A NONEXISTENCE RESULT FOR THE *n*-LAPLACIAN

TILAK BHATTACHARYA

Let P be a point in \mathbb{R}^n , $n \ge 2$; then the problem div $(|\nabla u|^{n-2}\nabla u) = e^u$ with $u \in W_{\text{loc}}^{1,n} \cap L_{\text{loc}}^{\infty}$ has no subsolutions in $\mathbb{R}^n \setminus \{P\}$.

Introduction. Let $P = P(x_1, x_2, ..., x_n)$ be a point in \mathbb{R}^n , $n \ge 2$, and $\Omega = \mathbb{R}^n \setminus \{P\}$. Without any loss of generality we will take P to be the origin. Consider the problem

(1.1)
$$\begin{cases} L_p u = e^u & \text{in } \Omega, \\ u \in W^{1, p}_{\text{loc}}(\Omega) \cap L^{\infty}_{\text{loc}}(\Omega); \quad p > 1 \end{cases}$$

Here $L_p u \equiv \operatorname{div}(|\nabla u|^{p-2} \nabla u)$ is the *p*-Laplacian with 1 . By a subsolution <math>u of (1.1) we will mean that $u \in W^{1,p}_{\operatorname{loc}}(\Omega) \cap L^{\infty}_{\operatorname{loc}}(\Omega)$, and

$$\int_{\Omega} |\nabla u|^{p-2} \nabla u, \ \nabla \psi + \int_{\Omega} e^{u} \psi \leq 0, \quad \forall \psi \in C_0^{\infty}(\Omega) \text{ and } \psi \geq 0.$$

It is known that for 1 , (1.1) has no subsolutions in the exterior of a compact set [AW]. However, for <math>p = n there exist radial subsolutions for large values of |x|. We show that (1.1) has no subsolutions in Ω , thus extending the results of [AW], namely

THEOREM 1. The following problem

$$L_n u = e^u \quad in \ \Omega, \ n \geq 2,$$

has no subsolutions in $W^{1,n}_{loc}(\Omega) \cap L^{\infty}_{loc}(\Omega)$.

The proof of Theorem 1 will be a consequence of a comparison principle and nonexistence of global radial solutions. The proof is presented in §4.

2. Preliminary results.

LEMMA 2.1. Consider

$$C(x) = \frac{(1+x)^{1/n}}{1+x^{1/n}}$$
 in $0 \le x \le 1$.

Then C(x) is decreasing on [0, 1].

Proof. Elementary computations show that

$$\frac{dC}{dx} = \frac{(1+x)^{1/n}(1-x^{(1-n)/n})}{n(1+x^{1/n})^2(1+x)} \le 0$$

in $0 \le x \le 1$. Furthermore, C(0) = 1 and $C(1) = 2^{1-n/n}$, and $C(x) \to 1$ as $x \to 0$.

We now state an elementary inequality that is easy to prove

(2.1)
$$x^n - b^n \ge (x - b)^n, \quad \text{for } x \ge b \ge 0$$

LEMMA 2.2. Suppose $u(r) \in C^1$ satisfies the following differential inequality in (a, R),

$$\dot{u} \ge A\left(e^{u/n} + \frac{B-b}{R-r}\right),\,$$

where \dot{u} represents differentiation with respect to r, 0 < A < 1, 0 < b < 1, 0 < a < R and $B \ge \frac{n}{A} + b$. Then there is an \overline{r} in (a, R) such that $u(r) \to \infty$ as $r \to \overline{r}$.

Proof. Setting $v = e^{-u/n}$, we obtain that

$$\dot{v} + \frac{c}{R-r} v \leq -\frac{A}{n}, \quad a < r < R,$$

where $c = \frac{A(B-b)}{n}$. Using the integrating factor $\phi(r) = (\frac{1}{R-r})^c$ and setting $Z = v(r)\phi(r) - v(a)\phi(a)$, we obtain

$$Z \leq \begin{cases} \left(-\frac{A}{n}\right) \ln \frac{R-a}{R-r}; \quad c=1, \\ \left(-\frac{A}{n}\right) \left(\frac{1}{c-1}\right) \left\{ \left(\frac{1}{R-r}\right)^{c-1} - \left(\frac{1}{R-a}\right)^{c-1} \right\}; \quad c>1. \end{cases}$$

It is clear that for each $c \ge 1$, there is an $\overline{r} \in (a, R)$ such that $v(r) \to 0$ as $r \to \overline{r}$, and hence $u(r) \to \infty$ as $r \to \overline{r}$. \Box

We present a comparison lemma; please refer to [AW] for its proof.

LEMMA 2.3. In a region $(\Omega) \subseteq \mathbb{R}^n$, $n \geq 2$, suppose $u, v \in W^{1,p}_{loc}(\Omega) \cap L^{\infty}_{loc}(\Omega)$, and $(u-v)^+ \in W^{1,p}_0(\Omega)$. If g is a nondecreasing function and

$$L_p u \ge g(u) \quad in \ D'(\Omega),$$

$$L_p v \le g(v) \quad in \ D'(\Omega),$$

then $u \leq v$ a.e. in (Ω) .

3. Nonexistence of radial subsolutions. Consider the following problem

(3.1)
$$(n-1)|\dot{u}|^{n-2}\left(\ddot{u}+\frac{\dot{u}}{r}\right) = e^{u}, \quad 0 < r < \infty,$$

 $u(R) = a, \text{ and } \dot{u}(R) = b; \quad a, b \in R.$

LEMMA 3.1. For the problem in (3.1), there exists a C^1 radial solution u(r) such that at least one of the following occurs.

(i) There is an \overline{r} in (0, R) such that $u(r) \to \infty$ as $r \to \overline{r}$.

(ii) There is an \overline{r} in (\mathbb{R}, ∞) such that $u(r) \to \infty$ as $r \to \overline{r}$.

Furthermore, there are values of b for which both (i) and (ii) occur.

Proof. We divide the proof into three parts.

Case 1. Take b = 0. Let u(r) be the solution defined by

(3.2)
$$u(r) = a + \int_{R}^{r} \frac{1}{t} \left\{ \int_{R}^{t} s^{n-1} e^{u(s)} ds \right\}^{1/(n-1)} dt,$$

in r > R. The existence and uniqueness in a small interval follows from Picard's iteration. It can be shown by differentiating that usolves (3.1). From (3.2) it is clear that $r\dot{u}$ is increasing and thus $\dot{u} \ge 0$ in (R, r), and hence u is increasing. Continue u by (3.2). By differentiating (3.2) once,

$$\dot{u}(r) = \frac{1}{r} \left\{ \int_{R}^{r} s^{n-1} e^{u(s)} \, ds \right\}^{1/(n-1)}$$

Thus,

$$\frac{d}{dr}\left\{\frac{(\dot{u})^{n-1}}{r}\right\} = \frac{r^n e^{u(r)} - n \int_R^r s^{n-1} e^{u(s)} ds}{r^{n+1}}$$
$$\geq \frac{r^n e^{u(r)} - e^{u(r)} (r^n - R^n)}{r^{n+1}} \geq 0.$$

By simplifying the left side of the foregoing inequality,

$$(n-1)\ddot{u}\geq\frac{\dot{u}}{r}.$$

Note that u is C^2 except possibly where $\dot{u} = 0$. Noting that $\dot{u} \ge 0$, (3.1) yields

$$n(n-1)(\dot{u})^{n-1}\ddot{u} \ge e^u, \qquad R < r < \infty.$$

Multiplying both sides by \dot{u} and integrating once from R to r,

$$(3.3) \qquad \qquad (\dot{u})^n \ge \frac{e^u - e^a}{n-1}$$

For $\varepsilon > 0$, small enough, it follows from (3.2) and the fact that u is increasing that

$$u(r) > a + \int_{R+\varepsilon}^r \frac{1}{t} \left\{ \int_R^{R+\varepsilon} s^{n-1} e^{u(s)} ds \right\}^{1/(n-1)} dt.$$

Hence for some appropriate constant A > 0,

$$u(r) > a + A \ln \frac{r}{R + \varepsilon}$$

implying that $u(r) \to \infty$ as r gets large. Thus in (3.3) we may take $r > R_1$, where R_1 is large enough so that $e^u/2 \le e^u - e^a$ for $r > R_1$. If $u(r) \to \infty$ as $r \to R_1$, then we are done. Otherwise, continue u using (3.2) past $r = R_1$. Hence

$$\dot{u} \ge C e^{u/n}, \quad \text{in } r > R_1,$$

for some C > 0. Integrating,

$$\int_{u(R_1)}^{u(r)} e^{-u/n} \, du \ge C(r-R_1) \, .$$

It is clear that there exists an $\overline{r} > R$, such that $u(r) \to \infty$ as $r \to \overline{r}$. The case b > 0 follows similarly.

Case 2. Without any loss of generality, take a = 0. Take b < 0. Now $\dot{u}(r) < 0$ near r = R, so we obtain that $\dot{u}(r)$ satisfies

(3.4)
$$\dot{u}(r) = -\frac{1}{r} \left\{ |bR|^{n-1} - \int_{R}^{r} t^{n-1} e^{u(t)} dt \right\}^{1/(n-1)}$$

in r > R. We show that there is $\overline{b} < 0$ such that if $\overline{b} < b < 0$, there is an $\hat{r} > R$ such that $\dot{u}(r) \to 0$ as $r \to \hat{r}$. It follows from (3.4) that $r\dot{u}$ is increasing and thus

$$\frac{bR}{r} \le \dot{u} \le 0, \quad \text{for } r > R.$$

Set c = bR. Integrating, we find

 $e^u \geq r^c$,

and so (3.4) yields

$$\dot{u}(r) \ge -\frac{1}{r} \left\{ |c|^{n-1} - \int_{R}^{r} t^{n-1+c} \, dt \right\}^{1/(n-1)}$$

Therefore,

$$\dot{u}(r) \geq \begin{cases} -\frac{1}{r} \left\{ |c|^{n-1} - \frac{r^{n+c} - R^{n+c}}{n+c} \right\}^{1/(n-1)}; & -n < c < 0, \\ -\frac{1}{r} \left\{ |c|^{n-1} - \ln \frac{r}{R} \right\}^{1/(n-1)}; & c = -n. \end{cases}$$

It is clear that there is an $\hat{r} > R$ for which $\dot{u}(r) \to 0$ as $r \to \hat{r}$. Now, take c < -n, satisfying

(3.5)
$$|c|^{n-1} - \frac{1}{|c| - n} \left(\frac{1}{R}\right)^{|c| - n} < n^{n-1}.$$

Now, (3.4) yields

$$\dot{u}(r) \ge -\frac{1}{r} \left[|c|^{n-1} - \frac{1}{|c| - n} \left\{ \left(\frac{1}{R}\right)^{|c| - n} - \left(\frac{1}{r}\right)^{|c| - n} \right\} \right]^{1/(n-1)}$$

Using (3.5), there is an \tilde{r} such that $\dot{u}(r) \ge -\frac{n}{r}$ for $r > \tilde{r}$. If $\dot{u}(r) \to 0$ as $r \to \tilde{r}$, then we are done. Otherwise, continue u past $r = \tilde{r}$. Repeating the arguments preceding (3.5), we see that $\dot{u}(r) \to 0$ as $r \to \hat{r}$ for some $\hat{r} > R$. Continuing u past $r = \hat{r}$ using

$$u(r) = u(\hat{r}) + \int_{\hat{r}}^{r} \frac{1}{t} \left\{ \int_{\hat{r}}^{t} s^{n-1} e^{u(s)} ds \right\}^{1/(n-1)} dt,$$

we may show, as in Case 1, that there is an $\overline{r} > R$ where u blows up.

Case 3. We may again take a = 0. Let c < -n, t = R - r, and v(t) = u(r), where $0 < r \le R$. Then $\dot{v}(t) = -\dot{u}(r)$, where \dot{v} represents differentiation with respect to t. Then

(3.6)
$$(n-1)|\dot{v}|^{n-2}\left(\ddot{v}-\frac{\dot{v}}{R-t}\right) = e^{v}, \quad 0 \le t < R,$$

 $v(0) = 0 \text{ and } \dot{v}(0) = -b.$

A solution of (3.6) is given by

$$v(t) = \int_0^t \frac{1}{R-s} \left\{ |c|^{n-1} + \int_0^s (R-w)^{n-1} e^{v(w)} \, dw \right\}^{1/(n-1)} \, ds \, .$$

Equation (3.6) yields that $\frac{d}{dt}\{(R-t)\dot{v}\} \ge 0$, thus $\dot{v} \ge 0$ in t > 0. Integrating this inequality from 0 to t, we obtain

$$\dot{v}(t) \geq \frac{|c|}{(R-t)}.$$

Hence,

(3.7)
$$e^{v(t)} \ge \left(\frac{1}{R-t}\right)^{|c|}$$

Let $0 < \varepsilon_0 < 1$ be such that

$$|c| \ge n \left\{ \frac{1 + \varepsilon^{1/n}}{(1 + \varepsilon)^{1/n}}
ight\} + \varepsilon$$

for every ε in $(0, \varepsilon_0)$. It follows from (3.7) that there is a $t_1 < R$ such that

$$\left(\frac{|c|}{R-t}\right)^n e^{-v(t)} < \varepsilon_0\,,$$

for $t > t_1$. If $v(t) \to \infty$ as $t \to t_1$, then we are done; otherwise continue v(t) past $t = t_1$. Furthermore, we may take t_1 such that $R - t_1 < \varepsilon_0$. Rearranging the terms in (3.6), and multiplying by $\dot{v}(t)$ yields

$$(n-1)(\dot{v})^{n-1}\ddot{v} = e^{v}\dot{v} + \frac{n-1}{R-t}(\dot{v})^{n}, \qquad 0 \le t < R.$$

Integrating both sides from 0 to t, and noting that $\dot{v} \ge \frac{|c|}{R-t}$, we find

$$(\dot{v})^n \ge e^v - 1 + \left(\frac{|c|}{R-t}\right)^n, \qquad 0 \le t < R.$$

By the definition of t_1 , it follows that

$$(\dot{v})^n \ge e^v + \left(\frac{|c| - \varepsilon_0}{R - t}\right)^n, \qquad t_1 < t < R.$$

Setting

$$x = \left(\frac{|c| - \varepsilon_0}{R - t}\right)^n e^{-v},$$

the above may be rewritten as

$$(\dot{v})^n \ge e^v \{1+x\}.$$

Hence,

$$\dot{v} \ge e^{v/n} \{1+x\}^{1/n}$$
.

Using Lemma 2.1 and the definition of t_1 ,

$$\dot{v} \ge C(\varepsilon_0)e^{v/n}\{1+x^{1/n}\}.$$

Thus we obtain

$$\dot{v} \ge C(\varepsilon_0) \left\{ e^{v/n} + \frac{|c| - \varepsilon_0}{R - t} \right\}, \qquad t_1 < t < R.$$

24

By Lemma 2.2, there is a $t_2 > t_1$ such that $v(t) \to \infty$ as $t \to t_2$. Hence there is an $\overline{r} \in (0, R)$ for which $u(r) \to \infty$ as $r \to \overline{r}$. Thus for every c < -n, we have a vertical asymptote in (0, R). It is clear from (3.5) that there are values of b for which both (i) and (ii) happen. Call one such value to be b_R .

For the case $a \neq 0$, we introduce the following change of variables. Let v(r) = u(r) - a; then

$$(n-1)|\dot{v}|^{n-2}\left(\ddot{v}+\frac{n-1}{r}\dot{v}\right)=e^{a}e^{v}.$$

Setting $t = re^{a/n}$, and w(t) = v(r), and differentiating with respect to t, we have

$$(n-1)|\dot{w}|^{n-2}\left(\ddot{w}+\frac{n-1}{t}\dot{w}\right)=e^w,$$

$$w(\overline{R})=0 \text{ and } \dot{w}(\overline{R})=e^{-a/n}b,$$

where $\overline{R} = e^{a/n}R$. There is a $b_{\overline{R}}$ so that the corresponding solution which we continue to call w(t), blows up near zero and at a point past \overline{R} . Then $u(t) = a + w(e^{-a/n}t)$ is such a solution for the original problem.

4. Proof of Theorem 1. This follows easily from Lemma 2.3 and Lemma 3.1.

Proof of Theorem 1. Assume to the contrary. Let U(x) be such a subsolution in (1.2). Let

$$a = \inf_{1/2 \le |x| \le 3/2} U(x).$$

By Lemma 3.1, there is a radial solution u(r) such that u(1) = a - 1, and u(r) blows up at some $\underline{r} \in (0, 1)$ and $\overline{r} \in (1, \infty)$. Let

$$M = \sup_{\underline{r} \le |x| \le \overline{r}} U(x) \,,$$

 $\underline{\underline{r}} \in (\underline{r}, 1)$ and $\overline{\overline{r}} \in (1, \overline{r})$ be such that $u(\underline{\underline{r}}), u(\overline{\overline{r}}) \ge M + 1$. Using Lemma 2.3, $u(x) \ge U(x)$ in $\underline{\underline{r}} \le |x| \le \overline{\overline{r}}$, a contradiction. \Box

REMARK. In Theorem 1, 1 is the best possible. For <math>p > n, take $u = \ln(\frac{A}{r^p})$, where $0 < A \le (p - n)p^{p-1}$. Then

$$L_p u = \frac{(p-n)p^{p-1}}{r^p} \ge \frac{A}{r^p} \,.$$

TILAK BHATTACHARYA

References

[AD] [AW]	R. A. Adams, Sobolev Spaces, Academic Press, New York, (1975). P. Avilés and A. Weitsman, On the singularities of certain non-linear partial differential equations, Ann. Acad. Sc. Fenn. 7 series A. I. Mathematics, (1982), 147–152.
[BH1]	T. Bhattacharya, Radial symmetry of the first eigenfunction of the p- Laplacian in the ball, Proc. Amer. Math. Soc., 104 no. 1 (1988).
[BH2]	, Some results concerning the eigenvalue problem for the p-Laplacian, to appear in Ann. Acad. Sci. Fenn.
[S]	J. Serrin, Local behaviour of solutions of quasilinear equations, Acta Math., 111 (1964), 247-302.
[VA]	J. L. Vazquez, An apriori interior estimate for the solutions of a nonlinear problem representing weak diffusions, Nonlinear Anal., 5 (1981), 95–103.
[VAVE]	J. L. Vazquez and L. Veron, Removable singularities of some strongly nonlinear elliptic equations, Manuscripta Math., 33 (1980), 129-144.
[VE1]	L. Veron, Global behaviour and symmetry properties of singular solutions of nonlinear elliptic equations, Annales Fac. Sci. Toulous, 6 (1984), 1–31.

Received January 22, 1990.

Indian Statistical Institute New Delhi-110 016 India