A NONEXISTENCE RESULT FOR THE n-LAPLACIAN

Tilak Bhattacharya

$\begin{aligned} & \text { Let } P \text { be a point in } \mathbb{R}^{n}, n \geq 2 \text {; then the problem } \operatorname{div}\left(|\nabla u|^{n-2} \nabla u\right) \\ = & e^{u} \text { with } u \in W_{\text {loc }}^{1, n} \cap L_{\text {loc }}^{\infty} \text { has no subsolutions in } \mathbb{R}^{n} \backslash\{P\} .\end{aligned}$

Introduction. Let $P=P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a point in $\mathbb{R}^{n}, n \geq 2$, and $\Omega=\mathbb{R}^{n} \backslash\{P\}$. Without any loss of generality we will take P to be the origin. Consider the problem

$$
\left\{\begin{array}{l}
L_{p} u=e^{u} \text { in } \Omega \tag{1.1}\\
u \in W_{\operatorname{loc}}^{1, p}(\Omega) \cap L_{\operatorname{loc}}^{\infty}(\Omega) ; \quad p>1
\end{array}\right.
$$

Here $L_{p} u \equiv \operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian with $1<p<\infty$. By a subsolution u of (1.1) we will mean that $u \in W_{\mathrm{loc}}^{1, p}(\Omega) \cap L_{\mathrm{loc}}^{\infty}(\Omega)$, and

$$
\int_{\Omega}|\nabla u|^{p-2} \nabla u, \quad \nabla \psi+\int_{\Omega} e^{u} \psi \leq 0, \quad \forall \psi \in C_{0}^{\infty}(\Omega) \text { and } \psi \geq 0
$$

It is known that for $1<p<n$, (1.1) has no subsolutions in the exterior of a compact set [AW]. However, for $p=n$ there exist radial subsolutions for large values of $|x|$. We show that (1.1) has no subsolutions in Ω, thus extending the results of [AW], namely

Theorem 1. The following problem

$$
L_{n} u=e^{u} \quad \text { in } \Omega, n \geq 2
$$

has no subsolutions in $W_{\mathrm{loc}}^{1, n}(\Omega) \cap L_{\mathrm{loc}}^{\infty}(\Omega)$.
The proof of Theorem 1 will be a consequence of a comparison principle and nonexistence of global radial solutions. The proof is presented in $\S 4$.

2. Preliminary results.

Lemma 2.1. Consider

$$
C(x)=\frac{(1+x)^{1 / n}}{1+x^{1 / n}} \quad \text { in } 0 \leq x \leq 1
$$

Then $C(x)$ is decreasing on $[0,1]$.

Proof. Elementary computations show that

$$
\frac{d C}{d x}=\frac{(1+x)^{1 / n}\left(1-x^{(1-n) / n}\right)}{n\left(1+x^{1 / n}\right)^{2}(1+x)} \leq 0
$$

in $0 \leq x \leq 1$. Furthermore, $C(0)=1$ and $C(1)=2^{1-n / n}$, and $C(x) \rightarrow 1$ as $x \rightarrow 0$.

We now state an elementary inequality that is easy to prove

$$
\begin{equation*}
x^{n}-b^{n} \geq(x-b)^{n}, \quad \text { for } x \geq b \geq 0 \tag{2.1}
\end{equation*}
$$

Lemma 2.2. Suppose $u(r) \in C^{1}$ satisfies the following differential inequality in (a, R),

$$
\dot{u} \geq A\left(e^{u / n}+\frac{B-b}{R-r}\right)
$$

where \dot{u} represents differentiation with respect to $r, 0<A<1,0<$ $b<1,0<a<R$ and $B \geq \frac{n}{A}+b$. Then there is an \bar{r} in (a, R) such that $u(r) \rightarrow \infty$ as $r \rightarrow \bar{r}$.

Proof. Setting $v=e^{-u / n}$, we obtain that

$$
\dot{v}+\frac{c}{R-r} v \leq-\frac{A}{n}, \quad a<r<R
$$

where $c=\frac{A(B-b)}{n}$. Using the integrating factor $\phi(r)=\left(\frac{1}{R-r}\right)^{c}$ and setting $Z=v(r) \phi(r)-v(a) \phi(a)$, we obtain

$$
Z \leq\left\{\begin{array}{l}
\left(-\frac{A}{n}\right) \ln \frac{R-a}{R-r} ; \quad c=1 \\
\left(-\frac{A}{n}\right)\left(\frac{1}{c-1}\right)\left\{\left(\frac{1}{R-r}\right)^{c-1}-\left(\frac{1}{R-a}\right)^{c-1}\right\} ; \quad c>1
\end{array}\right.
$$

It is clear that for each $c \geq 1$, there is an $\bar{r} \in(a, R)$ such that $v(r) \rightarrow 0$ as $r \rightarrow \bar{r}$, and hence $u(r) \rightarrow \infty$ as $r \rightarrow \bar{r}$.

We present a comparison lemma; please refer to [AW] for its proof.
Lemma 2.3. In a region $(\Omega) \subseteq R^{n}, n \geq 2$, suppose $u, v \in W_{\operatorname{loc}}^{1, p}(\Omega)$ $\cap L_{\mathrm{loc}}^{\infty}(\Omega)$, and $(u-v)^{+} \in W_{0}^{1, p}(\Omega)$. If g is a nondecreasing function and

$$
\begin{aligned}
& L_{p} u \geq g(u) \quad \text { in } D^{\prime}(\Omega) \\
& L_{p} v \leq g(v) \quad \text { in } D^{\prime}(\Omega)
\end{aligned}
$$

then $u \leq v$ a.e. in (Ω).
3. Nonexistence of radial subsolutions. Consider the following problem

$$
\begin{array}{cc}
(n-1)|\dot{u}|^{n-2}\left(\ddot{u}+\frac{\dot{u}}{r}\right)=e^{u}, & 0<r<\infty \tag{3.1}\\
u(R)=a, \quad \text { and } \quad \dot{u}(R)=b ; & a, b \in R
\end{array}
$$

Lemma 3.1. For the problem in (3.1), there exists a C^{1} radial solution $u(r)$ such that at least one of the following occurs.
(i) There is an \bar{r} in $(0, R)$ such that $u(r) \rightarrow \infty$ as $r \rightarrow \bar{r}$.
(ii) There is an \bar{r} in (R, ∞) such that $u(r) \rightarrow \infty$ as $r \rightarrow \bar{r}$.

Furthermore, there are values of b for which both (i) and (ii) occur.
Proof. We divide the proof into three parts.
Case 1. Take $b=0$. Let $u(r)$ be the solution defined by

$$
\begin{equation*}
u(r)=a+\int_{R}^{r} \frac{1}{t}\left\{\int_{R}^{t} s^{n-1} e^{u(s)} d s\right\}^{1 /(n-1)} d t \tag{3.2}
\end{equation*}
$$

in $r>R$. The existence and uniqueness in a small interval follows from Picard's iteration. It can be shown by differentiating that u solves (3.1). From (3.2) it is clear that $r \dot{u}$ is increasing and thus $\dot{u} \geq 0$ in (R, r), and hence u is increasing. Continue u by (3.2). By differentiating (3.2) once,

$$
\dot{u}(r)=\frac{1}{r}\left\{\int_{R}^{r} s^{n-1} e^{u(s)} d s\right\}^{1 /(n-1)}
$$

Thus,

$$
\begin{aligned}
\frac{d}{d r}\left\{\frac{(\dot{u})^{n-1}}{r}\right\} & =\frac{r^{n} e^{u(r)}-n \int_{R}^{r} s^{n-1} e^{u(s)} d s}{r^{n+1}} \\
& \geq \frac{r^{n} e^{u(r)}-e^{u(r)}\left(r^{n}-R^{n}\right)}{r^{n+1}} \geq 0
\end{aligned}
$$

By simplifying the left side of the foregoing inequality,

$$
(n-1) \ddot{u} \geq \frac{\dot{u}}{r}
$$

Note that u is C^{2} except possibly where $\dot{u}=0$. Noting that $\dot{u} \geq 0$, (3.1) yields

$$
n(n-1)(\dot{u})^{n-1} \ddot{u} \geq e^{u}, \quad R<r<\infty
$$

Multiplying both sides by \dot{u} and integrating once from R to r,

$$
\begin{equation*}
(\dot{u})^{n} \geq \frac{e^{u}-e^{a}}{n-1} \tag{3.3}
\end{equation*}
$$

For $\varepsilon>0$, small enough, it follows from (3.2) and the fact that u is increasing that

$$
u(r)>a+\int_{R+\varepsilon}^{r} \frac{1}{t}\left\{\int_{R}^{R+\varepsilon} s^{n-1} e^{u(s)} d s\right\}^{1 /(n-1)} d t
$$

Hence for some appropriate constant $A>0$,

$$
u(r)>a+A \ln \frac{r}{R+\varepsilon}
$$

implying that $u(r) \rightarrow \infty$ as r gets large. Thus in (3.3) we may take $r>R_{1}$, where R_{1} is large enough so that $e^{u} / 2 \leq e^{u}-e^{a}$ for $r>R_{1}$. If $u(r) \rightarrow \infty$ as $r \rightarrow R_{1}$, then we are done. Otherwise, continue u using (3.2) past $r=R_{1}$. Hence

$$
\dot{u} \geq C e^{u / n}, \quad \text { in } r>R_{1}
$$

for some $C>0$. Integrating,

$$
\int_{u\left(R_{1}\right)}^{u(r)} e^{-u / n} d u \geq C\left(r-R_{1}\right)
$$

It is clear that there exists an $\bar{r}>R$, such that $u(r) \rightarrow \infty$ as $r \rightarrow \bar{r}$. The case $b>0$ follows similarly.

Case 2. Without any loss of generality, take $a=0$. Take $b<0$. Now $\dot{u}(r)<0$ near $r=R$, so we obtain that $\dot{u}(r)$ satisfies

$$
\begin{equation*}
\dot{u}(r)=-\frac{1}{r}\left\{|b R|^{n-1}-\int_{R}^{r} t^{n-1} e^{u(t)} d t\right\}^{1 /(n-1)}, \tag{3.4}
\end{equation*}
$$

in $r>R$. We show that there is $\bar{b}<0$ such that if $\bar{b}<b<0$, there is an $\hat{r}>R$ such that $\dot{u}(r) \rightarrow 0$ as $r \rightarrow \hat{r}$. It follows from (3.4) that $r \ddot{u}$ is increasing and thus

$$
\frac{b R}{r} \leq \dot{u} \leq 0, \quad \text { for } r>R
$$

Set $c=b R$. Integrating, we find

$$
e^{u} \geq r^{c},
$$

and so (3.4) yields

$$
\dot{u}(r) \geq-\frac{1}{r}\left\{|c|^{n-1}-\int_{R}^{r} t^{n-1+c} d t\right\}^{1 /(n-1)} .
$$

Therefore,

$$
\dot{u}(r) \geq \begin{cases}-\frac{1}{r}\left\{|c|^{n-1}-\frac{r^{n+c}-R^{n+c}}{n+c}\right\}^{1 /(n-1)} ; & -n<c<0, \\ -\frac{1}{r}\left\{|c|^{n-1}-\ln \frac{r}{R}\right\}^{1 /(n-1)} ; & c=-n\end{cases}
$$

It is clear that there is an $\hat{r}>R$ for which $\dot{u}(r) \rightarrow 0$ as $r \rightarrow \hat{r}$. Now, take $c<-n$, satisfying

$$
\begin{equation*}
|c|^{n-1}-\frac{1}{|c|-n}\left(\frac{1}{R}\right)^{|c|-n}<n^{n-1} \tag{3.5}
\end{equation*}
$$

Now, (3.4) yields

$$
\dot{u}(r) \geq-\frac{1}{r}\left[|c|^{n-1}-\frac{1}{|c|-n}\left\{\left(\frac{1}{R}\right)^{|c|-n}-\left(\frac{1}{r}\right)^{|c|-n}\right\}\right]^{1 /(n-1)} .
$$

Using (3.5), there is an \tilde{r} such that $\dot{u}(r) \geq-\frac{n}{r}$ for $r>\tilde{r}$. If $\dot{u}(r) \rightarrow 0$ as $r \rightarrow \tilde{r}$, then we are done. Otherwise, continue u past $r=\tilde{r}$. Repeating the arguments preceding (3.5), we see that $\dot{u}(r) \rightarrow 0$ as $r \rightarrow \hat{r}$ for some $\hat{r}>R$. Continuing u past $r=\hat{r}$ using

$$
u(r)=u(\hat{r})+\int_{\hat{r}}^{r} \frac{1}{t}\left\{\int_{\hat{r}}^{t} s^{n-1} e^{u(s)} d s\right\}^{1 /(n-1)} d t
$$

we may show, as in Case 1 , that there is an $\bar{r}>R$ where u blows up.
Case 3. We may again take $a=0$. Let $c<-n, t=R-r$, and $v(t)=u(r)$, where $0<r \leq R$. Then $\dot{v}(t)=-\dot{u}(r)$, where \dot{v} represents differentiation with respect to t. Then

$$
\begin{gather*}
(n-1)|\dot{v}|^{n-2}\left(\ddot{v}-\frac{\dot{v}}{R-t}\right)=e^{v}, \quad 0 \leq t<R, \tag{3.6}\\
v(0)=0 \quad \text { and } \quad \dot{v}(0)=-b .
\end{gather*}
$$

A solution of (3.6) is given by

$$
v(t)=\int_{0}^{t} \frac{1}{R-s}\left\{|c|^{n-1}+\int_{0}^{s}(R-w)^{n-1} e^{v(w)} d w\right\}^{1 /(n-1)} d s
$$

Equation (3.6) yields that $\frac{d}{d t}\{(R-t) \dot{v}\} \geq 0$, thus $\dot{v} \geq 0$ in $t>0$. Integrating this inequality from 0 to t, we obtain

$$
\dot{v}(t) \geq \frac{|c|}{(R-t)} .
$$

Hence,

$$
\begin{equation*}
e^{v(t)} \geq\left(\frac{1}{R-t}\right)^{|c|} \tag{3.7}
\end{equation*}
$$

Let $0<\varepsilon_{0}<1$ be such that

$$
|c| \geq n\left\{\frac{1+\varepsilon^{1 / n}}{(1+\varepsilon)^{1 / n}}\right\}+\varepsilon
$$

for every ε in $\left(0, \varepsilon_{0}\right)$. It follows from (3.7) that there is a $t_{1}<R$ such that

$$
\left(\frac{|c|}{R-t}\right)^{n} e^{-v(t)}<\varepsilon_{0}
$$

for $t>t_{1}$. If $v(t) \rightarrow \infty$ as $t \rightarrow t_{1}$, then we are done; otherwise continue $v(t)$ past $t=t_{1}$. Furthermore, we may take t_{1} such that $R-t_{1}<\varepsilon_{0}$. Rearranging the terms in (3.6), and multiplying by $\dot{v}(t)$ yields

$$
(n-1)(\dot{v})^{n-1} \ddot{v}=e^{v} \dot{v}+\frac{n-1}{R-t}(\dot{v})^{n}, \quad 0 \leq t<R .
$$

Integrating both sides from 0 to t, and noting that $\dot{v} \geq \frac{|c|}{R-t}$, we find

$$
(\dot{v})^{n} \geq e^{v}-1+\left(\frac{|c|}{R-t}\right)^{n}, \quad 0 \leq t<R .
$$

By the definition of t_{1}, it follows that

$$
(\dot{v})^{n} \geq e^{v}+\left(\frac{|c|-\varepsilon_{0}}{R-t}\right)^{n}, \quad t_{1}<t<R
$$

Setting

$$
x=\left(\frac{|c|-\varepsilon_{0}}{R-t}\right)^{n} e^{-v}
$$

the above may be rewritten as

$$
(\dot{v})^{n} \geq e^{v}\{1+x\} .
$$

Hence,

$$
\dot{v} \geq e^{v / n}\{1+x\}^{1 / n} .
$$

Using Lemma 2.1 and the definition of t_{1},

$$
\dot{v} \geq C\left(\varepsilon_{0}\right) e^{v / n}\left\{1+x^{1 / n}\right\}
$$

Thus we obtain

$$
\dot{v} \geq C\left(\varepsilon_{0}\right)\left\{e^{v / n}+\frac{|c|-\varepsilon_{0}}{R-t}\right\}, \quad t_{1}<t<R
$$

By Lemma 2.2, there is a $t_{2}>t_{1}$ such that $v(t) \rightarrow \infty$ as $t \rightarrow t_{2}$. Hence there is an $\bar{r} \in(0, R)$ for which $u(r) \rightarrow \infty$ as $r \rightarrow \bar{r}$. Thus for every $c<-n$, we have a vertical asymptote in $(0, R)$. It is clear from (3.5) that there are values of b for which both (i) and (ii) happen. Call one such value to be b_{R}.

For the case $a \neq 0$, we introduce the following change of variables. Let $v(r)=u(r)-a$; then

$$
(n-1)|\dot{v}|^{n-2}\left(\ddot{v}+\frac{n-1}{r} \dot{v}\right)=e^{a} e^{v}
$$

Setting $t=r e^{a / n}$, and $w(t)=v(r)$, and differentiating with respect to t, we have

$$
\begin{gathered}
(n-1)|\dot{w}|^{n-2}\left(\ddot{w}+\frac{n-1}{t} \dot{w}\right)=e^{w} \\
w(\bar{R})=0 \quad \text { and } \quad \dot{w}(\bar{R})=e^{-a / n} b
\end{gathered}
$$

where $\bar{R}=e^{a / n} R$. There is a $b_{\bar{R}}$ so that the corresponding solution which we continue to call $w(t)$, blows up near zero and at a point past \bar{R}. Then $u(t)=a+w\left(e^{-a / n} t\right)$ is such a solution for the original problem.
4. Proof of Theorem 1. This follows easily from Lemma 2.3 and Lemma 3.1.

Proof of Theorem 1. Assume to the contrary. Let $U(x)$ be such a subsolution in (1.2). Let

$$
a=\inf _{1 / 2 \leq|x| \leq 3 / 2} U(x)
$$

By Lemma 3.1, there is a radial solution $u(r)$ such that $u(1)=a-1$, and $u(r)$ blows up at some $\underline{r} \in(0,1)$ and $\bar{r} \in(1, \infty)$. Let

$$
M=\sup _{\underline{r} \leq|x| \leq \bar{r}} U(x)
$$

$\underline{\underline{r}} \in(\underline{r}, 1)$ and $\overline{\bar{r}} \in(1, \bar{r})$ be such that $u(\underline{\underline{r}}), u(\overline{\bar{r}}) \geq M+1$. Using Lemma 2.3, $u(x) \geq U(x)$ in $\underline{\underline{r}} \leq|x| \leq \overline{\bar{r}}$, a contradiction.

Remark. In Theorem $1,1<p \leq n$ is the best possible. For $p>n$, take $u=\ln \left(\frac{A}{r^{p}}\right)$, where $0<A \leq(p-n) p^{p-1}$. Then

$$
L_{p} u=\frac{(p-n) p^{p-1}}{r^{p}} \geq \frac{A}{r^{p}}
$$

References

[AD] R. A. Adams, Sobolev Spaces, Academic Press, New York, (1975).
[AW] P. Avilěs and A. Weitsman, On the singularities of certain non-linear partial differential equations, Ann. Acad. Sc. Fenn. 7 series A. I. Mathematics, (1982), 147-152.
[BH1] T. Bhattacharya, Radial symmetry of the first eigenfunction of the pLaplacian in the ball, Proc. Amer. Math. Soc., 104 no. 1 (1988).
[BH2] Some results concerning the eigenvalue problem for the p-Laplacian, to appear in Ann. Acad. Sci. Fenn.
[S] J. Serrin, Local behaviour of solutions of quasilinear equations, Acta Math., 111 (1964), 247-302.
[VA] J. L. Vazquez, An apriori interior estimate for the solutions of a nonlinear problem representing weak diffusions, Nonlinear Anal., 5 (1981), 95-103.
[VAVE] J. L. Vazquez and L. Veron, Removable singularities of some strongly nonlinear elliptic equations, Manuscripta Math., 33 (1980), 129-144.
[VE1] L. Veron, Global behaviour and symmetry properties of singular solutions of nonlinear elliptic equations, Annales Fac. Sci. Toulous, 6 (1984), 1-31.

Received January 22, 1990.
Indian Statistical Institute
New Delhi-110 016 India

