m-1} / \mathscr{P}^{m} \xrightarrow{\phi} T_{m-1} / T_{m} \xrightarrow{\bar{\chi}} \mathbb{C} .
$$

For $x, y \in \mathscr{P}^{m-1}$,

$$
\frac{\phi(x) \phi(y)}{\phi(x+y)} \in T_{m},
$$

so $\bar{\chi} \phi$ is an additive homomorphism on $\mathscr{P}^{m-1} / \mathscr{P}^{m}$ to \mathbb{C}. Letting $\psi=\bar{\chi} \phi$, (13) becomes

$$
q^{n-m} \sum_{j=0}^{q-2} \psi\left(\varepsilon^{j} \pi^{m-1}\right)(-1)^{j}=q^{n-m} \sum_{x \in \mathscr{O} \mid \mathscr{P}} \psi\left(\pi^{m-1} x^{2}\right)=q^{n-m} q^{\frac{1}{2}} G(\psi) .
$$

(Note that $\psi_{\pi^{m-1}}$ is a character of $\mathscr{O} / \mathscr{P}$.) We can now write

$$
\left\langle\chi, W_{n}\right\rangle=\frac{1}{2 q^{n}}\left[q^{n}+\left(\frac{2}{\mathscr{P}}\right)\left(\frac{-1}{\mathscr{P}}\right)^{n+m} q^{n} G(\tau) G(\psi)\right],
$$

which equals 0 or 1 . Notice that $\psi_{\pi^{m-1}}=\tau_{\pi^{n-1} \varepsilon^{i} u}$ for some $0 \leq$ $i \leq q-2, u \in 1+\mathscr{P}$. Then $G(\tau) G(\psi)=\left(\frac{-\varepsilon^{i}}{\mathscr{D}}\right)=\left(\frac{-1}{\mathscr{D}}\right)(-1)^{i}$, which takes on each value ± 1 for half the $q-1$ possible values of i. This completes the proof of Proposition 5.

If E / F is ramified, suppose that we replace τ by $\tau_{u}, u \in \mathscr{U}$. Then the characters of a given conductor appearing in W_{n}^{τ} will be the same as those appearing in $W_{n}^{\tau_{u}}$ if $\left(\frac{u}{\mathscr{D}}\right)=1$. If $\left(\frac{u}{\mathscr{P}}\right)=-1$, then the two sets of characters of a given conductor $m>0$ appearing respectively in W_{n}^{τ} and $W_{n}^{\tau_{\alpha}}$ are disjoint. By varying τ, we thus obtain all characters of conductor $m>0$ in the restriction to T of some W^{τ}.
5. Decomposition of $\left.W^{\tau}\right|_{T}$. In this section we use the results of the preceding section to determine the decomposition of $\left.W^{\tau}\right|_{T}$.

Lemma 9. For $2 k>-n$, let $H_{k}=S\left(\mathscr{P}^{-k}, \mathscr{P}^{n+k}\right)$. Then H_{k} is an invariant subspace for W^{τ} which is equivalent to $W_{n+2 k}^{\tau_{\alpha}}$, where $\alpha=\pi^{-2 k}$.

Proof. Recall that if $\beta \in F$ and $\alpha=\beta^{2}$, then $W^{\tau}=R^{-1} W^{\tau} R$, where $(R f)(x)=|\beta|^{\frac{1}{2}} f(\beta x)$. Let $\beta=\pi^{-k}$. Then $\omega\left(\tau_{\alpha}\right)=n+2 k$. Suppose $g \in K$. Then $f \in H_{k} \Rightarrow R f \in S\left(\mathcal{O}, \mathscr{P}^{n+2 k}\right) \Rightarrow W^{\tau_{a}}(g) R f \in$ $S\left(\mathscr{O}, \mathscr{P}^{n+2 k}\right) \Rightarrow R^{-1} W^{\tau_{\alpha}}(g) R f \in H_{k}$. Thus H_{k} is invariant under W^{τ}. Also, $W^{\tau}(g) f=f$ if $f \in H_{k}$ and $g \in K_{n+2 k}$. We thus have a representation of $K / K_{n+2 k}$ on H_{k} which is a subrepresentation of W^{τ} and which is equivlent to $W_{n+2 k}^{\tau_{\alpha}}$. This completes the proof of Lemma 8.

Suppose $W^{\tau}(t) f=\chi(t) f$ for all $t \in T$. If $f \in S\left(\mathscr{P}^{r}, \mathscr{P}^{s}\right)$, choose k so that $-k \leq r$ and $n+k \geq s$. Then $S\left(\mathscr{P}^{r}, \mathscr{P}^{s}\right) \subset$ $S\left(\mathscr{P}^{-k}, \mathscr{P}^{n+k}\right)=H_{k}$. Then the action of W^{τ} on H_{k} is equivalent to $W_{n+2 k}^{\tau_{\alpha}}, \alpha=\pi^{-2 k}$, by Lemma 9. This implies χ appears in $W_{n+2 k}^{\tau_{\alpha}}$. We apply Proposition 3 to each of the representations $W_{n+2 k}^{\tau_{\alpha}}, k \geq 0$, to obtain

Proposition 6. Suppose E / F is unramified, $\omega(\tau)=n$, and $c(\chi)=$ i.
(1) If n is even and i is even, then $\left\langle\chi,\left.W^{\tau}\right|_{T}\right\rangle=1$.
(2) If n is even and i is odd, then $\left\langle\chi,\left.W^{\tau}\right|_{T}\right\rangle=0$.
(3) If n is odd and i is even, then $\left\langle\chi,\left.W^{\tau}\right|_{T}\right\rangle=0$ if $\chi \neq 1$, and $\left\langle 1,\left.W^{\tau}\right|_{T}\right\rangle=1$.
(4) If n is odd and i is odd, then $\left\langle\chi, W^{\tau} \mid T\right\rangle=1$ if $\chi \neq \theta_{0}$, and $\left\langle\theta_{0},\left.W^{\tau}\right|_{T}\right\rangle=0$.

We argue in a similar fashion if E / F is ramified. Applying Propositions 4 and 5, we obtain

Proposition 7. Suppose E/F is ramified and $\omega(\tau)=n$.
(1) $\left\langle 1,\left.W^{\tau}\right|_{T}\right\rangle=1$ if n is even or $\left(\frac{-1}{\mathbb{P}}\right)=1$, and equals 0 otherwise.
(2) $\left\langle\theta_{0},\left.W^{\tau}\right|_{T}\right\rangle=1-\left\langle 1,\left.W^{\tau}\right|_{T}\right\rangle$.
(3) If $c(\chi)=m>0$, then

$$
\left\langle\chi, W^{\tau} \mid T\right\rangle=1 \Leftrightarrow G(\tau) G(\psi)=\left(\frac{2}{\mathscr{P}}\right)\left(\frac{-1}{\mathscr{P}}\right)^{n+m},
$$

where $\psi=\bar{\chi} \phi$. Otherwise, $\left\langle\chi,\left.W^{\tau}\right|_{T}\right\rangle=0$.
(4) Exactly half the characters χ of a given conductor satisfy $\left\langle\chi,\left.W^{\tau}\right|_{T}\right\rangle=1$.

References

[G1] S. Gelbart, Weil's representation and the spectrum of the metaplectic group, Lecture Notes in Math., vol. 530, Springer-Verlag, Berlin, 1976.
[G2] _ Examples of dual reductive pairs, Proceedings of Symposia in Pure Mathematics, vol. 33, pt. 1, Amer. Math. Soc., Providence, R.I., 1979, pp. 287-296.
[H] R. Howe, θ-series and invariant theory, Proceedings of Symposia in Pure Mathematics, vol. 33, pt. 1, Amer. Math. Soc., Providence, R.I., 1979, pp. 275-285.
[MVW] C. Moeglin, M.-F. Vigneras, and J. L. Waldspurger, Correspondances de Howe sur un corps p-adique, Lectures Notes in Math., vol. 1291, SpringerVerlag, Berlin, 1987.
[R1] J. Rogawski, Automorphic representations of unitary groups in three variables, Annals of Math. Studies 123, Princeton Univ. Press, 1990.
[R2] , The multiplicity formula for A-packets, preprint.
[S] P. J. Sally, Jr., Invariant subspaces and Fourier-Bessel transforms on the p-adic plane, Math. Annalen, 174 (1967), 247-264.
[S-Sh] P. J. Sally, Jr. and J. A. Shalika, The Fourier transform of orbital integrals on Sl_{2} over a p-adic field, Lie Group Representations II, Lecture Notes in Math., vol. 1041, Springer-Verlag, Berlin, 1983, pp. 329-330.
[Sh] J. A. Shalika, Representations of the two by two unimodular group over local fields, IAS notes, 1966.

Received August 14, 1991.
U. S. Naval Academy

AnNapolis, MD 21402

