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A NONEXISTENCE RESULT FOR THE rc-LAPLACIAN

TILAK BHATTACHARYA

LetP be a point in !* , n > 2 then the problem div(|Vw|*~2Vw)
= eu with u e W^n n Lgc has no subsolutions in !Λ\{/>} .

Introduction. Let P = P{x\, x2 , . . . , xn) be a point in W , n > 2,
and Ω = Mλ2\{P}. Without any loss of generality we will take P to
be the origin. Consider the problem

f Lpu = eu in Ω,

I u e w': P>1

Here Lpu = div(|Vu\p~2Vu) is the /7-Laplacian with 1 < p < oc. By
a subsolution u of (1.1) we will mean that u e ^ o c ^ ^ ) n A 'oc^) '
and

/ I Vu\p~2Vu, Vψ+ [ euy/<0, Vψ e C0°°(Ω) and ψ > 0.
JΩ «/Ω

It is known that for 1 < p < n, (1.1) has no subsolutions in the
exterior of a compact set [AW], However, for p = n there exist ra-
dial subsolutions for large values of \x\. We show that (1.1) has no
subsolutions in Ω, thus extending the results of [AW], namely

THEOREM 1. The following problem

Lnu = eu inΩ, n>2,

has no subsolutions in W^c

n(Ω) Π L[

The proof of Theorem 1 will be a consequence of a comparison
principle and nonexistence of global radial solutions. The proof is
presented in §4.

2. Preliminary results.

LEMMA 2.1. Consider
(I +xγh

C ( X ) = n Γ ^ Γ inθ<x<l.

Then C(x) is decreasing on [0, 1].
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Proof. Elementary computations show that

dC ( 1 + J C ) 1 / Π ( 1 - J C ( 1 - Π > /
< 0

dx n(\+xχln)2{\+x)

in 0 < x < 1. Furthermore, C(0) = 1 and C(l) = 2 1""/", and
C(x) -• 1 as x -+ 0. D

We now state an elementary inequality that is easy to prove

(2.1) xn - bn > (x - b)n, for x > b > 0.

LEMMA 2.2. Suppose u(r) G C 1 satisfies the following differential
inequality in (a, R),

where u represents differentiation with respect tor,0<A<l,0<
b < 1, 0 < a < R and B > % + b. Then there is an r in (a, R) such
that u{r) —> oo as r —> r .

Proof. Setting v — e~uln , we obtain that

where c = 4ULJ1 m Using the integrating factor φ(r) = (j^Y and
setting Z = v(r)φ(r) - v{a)φ{u), we obtain

Z < c-n
>: ol.

It is clear that for each c > 1, there is an r e (a, R) such that
v(r) -^0 as r -> r, and hence «(r) ->oo as r - > r . D

We present a comparison lemma; please refer to [AW] for its proof.

LEMMA 2.3. In a region (Ω) c Rn, n>2, suppose u, υ e W^

j^c(Ω), and (u - υ)+ e W^ 5/7(Ω). If g is a nondecreasing function

and

Lpu>g(u) inD'(Ω)9

Lpv<g(v) inD'{Ω),

then u < υ a.e. in (Ω).
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3. Nonexistence of radial subsolutions. Consider the following prob-
lem

(3.1) {n-\)\u\n-λ\u + ̂ \ =e\ 0 < r < o c ,

u(R) = a, and iι(R) = b; a,beR.

LEMMA 3.1. For the problem in (3.1), there exists a C 1 radial solu-
tion u(r) such that at least one of the following occurs.

(i) There is an f in (0, R) such that u(r) —> oo as r —+r.
(ii) There is an r in (i?, oo) such that u(r) —• oo α̂ 1 r —> r.

Furthermore, there are values of b for which both (i) αn<i (ii) occi/r.

Proof. We divide the proof into three parts.

Case 1. Take b = 0. Let w(r) be the solution defined by

(3.2) w(r) = a + / - W y n- 1eM ( 5 )</4 ^ '

in r > R. The existence and uniqueness in a small interval follows
from Picard's iteration. It can be shown by differentiating that u
solves (3.1). From (3.2) it is clear that ru is increasing and thus
U > 0 in (JR, r), and hence u is increasing. Continue u by (3.2). By
differentiating (3.2) once,

Thus,

\ ( r Λ χKn-
U(r) = -l / sn~leu^ds\

d {{ύ)n-ιλ _rneu^ -nfRsn~xeu

~dr \ r J ~ rή+~ι

rneu{r) _ eu{r)ίrn _ ΌΠ\

— rn+\ —

By simplifying the left side of the foregoing inequality,

(n- \)u>~.
r

Note that u is C 2 except possibly where u — 0. Noting that ώ > 0,
(3.1) yields

n{n- \){u)n-χu>eu, i? < r < o c .
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Multiplying both sides by u and integrating once from R to r,
eu _ ea

(3.3) (ώ)» > ! _ £ _ .

For ε > 0, small enough, it follows from (3.2) and the fact that u is
increasing that

r 1 ί rR+ε 1 1 / ( "" 1 }

M ( r )>α + / L) sn~ιeu^ds} dt.
JR+ε t [JR J

Hence for some appropriate constant A > 0,
ru(r) > a + A\n-

R + ε
implying that u(r) —• oo as r gets large. Thus in (3.3) we may take
r > R\, where i?i is large enough so that eu/2 <eu-ea for r > R\.
If w(r) —̂  oo as r —> i?i, then we are done. Otherwise, continue w
using (3.2) past r = R\. Hence

ώ > Ceuln , in r > Rx,

for some C > 0. Integrating,

/ '
e~u/ndu> C(r-R{).

lu(Rx)

It is clear that there exists an r > i?, such that u(r) —• oc as r
The case δ > 0 follows similarly.

2. Without any loss of generality, take a = 0. Take ft < 0.
Now ύ(r) < 0 near r = i?, so we obtain that ώ(r) satisfies

(3.4) ύ(r) = - - j |ftΛ|π-1 - / tn~leu{t) dt \

in r > R. We show that there is ft < 0 such that if ft < ft < 0, there
is an f > R such that ύ(r) —• 0 as r —> f. It follows from (3.4) that
rώ is increasing and thus

— < w < 0 , f o r r > i ? .
r "" "

Set c = bR. Integrating, we find

eu>rc,

and so (3.4) yields

- /
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Therefore,

ώ(r)>
1 " n+c f

_ I f\c\n-1 -In— \
< r V ' R)

- n < c < 0,

It is clear that there is an r> R for which ύ(r) —> 0 as r -* f. Now,
take c < -n, satisfying

(3.5)

Now, (3.4) yields

c\n~ι -
1

\c\ -n\R

\c\-n
< n

n-\

{(
\c\-n\\R

\c\-n

Using (3.5), there is an f such that ΰ(r) > -j for r > f. If ώ(r) —• 0
as r —*• f, then we are done. Otherwise, continue u past r = f.
Repeating the arguments preceding (3.5), we see that «(r) —*• 0 as
r —• r for some f > R. Continuing u past r = f using

u(r) = u(f)+ -U sn'ιeu{s)ds\ dt,

we may show, as in Case 1, that there is an r > R where u blows up.

Case 3. We may again take a = 0. Let c < —n, t = R - r,
and υ(/) = u(r), where 0 < r < R. Then v(t) = —iι(r), where v
represents differentiation with respect to t. Then

(3.6) 0<t<R,

v(0) = 0 and ύ(O) = -b.

A solution of (3.6) is given by

V{t) = Sί^.
Equation (3.6) yields that j-t{{R - t)v) > 0, thus v > 0 in t > 0.
Integrating this inequality from 0 to t, we obtain
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Hence,

(3.7) e^ >

Let 0 < εo < 1 be such that

+«

for every ε in (0, εo). It follows from (3.7) that there is a t\ < R
such that

κR-tJ

for t > t\. If υ(ί) —• oo as ί —• ί i , then we are done; otherwise
continue v(t) past t = t\. Furthermore, we may take t\ such that
R - t\ < εo. Rearranging the terms in (3.6), and multiplying by v(i)
yields

0< t <R.( n l ) ( v ) v = e ϋ + ^ ( v ) ,

Integrating both sides from 0 to t, and noting that v > -^L , we find

By the definition of t\, it follows that

Setting

ϊ
the above may be rewritten as

(v)n>eυ{ί+x}.

Hence,

v>evln{\+xγln.

Using Lemma 2.1 and the definition of t\,

v>C{εo)evln{\+xλln}.

Thus we obtain

h<t<R
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By Lemma 2.2, there is a tι > t\ such that v{t) —> oc as t —> tι.
Hence there is an 7 £ (0, i?) for which w(r) —• oo as r-+7. Thus for
every c < —Λ , we have a vertical asymptote in (0, R). It is clear from
(3.5) that there are values of b for which both (i) and (ii) happen.
Call one such value to be bR .

For the case a Φ 0, we introduce the following change of variables.
Let v(r) = u(r) - a then

n-2 I Λ\ , n ~ ι

 Λ% \ _ Sicily(n - l ) | t ) | w - 2 it) + ^y^ϋ ) = ^ ^

Setting ί = re α / n , and w(t) = v(r), and differentiating with respect
to t, we have

(/i - l) |tί; |w-2 Γu; + ^ - ^ l ί ; ) = ew

w(R) = 0 and ώ(Λ) = e~a'nb,

where Λ = ^α/"i?. There is a 6^ so that the corresponding solution
which we continue to call w(t), blows up near zero and at a point
past R. Then u(t) = a + w{e~alnt) is such a solution for the original
problem. D

4. Proof of Theorem 1. This follows easily from Lemma 2.3 and
Lemma 3.1.

Proof of Theorem 1. Assume to the contrary. Let U(x) be such a
subsolution in (1.2). Let

a = inf J7(JC) .
1/2<||<3/2

By Lemma 3.1, there is a radial solution u(r) such that w(l) = a - 1,
and u(r) blows up at some r e ( 0 , 1) and r £ (1, 00). Let

M = sup C/(x),
£<|x|<7

£ G (£, 1) and f e (1, f) be such that u(g), w(7) > M + 1. Using
Lemma 2.3, w(x) > C/(x) in £ < |x| < 7, a contradiction. D

REMARK. In Theorem 1, 1 < p < n is the best possible. For p > n,
take w = ln(jy), where 0 < A < (p - n)pp~ι. Then

Lu_iP-n)Pp-ι

>A
p - rp - r P •
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