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THE DUAL PAIR (U(1), U(1)) OVER A p-ADIC FIELD

COURTNEY MOEN

We find an explicit decomposition for the metaplectic representa-
tion restricted to either member of the dual reductive pair (U(1),

U(1)) in §I:(2, F), where F is a p-adic field, with p odd.

1. Introduction and preliminaries. Let F be a p-adic field of odd
residual characteristic with ¢ being the order of the residue class field.
Let & be the ring of integers, % the prime ideal, % the units, 7 a
prime element, and v the valuation on F. Let G=SL(2, F).

For o = (‘:Z) € G,let x(a) =c if ¢ #0, and let x(o) =d if
¢ = 0. Define a 2-cocycle on G by

a(81, &) = (x(&1), x(82))(—x(81)x(&2), x(&182))-

This cocycle determines a nontrivial 2-sheeted covering group G of
G [G1].

Let E be a quadratic extension of F, and x — X the Galois action.
The group U(1) which preserves the Hermitian form (x, y) — xy on
E is isomorphic to the group N! of norm one elements in E. The
pair of subgroups (U(1), U(1)) of SL(2) form a dual reductive pair
[H]. This dual pair is one of the simplest examples over a p-adic field.
Some other basic examples of dual reductive pairs are discussed in
[G2]. In this paper we determine the decomposition of the oscillator
representation of G upon restriction to U(1) C G.

The results in this paper have recently been applied by Rogawski
to the problem of calculating the multiplicities of certain auto-
morphic representations n of U(A) in the discrete spectrum of
L2(U(k)\U(A)), where U is a unitary group in 3 variables defined
relative to a quadratic extension of number fields K/k [R1, R2]. I
would like to thank Rogawski for several stimulating conversations
and for encouraging me to publish this paper.

Let © be a character of F. Choose a normalized measure u so
that u(@) = q%ﬂ , where w(7) is the conductor of 7. Denote this
measure by d.x. Then if we define the Fourier transform on S(F),
the space of locally compact functions on F with compact support,
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366 COURTNEY MOEN
by
Fx) = / F0)e(2xy) dey,

we have f(x) = f(-x). For a€ F, we set 7,(x) = 7(ax). Let

K(1)= lim_ - 1(x?) d;x.

Recall [Sh] that x(t) =1 if w(t) even, and

k(1)=G(r)=q"1 Y t(n"'x?)
XECQ |P

if n = w(r) is odd. For u € Z, let (%) = 1 if u is a square,
and (%) = —1 otherwise. Then we have G(1)? = (3) and G(7,) =
(%)G(r) for ue#% .

We now define the metaplectic representation W = W7 of G as-
sociated to the quadratic form Q(x) = x2? by specifying the action on
generators [G1]. Here { = %1, and |a| is the absolute value on F.

w((58),¢) fx) = Cabx) f(x),

1 K(T

W ((522) + €) £66) = Clalt s fla),
w((5g) ) S3) = (@) ().

The cocycle defining G splits on the compact subgroup K = SL,(&@)
by a function s: K — Z,. K thus lifts as a subgroup of G by k —
(k, s(k)), and we may thus restrict W to obtain a representation of
K on S(F). Note that U(1) c K. Our goal is to find the characters
of U(1) which appear in the restriction of W to U(1).

Let S(&", &%) be the space of functions on F which have support
on P’ and which are constant on cosets of % in Z”. Suppose
w(t)=n>1. Then S(@, £") is invariant under W’ restricted to
K, and the group

K, = {k €Kk = (é?) mod?”}
acts trivially on S(&, #"). We thus obtain a representation W, =
W of K/K, = SLy(@ /") on S(@, P"). Note that we may con-
sider T as a character of & /#".
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2. Calculation of the trace. In this section we calculate the trace
of W,(t), where ¢ denotes either an element of 7T or its image in

SL(@ /"), and
7={(,,1)|a-ta=1}

is the torus in G corresponding to the quadratic extension E =
F(\/a). It will suffice to let a = 7 or a = ¢, a primitive (g — 1) st
root of unity in & .

LEmMMA 1. For t = ( ab ) € T, we have the decomposition

0 o= (3200 (L) ()
% ((01) ’ y(t)) ’

where y(t) = (a,b) if a=¢e,beZ,and a ¢ %, and y(t) =

otherwise. Also,

@ ((Gaat) )= (5 5) 1) ((50) - ) ((77) 1)
(5.

Proof. Both statements are clearly true if =0, so we suppose b#0.
A calculation shows that the right side of (1) equals (¢, (a, baa)y(t)).
We must therefore show that s(¢) = (a, baa)y(t) for t # 1. Recall
[G] that s(¢) = (ba,a) if b #0 and ba ¢ %, and s(¢) = 1 oth-
erwise. First suppose a = 7#. In this case a € Z, so (a, bna) =
(a,bn) = s(tf). Now suppose a = ¢. If b ¢ %, then b%e €
Pl a? =1+b%c1+PCc¥ =>ac?%. Then y(t) =1,
so (a, bea)y(t) = (a, be) = s(t). If b € Z, then s(t) = 1, so we
must show (a, bea)y(t) = 1. If a € Z, then y(¢t) = 1 so we need
(a, bea) =1, whichistruesince ac % and be Z . If a ¢ 7, then
y(t) = (a, b), so we must show (a, bea)(a,b) =1« (a,ea) =1.
But a ¢ ¥ = a? € P? = 1+b% € P? = —b% € 1+P2. This shows
—-e€%?,s0 (a, ea) = (a, (—&)(—a)) = (a, —¢)(a, —a) = (a, —a) =
1.

LEMMA 2. Suppose t = (b‘;i’) €T and a € %. Then for f €
S@, "),

(Wa(t, s()1)(x) = "") S Kpaalax, s)r( )f(s>,

(Ta eﬁ/@"
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Where, for c € 7,

Ke(x,s)=q7" Y t(—crf)t(—2xr)z(2rs).
o)

Proof. For any ¢ € S(@ , "), we have, for c € @,

(7 ((e1) - 1)9)

2 ~
=ty () )W ((55) 1)9)

But ¢ € S(@, P") = e S(@, P, so for c €@, we have

v (1)) (0) 1) st o

For any v € S(&@, "), we have

¥(x) = / y(»)T(2xy)dey = /ﬁ w(y)T(2xy) dvy
= w(r+y)t(2x(r+y))dy
re%ﬂ’" '/gn
= Z c//(r)r(2xr)/gjn T(2xy) dyy.

red@ |P"

But y — 7(2xy) istrivial on " < xe€@,s0 y(x)=0if x ¢ &,
and if x € @, we have

s =a7t Y w(e).

re@ | P"
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Therefore,

(7 (1) 1)2) @
2 i
w2 ((G))
xW ((_01 (1)) , 1) ¢) (r)t(—2xr)
e 5 e r((4) )i

k(t)3

=——=g7" Y t(—cr)r(=2xr) Y H(s)T(2rs).
e(t-1) red | s€g|P"
But
K(r)®
K(t_1)
s0 we get

(7 ((:9)-1)8) 0= T Kelx.)(s).

SEC |P"

where for c€ @,

Ke(x,s)=q" Y t(—cr®)t(-2xr)t(2rs).
red |P"

Now we calculate the action of W, (¢, s(¢)) for a € Z . Note that
in this case, y(t) = 1. For f € S(@, #"), we have

(Wa(t, s()S)(x)

= ((6) )7 ((ua?) - 1) 7 ((55) - 1))
= 5 (7 () )W (1) - 1) 7) @0

—Z9 Y Kpaslax, 97 (257) S15).

SEC | P"

Here we used the fact that
12 n
ac¥ > W((O;) , l)feS(@’,ga ).

This completes the proof of Lemma 2.
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If a e Z , the action of W, (t, s(t)) is therefore given by the kernel

K(7)
K(Ta)
We now use this kernel to calculate the trace of W(t, s(t)) when

a € Z . The kernel is a function defined on &/F" x @ |P", so we
have

L Kpoalax, s)T (Zsz) .

(3) trace Wy(t, s(0) = "((,”)Kbaaws r(os?)
sEC|P"

> g > t(—baar?)t(2rs(l-a))t (Zsz)

SEC [P re@|P"

= ((:)) Z 1(—baar?) Z ( =S +2r(1—a)>

re@|P" s€@|F"

K(Ta)

Suppose v(b) = k. The inner sum can be written

> oot (é(u+v)2> 12r(1 — a)(u +v))
/9" ?

ue@ | P * yep*

- ¥ () ea-an X cri-ap)

ueﬂ/ﬂn—k Ue‘@n—k/‘@n

since 2uv € " and 2v2 € 2.
Consider the sum

Z 7(2r(1 — a)v).

vegn—k/'@n

Since a € Z , we may have v(a—1) =0 or v(a—1) > 0. Suppose first
that v(a — 1) = 0. Then 7,1y is trivial on P" % & @(Ty,(1_q)) <
n—-kerce?* If r ¢ ¥, we have

Z 7(2r(1 —a)v) =0,

veP k| P
and (3) therefore equals

(4) x(T)q_nq Z r(——baar2) Z T(§u2+2r(1—au)).

k(T
(7a) rep* | p" ue@ | P
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The inner sum in (4) equals

(5) Z T (g (u2 + 3ril—l:——a—)—‘iu))

uc@ | P *

TN T(g <u+r<1;a>a)2).

ued [P *
Since v(b) = k and v € #*, we have v("1529) = u(r) —~v(b) 2 0,
so {u+ ﬂliﬁﬁ} =@ [P"* and (5) equals
r2(1 -a)%a b ,
(L) 5 (5.
UEG [P~
Soif aeZ,a-1€%,and v(b) = k, we have

(6) trace Wy(t, s(t)) = ;—CK—(%%-qk"" > t(~baar?)
rep* | p"

r}(1 —a)2a b ,
xr(——————————-b ) )3 kf(au)
Ueq [P"~
K(T) k-n 2 (b 2)
= —0 T(Ccr T\ —-U ’
e 2 ) 3 e(g
re?* | P Ue@ | P
where ¢ = —2—“1(1‘,’—‘—11 ;
Now we consider the sum

Yoo r@2r(l-aw)

veP k1P

in the case when v(a—1) > 0. We have a> -1 = b%2a = v(a—-1)
+v(@a+1) = 2v(b)+v(a). Since a—1€ &L, we have a+1 =
(@a-1)+2€#,so via—1) = 2v(b) + v(a). We therefore have
v(a—1) > v(b) = k. This shows that 75,1 is trivial on #"~* for
all re @/P", and so (3) implies

(7) trace Wy(t, s(¢)) = E’C(—(%qk"” Z 1(—baar?)
re@|?"

X Z T (-Z—u2 + 2r(1 ——a)u) .

ue@ | Pk
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Considering (5) again, we have v(%1794)

P, and v(b) =k, we have

>0,s0ifae%,a-1¢€

(8) trace Wy (t, s(t)) = L‘[)qk”’ > t(~baar?)

- k(%) re@ | "
201 — 22
XT(_L(_I___#> Z T(guz)
ue@ | P+
K(T) _»n k 2 b ,
=9 o ey Y (o),
4 re@|P" ue® | P

2
where ¢ = —24(1-a

We summarize (6) and (8) as follows

LEMMA 3. Suppose a€ 7% and v(b)=k. Let c = —--212%‘—‘11. Then

_ k(1) k—n 2 b 2)
(9) trace Wy(t, s(1)) = AL Z{ wer?) Y 1 (au ,
rep |P" ued [P
where =k ifa—-1€% and =0 ifa-1€Z.

To calculate these sums we need
LemMA 4. If o(t) = n then 3, 5/ 1(x*) = 2K (7).

Proof. Suppose n is even. Then

Yo=Y Y t((u+v)?)

XEC|P" uc@ | P vept |7

= Z 7(u?) Z 7(2uv).

ue@|P% v Pt P

But v — t(2uv) is trivial on P:/P" < u =0, so the sum is just g2
in this case.
If n is odd, then

Yo=Y W) ) t(uw).

xeﬂ/gz" ue@/gz"—? ve.@%l/‘@n

In this case, v — t(2uv) is trivial on P & u € P*T , so the sum
equals

T > ).

n+l

uer" s |2
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n—1

Writing u = n'7 , with r € @/, the sum equals

g7 Y tw(n" ') = ¢"7'qiG(r) = qiG(v).
red@ | P

This completes the proof of Lemma 4.
Now we apply Lemma 4 to the sums in (9). First, @(7:) = w(1) —

v(Zy=n-k,so
Z T (éuz) = q%x(u).
a p
ued | P+
Suppose v(a— 1) =0. Then
Yooterhy= Y t(enid).
rep* | pn ue@ | P

Since v(c) = (%) = —v(b) = —k, w(t,x) =n-2k-v(c)=n-k,
and we have

3 t(er’) =g k(1) = 4°7 k(7).
rep* | "
Now suppose v(a — 1) > 0 and consider
> z(er?).
red |P"
If a=¢ then v(a—1)=2v(b)=2k. We write
Yo otery= Y tend) D t(2euw).
red | " ue@ | Pk veP" | P"

But w(ty,) =n—v(cu) < n—k < v(cu) > k, which is true for all
ueda,so

Yo twery=q" Y t(cw?)=q"qTx(z),

reg|F” ue@ | Pk

where we used Lemma 4 since w(t;) =n—k.
If a=mn,then v(a—-1)=2v(b)+1=2k+ 1. We write

Z ‘c(crz) = Z Z T(c(u + ’U)z)

red (" ued | P+ yepn k-t [
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and argue as above to obtain

> t(er?)=q*1g*™ K (Te).

re@|F"

Suppose that a € % and v(b) = k > 0. We have now shown that
if v(a—-1) =0, then we have

(10) trace Wy(t, s(2)) = ((TT))qk ng 5 (r)q Kz

(( a)) K(TC)K(TQ)

)

alv

If v(a—1)>0 and a=¢,

(11)  trace Wy(z, s(1)) = ((:)) gk g T K (16)q T K (t)
= ¢+ 0w (ry)

If v@a-1)>0and a=m,

(12) trace Wy(t, s(t)) = ((:))qk ngk+l gt llc(‘cc)q'T’£ (T g)

e k(1)
K(Ta)

We can summarize (10), (11), and (12) as follows.

K(TC)K(Tg).

LEMMA 5. If a€e % and b # 0, then

trace Wy(t, s(t)) = ¢“7 :((:a))

K(TC)K(Tf) s
_ 24a*(1—a
where ¢ = ———55——2.

To calculate trace Wy(t, s(¢)) when a € & we need another de-
composition. Note that since a € ##, we have a =¢ and be Z .

coson=(( 20 (%)) (0 0 (). 1)

Proof. A calculation shows that the right side equals (¢, 1). Noting
that s(¢) = 1 in this case completes the proof.
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Suppose v(a) = m > 1 and w(t) = n. Choose f € S(&, P").
Using Lemma 6, we see that

(Wa(2, s(0))f) (x)

“ae| o (w((3%) 1)

W ((50) )7 (1) )9 (57)

2 n a
e ()t (r((55) ) ) e (5
= K’z‘l(ft);)‘c (ixz) q: S Yoot (%sz) T (—2;—:) f(s)

> K(x, (),

s€O|P"

Kk(t)? a a 2sx
K(x,s)= e 8) ( x2) (%sz) T (_ﬁ)
Since £ €4 and —-£ €0,
trace W, (t, s(t)) = Z K(s, s)

where

NI=

s€@|P"
_ g ) 40\ (L), (%
=4 K(T_pg) e;/:g’" ' (bes ) ' (bas ) "\ e
g} K (1) 2
= 2 T(CS
K(T_pe) E%gz (e5)
where ¢ = 2(‘;’;1) . Since v(c) =v(a—1)—-v(b) =0, we have w(t.) =
n. Using Lemma 4, we have
LEMMA 7. If a€ P, then
K(1)?

trace W, (t, s(t)) =

where ¢ = g‘;—l).

(e )
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3. Further calculation of the trace. We now refine the formulas in
Lemma 5 and Lemma 7. Suppose E = F(y/€). Letting T, = TNK,,
we have a filtration 7 > T3 O ..., with [T : T1]=q+ 1 and [T;:
Tisi]=q for i> 1. Let n= (7).

ProrosITION 1. Suppose E/F is unramified.
(1) For te Ty — Ty, k> 1, trace W, (¢, s(t)) = (=1)rkgk.
(2) For t ¢ T, trace Wy(t, s(t)) = (—f’T]))

Proof. Assume first t€ Ty. Then a—1 € < and b e . We have
v(a)=0.1If t €Ty — Ty, then v(b) =k > 0. We apply Lemma 5.
We have v(c) =v(2) =k. Also, v(a—1) = 2v(b) = 2k. If n is even,
we have k(1) = k(t,) = 1. If in addition k is even, then x(7.) =
x(73) = 1 and so trace = gk . If n isevenand k isodd, x(z.) = G(t.)
and x(t;) = G(t2), so trace = kG(Tc)G(‘L'g). Letting b = un* and
a—-1=vn*_ wehave ¢ = 2“ v, so trace = g* (=) (%)G(1)? =
g% (249) = gk(29). But a1 630 S>ae?*= (%) =1. Also,
a? = (1 +vn?)? = 1 4+ 2un?* + v22%  and 1+ b2 = 1 + u?nke.
But a2 = 1+ b2, so u?n?ke = 2un?k + vin% = u2e = 2v +v2n%k =
20 = ule —v2n** = ule(1 - %) € u?e(1+P) C e%/?, which implies

2v is not a square = (%) = -1, so trace= —g*.
If n is odd then F(?T)T = G((:)) = (%). If k is even, then x(7.) =
G(t.) and K(Tb) = (Tb) Arguing as in the case of n even and k

odd, we have trace = k(y) (7c)G(ts) = g* (%) = —¢*. If k is odd,
then k(7.) = k(1:) = 1 = trace = k(7 But a-1eZ= (%) =1,
so trace = g . This completes the proof of (1) of Proposition 1.

Now assume ¢ ¢ T;. Then a— 1€ % or b € Z . We consider
variouscases: (1)a—1€Z,be% ;2Qa-1€%,beF;(3)a-1¢€
P, be?. Case (3) cannot arise, since a? — 1 = b2 = v(a—1)
+v(a+1) = 2v(b). Then v(a—-1) > 0 = v(b) > 0, which is a
contradiction.

We first consider case (1). In this case, we have v(a—-1) = 0,
v(b) =0, and we may have a € Z or a € & . Suppose first a € % .
We use Lemma 5. If n is even, k(1) = k(t,) = 1. Also, v(2) =

v(c) =0, so k(1) = K(Tb) = 1. Since v(a—1) =0, trace = 1.

If n is odd, trace= G ))G('rc) (1) = ($) (%) &) 6()?* = (5.
Now suppose a € L. Then we must use Lemma 7. If 7 is even,
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K(1) = K(1_pe) = k(1) = 1, so trace = 1. If »n is odd, trace=

G 2(a-1)

(r;)G(Tc) = (%be) = ( agvl ).

We next consider case (2). Now we have a—1€ % and b€ £, so
a € Z and we can use Lemma 5. If n is even, then x(7) = k(1) = 1.
If in addition v(b) is even, then x(7.) = k(7)) = 1, so trace = 1.
If v(b) is odd, then trace= G(1.)G(t;). Writing b = un?**! | this
equals (F2&Z1) (ua)G(7)2 = (244Zl)y | We claim (34%47)) = 1. We
have v(a—1)+v(a+1)=2v(b)> 2,50 a-1 € =a+1eP =>a=
~1+d,deZ . Thisshows a—1=-2+d=-2(1-1d)e 2% C
—2%%,50 (%) = (F). Also, a=-1+d e (-1)% = (&) = (F).

Therefore, (2571) = (2)(8)(5) = 3)()(E) = 1, 5o in this

case trace= 1.
Now suppose n is odd. Then k(1) = G(1) and x(t4) = G(14),
so trace = (%)x(tc)k(t:). If v(b) is even, b = un?*, then trace=

(%)G(1)G(1:) = (&) (PG () G(r)? = (A% . If v(b) is odd,
k(1) = k(7:) =1, so trace = () . But we saw above that (@—%{—1))
1, so trace = (%) = (3%;2)) . This finishes case (2) and thus completes

the proof of Proposition 1.
Now we assume E/F isramified, E = F(\/7). We have a filtration

T>Ty>TyD...,where T, = {(b“n2)|a €1 +p+l pe Py,
We have [T : Tyl =2 and [T, : T,+1] = g for n > 1. Recall that
we have a bijection ¢ : & — T, where we identify ( b“n Z) € T, with
a+byme N [S]. ¢ is given by

o) = 11T 4w

T 1—-7nx2

2x
1 —nx2’

x € @ . Representatives for " in & can be taken to be {ag+a;7+
ot ap 7" Ya;=0o0ra; =¢/,0<j<qg-2}.

PROPOSITION 2. Suppose E/F is ramified.
(1) Say t€T; — Ty, t=¢(x), x =a;n* + -+ a,_n"" !, with
a;=¢, 0<j(t)<q—2. Then

trace W, (t, s(1)) = ¢’ (—=1)/® (%) (%) n+i+1G(t).

(2) Say te€ T —Ty. Then trace W, (t, s(t)) = (g})n
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Proof. We may use Lemma 5 in all cases. Assume first 1t € T; —
T;+1. Suppose that n and i are both even. With x = g;n’ +
ot agml, v(x) = 0. If ¢(x) = a+ byw, then v(b) = i,
v(a—1) = 2i+1,and v(c) = i+1, where ¢ = -A“fig——ll Then r(z:) =
G(t.) and x(rf) = 1. Therefore trace W,,(t s(t)) = ¢°7 G(t.). But
G(te) = (‘Z)G(r%). Now, &l = SO G(Tab;l) = G(Tnx) =

n—i—1

(a+a nteta,

i+l =1

)G(T) With q; = gJ(t) ai+aim+ .+an~1nn—i—l
€e??, 50 G(ret) = (5)G(7) = (-1)/G(7). So

trace = g5 (—;,—?)(—l)j(’)G(t) =g (=1)/C (;) (:g—;) n+i+lG(t).

If n is even and i is odd, then x(7.) = 1 and x(7:) = G(1:), SO
trace = qz'THG(tc)G(rg) . We have

b 2x
a 1+nax2
2a;7! a; _ ~ 2a;m!
=<4 e DN ot W o ) PO S22,
1+ nx? a - a; 1+ 7nx

50 G(ty) = 3)G(r) = EH)G(r) = (Z)(-1)/G(r). Therefore,
trace = ¢*% (2)(~1)/0G().
If n is odd and i is even,

trace = qu%lg((:)) G(ts) = qZT< )( 1/9G(7).

If n is odd and i is odd,

trace = %' SR G(z0) = () (55 ) (-6 o).
This completes the proof of (1).
Now suppose ¢ ¢ Tj. For elements of T /T, we use {t} = {-r},
r € Ty. We therefore write ¢ = (2 ), with ac 1+ &, be®,
_2d*(a+1)
b

and ¢ = . If n is even, then k(1) = k(75) = 1. If in
addition v(b) is even, then x(t.) = k(7;) = 1, so trace= 1. If

v(b) is odd, trace = G(T_xa1 )G(1) . Writing b = un?/+1 this equals
b

(59) (2522 (8) = (2521 But v(a—1)4v(a+1) = 20(b) 1, with
via+1)=0and v(b)>0,50 a~-1€eP =a+1€2+ P C2%*=
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@) = (3). Also, ae 1+ 2 = (&) =1,s0 (&) =(2) =1,
and therefore trace=1.

If n is odd, trace = %x(z_%ﬂl)x(tf) = (%)K(T_&P)K(Tg). If
v(b) is even, write b = un2* . Then trace = (31) (F24-) G(1) (&) G(1)
= (221))(51). But we still have a + 1 € 2%2, so trace= (33). If
v(b) is odd, x(t_g?_.z) = K(7:) = 1, so trace= (z2). For t ¢ Tp,
therefore, trace = (‘73)" . This completes the proof of Proposition 2.

4. Calculation of multiplicities. In this section we choose y € T
with conductor c¢(y) less than or equal to n, and we calculate (y, W),
the multiplicity of y in W, x and W, being considered as repre-
sentations of T'/T,.

Assume first that E/F is unramified. Let us say that the conductor
of the trivial character of T is zero, and we let 6, be the unique
nontrivial character of conductor 1 such that 62 = 0.

LEMMA 8. For t ¢ Ty, t = (:8 Z), we have (Aa?;l_)) = —0o(2).

Proof. We identify t € T with A=a+bye € N'. Let |x|g be the

valuation on E. If |1 +ME =1, we can write 4 = ”j‘c‘/i, xXeo.

Then A+A™'+2= 25 and 2(a-1)=A+47" - 2=l48: It is
proved in [S-Sh] that 1f |1+A|g =1, then (H +2) = (L=22) = g,(4) .
Therefore, (A%1) = (&4,=2) = (48—"%5&—)) = —(42) = —6y(r) . If
|1 +A|g > 0, then —-le 1 + P (g the prime ideal in E) and A =
—s2, seN‘. Write s =c+d+/e. Then A= —s? = 2(a—1) = —4c2,
so (3Y) = (21). But we also have 4 = —s% = () = Og(~s?) =
6o(—1), and it is proved in [S-Sh] that 6y(—1) = —(33) . Therefore,
32y = (31) = —0p(~1) = —0p(4). This completes the proof of
Lemma 8.

ProPOSITION 3. Suppose E/F is unramified and c(x) =i.

(1) If n is even and i is even, then (x, Wy) = 1.

(2) If n iseven and i is odd, then (x, Wp) =0.

(3) Say n is odd and i is even. Then (x, W,) =0 if x # 1, and
(1, Wp) =1.

(4) Say n isodd and i is odd. Then (x, Wy) =1 if x # 6y, and
(00:« I'Vn) =0.
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Proof . Suppose n = w(t) is even and c(x) =i > 1. Then

1 m
(X, W) = (q+l)q"1[q +Zx(t)+z Z x(t)( 1)"q ]

t¢ T, m=11t€T, ~

But 3¢ X(0) = 2ser X() — Xier X(£) =0, 50

1
(X, Wa) = @+ DgT
<|o +Z[( g Y70 - (~1)"g" Y xr)}
teT, teT,,
e 3 a0 - oet Y 1]
teT,_, teT,
n—1
+ Z [(_l)mqmqn——m _ (_l)mqmqn—m-—IH
1 n i—1,i-1,n—i
=W[q - (-1)"1g'" g

n—1

+ 3 [-1rma - -ime]|

n—1
= (71?1%4”—_1 [‘1” - (=Dl + (@" - ¢ Z.(—l)’”]-

If i is even, this equals one, and if i is odd, it equals zero.
If n is even and c(x) =1, then

(x, Wa) = (qH)q,,l[q +Ex(t+Z Z ]

1¢T, m=11t€T, —
1

~ g+ Dgn 1t

Also, if n is even, then

W)= o+ S 1+ Y S (-1 =1

t¢T, m=1teT, -T,,

n—1

[61" -q" —(q¢" - q”“)] =0.

This proves (1) and (2) of Proposition 3.
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Now suppose 7 is odd. If ¢(x¥) =i > 1 then

1
(x> Wa) = @1
i—-1
x [q" N OO ED D S (L

t¢T, m=1t€T, ~T,

n—1
+ Z Z (_1)m+1qm:|.

m=i teTm_TmH

But 3, ¢ T, X(8)0(¢) =0 and

i-2
> Y z-nmtigm=o,

m=1teT, -T,_ |
SO

1 n i,0i—1, n—i n n— = m
(X,M)=W[q +(=1'g g 4 (g" ") Y (-1 “]-

m=i

If i is even, this equals zero and if / is odd, it equals one.
If ¢(x)=1 or y=1, then

n—1
s W) ——‘——[q"—27(t>eo(t)+2 ) <—1)'"+‘qm]

= 1
(g+1)g t¢T, m=1t€T,~T,,,
1 [ o _
= S amen+ T x(r)eoa)]
(¢ + g"! e ‘T,
qn qn—l
=9 ey 9
(g + 1)gn1 (x> o) + (g + 1)gn-1
=1- (X > 00)

This completes the proof of Proposition 3.
Now we assume E/F is ramified. Let 6, be the unique nontrivial
character of 7/Tj.

ProPOSITION 4. Let E/F be ramified. Then

(1) (1, Wa)=1 if n isevenor (33) =1, and equals O otherwise.
(2) (6o, Pi) =1-(1, Wy).
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Proof. We have

0w =g+ 2 ()
*Z;,ZT e (3)(F) " aw],

+1

where j was defined in Proposition 2. Consider ), .r_r I(—l)f.

Since a; = ¢/, and h # i = a; can assume the values 0, 1,¢, ...,
£9-2 | this sum is zero, so {1, W},) = Z%[q" + (3%)"q"1, which gives
the result.

Similarly, (6, W,) = ﬁ[q"-k@%)" Zt¢ T, 0o(1)]. But Z”E T, Oo(2)

= Yrer 00(8) = Tier, 60(t) = —q", s0 (6o, Wy) = 3[1 - (53)"]. This
completes the proof of Proposition 4.

PROPOSITION 5. Assume c(y) = m > 0. Then (x, W,) equals 0
or 1, and exactly half of the characters x of conductor m satisfy
(X 1 Wn) = 1 *

Proof. We have

W) = 5[+ 20 ()

14T,

o 3w ()" e

i=0 T,-T,,

where j(¢) is as in Proposition 2. Since y is nontrivial on Tp,
Zt¢T07(t) =0a SO

(X, Wh) = 2;,, [q" + (%) (%)MG(T)

X[mZz(%)q— = O

i=0
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As before, Y ,cr_7 (=1)/) =0 for m < i < n—1. Now consider

i+1

Yier-r,, X(t)(=1)/® for 0<i<m~—2. Write this sum as

SN x(baim’ + -+ ap_y 7" H)(-1)IO,
S S

where S1 = {a;, aip1, ..., am-2la; # 0}, S2 = {@m-1,..., an_1},
and ¢ is the map on & to T, which was recalled above. If x € #",
then ¢(x)eT,.If x,ye,

$(X)$(Y) _a—byT _
S +y) —axbyz cTVE

2,32
where @ = 1 — n(x? + xy +y?), b= axy(x +y), ¢ = &L and
=T %fll?n . Let x = a;ni+...+am_2nm—-2 and y = am-lﬂm_l+"'+

a,_n""!. Then v(x) =i and y either equals O or satisfies v(y) >
m — 1. We need only consider the case y # 0. Then v(x +y) > i,
so v(c) >2m+1 and v(d) > m. Therefore, ¢ + dy/n € T, . Since

x =1 on T, we have x(¢(x))x(8(»)) = x(é#(x +y)). This shows
that

Y TOEDD =Y T (@) (1O Y TS0
S.

teTx_Tm Sl 2

But
Yz = > 7()=0
SZ

1T, _,

since x #1 on T,,_;. Therefore,

> AO-1YY=0

1€T—T,

i+1
for 0<i<m-2.
Next, consider

Y. =170

teT,-T,

+1

Here, t = ¢(am_1a™ ' + - + ap_ 7™ 1), with a,_; = &/@, 0 <
J(t) <gq- 2. Let x = am_lnm'l , Y = amn™ + -+ +a,,..17t”"1 . As
before,

P(x)p(y)

Sx+y) T



384 COURTNEY MOEN

which makes
(13) ) 7O =" 7(d(x)T () (~1)/
teT,~T,., S,
=q""" 3 T($(@m_17™))(-1)/O,

a,_,#0

since ¢(y) €Ty, and y =1 on Ty,.
We have a map

gm=tjgm 2. T | Tw L C.

For x,y e #m-1,
¢(x)9(y)
P(x +y)

so X¥¢ is an additive homomorphism on #™~1/%™ to C. Letting
v =X¢, (13) becomes

€T,

q-2
Y wEam (=1 =" S w(a™Ix) = " "giG(y).
j=0 XEC |P

(Note that y - is a character of &/ .) We can now write

1 2 -1 n+m
— n - — n
which equals 0 or 1. Notice that ¥, n-1 = 7 -1, for some 0 <
i<q-2,uel+P. Then G)G(y) = (&) = (3)(~1), which

takes on each value +1 for half the ¢ — 1 possible values of i. This
completes the proof of Proposition 5.

If E/F isramified, suppose that we replace 7 by 7,, u € Z . Then
the characters of a given conductor appearing in W,} will be the same
as those appearing in W, * if (%) =1.If (%) = —1, then the two sets
of characters of a given conductor m > 0 appearing respectively in
W} and W, are disjoint. By varying 7, we thus obtain all characters
of conductor m > 0 in the restriction to 7' of some W7*.

5. Decomposition of W *|7. In this section we use the results of the
preceding section to determine the decomposition of W7|r.
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LEMMA 9. For 2k > —n, let H, = S(P~%, P"+k). Then Hy is

an invariant subspace for W' which is equivalent to Wn‘[-?-zk’ where
-2k
a=mn"*,

Proof. Recall that if § € F and o = 2, then W*™ = R-!W™wR,
where (Rf)(x) = |B|3f(Bx). Let B = n~%. Then w(t,) = n + 2k.
Suppose g€ K. Then f € H, = Rf € S(@, "%k = W (g)Rf €
S(@, P2k = R-1W'(g)Rf € H,. Thus H is invariant under
Wt. Also, W'(g)f = f if f € H, and g € K, . We thus have
a representation of K/K, ., on H, which is a subrepresentation of
W?* and which is equivlent to WnT:-Zk . This completes the proof of
Lemma 8.

Suppose W'(t)f = x(t)f forall t € T. If f € S(&F7,P),
choose k so that —k < r and n+k > s. Then S(¥",F*) C
S(P-k, pntky = H, . Then the action of W* on Hj is equivalent
to W;j_2k , a =n"% byLemma9. This implies y appears in WnT;Zk .
We apply Proposition 3 to each of the representations W;ﬂ_Zk , k>0,

to obtain

PROPOSITION 6. Suppose E/F is unramified, w(t) = n, and c¢(x) =
i

(1) If n is even and i is even, then (x, W'|r) =1.

(2) If n is even and i is odd, then (x, W*|r)=0.

(3) If n isodd and i is even, then (y, W' 7) =0 if x # 1, and
(1, W) =1.

(4) If n is odd and i is odd, then {(y, W*|7) =1 if x # 0y, and
(00’ WT'T) =0.

We argue in a similar fashion if E/F is ramified. Applying Propo-
sitions 4 and 5, we obtain

PROPOSITION 7. Suppose E/F is ramified and w(t) =n.

(1) (1, Wer)=1 if n iseven or (33) =1, and equals O other-
wise.

(2) (607 WT'T) =1- (1 ) WT‘T) .

(3) If c(x) =m >0, then

Wi =12 6060 = (5)(5) -

where y = x¢. Otherwise, (x, W*| 1) =0.
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(4) Exactly half the characters x of a given conductor satisfy

(X s WT'T) =1.
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