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THE DUAL PAIR (1/(1), £7(1)) OVER A /?-ADIC FIELD

COURTNEY MOEN

We find an explicit decomposition for the metaplectic representa-
tion restricted to either member of the dual reductive pair
(7(1)) in SL(2, F), where F is a /?-adic field, with p odd.

1. Introduction and preliminaries. Let F be a p-adic field of odd
residual characteristic with q being the order of the residue class field.
Let (9 be the ring of integers, & the prime ideal, V the units, π a
prime element, and v the valuation on F. Let G = SL(2, F).

For σ = (a

c

b

d) e (?, let JC(CJ) = C if c ^ 0, and let x(σ) = d if

c = 0. Define a 2-cocycle on G by

This cocycle determines a nontrivial 2-sheeted covering group G of
G [Gl].

Let E be a quadratic extension of F, and x »-> x the Galois action.
The group 17(1) which preserves the Hermitian form (x, j>)»-» xy on
E is isomorphic to the group iV1 of norm one elements in E. The
pair of subgroups (17(1), C/(l)) of SL(2) form a dual reductive pair
[H]. This dual pair is one of the simplest examples over a p-adic field.
Some other basic examples of dual reductive pairs are discussed in
[G2]. In this paper we determine the decomposition of the oscillator
representation of G upon restriction to 17(1) c G.

The results in this paper have recently been applied by Rogawski
to the problem of calculating the multiplicities of certain auto-
morphic representations π of ί/(A) in the discrete spectrum of
L2(U(k)\U(A)), where U is a unitary group in 3 variables defined
relative to a quadratic extension of number fields K/k [Rl, R2]. I
would like to thank Rogawski for several stimulating conversations
and for encouraging me to publish this paper.

Let T be a character of F. Choose a normalized measure μ so
that μ(ff) = q^, where ω(τ) is the conductor of τ . Denote this
measure by dτx. Then if we define the Fourier transform on S(F),
the space of locally compact functions on F with compact support,
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by

f(x) = Jf(y)τ(2xy)dτy,

we have f(x) = f(—x). For a e F, we set τα(x) = τ(ax). Let

κ(τ) = lim / τ(x2)dτx.

Recall [Sh] that κ(τ) = 1 if ω(τ) even, and

if ft = ω(τ) is odd. For u e ^ , let (j|r) = 1 if w is a square,
and (J?) = - 1 otherwise. Then we have G(τ)2 = (ϊpj ) and G(τu) =
($>)G(τ) for ue &/

We now define the metaplectic representation W = Wτ of G as-
sociated to the quadratic form Q(x) = x2 by specifying the action on
generators [Gl]. Here ζ = ±1, and |α| is the absolute value on F.

The cocycle defining G splits on the compact subgroup K =
by a function 5 : ^ —• Zι. ΛΓ thus lifts as a subgroup of G by fc ι->
(fc, s (fc)), and we may thus restrict W to obtain a representation of
K on S ( F ) . Note that U(l) c K. Our goal is to find the characters
of C/(l) which appear in the restriction of W to 17(1).

Let S{&r, <^) be the space of functions on F which have support
on &r and which are constant on cosets of £PS in £Pr. Suppose
co(τ) = « > 1. Then 5r(^>, c^w) is invariant under Wτ restricted to
K, and the group

acts trivially on S(#, &n). We thus obtain a representation Wn =
H^τ of K/Kn s S L 2 ( ^ / ^ Π ) on 5 ( ^ , ^ n ) . Note that we may con-
sider τ as a character of
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2. Calculation of the trace. In this section we calculate the trace
of Wn(f), where t denotes either an element of T or its image in

is the torus in G corresponding to the quadratic extension E =
F(y/a). It will suffice to let a = τ or a = ε, a primitive (q — 1) st
root of unity in (9.

LEMMA 1. For t = (* b) eT, we have the decomposition
ba a

y{t) = (α, 6) if a = ε,b e&, and a φ %, and γ(ή = 1

otherwise. Also,

-°> ί) 0
Proof. Both statements are clearly true if b = 0, so we suppose b Φ 0.

A calculation shows that the right side of (1) equals (t, (a, baa)γ(t)).
We must therefore show that s(t) = (a, baa)γ(t) for tφ±I. Recall
[G] that s{t) = (ba9a) if b φ 0 and ba φ % , and s(t) = 1 oth-
erwise. First suppose a — π. In this case α G ^ , s o (a, όπα) =
(α, 6π) = j ( ί ) . Now suppose α = ε. If b $ %, then έ2ε G

so (a, bεa)γ(t) = (α, Z?ε) = s(t). If δ G ^ , then s (ί) = 1, so we
must show (α, bεa)γ(t) = 1. If α G ^ , then y(ί) = 1 so we need
(a, &εα) = 1, which is true since a G ̂  and b e%f. If a £ %, then
y(ί) = (a, b), so we must show (α, bεa){a, b) = 1 ^ (α, εα) = 1.
But α ^ ^ => α 2 G ̂ 2 =^ 1 +ό 2 ε G 3°2 => -6 2 ε G 1 + ^ 2 . This shows
~ε G ̂ 2 , so (α, εα) = (α, (-ε)(-α)) = (α, -ε)(α, -α) = (α, -α) =
1.

LEMMA 2. Suppose t = (" b) e T and a e %. ΓΛ^ for f e
ba a

(WH(t, s{t))f)(x) = $pr J ] Kbaa(ax, s)τ βs2) f(s),
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where, for ce@,

τ{-crz)τ{-2xr)τ{2rs).
i

Proof. For any φ e S{&, ^
n
) , we have, for C E ^ ,

But 0 G S(<!f, ^ B B ) =• φ € 5 ( ^ , ̂ " ) , so for c G if, we have

For any ^ G S(<f, 3d"), we have

ψ(x)= ψ(y)τ(2xy)dτy=

But y ι-» τ(2Λ:y) is trivial on &n & x e ^ , so ^(x) = 0 if JC
and if x € (f, we have

Z^
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Therefore,

- gfr-i Σ ("'((iT) O
0_χ\) , \) Φ) {r)τ{-2xr)

= W7q~n

But

— r = 1,

so we get

/ / / « Λ \ \ \ _

Kc(x,s)φ(s),

where for c € &,

Kc{x,s) = q-n Σ τ{-cr2)τ{-2xr)τ{2rs).

Now we calculate the action of Wn(t, s{t)) for a e ^ . Note that
in this case, γ(t) = 1. For / € S(df, &n), we have

Here we used the fact that

This completes the proof of Lemma 2.
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If a e %, the action of Wn(t, s(ή) is therefore given by the kernel

b

We now use this kernel to calculate the trace of Wn(t, s{t)) when
a eW. The kernel is a function defined on ^ / J 3 " x ^y^"1, so we
have

(3) t raced, s(0) = ]Γ ^Ϊ-Kbaa(as, s)τ£s2)

5\ Σ «-" Σ τ(-

Σ *H^2) ΣΣ

Suppose v(b) = k. The inner sum can be written

Σ Σ τ β(u + v)Λ τ(2r(l - a)(u + υ))

= Σ τβuΛτ(2r{\-a)u) ^ τ(2r(\-a)υ)
e<?/&>"~k eS""'kis?"

since \uv e^n and fυ 2 € &>n .
Consider the sum

τ(2r(l-α)t;).

Since α e ^ , we may have v{a-1) = 0 or i/(α-1) > 0. Suppose first
that v{a - 1) = 0. Then T2r(i_fl) is trivial on <pn~k <& ω(τ2r(i_α)) <
n - k o r G ^ . If r £ ^ * , we have

τ(2r(l-fl)t;) = 0,

and (3) therefore equals

(4) j ^ f f - V Σ τ(-6ααr2) J ] τ ( ^ + 2r(l - α«)
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The inner sum in (4) equals

_ T ( _
Σ

Since i/(δ) = fc and t; € ^ f c , we have i/(r(1~a)fl)) = i/(r) - i/(δ) > 0,
so {u + r-ίk^°} = @l&n-* and (5) equals

- ^ ) Σ
So if α € ^ , α - l € ^ , and v(b) = k, we have

(6) trace Wn(t, s(t)) = ^τqk~n

τ -

where c = _i2JpU.
Now we consider the sum

τ(2r(l-α)t;)

in the case when z/(α - 1) > 0. We have a2 - 1 = £2α => z/(α - 1)
+ v{a + 1) = 2v{b) + u(ά). Since a - 1 € <^, we have a + 1 =
(α - 1) + 2 € ^ , so i/(α - 1) = 2i/(b) + i/(α). We therefore have
v{a - 1) > ι/(ft) = k. This shows that t2r(i-a) is trivial on ^ " - ^ for
all r € <f/<&*n, and so (3) implies

(7) trace Wn{t, s(ή) = ^qk~n
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Considering (5) again, we have v(r^~b

ά)a) > 0, so if α € ̂ , a- I €
έP, and u(b) = k, we have

(8) trace Wn{t, s{t)) = ^qk~n Σ

\ 2 b

where c = - ^ z £ l .
We summarize (6) and (8) as follows

2a2(l-a
LEMMA 3. Suppose a eW and v{b) = k. Let c = - a ya>. Then

(9) trace FΓβ(ί, 5(0) = ^ ^ - " Σ τ ( ^ 2 ) Σ
τ β

where l = k ifa-le^ and 1 = 0 ifa-le^.

To calculate these sums we need

LEMMA 4. If ω(τ) = n then Σxe@ι&>n τ(*2) = q*κ{τ).

Proof. Suppose n is even. Then

Σ τ(*2)= Σ Σ <(u+v)2)

= Σ τ("2) Σ

But v h * τ(2wv) is trivial on &>\l&n <& u = 0, so the sum is just
in this case.

If n is odd, then

τ(2uv).

In this case, v *-+ τ(2uv) is trivial on ^ " ί 1 & u e ̂ V , so the sum
equals
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Writing u = π ^ , with r e έf/«^, the sum equals

τ(π n ιr2) = q 2 qtG{τ) = q*G{τ).

This completes the proof of Lemma 4.
Now we apply Lemma 4 to the sums in (9). First, ω(τt,) = ω(τ)

(£) = « - * , SO

Suppose z/(α - 1) = 0. Then

Since i/(c) = ^ ( ^ ) = -i/(A) = -k, ω(τcπ2k) = n-2k-v{c) = n~

and we have

τ{crι) = q 2 κ(τcπ2k) = q 2 κ(τc).

Now suppose v(a - 1) > 0 and consider

If a = ε then »/(α - 1) = 2u(b) = 2k. We write

Σ τ ( c r 2 )= Σ τ( c"2) Σ
n-k

But CO(T2CU) = π — v{cu) <n-k<& u(cu) > k, which is true for all
u € (9, so

? „ τ(cr2) =

where we used Lemma 4 since ω(τc) = n — k.
If α = π , then i/(α - 1) = 2i/(*) + 1 = 2A: + 1. We write

_ τ(cr2) =



374 COURTNEY MOEN

and argue as above to obtain

Suppose that a e % and v(b) = k > 0. We have now shown that
if v{a - 1) = 0, then we have

(10) trace Wn(t, s(ή) = ^ ^ " Ϊ T ^ T ^ T , ^ )

κ(τ)

If u(a - 1) > 0 and a — ε,

(11) trace Wn{t, s{t)) =

κ\τa)

If v{a - 1) > 0 and a = π,

(12) trace Wn(t9 s(ή) = ψ\q^n
κ{τ)

We can summarize (10), (11), and (12) as follows.

LEMMA 5. If ae%S and b φθ, then

trace Wn(t, s(ή) = q^-A-Lκ(τc)κ(τt)9

κ\τa) a

where c =-^=^.

To calculate trace Wn(t9 s(t)) when a e & we need another de-
composition. Note that since α G ^ , w e have a = e and b e %f.

LEMMA 6.

« . * » - ((-.**) >) ( a t ) , o ( ( - , : ) • o ( a ? )••)•
Proof. A calculation shows that the right side equals (t, 1). Noting

that s(t) = 1 in this case completes the proof.
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Suppose v(ά) = m > 1 and ω(τ) = n. Choose / e
Using Lemma 6, we see that

(Wn(t,s(t))f)(x)

375

"bε

-0. i) 0

Σ •(fr

where
x -n κ(τ)2 /a ^

^ε / \ bε J

Since ^ € ί f and -

trace »ί,(ί, j(ί)) =

^ε ) \bε ) \ bε

where c = 2 ^~^ . Since u(c) =
n. Using Lemma 4, we have

L E M M A 7. If ae^, then

- 1) - v{b) = 0, we have ω(τc) =

where c =
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3. Further calculation of the trace. We now refine the formulas in
Lemma 5 and Lemma 7. Suppose E = F(y/ε). Letting Tn = Tf)Kn ,
we have a filtration T D TX D . . . , with [T : Tx] = q + 1 and [7} :
Ti+\] = q for i > 1. Let n = ω(τ).

PROPOSITION 1. Suppose E/F is unramified.

(1) For teTk-Tk^ίf k>\, \mceWn{t, k k

(2) For ί £ η , trace Wn(t, s(ή) = ( ^

. Assume first teTx. Then β - l e ^ and be^. We have
i/(α) = 0. If t e Tk - Tk+ι, then i/(6) = & > 0. We apply Lemma 5.
We have v{c) = i/(J) = Λ:. Also, i/(α-1) = 2v{b) = 2k.lΐ n is even,
we have κ(τ) = κ:(τβ) = 1. If in addition k is even, then κ(τc) =
ic(Tft) = 1 and so trace = qk . If n is even and k is odd, κ{τc) = G(τc)

a

and /c(τ*) = Gr(τ&), so trace = qkG(τc)G(τb). Letting έ = wπ^ and

α - 1 = υπ 2 A : , we have c = - 2 ώ , so trace = qk{=pί){ψ)G{τ)2 =

qk(2sga) =qk{ψ). But a - 1 e ^ =• α € ^ 2 >̂ (f) = 1. Also,

α2 = (1 + vπ2k)2 = 1 + 2υπ2k + v2π4k, and 1 + b2ε = 1 + w2 A .

But α2 = 1 + b2ε, so u2π2kε = 2υπ2k + v2π4k =>• u2ε = 2υ 4- w2π2 λ =>>

2v = u2ε-v2π4k = u2ε{\ - &£-) e «2ε(l + J 5 ) c ε ^ 2 , which implies

2v is not a square =*• (?̂ ) = - 1 , so trace = —qk.

If n is odd then 0L = §& = (§,). If k is even, then κ(τc) -

^(τc) and κ(τt) = ^(τi) . Arguing as in the case of n even and k

odd, we have trace = qk(^)G(τc)G{τt) = qkQjf) = -qk. If k is odd,

then κ(τ c) = κ(τk) = 1 => trace = qk\fr). But a- 1 € ^ => (f) = 1,
so trace = qk. This completes the proof of (1) of Proposition 1.

Now assume t φ T\. Then a-le%forbe%ί. We consider
various cases: ( l)α —1 e S8T, * e ^ ( 2 ) α - l e ^ , be^;(3)a-le
&, έ e ^ . Case (3) cannot arise, since α 2 - 1 = 62£ =^ v{a - 1)
+ i/(α + l) = 2v{b). Then i/(α - 1) > 0 => ι/(fe) > 0, which is a
contradiction.

We first consider case (1). In this case, we have v(a - 1) = 0,
u(b) = 0, and we may have a e^ or a e ^ . Suppose first a e %.
We use Lemma 5. If n is even, κ(τ) = κ{τa) = 1. Also, i/(^) =
i/(c) = 0, so κ(τc) = κ{τb) = 1. Since v(a - 1) = 0, trace = 1.

If n is odd, trace = §^G(τc)G(τt) = (J,)(x)(Jf)G(τ)2 = ( ^ ) .

Now suppose a G ̂ . Then we must use Lemma 7. If n is even,
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/c(τ) = κ(τ_b£) = κ ( τ c ) = 1 , s o t r a c e = 1 . I f n i s o d d , t r a c e =

We next consider case (2). Now we have a - 1 e % and δ G ̂ , so
a € ^ and we can use Lemma 5. If n is even, then κ{τ) = κ(τΛ) = 1.
If in addition v(b) is even, then κ(τc) = κ:(τ*) = 1, so trace = 1.

a

If i/(ό) is odd, then trace = G{τc)G{Xb). Writing b = uπ2k+1, this

equals {^ψ*-){ψ)G{τ)2 = ( ^ ϋ ) . " We claim (^11) = 1. We
have i/(α-l)+i/(α+l) = 2i/(ft) >2,soα-lG^=ί>α+lG^=>α =
-1+rf, ί/G^. This shows α - 1 = -2 + d = -2(1 - ^ ) € - 2 ^ c
-2^ 2 , so (^i) = (^). Also, a = -l+de(-l)&i =>(£) = &).
Therefore, ^ H ) = ( i ) ( f ) (^) = (J)(^)(^) = 1, so in this
case trace = 1.

Now suppose n is odd. Then κ(τ) = G(τ) and Λ:(τa) = G(τα),
so trace = {§s)κ(τc)κ(τb). If u(b) is even, ί> = uπ2k, then trace =

% ^ 2 = ( ^ ) . If i/(ό) is odd,

κ{τc) = κ{Xb) = 1, so trace = ( ^ ) . But we saw above that
a ~

1, so trace = (^) = ( <^> ) . This finishes case (2) and thus completes
the proof of Proposition 1.

Now we assume E/F is ramified, E = F(y/π). We have a filtration

TDTQD^D . . . , where Tn = { ( £ * ) ! * € l + ^ + ι

? i € ^ } .
We have [T : Γo] = 2 and [Tn : Tn+Ϊ] = q for n > I. Recall that

we have a bijection φ : <f —> Γo, where we identify ( α ^) G Γo with

α + by/π € Λ̂ 1 [S]. φ is given by

1 + πx2 r- 2x

1 - πx1

x €<f. Representatives for 3°n in (9 can be taken to be {a^ + a\ π +
• + an-ιπn-ι\ai = 0 or at = βJf, 0 < 7 < q - 2}.

PROPOSITION 2. Suppose E/F is ramified

(1) Say ί G Tt - 7/+i, ί = 0(x), JC = atf + +
α/ = e '̂(0, 0 < 7(0 < ί — 2.

-^J ^ J (7(τ).

(2) Say t € Γ - To. Then trace Wn{t, ί(ί)) = (
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Proof. We may use Lemma 5 in all cases. Assume first t e T\ -
Γ/+i. Suppose that n and i are both even. With x = ai%1 +
••• + an-\πn-χ, v(x) = i. If φ(x) = a + by/π, then 1/(6) = /,

ι/(α-l) = 2ι+l, and v(c) = i + l , where c = - ^ ξ " 1 ) . Then κ(τc) =

G(τc) and /c(τ») = 1. Therefore trace Wn(t, s{ή) = q1JrG{τc). But

G{τc) = ( ^ ) G ( τ ^ ) . Now, ̂  = πx ? so G(τa_^) = G(τπx) =

f'+a*l*+ y-'*'~'~')(7(τ)With a ε ^ W β + α ^ + + α π " - ' - 1f'+a*l*+ y - ' * ) ( 7 ( τ ) . With at = ε̂ W, βf+αf+^+ +αΠ_1π

€ ε ^ 2 , so G(τ^) = (C)(?(τ) = (-l)^G(τ). So

trace = qΨ (^(-1)^0^) = qΨ(-l)^ ( | ) (^f G{τ).

If n is even and / is odd, then κ{τc) — 1 and κ(τb) = G(τb), so
a a

trace = q^G(τc)G(τb). We have
a

b _ 2x
a ~ 1 + πx2

1 + πx2 L Λ/ a,i J 1 + π x 2

so G{Xb) = ( ^ ^ ( τ ) = (Hir)G(τ) — (h)(--\y^G(τ). Therefore,
2H-1

^ 2

If w is odd and / is even,

2i+i G ί τ ) ̂
trace = ήf 2 ̂ - ^ G

If n is odd and / is odd,

This completes the proof of (1).
Now suppose t φ TQ. For elements of T/TQ we use {t} = {-r},

r eT0. We therefore write t = ( J ^ ~^), with a e 1 + ^ , be#,

and c = - 2 α ̂ + 1 ^. If n is even, then κ(τ) = κ:(τΛ) = 1. If in
addition v{b) is even, then κ(τc) = κ:(τέ) = 1, so trace = 1. If

a

v(b) is odd, trace = G(τ_iis±Λ )G(τt). Writing b = uπ2l+ί, this equals

{w)(z2Ψ]!i)(Ψ) = (M^) B u t" v{a-\)+v{a+\) = 2vψ)+\, with
z^(α+l) = 0 and i/(δ)>0,so α - l G ^ ^ α + 1 e



THE DUAL PAIR (1/(1), (7(1)) OVER A p-ADIC FIELD 379

= (JO A 1*o, α e 1 + ^ => (f) = 1
and therefore trace = 1.

If n is odd, trace = -^ηκ{τ_2ja±χ1)κ{τb_) = (^)/c(τ_2ί£±il)κ;(τ*). If

1/(b) is even, write * = uπ2k. Then trace = (=£) (~2{<£ι)u)G(τ) (f)G(τ)
= i^1) feί ) . But we still have a + 1 e 2%f2, so trace = (^-). If
z/(Z?) is odd, κ(τ_2ία+a) = κ(τb) = 1, so trace = fej-). For t $ Γo,

therefore, trace = {^)n . This completes the proof of Proposition 2.

4. Calculation of multiplicities. In this section we choose χ e T
with conductor c(χ) less than or equal to n, and we calculate (/, Wn)9

the multiplicity of χ in Wn , χ and Wn being considered as repre-
sentations of T/Tn.

Assume first that E/F is unramified. Let us say that the conductor
of the trivial character of T is zero, and we let ΘQ be the unique
nontrivial character of conductor 1 such that ΘQ = 0.

LEMMA 8. For t $ Tx, ί = (,a ), we have ( ά ^ L l ) = -θo{t).

Proof. We identify t e T with λ = a + by/ε e Nι. Let \x\E be the

valuation on E. If 11 + λ\E = 1, we can write λ = |**^f > x e @

Then λ + λ~ι + 2 = -*-? , and 2(a - 1) = λ + λ~x - 2 = - ^ . It is

proved in [S-Sh] that if 11 +λ\E = 1, then (λU&+2) = ί 1 ^ ) = 0o W

Therefore, ( ^ 9 ^ ) = (A4"Aig!~2) = (4 ε 'χ 2 (Jg"
ε χ 2 )) = - ί 1 ^ ) = -0o(O I f

|1 + λ\E > 0, then -A e 1 + ^ ( ^ the prime ideal in E) and A =
- s 2 , s eNι. Write 5 = c + dyfε. Then A = -s2 => 2(a - 1) = - 4 c 2 ,
so ( 2 ^ ^ ) = (^r). But we also have A = ~5 2 => θo(λ) — ΘQ(-S2) —
0o(-l) , and it is proved in [S-Sh] that 0o(-l) = -(§£) Therefore,
( 2 ^ ^ ) = (^-) = —0o(—l) = —0o(A). This completes the proof of
Lemma 8.

PROPOSITION 3. Suppose E/F is unramified and c{χ) = /.

(1) If n is even and i is even, then {χ, Wn) = 1.
(2) If n is even and i is odd, then {χ, Wn) = 0.
(3) S a y n i s o d d a n d i i s e v e n . Then { χ , Wn) = 0 if χ φ l , a n d

( 4 ) Say n is odd and i is odd. Then (χ, Wn) = 1 if χ Φ ΘQ, and
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Proof, Suppose n = ω(τ) is even and c(χ) = i > 1. Then

-Σ Σ
m=\ teτm-τm+i

: T, X(t) = ΣteτX(t) ~ Σ ί €r , HO = 0, so

1

ί-2 .

X \q" + > l(-l)'"β" > ϊ(/)-(-l)'"flf'" Σ

-!)'-V-1 Σ

+ Σ [(-
m=i

m=ι

If / is even, this equals one, and if / is odd, it equals zero.
If n is even and c(χ) — 1, then

n-\

Σ (-1)'

Also, if « is even, then

Σ (-

This proves (1) and (2) of Proposition 3.
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Now suppose n is odd. If c(χ) = i > 1 then

m = 1 teτm-τm+ι

+ Σ Σ (-i)m+1ffml

Σ Σ
m=i teτm-τm+i

so
M 1

If i is even, this equals zero and if i is odd, it equals one.
If c(χ) = 1 or χ = 1, then

Σ (-

qn-\

This completes the proof of Proposition 3.
Now we assume E/F is ramified. Let θo be the unique nontrivial

character of T/To.

PROPOSITION 4. Let E/F be ramified. Then

(1) (1, Wn) = 1 if n is even or (̂ J-) = 1, and equals 0 otherwise.

(2) ( 0 o , ^ } = l - ( l , ^ > .
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Proof. We have

#τ0

n-l / o \ / 1 \ w+z+1

+ Σ Σ •'
i=oteτ-τι+ι

w h e r e / was defined in P r o p o s i t i o n 2. C o n s i d e r T\t(zT_τ ( — I ) 7 .
t t J ) ί+1

Since αz = ε 7 , and h Φ i =» αΛ can assume the values 0, 1, ε , . . . ,

εq~2, this sum is zero, so (1, Wn) = ^[Qn + [η^fq*1] > which gives

the result.

Similarly, <0O, ^ ) = £[<!" + &)" Σt * τ0 *(>(*)] - But Σ r ^ TQ θo(t)
= Σ ί e r ^o(O ~ Σίer 0 ^o(O = - ί Λ , so (ff0, ^z) = J[l - ( ^ - ) Ί . This
completes the proof of Proposition 4.

PROPOSITION 5. Assume c(χ) = m > 0. Then {χ, Wn) equals 0
or 1, and exactly half of the characters χ of conductor m satisfy

Proof We have

n-l

+Σ Σ.y
ί=0 T-TM

where j(t) is as in Proposition 2. Since χ is nontrivial on

ι=o v ' teτΓτι+ι

Σ

Σ (
reτ -Γ,,,
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As before, Σ<er.-r. (~^)J^ = 0 f°Γ m <i <n—\. Now consider

Σteτ.-τ. H O ί " 1 ) ^ f o r 0 < / < w - 2. Write this sum as

Σ Σ*Mα'*' + * + β-i
5,

where SΊ = {Λ/ , α, + i , . . . , flm_2|fl/ / 0}, S2 = {αm_!,... , «„_!
and 0 is the map on /f to TQ which was recalled above. If x e ^
then φ(x) eTn. If x, yet?,

φ(x)φ(y) _ a - b φ i _
Φ(x + y) a

where α = 1 - π(x2 + xy + y2), b = πxy(x +y), c = α

2 ^ 2 ^ , and

/̂ = -J^yιπ . Let x = α/π'+ + α m _ 2 π w " 2 and y = ̂ - i ^ " 1 ^ - •+

an-\πn~ι. Then i/(x) = / and y either equals 0 or satisfies v(y) >
m - 1. We need only consider the case y Φ 0. Then v(x + y) > i,
so v{c) > 2m + 1 and v[d) > m. Therefore, c + dy/π e Tm. Since
χ = 1 on Γm, we have /(0(x)k(^(y)) = *(0(x + y)). This shows
that

But

since χ ψ 1 on Tm_γ. Therefore,

Σ

for 0 < i < m - 2.
Next, consider

Σ
Here, ί = φ{am.xπ

m-χ + ••• + α n _ 1 π " - 1 ) , with α w _ ! = β^«, 0 <
j(ή <q-2. Let x = α ^ i π ' " - 1 , y = α m π w + + an^πn-χ. As
before,
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which

(13)

since
We

makes

: T m - T

m + i

Φ(y)e
have a

Tm and /
map

COURTNEY MOEN

» = Σx{Φ(χ)m4

= 1 on Tm.

X Tm-\ITm X C.

For x,ye^m-1,
φ(x)φ(y)

so "χφ is an additive homomorphism on 3Pm~ι/£Pm to C. Letting
ψ = -χφ, (13) becomes

ψ(ejπm-ι)(-iy = qn~m

7=0

(Note that yπm-i is a character of ^f/^5.) We can now write

n+m 1

ί"G(τ)C(r)J.
which equals 0 or 1. Notice that ψπm-\ = τπn-ιεiu for some 0 <

i<q-2, uel+&>. Then G(τ)G(ψ) = (^ j = (^)(-1)1', which
takes on each value ±1 for half the q - 1 possible values of /. This
completes the proof of Proposition 5.

If E/F is ramified, suppose that we replace τ by τu, u G ̂ . Then
the characters of a given conductor appearing in W£ will be the same
as those appearing in Wlu if (^) = 1. If (ĵ ) = - 1 , then the two sets
of characters of a given conductor m > 0 appearing respectively in
W£ and Wna are disjoint. By varying τ, we thus obtain all characters
of conductor m > 0 in the restriction to T of some Wτ.

5. Decomposition of Wτ\χ. In this section we use the results of the
preceding section to determine the decomposition of Wτ\χ.



THE DUAL PAIR (ί/(l), (7(1)) OVER A p-ADIC FIELD 385

LEMMA 9. For 2k > -n, let Hk = S(&>-k, &>n+k). Then Hk is
an invariant subspace for Wτ which is equivalent to W*^2k, where

a = π~2k.

Proof. Recall that if β e F and a = β2, then Wτ = j R - ^ V R ,
where (i?/)(x) = |j»| * / ( £ * ) . Let β = π~* . Then ω(τα) = n + 2k.
Suppose # e # . Then feHk^RfeS{@, &>n+2k) => ̂ τ α ( ^ ) i ? / e

5 ( ^ 5 ^ Λ + 2 * ) => R~ιWτ«(g)Rf e Hk. Thus ΛJt is invariant under
Wτ. Also, ) ^ τ ( ^ ) / = / if / e Hk and g e Kn+2k . We thus have
a representation of K/Kn+2k

 o n ^ which is a subrepresentation of
Wτ and which is equivlent to W*^lk . This completes the proof of
Lemma 8.

Suppose Wτ{t)f = χ(t)f for all t e T. If / e
choose ik so that -k < r and n + A: > 5. Then S(^r, ^ 5 ) c
5 ( ^ - * ? ^n+fc) = / ^ . Then the action of Wτ on / ^ is equivalent
to W*^2k > α = π ~ 2 * > ^ Lemma 9. This implies / appears in W^2k .
We apply Proposition 3 to each of the representations W^2k 9 k > 0,
to obtain

PROPOSITION 6. Suppose E/F is unramified, ω(τ) = n, and c(χ) =

/.

(1) If n is even and i is even, then (χ, Wτ\T) = 1.
(2) If n is even and i is odd, then (χ, Wτ\τ) = 0.
(3) If n is odd and i is e v e n , then ( χ , W τ \ T ) = 0 if χ φ \ , and

< , | r )
(4) If n is odd and i is odd, then {χ, Wτ\τ) = 1 if X φ θo, and

(

We argue in a similar fashion if E/F is ramified. Applying Propo-
sitions 4 and 5, we obtain

PROPOSITION 7. Suppose E/F is ramified and ω(τ) = n.

(1) (1, Wτ\τ) = 1 if n is even or (̂ J-) = 1, and equals 0 other-
wise.

(2) <0 o , *Hr> = l - ( l , i n r } .
(3) Ifc(χ) = m>0, then

/ 2\ /-\\n+m

(X, W*\τ) = 1 ( ( j

where ψ = ~χφ. Otherwise, {χ 9 W
τ\τ) = 0.
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(4) Exactly half the characters χ of a given conductor satisfy
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