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AN APPLICATION OF THE VERY WEAK BERNOULLI
CONDITION FOR AMENABLE GROUPS

S C O T A D A M S A N D JEFFREY E. STEIF

In this paper, we give an application of the recently developed Very
Weak Bernoulli condition for amenable groups. The setting for the
application is an attractive particle system with the usual lattice re-
placed by a general countable amenable group.

1. Introduction. We consider probability measures on X = {0, 1}G

which are invariant under the natural right action of the group G.
Two such measures μ and v are isomorphic if there exists an
/ : ({0, \}G, μ) —• ({0, 1}G, v) which is bijective a.e. and measure-
preserving and which commutes with the action of G. A Bernoulli
Shift is a stationary process which is isomorphic to an i.i.d. process.
For the case G = Z, it was proven by Ornstein [6] that entropy is
a complete invariant for Bernoulli Shifts. In this work, a number of
important properties of a finite state discrete time (G = Z) station-
ary process were introduced, namely Finitely Determined (FD), Very
Weak Bernoulli (VWB), and Weak Bernoulli (WB). This work together
with [10] shows that FD and VWB are equivalent to being a Bernoulli
Shift. While these are also all implied by the WB condition, they do
not imply it The fact that a Bernoulli Shift is not necessarily WB
might seem strange but is partially explained by the fact that WB is
not an isomorphism invariant. An example of such a process is given
in [13]. The equivalence of Bernoulli and VWB allowed researchers to
prove that a number of concrete systems were in fact Bernoulli Shifts.

After this, further equivalent but useful concepts were introduced,
namely that of Thouvenot's extremality [11] and that of ε-block inde-
pendence [12]. Later on, it was natural to extend as much as possible
the Bernoulli theory to the group Zd and ultimately to amenable
groups. Kieffer [4] succeeded in obtaining a Shannon-McMillan the-
orem in the amenable group setting. (This was later improved to a
pointwise theorem for certain Folner sequences in [8].) Recently, the
theorem that entropy is a complete invariant for Bernoulli Shifts was
generalized to the case where the group acting is a general countable,
discrete, amenable group [7]. (In fact, they handle the broader class
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of unimodular amenable groups "with a good entropy theory"; this
includes most naturally occurring unimodular amenable groups.)

It is fairly straightforward to extend the definition of VWB to the
group Zd. In [3], analogues of extremality and ε-block independence
for Zd are used. The concept of extremality for an amenable group is
also used in [7]. The analogue of FD to Zd (and to amenable groups)
is obvious. However, it was not at all clear what the analogue of the
above VWB condition should be in this more general context of an
amenable group.

In [1], a natural notion called Folner Independence (FI) is intro-
duced. This condition makes sense for a general countable amenable
group and implies that the system is a Bernoulli Shift. In [1], it is
shown that the ferromagnetic Ising model on an amenable group in
either its plus or minus states are FI and hence are Bernoulli Shifts.
(This generalizes a result in [Ornstein and Weiss, unpublished].) How-
ever, even for the simple case of the group Z , FI is strictly stronger
than Bernoulli (see [9]).

In another recent paper [2], the notion of VWB for the group Zd

is extended to a general countable amenable group. This condition,
although much more complicated than FI, is equivalent to Bernoulli
and moreover is similar in spirit to the VWB condition for Zd. In this
work is the idea of ordering a series of blocks inside a larger Folner
block.

The purpose of this paper is to give an application of this new
VWB condition for amenable groups. We show that a large collec-
tion of Markov processes (whose state space is the collection of 0, 1
configurations on a countable, discrete, amenable group) are Bernoulli
Shifts. These results generalize the results in [14] to the amenable
group context providing at the same time an application of the new
VWB condition for amenable groups. In order to do this, we intro-
duce a condition called Time Folner Independence (Definition 2.5.1)
which is stronger than VWB, but weaker than Folner Independence.
This condition makes sense only for amenable groups with a distin-
guished time direction (i.e., for groups of the form G x Z where G
is amenable).

An example of a discrete amenable group is the integer Heisenberg
group: the group of all 3 x 3 , upper triangular, unipotent matrices
(with integer entries). This group is the same as Z 3 with multi-
plication twisted by the Heisenberg cocycle: {a, b, c) (x, y, z) =
(α + x, b + y, c + ay + z). For this group, the Interacting Particle
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Systems defined below can still be thought of as being defined on the
usual lattice Z 3 . However, the usual additive translation invariance
is replaced by some more complicated notion of invariance.

We now introduce the specific processes which we will analyze. We
will consider Probabilistic Cellular Automata (PCA). These will be
discrete time Markov processes with state space X = {0, 1}G, the set
of configurations of 0's and Γs on a countable amenable group G.
The transitions will be governed by a family of functions

where
B = sup φ r , η) < 1/2

xeG, ηex

and c(x, η) is, for fixed x, a continuous function of η where X
is given the product topology. The reason for having the 1/2 bound
rather than the more natural bound of 1 is explained later.

The evolution of our process is defined as follows. If the state of the
system is η, then at the next stage each lattice point x in G switches
its value independently with probability c(x, η). In particular, this
yields a product measure at the next stage, which we denote by Tη.
We can then evolve any initial distribution v, and we denote this
evolved measure by Tv where Tv = Jχ Tηdv(η). The measure μ
is called stationary if Tμ = μ.

We note that X has a natural partial order defined on it: η <δ if
η(x) <δ(x) for all xeG.

DEFINITION 1.1. A PCA (IPS) is attractive if, whenever r\ < δ \
then c(x, η) < c(x, δ) if η(x) = δ(x) = 0 and c(x, η) > c(x, δ) if
n{x) = δ(x) = 1.

Heuristically, one has that 0's attract 0's and Γs attract Γs. In this
paper, we deal exclusively with attractive systems.

There is another characterization of attractiveness which will be use-
ful for us later. We say that a function / from X to R is increasing
if η •< δ implies that f(η) < f{δ). Let Jί denote the collection of
increasing continuous functions on X. This then allows us to place a
natural partial order on P(X).

DEFINITION 1.2. v < μ if fxfdv < Jχfdμ for all functions /
in Jf.

The fact that •< is a partial order on P(X) is easily verified, as is
the continuity of •< with respect to the weak topology in that vn < μn

for all n, vn -> v and μn —• μ imply that v < μ.
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We now present an alternative definition of attractiveness in the
following proposition (see [5]).

PROPOSITION 1.3. A PCA (IPS) is attractive if and only if v < μ
implies Tv <Tμ.

In the attractive context, there are two distinguished stationary dis-
tributions which might reduce to the same one. The next proposition
deals with one of these.

PROPOSITION 1.4. lim^oo Tnδ0 exists and is a stationary distribu-
tion where <50 denotes the unit point mass at the configuration of all
O's. Furthermore, this limiting distribution is smaller than any other
stationary distribution with respect to the partial order defined in Defi-
nition 1.2.

The analogous result holds when 0 is replaced by 1. For the proof,
see [5]. We denote by v_ the stationary distribution whose existence
is guaranteed by the above proposition. Similarly, if we start with the
configuration of all Γs, we denote the limiting stationary distribution
by v. The reason why we take 1/2 as a uniform bound on the spin
rates is that Proposition 1.3 and 1.4 become false otherwise, which
one can see by taking c(x, η) = 1.

We only consider spin rates which are translation invariant in an
appropriate sense. We first note that G acts canonically on itself by
right translations. Next, G acts canonically on X on the right by
(*/#)(•*) = ηixg"1)- Finally, G acts on the collection of spin rates
on the right by c(x, η)g = c(xg, ηg). We only consider spin rates
which are fixed under this action, i.e., are (right) translation invariant.

Letting v_ be the stationary process with stationary distribution v_,
we have that v_ is a process indexed by G x Z which is (right) transla-
tion invariant whose proof we leave to the reader. Our main theorem
is

THEOREM 1.5. y_ is a Bernoulli Shift

In §2 we develop the notion of Time Folner Independence and prove
that it implies VWB (Theorem 2.5.2). In §3, we prove Theorem 1.5
using Theorem 2.5.2.

2. Time Fβlner Independence implies VWB. In this section we prove
(Theorem 2.5.2) that Time Folner Independence implies Very Weak
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Bernoulli, which is equivalent to Bernoulli [2, Theorem 3.7 and 7,
1987, Theorem 8, p. 93].

2.1. Preliminaries. We recall the ^-metric: Let X = {X^iei and
Y = {Yι}iei be finite processes (i.e., processes with |/| < oc) and let
m be any coupling of X with Y. We define

fmWe define d(X, Y) := infmafm(X, Γ), where the infimum is taken
over all couplings m of X and Y.

Recall [1, Definition 2.8] that if X and Y are coupled finite pro-
cesses, then Y is ε-process independent of X if rfj(Ivy, X\\Y) < ε
The next lemma allows us to reformulate this definition using the or-
dinary d-metric instead of the dχ-metric of [1, Definition 2.4].

LEMMA 2.1.1. Let X and Y be coupled finite processes. Let
denote the configurations of X of positive probability. For every x e
&(X), let Yx denote the process Y, conditioned on X = x.

(i) If Y is ε-process independent of X, then there exists C c
&(X) such that

Vr[X G C] > 1 - y/ε

and such that, for all x eC, ~d(Yx, Y) < y/ε.
(ii) Assume there exists C c &(X) satisfying

Pτ[X e C] > 1 - ε

and d(Yx, Y) < ε, for all x e C. Then Y is [ε + (1 - e)ε]-process
independent of X.

Proof. By [1, Lemma 2.6],

dx{XVY,X\\Y)=

From this, the lemma is easily obtained. D

Recall [1, §3] that, if F C G is finite and if δ > 0, then a finite
subset K c G is {F, δ)-invariant if, for all / € F, \fKAK\ < δ\K\.
We say that a property of finite subsets of G holds "for all sufficiently
invariant subsets" if: there exists (F, δ) such that it holds for all
(F, £)-invariant subsets. Recall also that dpK denotes the set of all
aeG such that FanKφ0^FaΠ (G\K).
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The group G is said to be amenable if, for all finite F c G, for all
δ > 0, there exists a (i 7 , J)-invariant (finite) subset of G.

DEFINITION 2.1.2 [1, Definition 3.3]. Let ε > 0. A collection
A\, ... , Ak of finite subsets of G is said to be a disjoint e-quasi-
tiling system if, for all sufficiently invariant sets F, there exist disjoint
subsets A\, . . . , Am c F such that

(1) each ^4P is a right translate of some Aj and

If such sets exist, then we say that F is disjoint ε-quasi-tilable by
A\, . . . , Ak and we say that A\, ... , Am is a disjoint e-quasi-tiling
of F by right translates of A\, . . . , Ak .

DEFINITION 2.1.3 [2, Definition 3.1]. We say that a stationary G-
process X is Fery Weαfc Bernoulli if, for all ε > 0, there exists a
disjoint ε-quasi-tiling system A\, . . . , Ak , such that for all sufficiently
invariant finite sets K c G, there exists an ordered disjoint ε-quasi-
tiling A\, ... , Am of AT such that for all p = 1, . . . , m, the process
X-j is ε-process independent of Xψ , where /^ := A\ U U Ap_\.

P P

An ordered disjoint ε-quasi-tiling with this property will be said to be
ε-almost independent under X.

Let G be a countable, discrete, amenable group with identity ele-
ment e.

Let K c G x Z be finite and nonempty. For -oo < a < b < oc,
define

(1) Z*

For N G Zf0

Zb

bot(A")

top(A")

intvl(A")

, define

SliceN(K) := {t

For ΛΓ e Zj°° and 5 c Slic

:=ZΠ(-oo,b],

:= Z n[a, oo),

:={gεG\(g,a)eK},

•= min{a e Z\Ka φ 0},

= max{<z eZ\Kaφ 0}
_ 7top(/:)

Eintvl(AΓ)|[ί-bot(A')]<

eχ(K), define

NZ)

where | | denotes cardinality.
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If A and B are sets, then we define AAB := (A\B) u (#V4).

2.2. Cylindrical sets. Let G be a countable, discrete, amenable
group with identity element e.

DEFINITION 2.2.1. Let LC GxZ be finite and nonempty. We say
that L is cylindrical if Lt = Lj, for all /, j e intvl(L). If ζ > 0,
then we say that L is ζ-cylindrical if |L, Δ L , | < ζ\Lt\, for all /, j e
intvl(L).

LEMMA 2.2.2. Let ζ > 0 αnd to TV e Zf° be given. Then, for all
sufficiently invariant K C G x Z: K is (ζ, TV)-slice-cylindrical, i.e.,
there exists S c Slicejv(^) such that

(i) Size^(5)>(l-C)l^|; and
(ii) for all seS, Ks

s

+N~ι is ̂ -cylindrical.

Proof. We may assume that ζ < 2. Choose δ > 0 such that
4v/2M < C. Let K c G x Z be ({^} x Z ^ 1 , <5)-invariant. We
will show that K is (ζ, N)-slice-cylindrical.

Let

Then \B\ < (2N - l)δ\K\ < 2Nδ\K\. Let

S:={se S]iceN(K)\\Bs

s

+N-ι\ < V2Nδ\Ks

s+
N~ι\}.

Then

^ (1 - y/2Nδ)\K\ > [1

verifying (i).
Fix s e S. Fix /, j G Z / + Λ Γ - 1 . To prove (ii), it suffices to show

that \KiΔKj\<ζ\Ki\.
Since

l ^ ^ " 1 ! < V2Nδ\Ks

s

+N~ι\ < ζ\Ks

s+
N-ι\/4,

it follows that there exists k0 e Z^+N~l such that \BkJ < ζ\KkJ/4.
Define

B':=K\[(e,kQ-i)K] and B" := [{e, kQ - i)K]\K.

Then 5 ' C ί , ΰ / ; c ί , Kko\Ki C ̂  and ^ \ ^ 0 Q K Therefore

Λ Γ Δ ^ C ^ U 5 £ C^o.°Similarly,° A> \ °
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Then \KtΔKκ\ < \BK\ < ζ\Kk(>\/4. Similarly, \KjΔKkJ < \BK\ <
C\Kko\/4.

Now \Kk I < \Ki\ + \Kkι\Ki\ and Kkn\Kι C KiAKkn, so

since ζ < 2. Then

< (ζ\KkJ/4) + (ζ\Kko\/4) = ζ\Kko\/2 < ζ\Ki\. D

2.3. Localization of invariance. Let G be a countable, discrete,
amenable group with identity element e.

LEMMA 2.3.1. Let F c G be finite, let η > 0 W teί TV e Zf°.
α// sufficiently invariant K c G x Z, K is (F, η, N)-s\ice

invariant, i.e., there exists S c Slice^(^) such that

(i) Size^)>(l-f/)|^|; αnrf
(ii) /or all s eS, there exists i e Z / ^ - 1 ŵc/z ίΛαί Kt is (F, η)-

invariant.

Proof Let K be (i7 x {0}, ?/2/|i7|2)-invariant. We will show that
K is ( i 7 , //, TV)-slice-invariant. Let 5 consist of all s G Sliceτv(i^)
such that Ks

s

+N~~ι is (F x {0}, 7//|i<Ί)-invariant. We wish to prove (i)
and (ii) of Lemma 2.3.1.

We first prove (i). Assume Sizejy(£) < (1 - ή)\K\. We aim for a
contradiction. Let S := S\iczN(K)\S so that Size^(^) > η\K\. Then,
for all s eS, there exists fseF such that

l\ > η\Ks

s+
N-ι\/\F\.

For all / e F, let £(/) := {̂  G S\fs = /} . As Size^(^) > ι/|A:|, it
follows that, for some foEF,

Siz4(S(fo))>η\K\/\F\.

Let
K:=

Then 1̂ 1 = Sizej^(5(/0)) > ^l^l/li7!, so, by definition of S(f0),

\(fo,O)KAK\>η\K\/\F\>η2\K\/\F\2.
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Since K is a union of sets of the form Kf x {/} , it follows that

(fo,O)KAKC(fo,O)KAK,

and hence | (/ 0 , 0)KAK\ > η2\K\/\F\2. But K is (Fx{0}, η2/\F\2)-
invariant, a contradiction.

We now prove (ii). Fix s eS and assume, for all / G Zl+N~ι, that
Ki is not (F, 7/)-invariant, i.e., there exists feF such that

We aim for a contradiction.
Let L := K**"-1. For / e F, let /(/) := {ι G Zs

5

+N'ι\fi = /}
Then there exists f\ EF such that

Let Γ := Uie/ί/,) ̂ ' x {0 τ h e n

So, since L is a union of sets of the form Lz x {/}, it follows that

( / 1 , 0 ) Z Δ L C ( / 1 ) 0 ) L Δ L ,

and hence |(/i, 0)LAL\ > η\L\/\F\. However, since s E S, L —
Kl+N'1 is (F x {0}, ι//|F|)-iπvariant, so \{fλ, 0)LΔL| < η\L\/\F\,
a contradiction. D

2.4. Prolongation of tilings. Let G be a countable, discrete, amena-
ble group with identity element e.

By [1, Lemma 3.4], there exist disjoint ε-quasi-tiling systems (Def-
inition 2.1.2) consisting of arbitrarily invariant subsets of G.

If $/ is a collection of subsets of G and if / c Z , then we define

We call sf x / the I-prolongation of srf .

LEMMA 2.4.1. Let N e Z^° and λ > 0. 77z^ ίΛ r̂e exwte C > 0
such that

if srf is a disjoint ζ-quasi-tiling system for G
if L c G x Z is finite and ζ-cylindrical;
if\intvl(L)\<N; and
if for some ΪQ G intvl(L), L/ is disjoint ζ-quasi-tilable by stf ,

then L is disjoint λ-quasi-tilable by sf x intvl(L).
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Proof. Choose ζ > 0 such that

Let / := intvl(L). Then |/| < N by hypothesis. Let J / be a disjoint
C-quasi-tiling of Lz by right translates of elements of J / . Let

x / C L }

We wish to show that

Fix j G / . It suffices to show that

Lj\\J^\<λ\Lj\.

By definition of A,

\J(W\sf) c ίg e \J^\g ψ Lk, for some k e l\

But \j£f CLi , so

<

fee/

Since L is C-cylindrical, it follows that
Nζ\Lio\. Thus

Since L is ζ-cylindrical, it follows that |L/\L;J < |LZQ Δ L 7 | < ζ\Lio\,
so _^

\J I | l k I < (2 +
Lj\\Jj/ I < |Ly\Lίo| +

Using C-cylindricity of L once more,

\LiQ\ < \Lj\ + \Lio\Lj\ < \Lj\ + \LioΔLj\

Thus

ζ)\Lj\.

D

2.5. 77m^ Fθlner independence. Let G be a countable, discrete^
amenable group with identity element e. Let X be a right stationary
(G x Z)-process.

DEFINITION 2.5.1. We say that X is Time Fθlner Independent if,
for all ε > 0, there exists iV e Zj00 such that, for any sufficiently
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invariant A C G:
A is (N, ε)-wίde, i.e., for all finite

the process X\(A x Zf) is ε-process independent of X\S.

Recall (Definition 2.1.3) the definition of Very Weak Bernoulli. We
now come to the main result of this section:

THEOREM 2.5.2. If X is Time Folner Independent, then X is Very
Weak Bernoulli

Proof. Let ε > 0 be given. We wish to find a disjoint ε-quasi-tiling
system satisfying the condition of Definition 2.1.3.

Choose N as in Definition 2.5.1. Let λ := ε/3. Choose ζ as in
Lemma 2.4.1. We may assume that ζ < ε/3.

By [1, Lemma 3.4], we may choose in G a disjoint ζ-quasi-tiling
system si such that every A e si is (N, ε)-wide (Definition 2.5.1).
We will verify that si x Z^ is a disjoint ε-quasi-tiling system, satis-
fying the requirements of Definition 2.1.3.

Choose a finite subset F C G and η > 0 such that any (F, η)-
invariant subset of G is disjoint C-quasi-tilable by right translates of
elements of s/ . We may assume that η < ε/3.

By Lemmas 2.2.2 and 2.3.1, it suffices to show that if K c G x Z is
(C, ΛO-slice-cylindrical and (F, η, 7V)-slice-invariant, then K admits
an ε-almost independent ordered ε-quasi-tiling (by right translates of
elements of s/ x Z^). So fix such a K.

Then, by Lemmas 2.2.2 and 2.3.1, there exists S c Sliceτv(^) such
that

(i) S i z 4 θ S ) > ( l - C - i / ) | t f | ;
(ii) for all seS, Ks

s+
N~ι is C-cylindrical; and

(iii) for all s e ^ , there exists / e Zs

s

+N~x such that Kt is (F, ?/)-
invariant.

Fix, for a moment, some ί G S . Let L := K$+N~x. Then there
exists / G Z / + Λ Γ - 1 = intvl(L) such that Lz is ( i 7 , //)-invariant. By the
definition of F and η, Lz is disjoint ζ-quasi-tilable by right trans-
lates of elements of si. On the other hand, by (ii), L = K*+N~l

is C-cylindrical. We apply Lemma 2.4.1 and conclude that L is dis-
joint /l-quasi-tilable by right translates of elements of si x intvl(L) =
si x Zl+N~x. Let sis be such a disjoint λ-quasi-tiling. That is,
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defining Cs := \Jje^
 A ' w e h a v e :

(a) every element of sf s is a right translate of some element of
sf x Z*+N~ι (and is therefore a right translate of some element of

x Z»)
_

(b) the elements of sf s are pairwise disjoint;
(c) Q c ^ ^ and
(d) \Cs\>(l-λ)\K*+N-ι\.

Now choose any ordering of the elements of

ses

such that if s < s', then the elements of sf s precede the elements of

Let S := SliceN(K)\S. By (i) above, Size^(S) < (C + η)\K\. Then

K\\Jsf rs+N-l
^s

ses ses
•s+N-l I

ses

Then, since ζ < ε/3, η < ε/3 and A = ε/3, we obtain
ε\K\. _

The elements of sf are pairwise disjoint and contained in K.
Now, X is right stationary and each Aesa? is (N, ε)-wide. There-

fore, the Time Fθlner Independence condition (Definition 2.5.1) im-
plies that sf (with the chosen ordering) is ε-almost independent, as
required by Definition 2.1.3. D

3. y_ is Bernoulli. In this section, we prove Theorem 1.5. Most of
the proof follows that in [14], where the group G is Zd for some d.
We in fact sometimes simply refer to the proofs in this paper explain-
ing the necessary modifications. Let {Γ/}/ez denote the stationary
process with stationary distribution y_. So Y/(JC) is the value of the
process at time i and location x. Let {^}/>o denote the process
{Yi}i>o conditioned on η at time 0.

Let G be a countable, discrete, amenable group with identity ele
ment e.

LEMMA 3.1. If the spin rates are attractive, then given e > 0, there
is an N and a set A c X of y_-measure at least 1 — ε so that for all
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n> N and for all η eA,

Proof. This is proved exactly as is Lemma 4.2 in [14]. D

To prove Theorem 1.5, we first deal with finite range spin rates
(defined below) and then extend to infinite range spin rates. We prove
this by showing that y_ has the Time Folner Independent property and
then invoking Theorem 2.5.2.

PROPOSITION 3.2. Given e > 0, there is an integer b such that for
all sufficiently invariant F c G, there is a set E c X {depending on
F) of v_~measure at most ε such that

for all η £ E.

Proof. This is proved exactly as is Proposition 4.3 in [14]. There are
three minor changes one must make. The place where the pointwise
ergodic theorem is used is replaced by the mean ergodic theorem which
is really all that is needed. (It is not known if every amenable group
admits a Folner sequence for which the pointwise ergodic theorem
holds. However, the mean ergodic theorem is valid. This also explains
why the statement here is slightly weaker than that of Proposition 4.3.)
One must also show that a d-limit of mixing measures is mixing and
that a direct product of two mixing measures is ergodic. However,
these facts are proved in the same way as they are for Z-actions. D

The next lemma shows that for finite range systems, the process
conditioned on η at time 0 in F x [1, b] is d-close to itself if we
further condition on elements in G x Z whose spatial coordinates
do not lie in F and whose time point is in [1, b] providing F is
sufficiently invariant (depending on b).

DEFINITION 3.3. The spin rates {c(x, η)} are said to have finite
range if there exists K C G finite such that if η = δ on K, then
c(e, η) = c{e,δ).

We can assume that e e K and K = K~ι. In the above case, we
say that {c(x, η)} has finite range K (although K is not unique).

If {/i, . . . , lm} c G x Z , we let σ(l\, . . . , lm) denote the sub
σ-field on {0, l}GxZ generated by these m points and let
j/(σ(/ i , . . . , lm)) denote the collection of 2m atoms generating this
sub σ-field.
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LEMMA 3.4. If the spin rates have finite range, then given any b and
ξ > 0, one has that for all sufficiently invariant F, the following holds:
If η eX and

{li,...,lm}Q(G\F)x[l9b]9

then for all A e £f(σ(l\ ? ... , lm))

d({Y?(x)}{x,ι)eFx[Ub], {Y?{x)\

Proof. Let K be a finite set such that the spin rates have finite range
K. By [1, Lemma 3.2], let F be sufficiently invariant so that

\Λ(dK2bF)\>ι

Now, letting S = F\(dK2bF), we have K2bS\F = 0, so KbS Π
Kb(G\F) = 0 . Since the process has finite range K, it follows
from the translation invariance that the process restricted to a set
A up to time b only depends on the initial configuration on Kb A.
Therefore for any η e X, {Yl}{x)}(Xj)eSχ[\,b] ^s independent of

Therefore given {l\, ... , lm} c (G\F) x [1, &], the way we have
chosen 5 implies that, for all A G stf{a(l\, ... , /m)), the processes
{^W}(x,/)G5χ[i^] a n d {^W}(jc,i)€5χ[i,*]M have exactly the same
joint distributions. Since

isχ[i,fr]l > t j .
| F χ [ i , 6 ] | - ς ?

this clearly implies that

THEOREM 3.5. 7/*ί/zβ ̂ pm rato αr^ attractive and of finite range, then

({0, l } G x Z ,£)

w Bernoulli.

Proof. This is proved along the same lines as Theorem 4.6 in [14],
but we provide the proof. We demonstrate the Time Folner Inde-
pendence property and then apply Theorem 2.5.2. Let ε > 0. By
Proposition 3.2, there is an integer b such that, for all sufficiently
invariant F c G, there is a set E (depending on F) of ^-measure
at most ε such that
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for all η ψ E. By Lemma 3.4, for all sufficiently invariant F, for all
η, if

then for all A e$f{σ(h , . . . , lm))

Together this gives us that for all sufficiently invariant F, there is
a set E of 1/-measure at most ε such that for all {l\, . . . , lm} c
( G \ F ) x [ l , 6 ] ,

(3.1) ^({lf (*)}(*,OGFX[I,*]A4, Ή(*)}(*,,-)€Fχ[i,*]) < 9ε 1 / 4

for η £ E, A es/(σ(l\ , . . . , / m )) . We claim that F is (TV, ε)-wide.
Let

0>i, , yr} C {ω G G x Z : ω Λ + 1 < b}\(F x[l9b]).

Partition {y{, . . . , y r} into two sets {/i, . . . , lm} and {/},..., /^/},
where the l\, . . . , lm all have their time coordinate positive and the
/ ( , . . . , l'mι all have their time coordinate nonpositive. Then any ele-
m e n t in sf(σ(yι, ... , yr)) is A\ Γ)A2 where A\ es/(σ(l\ 9 ... , lm))
and A2 esf(σ(l[f... , / ^ ) ) -

Now we let (?̂ 2 denote the measure on X obtained by considering
the conditional distribution of YQ given A2. By (3.1), if η φ E,
there is a measure P«>Ai on {0, l} i Γ χt 1 '^ x {0, l} i Γ χΠ^l which is a

coupling which gives ^-distance < 9e1/4. If η € 2?, we let P^^i be
any

{Yil(x)}(x,i)€Fx[l,b]/Ai - {Yi(x)}(χ,i)eFx[l,b]

coupling. It then follows that

= [
Jx

is a coupling of

a ϊ l d

However, this is only a good coupling if QA2 does not give too much
measure to E. In particular, if QA^{E) < y/e, then

Γ\A2), {Yi

10ε1 / 4.
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Since

and v_(E) < ε, it follows that

Hence for all A e s/(σ(y\, . . . , yr)) except for y/ε portion with
respect to v_,

This, together with Lemma 2.1.1 demonstrates the Time Folner Inde-
pendence property. D

THEOREM 3.6. If the spin rates are attractive, then ({0, l}GxZ , ϊ/)
is Bernoulli.

Proof. This follows easily from Theorem 3.5 and is proved exactly
as is Theorem 4.7 in [14]. •
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