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VOLUMES OF TUBULAR NEIGHBOURHOODS
OF REAL ALGEBRAIC VARIETIES

RICHARD WONGKEW

This paper concerns the following problem:
Let V be an algebraic variety in ^-dimensional euclidean space.

For each pair of positive numbers p and R find an upper bound on
the volume of the set of points that are within a distance of p from
V and within a distance R from a fixed point po . Obtain this upper
bound so that it is independent of the choice of po. In particular,
does there exist a universal wth-degree polynomial, say Pπ( , , •)
which automatically provides an upper bound upon entering p, R
and the degree of V ?

Introduction. Among the people who have worked on this problem
are Demmel, Renegar, Ocneanu and myself. The one common factor
which led us to this problem was our familiarity with Smale's Bul-
letin article [S]. In it Smale obtained an upper bound for the case
where V is a complex hypersurface. His method however lacks rigor
and possesses a serious flaw. This flaw involves incorrectly applying
Fubini's Theorem and ignoring the special points of V where the "rel-
ative curvature" is larger than Ω ( i ) . Since then Renegar who was a
thesis student of Smale has obtained a correct solution to this special
case where V is a complex algebraic hypersurface. Later on, Demmel
using some elementary results from integral geometry extended Rene-
gar's results to all complex algebraic varieties and all tubes of length
less than 1. See Theorem 4.1 of Demmel [D]. Crucial to DemmePs
result is an estimate of the r-dimensional measure of the portion of
an r-dimensional algebraic variety contained in an n-ball S with ra-
dius R. More specifically Demmel used the following fact: There
exists a constant c depending only on n, so that if Volr( ) is the
r-dimensional measure of r-manifolds, then

Vol r(F n S) < c. degree(F). Rr.

For the methods used in proving this result one can see Wongkew ([W],
pp. 9-10) or Demmel ([D], p.19). This fact generalizes Proposition
6.3 in Renegar [R].
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Independently of Renegar, Adrian Ocneanu obtained the most gen-
eral result of all. Unfortunately, Ocneanu did not publish his result
and only a handwritten rough draft is in circulation. Ocneanu gave a
talk on his result and the methods he used in achieving it. See [O]. In
this talk he gave the following estimate:

Voln[Tp(VnS)] < Σ 2mOnC£{dp)kRn-k.
k=m

Here C£ is the number of ways to choose k things from n, d is the
algebraic degree of V 9 m is the codimension of V and On is the
volume of the unit n-ball. Crucial to Adrian's proof of this inequality
was his ability to express the infinitesimal volume form of a manifold
in terms of a sum of symmetric functions of its principal curvatures.
Looking through the standard references on geometry and measure
theory I have only been able to find such formulas for convex bodies
in En.

1. Using purely topological and algebraic arguments I will demon-
strate the existence of a solution to our problem. More precisely, I
will prove the following.

MAIN THEOREM. Let m be the codimension of a real algebraic va-
riety V whose defining polynomials are all bounded in degree by d.
And let S be an arbitrary n-ball in En with radius R. There exist
constants {Cj} which depend only on n, so that for all positive p the
following is true:

Yo\n[Tp(V n S)] < 2^ CjdJpJRn-J.
j=m

A variation of this theorem can be derived from a result due to Weyl
[We]. However, in this variation, the elements of {c7} depend on
integral invariants of Vn S as well as the degree of V furthermore,
the size of p is bounded.

In this paper we will use | -1 to signify either the length (norm) of
a vector (operator) or the number of elements in a set. The meaning
will be clear from the context.

Proof of Main Theorem. From this point onwards the symbols p
and R will represent non-negative real numbers and V will represent
a real algebraic variety of degree d and codimension m in En . Let
(p, R, V) be a randomly chosen triple. Assume that S is a randomly
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chosen rc-ball with radius R. We will apply induction on /ι, So
assume n = 1. The Fundamental Theorem of Algebra tells us that V
is a finite set with \V\ <d. Thus for n = 1 we have

Voln[Tp(VnS)]<2n.(dp)n.

Thus our main theorem is obviously true for n — \. So assume our
theorem is true for algebraic varieties that are defined by n - 1 or less
variables. To carry out our inductive argument, we will need some
results from Differential Topology and Algebraic Geometry. More
specifically we will need the following:

THEOREM (M). 1 Let V be a real algebraic variety in n-dimensional
euclidean space. If each of the defining polynomial f for V has de-
gree bounded above by d, then the sum of the Betti numbers of V is
bounded above by the following nth degree polynomial in d:

= d(2d-l)n'1.

THEOREM (S). 2 For any topological space X, the Oth Homology
group for X is a free group. The rank of this free group equals the
number of non-empty components ofX.

By a change of coordinates of En we may assume that S is centered
at the origin. Thus S is the standard i?-ball, {|JC| < R}. And it is
clear that for any pair of positive numbers p and R, we can cover
the ball S with regular cubes3 {Vk} which satisfy the following five
properties:

(1) There exists a family of hyperplanes Gf = {Ha} so that each
Vk is in the closure of a component of S ~ (J Ha and each hyperplane
Ha is normal to ej for some j .

(2) Vk Π Vj Φ 0 implies k = j or Vk n Vj is a regular n - 1
dimensional cube in Rn .

(3) The diameter of each Vk is less than pφijn .
(4) If H € Gft then Vn H is a real algebraic variety which satisfies

the following:
(a) dimension of V Γ\H = n- m- I = dim(F) - 1.
(b) the algebraic degree 4 of V ΠH = d = degree of V.

1 See Theorem 2 of Milnor [M], p. 275.
2 For Theorem [S] see Corollary 8 of Spanier [Sp], p. 175.

Here I am using the term regular cube to refer to an ^-dimensional rectangle; i.e. all the
edges are perpendicular.

By the algebraic degree of a variety we mean the degree of the defining polynomials for
that variety.
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(5) For each j, the number of hyperplanes in Gf with normal
vector βj is bounded above by 2nR/p.

Assume {Vk} and Gf are cubes and hyperplanes which satisfy (1)
through (5) above; then the following inequalities are true:

(l) voin[τp(vns)]< I Σ voin[Tp+p/n(VnHnS)]
[
+ E(p9V9R).

Here E(p, V, R) is equal to the volume of Tp(Sf) and Sf is defined
thus:

DEFINITION. For each x e V let h(x) be the distance from x to
\J[V Π H: H e Gf]. Then S* is the set of points x e V Π S where
h(x)>p/y/n.

From our induction hypothesis, there exist n - 1 constants {c7},
so that for all hyperplanes H eGf we have

n-\

m

This implies that
n-\

(3) VoU7>(Fn//n£)]<

Now for each i, 1 < / < n, let Gz be the set of all hyperplanes in
G^ with normal vector β\. From properties (5) and (1) we have for
each /,

| G / | < — and G j = (J(G/: 1 <i<n).

This plus the inequalities above imply that for each /,

(4) Σ yoin[Tp(VπHnS)]<
HeGι j=m

n-\

2nCjdjpjRn-j.
j=m

Since i only takes values between 1 and n, we know that for some
U 9 the following is true:

(5) Σ Vo\n[Tp(VΓ)HnS)]<n Σ yoln[Tp(VnHnS)].
HeG*
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Combining this with (4) we get

n-\
2,(6) ] Γ Yoln[Tp(VnHnS)] < ] £ 2n2CjdjpjRn~j.

HeGR

p

Thus upon replacing p with p + p/n in (6) and plugging the result
into (1) we get

(7) Voln[Tp(VnS)]<

Now for each 1 < j < n - 1, let us redefine Cj to be equal to
2n2Cj(^y . Then we can rewrite (7) as

n-\

(8) Yo\n[Tp{V nS)} < £ CjdJpiRn-J + Voln[Tp(Vn Sf)].
j=m

Clearly, we are finished as soon as we demonstrate the existence of a
constant cn independent of p, R, and V so that

(9) Vo\n[Tp{VnS*)\<cn{dp)n.

Our proof of (9) follows from the following:

Claim, If On is the volume of the unit ball in En and we set
cn = 3nOn then (9) is true for all R, py V and d.

To prove our claim we will need the following lemma:

LEMMA (C). Let d be the degree of the defining polynomials for
an algebraic variety V in n-dimensional euclidean space. Then the
number of components of V is bounded above by

d(2d-l)n-1.

Proof. By definition the Oth Betti number of V is the rank of the
Oth Homology group of V. And from Theorem (S) we know that
the number of connected components of V is equal to the Oth Betti
number of V. Thus in a rather crude fashion, it follows that the
sum of the Betti numbers V is an upper bound for the number of
bounded components of V. From the works of Milnor [M], Thorn
[T] and Oleϊnik [Ol] we know this sum of Betti numbers is bounded
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above by an nth degree polynomial in d. From Theorem (M) we
may assume this polynomial is

d{2d-\)n~\

Thus we have completed the proof of our lemma.

Proof of Claim. Let {Uk} be the set of components of En ~
[j{H Ξ Gf} which contains Sft . Now {Uk} is defined as a cover of
Sfi and the elements of Sfi are bounded components of V. From
Lemma (C), the number of components of V is bounded above by

O(d) = d(2d- I ) " ' 1 .

Thus the following inequality is true:

(10) \{Uk}\ = cardinality of {Uk} < d{ld - I ) " " 1 .

But because {Uk} covers Sfi we get

Thus

(11) VolΛ Tp(Sf) < Voln Tp [U Uk] .

From the sub-additivity of Lebesgue measure we know that

(12) VolΛ Tp [U Uk] < J 2 Vol. Tp[Uk].
k

Now each Uk is the result of a translation of the π-cube, [0, %]n .
Thus upon combining this fact with (10) and (12) we get

(13) Volw7> [\JUk] < d{2d-\)n-χYo\n [Tp

Now the center of the n-cube, [0, £]n is the point po = ^ Σ2=i
And every point of the n-cube, [0, £]n is within a distance of
from /?o . In other words, the following relation holds:

This implies that for each Uk ,

(14) Yoln[Tp(Uk)] < Yoln \\p-po\ < ψ\ = On β
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Upon combining (11) and (13) with our previous inequality we obtain
that

(15) Volw TP(S*) < (d)(2d - I)*"1 On β

From this inequality and the fact that

(d)(2d - I)*"1 . On βp

we see that we have proven our claim; and thus the proof of our Main
Theorem is complete.

Postscript. It is a little unsettling to use the sum of the Betti num-
bers as the upper bound on the number of components. It is only the
Oth Betti number of V that one needs for the proof. One would hope
that we could get a much sharper bound for this. Thus I shall end
with some of the questions which bothered me throughout the paper:

1. Are there sharp estimates for the Oth Betti number of V in
terms of d and n ?

2. What are the best constants for the formula in our main theo-
rem?

3. Is there a formula for expressing the infinitesimal volume form
of an arbitrary singular (non-singular) submanifold in terms of a sum
of symmetric functions of its principal curvatures?
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