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INEQUALITIES FOR QUASICONFORMAL
MAPPINGS IN SPACE

G. D. ANDERSON, M. K. VAMANAMURTHY AND M. VUORINEN

A new lower hound for the conformal capacity of the Grδtzsch
ring and sharp bounds for the radial distortion of a quasiconformal
automorphism of the unit ball are obtained in //-space, n > 2 .

1. Introduction. The conformal capacities of the Grόtzsch and
Teichmϋller extremal rings in Rn , n>2 (see §2), are denoted by

(1.1) γn(s) = capRGn(s) and τn{t) = cap RT,n(t),

respectively, where s > 1 and / > 0. The modulus Mn{r) of the
Grόtzsch ring RG^n{\/r), 0 < r < 1, is defined by

(1.2) Λ-n

where con-\ is the (n — 1)-dimensional measure of the unit sphere
Sn~ι in Rn . The capacities in (1.1) are related [G, §18] by

(1.3) γn(s) = 2"-ιτn(s2-l), s>l.

For K > 0 define increasing homeomorphisms ψx n and y/χ n from
(0, 1) onto (0, 1) by

( " }
f

l
= M~\αMn{r)),

where r' = y/\ - r2 and α = Kι^ι~nK Given a domain D in Rn ,
for K > 1 let QCK(D) and QRK(D) denote the class of all K-
quasiconformal and AΓ-quasiregular mappings, respectively, of D into
itself [VI], [Vu2]. For K > 1, 0 < r < 1, define [AW2]

(1.5) φ*K9n(r) = sup{|/(x)|: \x\ = r9 /(0) = 0, / e QCK(B")},

(1.6) φ\,K9n{r) = inf{|/(x)|: \x\ = r, /(0) = 0,

feQCK(B»),AB») = Bn}.

We extend the functions in (1.4), (1.5), (1.6) to [0,1] by defining them
to be 0 at 0 and 1 at 1. For n > 2, K > 1, 0 < r < 1, these
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distortion functions are related by the inequalities [Vul, 3.5, 5.20],
[AW2, (1.4), Theorem 2.24]

7) {
I <P\(r) ^ m a x { P ( r ) > Ψl/K,n(r)}

Each of these three functions is increasing from [0,1] onto [0,1]
(see §3 below). For n = 2 the inequalities in (1.7) reduce to equalities.

It is well known that Mn (r) +log r is monotone decreasing on (0, 1)
[T, p. 632], [G]. The so-called Grδtzsch ring constant λn defined by

(1.8) logλn = lim (Mn(r) + logr)
0+

satisfies λ2 = 4 [T], [LV, (2.11), p. 62] and λn e (2e°'Ί^n-χ\ 2en~ι)
for n > 3 [G], [AW4, pp. 120-121], [AF].

The main purpose of this paper is to show how one can translate
information about the special function Mn(r) into information about
geometric properties of quasiconformal mappings. An important tool
is the following result, which improves the above-mentioned mono-
tone property of Mn(r) + logr.

1.9. T H E O R E M . For each n>2, the function

is strictly decreasing from (0, 1) onto (0, log(λ/,/2)), w/zere λΛ w as
m (1.8) and rr = (1 - r 2 ) 1 / 2 . Moreover, f2(r) is strictly concave on
(0,1) .

The next result is an immediate consequence of Theorem 1.9 (cf.
[G, Lemma 8], [AW4, Corollary 2.30]).

1.10. COROLLARY. For each n>2, 0 < r < 1, r' = \/l - r 2 ,

(1) jl/n(r) <

(2) ¥M d _J_
rlogr dr rr1

The usual method of obtaining lower bounds for the capacity of
a ring is to use spherical symmetrization [G] together with the ex-
tremal property of the TeichmuUer ring and the fundamental inequal-
ity Mn(r) < log(λΛ/r). By virtue of Corollary 1.10(1), all such ear-
lier bounds can now be improved. A graphical comparison of some
bounds for y3(l/r) appears in Figure 1 in §2.
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From Theorem 1.9 and Corollary 1.10(1) we shall derive several in-
equalities for the distortion functions in (1.4), (1.5), and (1.6). These
functions are interesting not only for studying the radial behavior of
mappings in QCκ(Bn), but also as means of expressing other special
functions.

1.11. THEOREM. For n > 2 and K > 1 let a = ̂ >/(i-«) = l/β,
= (λn/2)ι-\ l = (λnl2)λ-K / ! = 2 / / ( l + / 2 ) . Then

(1) Ψκ,n{r) < tanh(2arctanh(LΛ(r)Ω))

for re(0,h), and

(2) ψ\/κ,n{r) > tanh(2arctanh(/Λ(r)^))

for all r e (0, 1), where A(r) = r/{\ + r'), r' = ̂ JΎ^T1. For K = 1,
both (1) and (2) reduce to equality.

The following local Holder continuity theorem simplifies and im-
proves earlier results in [G], [R, pp. 82-83], [MRV], [AW2], [Ca].

1.12. THEOREM. For K > 1, n > 2 let f e QRκ(Bn), 0 < r < 1,
a = Kι/V-nK and let λ» be as in (1.8).

(l)Ifx,yeBn{r) then

\f(x)-f{y)\<λ\ra{\-r2ra\x-y\\

(2) If xe Bn(r) and y € Bn, then

\f{x) - f{y)\ < 2aλι

n-
a(l - r)-a\x - y\a.

Next, the hyperbolic metric p(x, y) on Bn is given by

Λp{χ,y) \χ-y\2

(1.13) tanh'

for x,y eBn (cf. [B, p. 40], [Vu2, 2.47]). The following distortion
theorem for the hyperbolic metric is a consequence of Theorem 1.9.

1.14. THEOREM. For K > 1, n > 2, let f e QRκ(Bn). Then for
all x,yeBn,

tanh t < @ ) ' - («anh t)'<κ (tanh t)'<K (tanh t)"\
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where p = p(x,y), p1 = p(f(x), fiy)), and a = KιKι~nK These
estimates are sharp as K tends to 1.

1.15. COROLLARY. For K>1, n>2, let feQCκ{Bn). Thenfor
all x,yeBn,

o' ( o\χlκ

tanh ^- < min{2, K} (tanh ^J

where p = p(x, y) and p' = p(f(x), f(y)).

The results in §3 will show that for n > 3 the functions φκ,n(r) ?
Ψ*κ π ( r ) ' a n ( ^ Ψκ,n(r) in (1.7) behave differently and that the behavior
of φ*κ n(r) differs drastically from that of ψκ,i{r) (cf. 3.7(1) and
3.14). '

In §4 we study the linear dilatation

(1.16) Hn{K) = sup { j ^ j : |x| = \y\ > 0,

obtaining the following asymptotic estimate.

1.17. THEOREM. For each K>\, l i m s u p ^ ^ Hn(K) < K4.

An explicit expression for Hn(K) is known only for n = 2, and

'μ-ι(π/(2K))\2

μ-\nKβ) )

[LV, (6.4), p. 81] is also denoted by λ(K). It follows from [AW5,

Theorems 1.1, 1.2] that

Λό) A <e < λ{K) — /i2VAJ < ^

for K > 1 and that {λ{K))χlκ is strictly increasing to eπ as K tends
to oo. Thus 1.18 and Theorem 1.17 imply that

(1.19) Hn(K)<

for n sufficiently large. On the other hand by [AW1, Theorem 1.1*4],
Hn{K) > λ(K{/(n-{ϊ) > 1 for each K > 1 and n > 2. Whether the
upper bound in Theorem 1.17 can be replaced by 1 remains an open
problem (see 4.12(1) below). In any case, Theorem 1.17 shows that
quasiconformal mappings become more rigid in high dimensions. If
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one wants to extend the theory of quasiconformal mappings to infinite-
dimensional Banach spaces then the definition of a AΓ-quasiconformal
mapping must be chosen carefully, as e.g. in J. Vaisala [V3].

1.20. NOTATION. For n > 2, Rn denotes the n-dimensional eu-
clidean space, and Rn its one-point compactification Rn U{oo} . Unit
vectors along the coordinate axes in Rn are denoted by e\, e2, ... , en .
For x in Rn and r > 0 we let Bn(x, r) = {z e Rn: \x - z\ <
r}9 Sn~ι(x,r) its boundary sphere, Bn{r) = Bn(0,r), Sn~l(r) =
Sn~l(p,r), Bn = Bn(l), and Sn~ι =Sn"ι(l). For any E cRn we
let E denote its closure. For a, b G W we let [a, b] =
{(1 - t)a + tb: 0 < t < 1} and for a e Rn\{0}, [a,oo) =
{ta: t > 1}, [α, oc] = [α, oc) u {oc}. Whenever 0 < r < 1, by
r' we shall mean \/l — r2 .

Given E, F, and G, subsets of Rn , we let A(E, F G) denote
the family of all curves joining E and F in G [VI]. The conformal
modulus of a family of curves Γ in Rn is defined by

= inf / pn
dm,

where dm represents π-dimensional Lebesgue measure and the in-
fimum is taken over all nonnegative Borel-measurable functions p
satisfying / pds > 1 for each locally rectifiable curve γ eΓ [VI].

Let G be a domain (open connected set) in I " . A continuous
function / : G -> Rn is said to be K-quasiregular, 1 < K < oo, if /
is ACLn , i.e. / is absolutely continuous on almost all lines parallel
to the coordinate axes and the first partial derivatives are locally Ln-
integrable, and if

ί \f(x)\n < KJf(x), \f(x)\ = max|ΛN1 \f(x)h\,
1 ' j I Jf{x) < Kl{f{x)Y , /(/'(*))* Ξ min|ΛN1 \f\x)h\
hold a.e. in G. Here f'(x) denotes the formal derivative of / at
x , i.e. f'{x)ei = Vft, / = 1, . . . , rc , / - (/i, /2 , . . . , / „ ) , and
/y(x) = det(/ ;(x)). A ΛΓ-quasiregular homeomorphism is called K-
quasiconformal. A mapping / is called quasiregular or quasiconformal
if it is ^-quasiregular or ^-quasiconformal, respectively, for some
K G [1, oc). For properties of these mappings the reader is referred
to [VI], [V2], [Vu2].
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2. Modulus of the Grδtzsch ring. A ring R = R(C0, C{) in Rn is a
domain whose complement consists of two components Q and C\,
where oo φ. Q . Two extremal rings, the Grόtzsch ring

and the Teichmuller ring

Rτ,n(t) = * " \(H?i > 0] U [te{, oo]), t > 0,

are important in the study of distortion [G], [Vul], [Vu2], [AW1],
[AW2], [AW5].

The conformal capacity cap R and modulus mod R of a ring R =
R(C0, CO are given [VI] by

capi? = M(Γ) = ωw_i(modi?) \-n

where Γ = Δ(Co, C\ ϋ ) and con-ι is the (n — l)-dimensional mea-
sure of Sn~ι.

The function Mι{r) defined in formula (1.2), usually denoted by
μ(r), is given explicitly [LV, (2.2), p. 60] by

(2.1)

where

= /
Jo

π/2

/ ( l-r 2 sin 2 ί )" 1 / 2 Λ, 3f'(r) =Jgr(r'), r' =

are complete elliptic integrals. We also use the dual integrals

rπ/2
2

The next result is an analog of PHόpitaPs rule and will be usefuMn
establishing monotoneity of a ratio of two functions.

2.2. LEMMA. For -oo < a < b < oo let / , g: [a, b) -> R δ<?

differentiable functions such t h a t g ' ( x ) φ 0 y b r x € ( a , b ) .
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If f(x)/g'(x) is increasing (decreasing) on (a, b) then so is

Proof. We may assume that g'(x) > 0 for all x e (a, b) and
that f'(x)/ g'(x) is increasing on (a, b). By the Cauchy mean value
theorem, for x e(a, b) there exists y e (a, x) such that

f(x) - f(a) fjy) f{x)
g(x)-g(a) g'{y)~

which implies that (fix) - f(a))/(g(x) - g{a)) has a positive deriva-
tive on (a, b). •

2.3. Proof of Theorem 1.9. The monotoneity appears in [Al, The-
orem 5, p. 15], but for completeness we include the proof here. For
0 < α < £ < l l e t i ? be the ring whose boundary components are Sn~ι

and the segment \-ae\,ae\\. Then Sn~ι(a/b) separates R into
two rings R\ and i?2, where R\ is conformally equivalent to
-β(?,π((l + b2)/2b) and i?2 is the spherical annulus {x: a/b < \x\ <
1}. By superadditivity of the modulus [F] we get modi? > modi?i
+ modl?2> that is,

b

Next, putting rx = 2a/(l+a2), r2 = 2b/(l + b2), we conclude that fn

is decreasing. The limit as r tends to 0 follows from (1.8), while the
limit at 1 is trivial. In [A2, §8] a different proof of this monotoneity
is based on Holder's inequality, which, by [A2, Lemma 4], cannot
reduce to equality; hence the monotoneity is strict.

Next, let n = 2 and f(r) = / 2(r). Then by [AW6, Lemma 2.1(2)],

fir) = -

which is negative for 0 < r < 1 since r'Jί(r)2 is strictly decreasing on
(0,1) [AW6, Theorem 2.2(3)] and JΓ(0) = π/2. Thus / is strictly
decreasing on (0, 1). Next, —fir) = g(r)h(r)/r, where

+ 1

and h(r) -

Since gir) is increasing [AW6, Theorem 2.1(3)], we need only prove
that h(r)/r is increasing, and by Lemma 2.2 it is sufficient to show
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that h'{r) is increasing. First by [BF, 710.00]

h'{r) 1 H{r) u „, λ
v ' - — — , where H(r) =

By [AW6, Theorem 2.2(3)] the first factor is increasing; thus by
Lemma 2.2 it is sufficient to show that H'(r) is increasing. Now,
by [BF, 710.04-.05], H'{r) = (% - rt25?)rr'-2, which is clearly in-
creasing. D

2.4. REMARK. For 0 < r < 1, by [Al, Theorem 2], [G, Lemma 8]
(cf. [AW4, (1.10), (1.11)]), and 1.10(1) we have

(2.5)
& <γn(l/r) <2«

* < γn{\/r) <

where cn is a constant [VI, p. 31]. Here equality holds on the right
sides for n = 2. Let f{r), g(r) denote the minorants and F(r),
G{r) the majorants in (2.5) and let h{r) = ωn-ι(log(λn/r))ι-n . Then,
for n = 3, the graphs of these functions are in Figure 1, where the
graph of ^ ( l / r ) lies in the shaded region.

0 . 2 0 . 4 0.6

FIGURE 1. Bounds for }>3(l/r), 0 < r < 1
Lower: f(r) = 4c3 log ^ , g(r) = log2{49^{l+rt)/r) , h(r) = -

Upper: F{r) = 4c3μ (l=f) , G(r) = - ^ .
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From Figure 1 we see that the new lower bound g(r) for
given by Corollary 1.10(1) is the best of the present lower bounds
when 0 < r < r$ , ro « 0.95.

2.6. T H E O R E M . For n>2 the function

fn(r) = M π (r) log((l + y/r)/(l - y/r))

is strictly increasing from ( 0 , 1 ) onto In, where 72 = (0, π2/2) and
ln = (0, oo) for n > 3.

Λw/. First, by [LV, (2.3), p. 60], /2(r) = /ι(ί) log((l + t)/{\ - t)),
where t = 2y/f/(l + r), and the result follows from [AW4, Lemma
2.6(4)]. Hence for n > 3 the result follows from [AW4, Lemma
2.6(5)]. D

As shown in [AW4, 1.21], the function Mn satisfies several non-
linear functional inequalities. Next we shall prove additional results
of this type.

2 . 7 . T H E O R E M . F o r e a c h n > 2 a n d s , t e ( 0 9 1 ) ,

There is equality when s = t.

Proof, The statement about equality is trivial. For the inequality,
let R denote the ring in W1 whose complementary components are
the sets [—e\/(st)9 oό]li[e\/(st), oo] and [—e\, e\]\. Then R is con-
formally equivalent to the Teichmϋller ring Rτ9n{(l -st)2/(4st)), and
the sphere Sn~ι(l/s) separates R into two rings R\ and i?2 that are
conformally equivalent to RG^n((l+s2)/(2s)) and RG,n{(l+t2)/(2ή),
respectively. The result now follows from (2.1) and the superadditiv-
ity of the modulus [F]. α

2.8. COROLLARY. For n > 2, α, b e (0, 1),

where equality holds if and only if a — b.

Proof. For a — b, equality is clear. Next, for a φ b, let s =
α/(l +a!)9 t = b/(ί + b'), where a' = VT^a2, V = Λ / T ^ F . Then
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a = 2^/(1 + s2), b = 2ί/(l + t2), and Theorem 2.7 gives

= 2Mn{yίab),

since Mn is strictly decreasing. •

2.9. REMARK. Corollary 2.8 strengthens [AW4, (1.22)].

2.10. THEOREM. For each n > 2, let

fir) L
 and Sn{r) =

Then fn(r) is strictly increasing from (0, 1) onto ( l , o o ) and gn(r)

is decreasing from (0, 1) onto (0, 1).

Proof. By [LV, (2.5), p. 60] we have

μ(r) 2μ(r) μ(t)

log ( ^ ) log ( |±4) log (1) '
Mr) =

where t = (1 - r')/(l + r'), and it follows from [AW6, Theorem
4.3(4)] and fι(r) is increasing from (0, 1) onto (1, oo). For n > 3
it follows from [AW4, Lemma 2.6(5)] that the function

has the desired properties.
Next,

which, by Theorem 1.9, is increasing from (0,1) onto itself. D

3. Distortion inequalities in W1. In this section we obtain estimates
for the distortion functions φκ,n, ψ\ n> a n <^ Ψκ,n introduced in
(1.4) and (1.5). In [AW3, Theorem 2.2] it was shown that ψ\^nφ
ΨK,n for n > 3, K Φ 1. We now show that φ*κ nφ ψκ,n and also
that ψκ,n a nd ψκ,n are not comparable. In our first result we apply
a method of O. Htibner [H] (cf. [LV, pp. 64, 65], [AW1, p. 698])
along with our Theorem 1.9 to derive inequalities that improve earlier
distortion estimates [AW1, Theorem 4.10].
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3.1. THEOREM. For n>2, K > 1, 0 < r < I, let a =

= l/a, r' = VT^r1, A(r) = r/(l + r'). Then

(1)

(2) A(φι/K>n(r)) > (^fj A{rγ

(3) ()

(4)

Proof. Let s = φκ>n(r). Then Mn(s) = aMn(r), s >r. Hence by
Theorem 1.9

< (1 - a)(Mn(r) + logA(r)) + a\ogA(r)

< (1 - α)log (^\ + a\o%A{r) < \o%K + alo$A(r),

and (1) follows. Since <Pχl

n = <Pi/κ,n > (2) follows from (1). Finally,
(1) implies (3), and (2) implies (4). D

3.2. COROLLARY. For n > 2, K2 > Kx > 0, a =

0<r < 1,

\-a

Proof. Since (pκ2,n{r) = ΨKjK^niΨ^A1')) > t h e r e s u l t follows from
3.1(3). D

3.3. REMARK. We can obtain analogous inequalities for φ*κ by
combining (1.7) with Theorem 3.1.

3.4. Proof of Theorem 1.11. Part (1) follows from Theorem 3.1(1),
since 2arctanh^4(r) = arctanhr and LA(r)a < 1 if 0 < r < r\ =
tanh(2arctanh/). Part (2) follows similarly from Theorem 3.1(2). D
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3.5. THEOREM. For n > 2, K > 1, a = Kι^ι~nK β = I/a,
0<r< 1, rf ^VΓ^lr2,

(1) tanh(/? arctanh r) < φ*κ n(r)

< tanh(arctanhr + (β - \)Mn(r'))

< tanh(β arctanhr + {β -\) log(λn/2))

(2) tanh(α arctanh r) > φ\/Kn (r)

> tanh(arctanhr + (α - \)Mn{r'))

> tanh(α arctanh r + (α - 1) log(λΛ /2)).

7%^ inequalities reduce to equality when K = 1. Moreover,

(3) l iminf>- α arctanh^ Λ(r) > 4 1 " " ,

limsup r~^ arctanh φ\jκ n{r) < 4ι~β ,
r ^ 0

a r c t a n h ^ (r) arctanh ^ ^ ( )
(4) lim ^ ? — = β, hm — ^ = a,

r->i arctanh r r- î arctanh r

(5) lim r-α arctanh φκ, Λ (r) = 4 " * ,

limr"^ arctanh<P\/κ,n(r) = ^n~β >

(*\ Km a r c t a n h ΨκAr) ^ i™ a r c t a n h Ψ\jκAr) i / ^
(o) lim H = ^5 lim ς = I/A.

r->i arctanh r r->i arctanh r
Proof. From [AW2, 2.18] and [AW1, 4.4]

^ , « ( r ) ><Pβ,i{r)> tanh(/? arctanhr)

and

<P*\lκ,n(r) ^ Ψ*,2(r) ^ tanh(αarctanhr).

Next, with s = φ*κ n(r), s' = \/l - s2 < rf = Vl - r2 , Theorem 1.9
and (1.7) give

Mn(r') - arctanhr < Mn(sι) - arctanhs < βMn(r') - arctanhs,

and the second inequality in (1) follows. Then Corollary 1.10(1) yields
the third inequality in (1). The proof of the first and second inequal-
ities in (2) is similar.

The first limit in (3) follows from [AW1, Theorem 4.9] and [LV, p.
65]; and the second follows from the first by inversion. The limits in
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(4) follow directly from (1) and (2); (5) follows from [AW4, (3.7)];
and (6) is implied by [AW1, Theorem 4.4]. D

Theorem 3.5 yields the following sharp quasiconformal distortion
result for the hyperbolic metric in Bn .

3.6. COROLLARY. If f <E QCκ(Bn) and β=Kι^"~^ = I/a, then

(1) p(f(x),f(y)) < p{x,y) + 2{β - \)Mn

for all x,y e Bn. Moreover, if f{Bn) = Bn, then we also get the
reverse inequality,

(2) ^

<p{x,y)-2{\- a)Mn (sech

<p(f{x),f(y)).

Proof. Denoting tanh(/>/2) = r, tanh(///2) = s, p = p(x, y),
p' = p(f(x), f{y)), then applying 3.5(1) and [Vu2, 11.2], [MRV], we
get

p' = 2 arctanh s < 2 arctanh φ*κ n(r)

< p(x,y) + 2(β - \)Mn (sech

proving (1). Inequality (2) follows from (1) applied to f~x. D

3.7. COROLLARY. For K > 1, n > 2, β = ̂ /("-O = I/a, 0 <
r< 1,

l + r

Proof. Inequalities (1), (2) follow from Theorem 3.5(1), (2) respec-
tively. D
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In a recent paper D. Cooper [C] has shown that, for a class of home-
omorphisms of Bn onto itself keeping 0 fixed, the image of Sn~ι(r)
is close to Sn~ι(r) in a certain sense. (For an alternative proof see J.
Vaisala [V3].) More precisely, Cooper showed, for a given mapping
/ in this class and for r close to 1 and ε > 0, that Sn~ι(r) = A UE,
where AπE = 0 and

f(A)c U D(z,e); D{z, ε) = {w e Bn: p(z, w) < ε}
\z\=r

and the exceptional set E is small in the (n— l)-dimensional measure.
Cooper's class of mappings includes quasiconformal mappings in par-
ticular. We shall now apply Corollary 3.7 to show that for every ε > 0
Cooper's exceptional set E is nonempty for r close to 1, even for
^-quasiconformal mappings when K > 1. Indeed, with s = φ^ n(r)
from Corollary 3.7 we obtain

p{S»-ι{r),Sn-ι(s)) = log ( i ± ί l ^ >(β- i) -log j ± £ ,

which tends to oo as r —• 1. Thus given K > 1 there exists a
JξΓ-quasiconformal mapping / of Bn onto Bn keeping 0 fixed and
for which there are points on Sn~ι(r) whose images under / are
at hyperbolic distance at least ((/? - l)/2)log((l + r)/{\ - r)) from
Sn~x(r). In other words, Cooper's exceptional set is nonempty for all
K > 1 and for all r sufficiently close to 1.

3.8 Proof of Theorem 1.14. Let r = tanh(/?/2), s = taήh(p'/2),
rr = \/l - r 2 , s' = Vl - s2, and α = Kι^ι~n">. Then by Theorem 3.1,
[AW4, (3.22)], and the Schwarz lemma [MRV, 3.1],

When ^ = 1 the inequality in the theorem reduces to p' < p , which
by conformal invariance is an equality if / is one-to-one and f(Bn)' =
Bn. D

3.9. Proof of Corollary 1.15. This follows immediately from Theo-
rem 1.14 and [AW2, (2.5)]. D
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We shall require the following simple inequality (cf. e.g. [Vu2,
(2.27)]):

(3.10) \x-y\< 2tanh p ( * ' y ) <

for x,yeBn.

3.11. Proof of Theorem 1.12. For (1), by Theorem 1.14 and (3.10)
n~Bnfor x, y e~Bn, with p = p(x,y), p' = p(f(x), f(y)), we have

\f(x) - f(y)\ < 2tanh P- < 2 (ψ) ^ (tanh %)*

<λ]ra{l-r2)-a\x-y\a.

The proof of (2) is similar. D

The next result is elementary.

3.12. LEMMA. For K > 1 and r € (0, 1), r' = Vl - r2, the follow-
ing inequalities hold:

(1) r < \ Λ - r'2K < tanh(UΓ a r c t a n h r)

< xain{Kr,

A /max < (—) , 1 - 4i-ι/κra/κ I < t a n ^ / arctanh r )
V VKKJ ) \κ )(2) (£) | ^

< Vl - r'2/κ < r.

3.13. T H E O R E M . For n > 2, 0 < r < 1, l < ϋ : < o o ) β =

Equality holds for K = I. The upper bound for ψκ,n(r) is asymptoti-
cally sharp as r tends to 1.

Proof. By Theorem 3.5(1) and Lemma 3.12 we obtain

Ψκ,n(r) ^ tanh(/? arctanh r) > v l - r/2^.

The second inequality follows from (1.7). Next, by (1.4) and The-
orem 3.1(4) we have
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proving the third inequality. The statement about equality is clear.
Finally, the third inequality is asymptotically sharp as r —• 1 since

lim r"^{\ - ψltΛ{r)) = lim r'-^φ\/κ n{r>) = A?1 ~β)

by (1.4) and [AW1, (4.12)]. D

3.14. COROLLARY. Let n>3, ra > 2, 1 < K < oo, and 0 < r < 1.

(1)7/ r is close to 1 then φ*Kn(r)<φκ^m{r).
(2) If m > n and r is close to 0, then the above inequality is

reversed.

Proof. For (1) choose r such that (1 - λc

n)
χl2 < r < 1, where

c = 2(1 - β)/(K - β), β = KιKn-V . Then

and the result follows from Lemma 3.12 and Theorem 3.13.
By [AW1, Theorem 4.10] and [AW2, (2.18)] we get

and hence (2) follows. D

4. High dimensions. In this section we prove Theorem 1.17, by
using the following result from [Vu3].

4.1. THEOREM. The linear dilatation in (1.16) has the following
majorant:

ml = 7r ,
0<t<\ Bκ,n(t)

where

4.2. Proof of Theorem 1.17. Fix t € (0, 4ι-κK~2). Then by Theo-
rem 3.1(3), (4) and [AW4, (3.23)],

lim — -

n{t) > lim λ2

n

2{ι~β)

l + t
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Hence

so that

lim sup Hn (K) < lim sup ( inf

4.3. Conjectures. (1) lim^oo//„(#) = 1 for all K > 1.
(2) limw_oo p£> Λ(r) = r for all AT > 1 and 0 < r < 1.

(3) Mn(r) can be replaced by M%~ι(r) in Theorem 2.6.

4.4. REMARK. We observe that [AW1, (4.5), (4.11)] implies that

r < liminf φκ,n(r) < limsup$?Λ:)W(r) < ^

for all K > 1 and 0 < r < 1, so that the analog of 4.3(2) is false for
φKfn(r) i f K > \ .
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