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LACUNARY STATISTICAL CONVERGENCE

J. A. FRIDY AND C. ORHAN

The sequence x is statistically convergent to L provided that for
each ε > 0 ,

lim «~"1 {the number of k < n: \x^ — L\ > ε} = 0.
n

In this paper we study a related concept of convergence in which the
set {k: k < n) is replaced by {k: kr-\ < k < kr}, for some lacu-
nary sequence {kr} . The resulting summability method is compared
to statistical convergence and other summability methods, and ques-
tions of uniqueness of the limit value are considered.

1. Introduction. A complex number sequence x is said to be statis-
tically convergent to the number L if for every ε > 0,

(1) lim^\{k<n:\xk-LK\>ε}\ = Oy

where the vertical bars indicate the number of elements in the enclosed
set. In this case we write S-limx = L or xk —> L(S). We shall also
use S to denote the set of all statistically convergent sequences. The
idea of statistical convergence was introduced by Fast [4] and studied
by several authors [2], [3], [5], [6], [11]. There is a natural relationship
[2] between statistical convergence and strong Cesaro summability:

|σi| := < x: for s o m e ! , lim ί - ]Γ \xk - L\ J = 0 \ .

By a lacunary sequence we mean an increasing integer sequence
θ = {kr} such that k$ = 0 and hr := kr - /cr_i —• oo as r —> oo.
Throughout this paper the intervals determined by θ will be denoted
by lr := {kr-\, K], and the ratio kr/kr-\ will be abbreviated by qr.
There is a strong connection [7] between \σ\\ and the sequence space
Nβ, which is defined by

:= / x: for some L, lim I 7- Y^ |x^ - L| I = 0

The purpose of this paper is to introduce and study a concept of con-
vergence that is related to statistical convergence (1) in the same way
that Nβ is related to |σi | .
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DEFINITION. Let θ be a lacunary sequence; the number sequence
x is Sβ-convergent to L provided that for every ε > 0,

(2) lim

In this case we write SQ-XW&X = L o r x ^ L(SΘ), and we define

SQ:={X: for some L, Sθ-limx = L}.

The limits in (1) and (2) can be expressed using matrix transforma-
tions of the characteristic function XK of the set

K = K(x,L,e):={keN: \xk - L\ > ε}.

The limit in (1) is limn(C\χκ)n = 0, where C\ is the Cesaro mean;
the limit in (2) is limn(Cβχκ)n = 0, where Cθ is the matrix given by

0, iϊk£Ir.
In this form £#-convergence is seen to be a part of "A-density conver-
gence" as defined in [8] and [3].

In the next section we establish inclusion relations between Sθ and
Nθ and also between Se and S. In §3 we show that the Sθ -limit of
a given sequence x is not necessarily unique for different θ 's, but
different Sβ -limits cannot occur if x e S. In the final section we get a
relationship between ^-convergence and strong almost convergence, a
concept introduced by Maddox [10] and (independently) by Freedman
et al. [7].

2. Inclusion theorems. In this section we first give some inclusion
relations between Nθ- and ^-convergence and show that they are
equivalent for bounded sequences. We also study the inclusions S c
Sβ and Sβ C S under certain restrictions on θ = {kr} .

THEOREM 1. Let θ = {kr} be a lacunary sequence', then

(i) (a) xk -> L(NΘ) implies xk -> L{SΘ), and
(b) Nθ is a proper subset of Sθ

(ii) xeloo and xk -> L{SΘ) imply xk -+ L(NΘ)
(iii) Sθnloo = NθnlOOf

where l^ denotes the set of bounded sequences.

Before proving this theorem we remark that this result is included
by Theorem 8 in [3], where Connor bases the proof on the concept of
ideals in l^ we give a direct proof.
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Proof, (a) If ε > 0 and x^ —> L(NQ) we can write

keir keir

\xk-L\>ε

which yields the result.
(b) In order to establish that the inclusion Nθ C Sθ in (i) is proper,

let θ be given and define xk to be 1 ,2 , . . . , [\/^r] at the first [\/%]
integers in Ir, and x^ = 0 otherwise. Note that x is not bounded.
We have, for every ε > 0,

1 |{* elr:\xk-θ\>ε}\ = ^ -> 0 as r -> oo,

i.e., xfc —> 0(5^). On the other hand,

oi 1

hence x^ -^ O(Λ^).
(ii) Suppose that xk —> £(5^) and x E /^, say |x^ - L| < M for

all /:. Given ε > 0, we get

r ^6/ r kelr

r

\xk-L\>ε \xk-L\<ε

<^-\{keIr:\xk-L\>ε}\+ε,

from which the result follows.
We remark that the example given in (i) shows that the boundedness

condition cannot be omitted from the hypothesis of Theorem 1 (ii).
(iii) This is an immediate consequence of (i) and (ii).
Since any Λ^-summable sequence is Qrsummable, we conclude

from Theorem 1 (ii) that any bounded ^-summable sequence is also
Q-summable.

LEMMA 2. For any lacunary sequence θ, S-limx = L implies
Sβ-\imx = L if and only if liminfr qr > 1. If liminfr qr = 1, then
there exists a bounded Sβ-summable sequence that is not S-summable
(to any limit).
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Proof. Suppose first that lim mίr qr>\\ then there exists a δ > 0
such that qr > 1 + δ for sufficiently large r, which implies that

fcr 1 +<>

If xk -> L ( 5 ) , then for every ε > 0 and for sufficiently large r , we
have

i 1
: kr: \xk - L\> ε}\ > -j-\{k e Ir' \xk — L\ > ε}\

this proves the sufficiency.
Conversely, suppose that liminf r# r = 1. Proceeding as in [7; p.

510] we can select a subsequence {kr^} of the lacunary sequence θ
such that

i and
J

Now define a bounded sequence x by X/ = 1 if / £ Ir^ for some
j = 1, 2, . . . and xf = 0 otherwise. It is shown in [7; p. 510] that
x £ Nθ but x G |σi | . The above Theorem 1 (ii) implies that x ^ Sθ ,
but it follows from Theorem 2.1 of [2] that x eS. Hence 5 £ Sθ,
and the proof is complete.

LEMMA 3. For any lacunary sequence θ, S-limx = L implies
SQ- lim x — L if and only if lim supr qr < oc. If lim supr qr = oo, then
there exists a bounded S-summable sequence that is not Sβ-summable
(to any limit).

Proof. If lim supr qr < oc, then there is an H > 0 such that qr < H
for all r. Suppose that xk —• L(S$), and let Nr := |{fc £ / r : |x^ - L | >
β}|. By (2), given ε > 0, there is an r0 £ N such that

(3) -T^ < ε for all r > r0.

Now let M := max{Λ r̂: 1 < r < r0} and let w be any integer satisfying
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< n <kr\ then we can write

~\{k < n: \xk -L\> ε}\ < J - | { * < kr: \xk -L\> ε}\
n κ

+ hr)

, by (3).

- M rc\ - M

+ << T + B'Qr< η;
/ C r _ i / C r _ i

and the sufficiency follows immediately.

Conversely, suppose that lim sup r qr = oc. Following the idea in [7;

p. 511] we can select a subsequence {&*•(./)} °f ^ e lacunary sequence

0 = {kr} such that <?r(7) > j , and define a bounded sequence by

X| = 1 if K(j)-ι < i < 2fcΓ(7 )_i for some 7 = 1 , 2 , . . . , and X/ = 0

otherwise. It is shown in [7; p. 5.11] that x E Nβ but x ^ |<τi|.

By Theorem 1 (i) we conclude that x e Sθ, but Theorem 2.1 of [2]

implies that x φ S. Hence, Sθ <£S.

Combining Lemma 2 and Lemma 3 we get

THEOREM 4. Let θ be a lacunary sequence; then S = Sβ if and
only if

1 < l i m i n g < lim sup qr < oo;
r r

then S-limx = L implies SβΛimx = L.

For an example of a lacunary sequence satisfying the conditions
of Theorem 4, we can take kr = 2r for r > 0, whence S{2

ry = S.
We remark that the examples given in Lemmas 2 and 3 illustrate the
difference between ^-convergence and 5#-convergence.

We conclude this section with the following observation. Buck [1,
Theorem 3.2] proved that if a real sequence is Cpsummable to its
finite limit inferior, then the sequence "converges to that point for
almost all n " (i.e., it is statistically convergent to its limit inferior
[2]). Note that this result remains true if we replace limit inferior by
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limit superior. For each subset K of N, define

\κnir\D(K):=lim(Cθχκ)r = \i

then D is a density [8; p. 296], and it is not hard to get a result
for SQ-convergence that is analogous to Buck's. To be precise, the
following result is such an analogue.

PROPOSITIONS. If the real number sequence x is Cβ-summable to
either its finite limit inferior or finite limit superior, then x is Sβ-
convergent to that value.

3 Uniqueness of S^-limit and lacunary refinements. It is easy to see
that, for any fixed θ, the SQ -limit is unique. It is possible, however,
for a sequence—even a bounded one—to have different £#-limits for
different #'s. This can be seen by applying Theorem 1 (i) to the
sequence x given in [7, proof of Theorem 2.1] for which Nθ-\imx =
0 and NQ - lim x = 1. The next theorem shows that this situation
cannot occur if x e S in other words, every Sθ method is consistent
with the 5-method.

THEOREM 6. If x e S Γ\SΘ, then Sθ- lim x = S- lim x.

Proof. Suppose SAimx = L and Sβ-Ximx = U, and Lφ I!. For
ε < \\L - Lr\ we get

|{„ n.. <n:\xk-L \>ε\\ = i.

Consider the fcOTth term of the statistical limit expression
n~ι\{k < n: \xk-L'\ > β } | :

1 I m

Ike(jlr:\xk-L'\>ε

Km r=\ 2^r=lhr r = ι

where tr = h~x\{k e Ir: \xk - L'\ > ε}\ -+ 0 because xk -• L'(SΘ).
Since θ is a lacunary sequence, (4) is a regular weighted mean trans-
form of t, and therefore it, too, tends to zero as m —• oc . Also, since
this is a subsequence of {n~x\{k < n: \xk - Lf\ > ε}\}^={, we infer
that

±\{k<n:\xk-L'\>ε}\^U
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and this contradiction shows that we cannot have Lφ L'.
We now consider the inclusion of Sθ* by Sβ , where θ' is a lacunary

refinement of θ. Recall [7] that the lacunary sequence θf — {k'r} is
called a lacunary refinement of the lacunary sequence θ = {kr} if
{kr} c {k>r}.

THEOREM 7. 7/* 0' w a lacunary refinement of θ and x^ —• L(S#),
then Xk —• L(SQ).

Proof. Suppose each 7r of 0 contains the points {^ J ^ of θ'
so that

fcr_i <fc;? 1 <K2< -"<k'rMr) = kr, where 7^. = {k'ri_x, fc ^ ].

Note that for all r, i/(r) > 1 because {fcr} c {fc;}. Let {I]}f=ι be
the sequence of abutting intervals {I'rj} ordered by increasing right
end points. Since x^ —• L{SΘ>), we get, for each ε > 0,

(5) l

As before we write, hr = kr - kr_\, h'r t = k'r t - k'ri_x, and hf

r λ

kf

r x — kr_ i. For each e > 0 we have

(6) I.\{kelr:\xk-L\>e}\

where χ^ is the characteristic function of the set K := {/c G N :
|jCfc - L| > ε}. By (5), Cθ>χκ is a null sequence, and (6) is a regular
weighted mean transform of Cθ>χκ - Hence, the transform (6) also
tends to zero as r -± oo.

We conclude this section by observing that Theorem 7 establishes
inclusion between two lacunary methods only when one sequence is a
lacunary refinement of the other. The example cited at the beginning
of this section shows that SQ can be inconsistent with Sθ>. A general
description of inclusion between two arbitrary lacunary methods is
left as an open problem.
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4. Strong almost convergence and ^-convergence. The idea of al-
most convergence was introduced by Lorentz [9]: the sequence x is
said to be almost convergent to L if

j m+n

lim - ] P (Xi - L) = 0, uniformly in m.
i=m+l

Maddox [10] and (independently) Freedman et al. [7] introduced the
notion of strong almost convergence: the sequence x is said to be
strongly almost convergent to L if

1 m+n
1

lim — V^ \xt — L\ = 0, uniformly in m.
i=m+l

Let c, AC and [AC], respectively, denote the sets of all convergent,
almost convergent, and strongly almost convergent sequences. It is
known [10] that
(7) c g [AC] £ AC § /«,.

THEOREM 8. If JΪ? denotes the set of all lacunary sequencesf then

= loonlf] SΘ).

Proof By [7, Theorem 3.1], the relations (7) and Theorem 1 (iii),
we have

IooD[AC]=

Finally we remark that in contrast to [7, Theorem 3.1] where it was
proved that [AC] = Π ^ , the factor l^ cannot be omitted from
Theorem 8. For, f]Sβ £ l^ and f]Nθ = [AC] is a proper subset of
f| Sβ. To see this consider the sequence x defined by x^ = m, if
k = m2 for m = 1,2,..., and x^ = 0 otherwise. Observe that x
is not bounded, so it is not strongly almost convergent. On the other
hand, for any lacunary sequence θ, we have

^ ^ ^ 0 , a s r - o o ;

hence, xk -• O(SΘ).
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