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A CONTINUATION PRINCIPLE
FOR PERIODIC SOLUTIONS

OF FORCED MOTION EQUATIONS ON MANIFOLDS
AND APPLICATIONS TO BIFURCATION THEORY

M A S S I M O F U R I A N D M A R I A P A T R I Z I A P E R A

We give a continuation principle for forced oscillations of second
order differential equations on not necessarily compact diίferentiable
manifolds. A topological sufficient condition for an equilibrium point
to be a bifurcation point for periodic orbits is a straightforward con-
sequence of such a continuation principle. Known results on open
sets of euclidean spaces as well as a recent continuation principle for
forced oscillations on compact manifolds with nonzero Euler-Poincare
characteristic are also included as particular cases.

0. Introduction. Let M be a smooth (boundaryless) ra-dimensional
manifold in W1 and consider on M a time dependent Γ-periodic
tangent vector field, i.e. a continuous map / : R x M —> W1 with the
property that, for all ( ί , ί ) € R x M , / ( / , ί ) is tangent to M at
q and f(t + T, q) = f(t, q). The map / may be interpreted as a
(periodic) force acting on a mass point q (of mass 1) constrained on
M. A forced (or harmonic) oscillation on M is a Γ-periodic solution
of the motion problem associated to the force / .

In [FP4], in the attempt to solve the conjecture about the existence
of forced oscillations for the spherical pendulum (i.e. for the case M =
S2, the two dimensional sphere), we have studied the one-parameter
motion problem associated to the force λf, λ > 0. In this context,
we say that (λ, x) is a solution (pair) of the problem, if λ > 0 and
x: R -> M is a forced oscillation corresponding to λf. Let us denote
by X the set of all solution pairs. Since any point q e M is a rest
point of the inertial problem (i.e. the motion problem with λ = 0),
the constraint M may be regarded as a subset of X by means of the
embedding q >-+ (0, q). With this in mind, we say that M is the
manifold of trivial solutions of X and, consequently, any element of
X\M will be a nontrivial solution (pair). We observe that in the non-
flat case one may have nontrivial solutions even when λ = 0. Closed
geodesies may be, in fact, Γ-periodic orbits if they have appropriate
speed.
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220 MASSIMO FURI AND MARIA PATRIZIA PERA

If we consider the standard C 1 metric structure on the space Cj(M)
of all Γ-periodic maps x: R —• M of class C1 , the main result in
[FP4] can be stated as follows:

THEOREM 0.1. Assume that the constraint M is compact with non-
zero Euler-Poincare characteristic. Then X\M contains an unbounded
connected subset whose closure in [0, oc) x Cγ(M) meets M.

In [FP4], an element q of the trivial subset M of X was called
a bifurcation point (for the forced motion problem considered above)
if any neighborhood of q contains a nontrivial solution, that is, if q
is in the closure of X\M. So, as a consequence of the above result,
one gets the existence of bifurcation points for a parametrized forced
constrained system, provided that the constraint M is compact and
χ(M) 9 the Euler-Poincare characteristic of M , is nonzero. We will
show that a necessary condition for a point q G M to be a bifurcation
point is that the average force / is zero at q i.e.

T

Thus, Theorem 0.1 may also be regarded as an extension (or dynami-
cal version) of the classical Poincare-Hopf theorem, which asserts that
any tangent vector field on a compact boundaryless manifold M, with
χ(M) Φ 0, vanishes somewhere. In fact, observe that a time indepen-
dent tangent vector field / on M may be regarded as a periodic force
(of any period).

Theorem 0.1 above was successfully used in [FP5] to give an af-
firmative answer to the conjecture about the forced spherical pendu-
lum. However, since the problem on whether or not any compact
constrained system M with χ(M) Φ 0 has forced oscillations is still
unsolved, we think that further investigations about one-parameter
forced constrained systems may be of some interest. Our aim here
is to extend to the noncompact case some of the results of [FP4], in-
cluding the one above. The interest of this is mainly related to the
fact that open sets in Rm are noncompact manifolds. So, the above
theorem does not apply to the flat case. Moreover, once the necessary
condition for a point q e M to be a bifurcation point is fulfilled,
the possibility of dealing with noncompact manifolds will give us the
tools to restrict our attention to a neighborhood of q, in order to get
sufficient conditions for bifurcation.
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In other words, what we do here is the spirit of [FP2] where our
effort was devoted to first order differential equations on noncompact
manifolds.

One may argue that a motion equation on a manifold M cRn is
just a special first order differential equation on the tangent bundle

T(M) = {(q, v) e Rn x Rn: q e M, v is tangent to M a t ? } .

However, a bifurcation problem associated to a force of the form λf,
where, as above, λ > 0 and / : R x M —> Rn is a Γ-periodic tangent
vector field on M, cannot be simply reduced to a problem of the
form:

z ( t ) = λg(t,z(t))9 ί € R , z(t)eT(M),

studied in [FP2]. The reason is that the inertial motion problem does
not correspond, in the phase space, to the trivial equation z{i) = 0.
Actually, as is well known, the motion problem of a mass point q
acted on by a force λf has the following form on T(M):

where the term h, which is a (nontrivial) tangent vector field on
T(M), is related to the geometry of M and linear only in the flat
case. This makes the problem in the non-flat case hard to deal with
and cannot be handled with the techniques developed in [FP1] and
in [Mar], where, for λ = 0, the problem was linear (with nontrivial
kernel).

We point out that a very interesting continuation principle for equa-
tions of the above form (and not necessarily related to second order
equations) is given in [CMZ], where, roughly speaking, the equation
is given on an open subset of a euclidean space and the existence of a
branch of solution pairs (λ, z) is ensured provided that the Brouwer
topological degree of h is (well defined and) nonzero.

What seems peculiar to us, and interesting for further investigations,
in our situation, is the role of g (or, equivalently, of the force /)
which is important for the existence of a bifurcating branch. In fact,
as we shall see, it is just the Euler characteristic of the average force
/ which, when defined and nonzero, ensures the existence of a global
bifurcating branch. To see the relation with well-known concepts we
recall that the Euler characteristic of a tangent vector field coincides
with the Brouwer degree in the flat case and with the Euler-Poincare
characteristic of the manifold in the compact boundaryless case.
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1. Notation and preliminaries. In this section we recall some defi-
nitions and results that will be needed in the sequel.

The inner product of two vectors υ and w in Rn will be denoted
by (v,w) and \υ\ will stand for the euclidean norm of υ (i.e. \v =
(v,v){/2).

Let M be an m-dimensional boundaryless smooth manifold in W
and, for any q e M, let Tq(M) c W1 and T^M)1- c Rn denote
respectively the tangent space and the normal space of M at q . Let
T(M) denote the tangent bundle of M, i.e. the 2m-differentiable
submanifold

= {(q,v)eRnxRn:qeM, veTq(M)}

of I " x P , containing a natural copy of M, via the embedding

Given (<?, v) G T(M), v φ 0, we shall denote by £(<?, v) the
curvature (in Rn) of the geodesic through q with velocity i? (the
Riemannian structure on M is the one inherited by the euclidean
space Rn).

Let / be a real interval and let x: / —> Rw be a C 2 curve on R" .
We will denote by x: J -*Rn and jc: J -+ Rn the velocity and the
acceleration of x, respectively.

Given any q e M and any u> e Mw , the vector if can be uniquely
decomposed into a normal component, wn e ^ ( M ) - 1 , of ^ at #
and a parallel component, wp e Tq{M), of w at <? (clearly, given
u) G l Λ , this decomposition depends on the chosen element q of
M). So, if x: J -> M is a C 2 curve on M and t e / , JcΛ(ί) and
Xp(ί) will denote, respectively, the normal and the parallel component
of x{t) at x(t) eM.

We recall that there exists a C°° map r: T(M) -> R«, called the
reactive force (or force of constraint or inertial reaction), such that

xn(t) = r(x(t), *(t))

for any C 2 curve x: / —>> M on Af. Such a reactive force, at (# , v) G
T(M), belongs to Tq(M)L and, when the curvature /:(#, ?;) of the
geodesic through q with velocity ι> is nonzero, is directed toward the
center of curvature. Moreover, its norm equals k(q , ^ ) | ^ | 2 .

Lemma 1.1 below has an evident physical meaning and will be used
several times in the next section.
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LEMMA 1.1. Let x: R —> M be a periodic C2 curve on M. Let

d = max{|x(fi) - x ( t 2 ) \ : tl9t2ER}9

u = max{|x(i)|: ^ R } ,

F = max{\xp(t)\: teR},

K =

Then u2 < Fd/(l - Kd), provided that Kd<\.

Proof. Suppose first that the manifold M coincides with R" . Then
K = 0 and F = max{|x(/)|: t e R}, so the assertion of the Lemma
reduces to the inequality

u2<Fd.

Let μ: Rn —> R be any linear functional of unitary norm and let
φ: R —• R be given by φ{t) = //(x(ί)). Because // is arbitrary, it
suffices to show that

φ2(t) <Fd, WeR.

Let t G R be such that φ2(t) Φ 0 (if such a / does not exist, then
the inequality is obvious). By the periodicity of x 9 there exists an
open interval (a, b) contaiping t9 such that φ{ά) = φ(b) = 0 and
φ(τ) Φ 0 for all τ E (a9 b). Therefore, φ is monotone in (a9 b).
Hence

- φ{a)\ + \φ(b) - φ(t)\ = \φ{b) - φ(a)\ < \x(b) - x(a)\ < d.

Now, without loss of generality, we may assume φ(τ) > 0 in (a9 b)
and φ{t) - φ(a) < d/2, so that

φ(τ)φ(τ)dτ .
Ja

Since \φ(τ)\ = \μ(x(τ))\ < max{|jc(ί)|: t € 1} = F, we obtain

φ2(t) < IF f*
Ja

φ(τ)dτ <2F{φ{t)-<p{a))<Fd.

Consider now the case M Φ Rn. By the first part of the proof it
follows that

u2 <dmzκ{\x(t)\: teR}

<dmzx{\xn(t)\: t eR} + dmax{\xp(t)\: teR}.

Hence, by recalling that xn(ί) = r(x(ή, x(ή) and that
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we have

u2 < dmax{k(x(t), x{ή): t eR}u2 + dmax{\xp{t)\: t eR}

< Kdu2 + Fd,

which implies the assertion of the lemma, since we have assumed
Kd<\. u

A time dependent tangent vector field on M is a map u:Rx M -^
Rn such that u(t, q) e Tq(M) for each t G R and q e M. Anal-
ogously, a (time dependent) tangent vector field on T(M) is a map
w: R x T(M) -4 Rn x RΛ which assigns to any (t, q,v) eRx T(M')
a vector

w(t,q,υ) = (wι(t,q,v),w2{t,q,v)) e f x f

such that w(t,q,v)e T{q>v)(T(M)) for all t G R. We point out that
a necessary condition for a vector (v{, v2) ERn xRn to be tangent to
T(M) at (<?, v) is that ^ G 7^(M). Moreover, given (q, v) G Γ(M)
and ^i G Tq(M), there exists a unique vector, n = /?(<?, ̂  , ^i) G Rn ,
normal to Af at q, with the property that (vi, ^2) ^ T^q^v^{T{M)) if
and only if ^ 2 belongs to the linear manifold n + Tq(M). It is known
that the map «, which is defined on the differentiate manifold

{(#, υ, vx)eMxRn xRn: υ, vx e Tq(M)},

is smooth and linear with respect to each one of the last two variables.
A (time dependent) tangent vector field on T(M) 9w = (w\9W2)9i$

called a second order vector field if it satisfies the condition W\(t, q, v)
= v 9 identically (see e.g. [BC], [L]). So, any second order tangent
vector field on T(M) can be represented in the form

q,v) = ( υ , n(q,v,υ)+f{t, q,v))eRn x f ,

where n(q, υ , υ) = r(q, v) is the reactive force at (q, v) and / : I x
T(M) -> Rn, called the active force on M, satisfies the condition
f(t, q, v) G Tq(M), identically. Hence, a second order (time de-
pendent) tangent vector field on T{M) is uniquely determined by its
parallel part, i.e. the active force / .

Given any active force / : R x T(M) —• Rn , one can consider in M
the second order differential equation of motion

(1.1) x(t) = r(x(t),x(t)) + f(t, x(t)9X(t))> x(t) ^ M

As previously observed, the "normal part" of the above equation, i.e.

xn(t) = r(x(t), x(t)),
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is satisfied by any curve x: J —• M. Hence, (1.1) turns out equivalent
to its parallel part

(1.2) Xp(t) = f(t9x(t),x(t))

Moreover, (1.1) is clearly equivalent to the differential system

(1.3) /*«=*'>•
(x(t),y(t))+f(t9x(t)9y(t)),

where (x(t)9y(t)) e T(M), which, actually, represents a first order
differential equation on T(M), since the map

(t9q9υ)eRx T(M) H+ (υ , r{q , v) + f(t, q , υ))

is a tangent vector field on T(M).
In the case when the active force is identically zero, (1.1) reduces

to the inertial equation of motion

x(t) = r{x(t), x(ή),

whose solutions are the geodesies of M. As usual, let us denote by

t \- ()

the geodesic through q with initial velocity v .
The following lemma shows that, given an interval of time [0, T],

the inertial motion is, in some sense, locally fixed point free, provided
that the initial speed is nonzero and sufficiently small. This fact will
be used in the sequel in order to apply the fixed point index theory to
the translation operator along the orbits.

LEMMA 1.2. Let C be a compact subset of M. Then there exists
ε > 0 such that expq{tv) φ q, for all q e C, t E l and v e Tq(M)
with 0 < \tv\ < ε.

Proof, Take ε > 0 and let

K(ε) = s u p { / c ( < 7 9 v ) : ( q 9 v ) e T(B(C, ε))} ,

where T(B(C, ε)) is the tangent bundle of

B(C, ε) = {q eM: \q -p\ < ε for some/? e C}.

Clearly, for ε sufficiently small, K(ε) is finite and nondecreasing with
ε. So, one may take ε such that εK(ε) < 2π. Let q e C and
observe that any geodesic t ^ expq(tv) such that cxpq(tυ) — q has
length \tv\. As is known, by a result due to H. A. Schwarz (see [B],
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§31, for references and related results), the length L of an arbitrary
closed curve satisfies the inequality L > 2π/K, where K denotes the
maximum curvature. Now, if \tv\ < ε, the geodesic s ι—> cxpg(sv),
0 < s < t, lies entirely in B(C, ε) and, consequently, cannot be
closed, since its maximum curvature is less than or equal to K(ε). D

Now let g: M —> W1 be a continuous tangent vector field on M.
Then (see e.g. [H], [M], [T] and references therein), if the set {q e
M: g{q) = 0} is compact, one can associate to g an integer χ(g),
called the Euler characteristic of g, which, roughly speaking, counts
(algebraically) the number of zeros of g . This integer, in the particu-
lar case when all zeros of g are isolated, is simply defined as the sum
of the indices at these zeros. In the general case χ(g) is defined just
taking sufficiently close approximations of g with only isolated zeros
(the existence of such approximations is ensured by Sard's Lemma).
The Poincare-Hopf theorem asserts that, when M is compact, this
integer equals χ(M), the Euler-Poincare characteristic of M . On the
other hand, in the particular case when M is an open subset of Rm ,
χ(g) is just the Brouwer degree (with respect to zero) of the map
g: M —• Rm. Moreover, all standard properties of the Brouwer de-
gree on open subsets of euclidean spaces, such as homotopy invariance,
excision, additivity, existence, etc., are still valid in the more general
context of differentiable manifolds. To see this one can use an equiv-
alent definition of Euler characteristic of a vector field based on fixed
point index theory given in [FP2]. To avoid any possible confusion we
point out that in the literature there exists a different extension of the
Brouwer degree to the context of differentiable manifolds (see e.g. [M]
and references therein), called the Brouwer degree on manifolds. This
second extension, roughly speaking, counts the (algebraic) number of
solutions of an equation of the form h(x) — y, where h: M —• N is a
map of oriented manifolds of the same (finite) dimension and y e N
(the assumption that h~ι(y) is compact is needed for this degree to
be defined). This dichotomy of notions in the context of manifolds
or, according to the viewpoint, confusion of concepts in the flat case,
is mainly due to the fact that in Rm an equation of the form h(x) = y
can be equivalently written as h(x)—y = 0 and a map from an open
subset of Rm into Rm can be also viewed as a vector field.

In what follows, to remind that the Euler characteristic of a tangent
vector field g o n M , reduces, in the flat case, to the classical Brouwer
degree (with respect to zero), χ(g) will be called the (global) degree
of the vector field g and denoted by deg(g). As in the flat case, g



PERIODIC SOLUTIONS OF FORCED MOTION EQUATIONS 227

will be said to be admissible if the set of its zeros is compact. The
case when M has boundary may also be considered if one takes the
restriction of the vector field g to the interior M\dM of M. In
particular, if M is a compact manifold with boundary and g(q) ψ 0
for all q e dM, then g is admissible (and deg(#) is not necessarily
equal to χ(M), unless g points outward along dM).

Observe also that no orientability of M is required for the global
degree of a tangent vector field g to be defined. For example, the de-
gree of an admissible tangent vector field on the boundaryless Mόbius
strip makes sense. Moreover, given any integer, it is not difficult to
provide an example of an admissible tangent vector field on this non-
compact nonorientable manifold whose degree is such an integer.

A homotopy G: M x [0, 1] —• W of (tangent) vector fields on M
is said to be admissible if the set

{qeM: G(q, μ) = 0 for s o m e μe[0, 1]}

is compact. The homotopy invariance property of the degree asserts
that deg((/( , μ)) does not depend on μ, provided that G is admis-
sible.

Any open subset N of a manifold M is still a manifold, so the
degree of the restriction of g to N makes sense provided that g is
admissible on N, i.e. {q e N: g(q) = 0} is compact. The degree
of such a restriction will be denoted by deg(gr, N). The additivity
property of the degree asserts that if N\ and N2 are open subsets of
M and g is admissible in N\, N2 and NιΠN2, then

Nι U N2) = deg(#, Nx) + deg(#, N2) - deg(#, Nx n

Lemma 1.3 below relates the degree of a tangent vector field on
M with the degree of the associated second order vector field on the
tangent bundle T(M). As already observed M is considered as a
submanifold of T(M).

LEMMA 1.3. Let g: M —• Rn be a tangent vector field on M and
let g: T(M) - > R " x R " , g(q, v) = (υ , r(q, v) + g(q)), be the second
order vector field associated to g. Then, given an open set U ofT(M),
g is admissible on U if and only if g is admissible on U DM and

deg(£, t/) = (- l) m deg(s, t/nAf), m = d imM.

Proof. Since the reactive force r(q, υ) vanishes whenever υ is zero,
one has g(q, υ) = (0, 0) if and only if υ = 0 and g(q) = 0. So,
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as claimed, g is admissible on U if and only if g is admissible on
U n M and, due to the excision property of the global degree, we may
suppose U = T(UίlM). Moreover, since UDM is manifold, we may
assume without loss of generality that M — U n M. Now join g, by
means of an admissible homotopy, to a smooth vector field h: M —>
Rn possessing only isolated zeros. Let h: T(M) -> Rn x Rn be the
second order tangent vector field associated to h as above. Clearly, the
homotopy joining g and h induces an admissible homotopy between
g and h. Therefore, it suffices to prove that

So, as previously observed, it is enough to compute the sum of the
indices at the zeros of h and h respectively. To this end, let q be
an isolated zero of h (thus, (q, 0) is an isolated zero of h). With-
out loss of generality we may also assume that q is nondegenerate;
that is, the derivative dhq, considered as a linear transformation of
Tq(M) to itself, is nonsingular. As it is known (see e.g. [M]), the in-
dex of h at q [resp. of h at (q, 0)] is the sign of the determinant
of the derivative dhq [resp. dh^o)]. Now, by reducing to Rm [resp.
Rm x Rm] by means of suitable diίfeomorphisms, and by computing
the determinants of the Jacobian matrices associated to the deriva-
tives of the vector fields which correspond to h and h under such
diίFeomorphisms, it is not hard to verify the equality

άtidhq = (-l)mdetdΛ(4 ? 0)

Consequently, the assertion of the lemma holds locally in a neighbor-
hood of any isolated zero and so, to complete the proof, it suffices
to take the sum over the (finite number of) zeros of the computed
indices. D

The following global connectivity result will play a crucial role in
the next section. From the abstract point of view the locally compact
metric space Y may represent, for example, the set of solutions of
a given equation Ψ(x) = 0, where Ψ is a map from an open subset
of Banach spaces E into a Banach space F (in many cases Ψ is a
nonlinear Fredholm operator of index 1). The distinguished compact
subset YQ of Y represents the set of trivial solutions of the given equa-
tion. Given C <z Y, by a bifurcation point for the pair (Y, C) we
mean a point of C which lies in the closure of the set Y\C. Lemma
1.4 asserts that if any pair (Y, C), where C is a compact subset of Y
containing YQ, has a bifurcation point, then y\ϊo contains a global
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bifurcating branch emanating from Yo . That is, a connected compo-
nent of Y\YQ whose closure in Y intersects YQ and is not contained
in any compact subset of Y.

LEMMA 1.4. Let Y be a locally compact metric space and let Yo

be a compact subset of Y. Assume that any compact subset of Y
containing YQ has nonempty boundary. Then Y\Yo contains a not
relatively compact component whose closure (in Y) intersects YQ .

Proof. By the assumption it follows immediately that the space Y is
not compact. Let us adjoin to 7 a point {00} and define a HausdorfF
topology on Y = Yu{oo} by taking the complements of the compact
sets as (open) neighborhoods of 00. Our assertion is now equivalent
to proving the existence of a connected subset of y\(loU{oo}) whose
closure contains {00} and intersects YQ . Suppose such a connected set
does not exist. Then, since Ϋ is a compact Hausdorίf space, by a well-
known point set topology result (see e.g. [A] and references therein),
YQ and {00} are separated in Y, i.e. there exist two compact subsets
C o , Coo of Ϋ such that Yo c C o , 00 e C ^ , QnCoo = 0 , Q u C ^ =
Ϋ. So, Co is a compact subset of Y containing YQ with empty
boundary, a contradiction. Therefore, the existence of the required
connected set is proved. D

2. Global continuation and bifurcation. Let Cj(M) denote the met-
ric subspace of the Banach space Cγ(Rn) of all Γ-periodic C 1 maps
x: R —• M. Observe that this space is not necessarily complete, unless
M is a closed submanifold W1. However, due to the fact that M is
locally compact, one can prove that it is always locally complete.

Consider now the parametrized motion equation

(2.1) xp(t)=λf(t,x(t),x(t)), λ>0,

where / : R x T(M) ->Rn is a Γ-periodic continuous active force on
M. An element (λ, x) € [0, +00) x C^(M) will be called a solution
pair of the above forced equation provided that x is a (clearly Γ-
periodic) solution of (2.1).

Denote by X the subset of [0, -hoc) x Cj(M) of all solutions pairs
of (2.1). It is not hard to show that X is closed in [0, -foe) x C^(M).
Moreover, because of Ascoli's theorem, X is locally precompact (i.e.
locally totally bounded). Therefore, since X is a closed subset of a
locally complete space, it is in fact locally compact. This fact will turn
out to be useful in the sequel.
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Since any element q of M is an equilibrium point of (2.1) cor-
responding to the value λ = 0 of the parameter, the manifold M
can be thought of as a subset of X just by considering the embed-
ding which assigns to any q e M the trivial solution pair ( 0 , ? ) ,
where q: R —» Cj{M) denotes the constant map t \-+ q. We point
out that, despite the fact that [0, +oo) x C\[M) may not be closed in
[0, +oo) x Cf (Rπ), M is always closed in [0, +oc) x C\{M), as well
as in X. We will say that M is the manifold of the trivial solutions
of (2.1), or, simply, the trivial manifold of X. Consequently, X\M
will be called the set of nontrivial solutions of (2.1), or the nontrivial
subset of X. With this distinction in mind a trivial solution q e M
will be called a bifurcation point of (2.1) if it lies in the closure of
X\M. We observe that this definition does not depend on where the
closure is taken: in X, in [0, +oo) x C\(M) or in [0, +oc) x C\(Rn).

Clearly, not all solution pairs of the form (0, x) are necessarily
trivial. In fact, any closed geodesic x whose speed u satisfies the
condition uT = jL, where L is the length of x and j is any positive
integer, is a Γ-periodic solution of (2.1) corresponding to λ = 0.
However, in the slice

of X, the trivial solutions are separated from the nontrivial ones
(and, consequently, any nontrivial solution (A, x) sufficiently close
to a bifurcation point must have λ > 0). To see this observe that
the solutions of the inertial equation xp(t) — 0 are the geodesies of
M, and there are no (nontrivial) closed geodesies too close to a given
point q e M, in a Riemannian manifold. This well-known fact can
also be regarded as a consequence of Lemma 1.1, since, given any
nonconstant closed geodesic γ, we must have Kd > 1, where K is
the maximum of the curvature along γ and d is its diameter. By
the definition of the embedding M ^ X, however, any solution pair
(λ, x) with λ > 0 is necessarily nontrivial.

We give now a necessary condition for a point q e M to be a
bifurcation point.

THEOREM 2.1. Let M be a boundaryless m-dimensίonal smooύi
manifold in R" and let f: RxT(M) -+Rn be a T-periodic continuous
active force on M. IfqeM is a bifurcation point for the parametrized
forced second order equation

xP{t) = λf(t, x(t), x{t)), ^ > 0 ,
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then the average force is zero at q. That is
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= ψ Γ f{t9q, O)dt = O.1 Jo

Proof. Let q G M be a bifurcation point for the equation (2.1).
Then there exists a sequence {(λj 9 Xj)} of nontrivial solution pairs
such that Λ7 —> 0, Xj(t) —• q uniformly and xj(t) —• 0 uniformly.
Integrating from 0 to T the equality

= r(xj(ή, *, te

we get

0 = *;(r)-*;(0)= / r(Xjit)9Xj(t))dt + λj ί f(t,Xj(t),Xj(t))dt.
Jo Jo
/ j j j

o Jo
Because of the uniform convergence of {Xj(ή} and {Xj(t)} there
exists a compact subset of T(M) containing (Xj(t), Xj(t)) for all
j e N and / G l . SO, one can find two positive constants F and K
such that

\J(t, Xj{t), Xj[t))\ < t , \r{Xj{t), Xj[t))\ < K\Xj(t)\

for all ί e l and j e N . Hence, we get

fTf(t,Xj(t),Xj(t))dt < [TK\xj(t)\\ VyeN.
JO JO

Let dj — max{|x7 (^i) - Xj{t{)\, t\,t2 G R } . Since dj —> 0 as
j -> oc, one has Kdj < 1 for j sufficiently large, and so, by Lemma

1.1,
\xj(t)\2 < λjFdj/(l - Kdj), for all t e R.

Therefore

J: f(t,Xj(t),Xj(t))dt <KTFdj/(\ -

So, we finally obtain

i / f(tiXjit)9Xj(t))dt = O. π
ι
 JO

In what follows, by a bifurcating branch for (2.1) we mean a con-
nected component of X\M whose closure in X (or, equivalently, in
[0, 00) x Cγ(M)) intersects M in a compact set. A global bifurcating
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branch is just a bifurcating branch which is not relatively compact in
X. More generally, given any subset C of M, we say that a bifurcat-
ing branch emanates from C if its closure intersects some neighbor-
hood of C in a nonempty compact subset of C, and by a C-global
bifurcating branch we mean a bifurcating branch emanating from C
whose closure in X is either noncompact or meets M outside C (or
both). Observe that a subset of X which is not relatively compact can-
not be contained in any bounded complete subset of [0, oo) x Cγ(M),
since, because of Ascoli's theorem, any bounded subset of X is ac-
tually totally bounded. So, in particular, if M is compact or, more
generally, closed in Rn, the fact that [0, oo) x Cj(M) is a complete
metric space implies that any global bifurcating branch must be un-
bounded.

We are now in a position to state our main result on the existence
of bifurcating branches.

THEOREM 2.2. Let M be a boundaryless m-dimensional smooth
manifold in W and let f: RxT(M) -+Rn be a T-periodic continuous
active force on M. Denote by f: M —• Rn the autonomous tangent
vector field

f(Q) = ψ fTf(t9q90)dt.
τ Jo

Let N be an open subset of M. Assume that the global degree

deg(/, N) of f on N is defined and nonzero. Then the parametrized

forced second order equation

xP(t) = *At,x(t),x(t))> ^ > 0 ,

has an N-global bifurcating branch.

The proof of the above theorem needs some preliminary lemmas.
Assume for the moment the force / to be smooth and consider the
family of equations

(2.2) χp{t) = λ(μf(t, x(t), x(ή) + (1
μe[0, 1], λ>0.

Denote

D = {(λ, q, υ) e [0, oo) x T(M): the solution JC(.) of (2.2)

satisfying x(0) = q, x(0) = v is defined in [0, T]

foral lμe[0, 1]}
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and let H: D x [0, 1] —• T(M) be the operator which associates to
any (λ9 q9v 9 μ) the values x(T) and x(T) of the solution x( ) of
(2.2) with initial conditions (q, v). It can be shown (see e.g. [L]) that
D is an open set (clearly containing M) and that H is smooth in
Z)x[0, 1].

The following lemma shows that if U is a suitable open subset of
T(M) and λ > 0 is sufficiently small, then the Poincare Γ-translation
operator H*: U —• T(M) 9 given by H*(q 9 v) = //(A, q9 υ 9 μ) 9 is
defined and its fixed point index does not depend on μ. A detailed
exposition of the fixed point index theory can be found, for instance,
in [Br], [G] and [N].

LEMMA 2.1. Let U be a relatively compact open subset of T(M)
which satisfies the following properties:

(1) J(q) φ 0 for all (q, 0) in the boundary dU of U
(2) expq(Tv) is defined for all (q, υ) e U and expq(Tv) Φ q if

vφO.

Then there exists ε > 0 such that, for all λ e (0, ε), the homotopy
{//μ}μ€[0,i] is well defined in U and admissible for the fixed point
index theory. Consequently, for any λ e (0, ε) the two T-translation
operators H^ and H^ have the same index in U.

Proof. Since U is relatively compact and D is open, the assumption
(2) implies, in particular, that for λ sufficiently small the slice

Dλ = {(q,v)eT{M):{λ,q9v)eD}

contains the closure, U, of U. So, for such λ's, the homotopy

Hλ: (q9υ;μ)^H(λ9 q9v9μ)

is. defined in 17 x [0, 1]. Let us show that there exists ε > 0 such that,
for 0 < λ < ε, Hλ is an admissible homotopy (for the fixed point
index theory). More precisely, we shall prove that there exists ε > 0,
such that there are no fixed points of Hλ(-, , μ) on the boundary,
dU, of (7, for all μ G [0, 1] and λ e (0, ε). Assume this is not the
case. Hence there exists a sequence {(λj, # y , Vj, μj)} in D x [0, 1]
such that λj->0, λj>0, (qj , vj) e dU9 μj G [0, 1] and

Without loss of generality, we may assume (qj 9 Vj) —> (q0, v0) G <9£/
and μ7 —> //Q . Since, by assumption (2), the solutions of the inertial
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equation xp(t) = 0 are defined in the whole interval [0, T], by well-
known properties of differential equations the sequence {XJ} of the
solutions of the problems

xp{t) = λj(μjf(t, x(t), *(f)) + (1 - μj)f(x(t))),

converges in C\>(M) to the solution x( ) of the inertial equation
Xp(t) = 0 starting from (#o? VQ) . Now, if VQ = 0, since {Xj} con-
verges to x in C^(M), as in the proof of Theorem 2.1, we obtain
f(qo) — 0? contradicting the assumption (1). Otherwise, if ^o Φ 0>
the pair (# 0, i>o) turns out to be a starting point of a Γ-periodic non-
trivial closed geodesic, and this is again impossible because of the
hypothesis (2). D

The following result shows that if U C T(M) is a suitable open
set and λ > 0 is sufficiently small, then the fixed point index of the
Γ-translation operator associated to the autonomous equation

xp(t)=λf(x(t)), x(t)eM,

is related to the global degree of the average force / on the open
subset U Π M of M.

LEMMA 2.2. Let U be as in Lemma 2.1. Then there exists δ > 0
such that, for all λe(0,δ),

ind(i/0\ (7) = (-lΓdeg(7, UΠM),

where m is the dimension of M.

Proof. The proof of Lemma 2.1 shows that as λ —• 0+ the fixed
points of HQ approach the compact set Yo = {q e UπM: f(q) = 0} .
So, by the excision properties of the index and the global degree, we
may assume that U is an open set of the type

U = {{q,v)eT(M):qeV, \v\ < p} ,

where V is a relatively compact subset of M and p > 0.
Consider in M the second order autonomous differential equation

(2.3) xp(t)=f(x(ή), x(t)eM,

where f:M—>Έίn is the average force vector field associated to / .
Denote

A = {(τ, q,v) eRx T(M): the solution of (2.3) which satisfies

Λ (O) = q, x(0) = υ is continuable at least to t = τ},
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and let Aτ = {(q, v) e T(M): (τ, q, ι;) e A) be the slice of A at τ .
Let Φ τ : Aτ —> T(M) be the translation operator which associates

to any (#, u) £ ^4τ the values x(τ) and i (τ) of the solution x( ) of
(2.3) satisfying x(0) = q, i (O) = i>. It can be shown (see e.g. [L])
that A is an open set and, since / is smooth, so is the flow operator
Φ: A -> T(M), given by (τ, q, ι;) »-> Φ τ (#, i>).

We shall prove first that, for /I sufficiently small, the two operators
J/Q and Φ ^ Γ are both defined on U and have the same fixed point
index. To accomplish this, given λ > 0, let x( ) be the solution of

, x(ή) + 7(^(0), 0 < t < VλT,

By setting z(s) = Λ:(ί>/λ) we obtain

z(s) = r(z(s), z(5)) + λf(z(s)), 0 < s < T,

so (z(Γ), z(Γ)) = ( J C ( V Ϊ Γ ) , Vλx(VλT)). This shows that if («, v) £
DA then (q, v/\/J)eA^T and / / ^ σ ^ o φ ^ y ^ o σ ^ 1 , where σλ:T(M)
—• Γ(Λf) denotes the diffeomorphism σλ(q, v) = (q, yfλv). Now,
given ε > 0 as in Lemma 2.1, if A £ (0, ε) the index of H^ in C/
is well defined. Consequently, by the commutativity property of the
index, i n d ί Φ ^ j . , σχl(U)) ^s w e ^ defined too and

~\U)) = ind(/fAσ~\U)) = ind(/f0

A, U).

Let us prove now that, for λ > 0 small, one has

\ , U).

By the choice of U we get U c σ~ι{U) for all 0 < λ < 1. So,
by the excision property of the index it is enough to show that for
λ sufficiently small the fixed points of Φ ^ Γ which are in σ^x(U)
are actually in U. Assume this is not the case. Then there exists
a sequence {(qJyWj)} of fixed points for Φy/χjT in σ^(U) with
λj —• 0+ and \Wj\>p>0. Let Xj denote the solution of (2.3)
starting from {qί9 wj) and observe that zj(s) = Xj(s\fλj) is a T-
periodic solution of the differential equation

z(s) = r(z(s) ,z(s)) + λjf(z(s)), 0 < s < T,

starting from (qj, vj) = (^ , VλjWj) e U.
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Since U is a relatively compact subset of T(M), we may assume,
without loss of generality, that (#7 , Vj) —> (q , v) £ U . Now, due to
the assumption (2) of Lemma 2.1, the solution of the inertial equation
starting from (q, υ) is defined in the compact interval [0, T]. So
the sequence {ZJ} converges in Cj{M) to the solution of the inertial
equation

starting from (q, v). This implies υ = 0, since otherwise (q, v)
would be a starting point of a nontrivial Γ-periodic geodesic, con-
tradicting the assumption (2) of Lemma 2.1. Consequently, the se-
quences {ZJ} and {έj} are uniformly bounded. So, there exist pos-
itive constants K and F such that, for all j e N and 5G[0, 1 ],
k(Zj(s),Zj(s)) < K and \f(zj(s))\ < F. Let

dj = max{|zy(ίi) - z y (ί 2 ) | ,tι,t2e[0, 1]}.

Since dj ^ 0 as 7 —• oc, one has rf7 < 1/AΓ for 7 sufficiently large,
and, so, by Lemma 1.1,

(v^ l ^ l)2 < max|z ; (5)|2 < λjFdj/(l - Kdj).

Therefore, Wj —> 0 as j -* oc, contradicting the assumption | ^ 7 | >
/? > 0. Thus, as claimed, for λ > 0 sufficiently small, we have

, U).

Let / : T(M) -+ Rn x RΛ , /((?, υ) = (υ , r(g, v) + /(<?)) 5 denote the
second order tangent vector field associated to / and observe that
the set of zeros of / in U coincides with the set of zeros of / in
UnM so, by assumption, it is a compact set. Therefore, recalling the
equivalent definition of global degree of a vector field given in [FP2],
there exists a > 0 such that ind(Φ τ, U) is defined for 0 < τ < a
and

ind(Φ τ, £/) = deg(-/, U).

The assertion now follows directly from Lemma 1.3, noting that,
since the manifold T(M) is even-dimensional, one has deg(-/, U) =
deg(/, U). π

In order to prove Theorem 2.2 we need, in the smooth case, a pre-
liminary finite dimensional investigation (Lemma 2.3 below) of the
structure of the set of starting points of equation (2.1), i.e. of those el-
ements (λ, q, v) e [0, 00) x T(M) for which the solution x: R —• M
of (2.1) corresponding to the value λ of the parameter and satisfying
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the initial condition x(0) = q, x(0) = v is Γ-periodic. In what fol-
lows, such a solution will be simply called the solution starting from
(λ,q,v). Let us denote by S c [0, oo) x T(M) the set of start-
ing points of (2.1). Observe that S may not be a closed subset of
[0, oo) x T(M). This is due to the fact that the solution starting
from a given point (λ, q,υ) of [0, oo) x T(M) is not necessarily
defined on the whole interval [0, T]. However, it turns out that S
is locally closed and, consequently, also locally compact, since so is
[0, oo) x T(M). To see this observe that the solutions starting from
the points of S are defined for all t eR; so, because of known prop-
erties of ordinary differential equations, any (λo , qo , VQ) £ S admits
an open neighborhood B in [0, oo) x T(M) such that the solution
starting from any point (A, q, υ) in B is defined for all t € [0, T].
The fact that S is locally compact will be crucial in the proof of
Lemma 2.3 below, which, in some sense, represents a finite dimen-
sional version of Theorem 2.2. As in the case of solution pairs, the
manifold M can be regarded as a closed subset of S (the embedding
now is the map q >-* (0, q, 0)). In this context M is the manifold
of the trivial starting points and S\M the set of nontrivial ones. No-
tice also that if a point q e M belongs to the closure in S of S\M,
then the continuous dependence of the solutions on the data implies
that q is a bifurcation point for the equation (2.1). Conversely, since
the map which to any (A, JC) in [0, oo) x Cj{M) assigns the triple
(A, x(0), x(0)) is continuous, any bifurcation point for (2.1) is in the
closure of S\M.

LEMMA 2.3. Let f be a smooth active force on M and let N be an
open subset of M with the property that the degree, deg(/, N), of the
average force f on N is defined and nonzero. Then the set S\M of
the nontrivial starting points o/(2.1) contains a connected component
whose closure in S intersects N and either is noncompact or hits M
outside N.

Proof. Let YQ denote the subset of N consisting of the zeros of
the average force / and put Y = (S\M) U Yo. Observe that Yo

is a nonempty compact set (recall that / is admissible on N and
deg(/, N) Φ 0). Hence, since S is locally compact and M is closed
in S, Y is a nonempty locally compact space.

Let us show that the assertion follows if we can apply Lemma 1.4 to
Y and YQ . Assume, in fact, that Y\YQ has a connected component Σ
whose closure in Y is noncompact and meets YQ . If also the closure
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of Σ in S is noncompact we are done. Otherwise, since Σ is not
relatively compact in Y, some point q of the closure of Σ in S must
belong to the subset S\Y of M . Consequently, q is a bifurcation
point for the equation (2.1). This implies, by Theorem 2.1, f(q) = 0.
So q is not in N, since otherwise q would belong to the subset Γo

of Y.
Assume Lemma 1.4 does not apply to the pair (Y, YQ) . So Yo

admits a compact open neighborhood C in Γ. Consequently, in
[0, oo) x T(M), we can find an open set W such that WnY = C.
Let Z c M denote the set of zeros of / and observe that Z\Y0 is
closed in [0, oo) x T(M). Therefore we can assume W n Z = YQ .
Now, the solutions of (2.1) starting from the points of C are defined
for any t e R. Therefore, by well-known properties of ordinary dif-
ferential equations, we can suppose (shrinking W if necessary) that
all solutions of (2.1) starting (at t = 0) from any point of W are
defined in the whole interval [0, 7"]. In other words we may assume
W contained in the open domain E of the operator H\\ E —> T(M)
which associates to any (λ, q, v) e E the values x(T) and x(T) of
the solution x( ) of (2.1) with initial conditions (q, v). Moreover,
clearly W can be taken with the additional property that the slice

Wλ = {(q, v ) e T(M): ( λ , q, v ) e W } , λ > 0 ,

is relatively compact and independent of A in a right neighborhood
[0, δ) of λ = 0. Finally, by Lemma 1.2 and shrinking W if neces-
sary, one can assume that the slice U = Wλ, λ e [0, δ), satisfies the
assumptions (1) and (2) of Lemma 2.1.

Given any λ > 0, let H\\Wλ-+ T(M) denote the Poincare Γ-
translation operator of (2.1). Clearly, if λ Φ 0, the compact set

Cλ = {(q,v)eWλ:(λ,q,v)eC}

coincides with the fixed point set of H\ . So, the generalized homotopy
property of the index implies that the fixed point index, ind(//jι ,
of Hf on the (possibly empty) open set Wλ must be independent of
λ. Consequently, since Q is empty for λ sufficiently large, this index
must be identically zero.

On the other hand, by Lemmas 2.1 and 2.2, when λ is positive and
sufficiently small we get

ind(H*, Wλ) = ind(H*, U) = ind(H$, U) = (-l)mdeg(/, UnM).

But deg(/, UnM) = deg(/, N) φ 0, since, by the choice of W
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one has

znu = znN=γ0.

This contradiction shows that, in fact, the pair of spaces (Y, YQ)
satisfies the assumptions of Lemma 1.4 and, consequently, our asser-
tion holds true. D

We can now give the

Proof of Theorem 2.2. Assume first that / is smooth. As pre-
viously, let us denote by X the locally compact closed subset of
[0, +oo) x Cj{M) of all solution pairs of equation (2.1) and by S c
[0, oo) x T{M) the locally compact set of starting points of (2.1).
Define h: X -» S by h{λ, x) = (λ, x(0), x(0)). Clearly h is contin-
uous, onto, and, since / is smooth, it is also one-to-one. Moreover,
the continuous dependence property from the data of the solutions of
differential equations, ensures the continuity of its inverse h~~ι. Also
observe that, according to the identifications M <-> X and M <-> S,
h is the identity on M. Let us denote by Σ a connected component
of S\M as in Lemma 2.3. Then Γ = h~ι(Σ) is clearly an TV-global
bifurcating branch.

We now need to remove the smoothness assumption on / . Let YQ
denote the set of zeros of / in N and put Y = (X\M) UYQ. AS in
the proof of Lemma 2.3 we need only to show that the pair (Y, YQ)
satisfies the hypothesis of Lemma 1.4. Assume the contrary. So, we
can find a compact relatively open subset C of Y containing YQ .
Consequently, there exists a bounded open subset W of [0, +oo) x
Cj{M) whose intersection with Y coincides with C and such that
dW nY = 0. The fact that [0, +oo) x Cf(M) is locally complete
permits us to choose W with complete closure. Moreover, we can
clearly suppose WnM to be relatively compact with closure contained
in N.

By a well-known approximation result on manifolds (see e.g. [H]),
we may take a sequence {fj} of Γ-periodic smooth active forces ap-
proximating / on R x T(M) uniformly. For each J G N , let

7» / \ 1

be the autonomous mean force vector field associated to fj . Clearly,
the sequence {fj} converges uniformly to the vector field / on M.
Consequently, since the closure of WnM is a compact subset of N
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and Yoc W n M, for j e N large enough, the zeros of the homotopy
Gj . WnMx[0, 1]->R", given by

lie in a compact subset of WπM. So deg(/7, WπM) is well defined
and, by the homotopy invariance property, equals deg(/, W n M),
which is clearly nonzero, since it coincides, by the excision, with
deg(/, N). Hence, by the first part of the proof, any equation

admits a WnM-global bifurcating branch Γ,. Moreover, since W is
bounded and with complete closure, any Γ7 must intersect the com-
plement of W in [0, oo) x Cγ(M). Hence, in particular, for each j ,
there exists (λj, Xj) EΓJ ΠdW. Now, by definition of solution pair,
any function x ; satisfies the corresponding equation

x(t) = r(x(t), x(ή) + λjfj(t, x(t), x(ή)

Therefore, the sequence {xj} is uniformly bounded in Cγ(M), so
that, by Ascoli's theorem, we may assume Xj —> Xo in Cj{M). With-
out loss of generality, we may also assume {λj} converging to λo.
Hence, the sequence {xj{t)} converges to the function

r(xo(t), *o(O) + hf{t, xo(t), xo(t))

uniformly in R. This implies that Xj -> Xo i n Cγ(M) and that XQ
is a Γ-periodic solution of the differential equation

Thus, (Λ,o, xo) is a solution pair of (2.1) which clearly belongs to Y
if either λo > 0 or λo - 0 and Xo is a nontrivial geodesic (recall
that M is identified with the set of trivial geodesies). Otherwise, if
λo = 0 and Xo G Λf, as in the proof of Theorem 2.1, we get xo G Yo .
Therefore, in any case, (Λo, Xo) G dW Π Y, which is a contradic-
tion. D

The following consequence of Theorem 2.2 shows that given a con-
strained system M acted on by a Γ-periodic force / , if the global
degree of the averaged force / associated to / is defined and nonzero,
then, for sufficiently small values of λ, the system admits forced os-
cillations and these oscillations do not disappear provided that they
remain in a compact subset of T(M). This fact is well known in the
flat case and is contained in the abstract continuation principle given
by J. Mawhin in [Maw].
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COROLLARY 2.1. Let / : l x T(M) -» Rn be a T-periodic active
force on M such that the global degree deg(/) of the mean force vector
field f:M-+Rn is well defined and nonzero. Then there exists ε > 0
such that the equation

xp(t) = λf(t9x(t)9x(t))

admits forced oscillations for all λ e (0, ε). Assume moreover that
there exist a compact subset C of M and a constant R > 0 such that
all possible T-periodic solutions x( ) of the above equation, which cor-
respond to some λ e (0, 1], are such that x(t) e C, |;c(ί)| < R,\/t e
R. Then

admits a forced oscillation.

Proof. By applying Theorem 2.2 we conclude that the equation

Xp(t) = λf(t, x ( t ) , x(ή), λ>0,

has a global bifurcating branch Γ of solution pairs (λ, x) e [0, oc) x
Cj{M) which, by Theorem 2.1, emanates from the set {q e M: f(q)
= 0}. The existence of ε > 0 with the required property is due
to the fact that Γ is connected and cannot be "vertical", i.e. cannot
be entirely contained in {0} x Cf (Af). In fact, as already observed,
nontrivial solution pairs (λ, x) sufficiently close to a bifurcation point
must have λ > 0.

It remains to show that Γ contains a solution of the form (1, x).
Suppose not. Thus, the given a priori bounds on the possible forced
oscillations of the parametrized equation

Xp(t) = λf(t,x(t)9X(t)), λ e ( 0 , 1],

imply that Γ is contained in a bounded complete subset of [0, -foe) x
Cj{M). This, as already observed, is impossible since Γ is a global
bifurcating branch. α

In the particular case when the constraint M is compact with non-
zero Euler-Poincare characteristic and the active force / is the sum of
an applied force g of the form (t, q, v) \-+ g(t, q) plus a frictional
force (t,q,v) H-» -εv, ε > 0, from Corollary 2.1 (as well as from
Corollary 2.2 below) one gets the existence of forced oscillations (for
any value of the parameter λ > 0). In fact, in this case, by the
Poincare-Hopf Theorem, deg(/) = χ(M) φ 0. Moreover, the speed
of the periodic orbits of (2.1) cannot exceed λG/ε, where

0 ) | : ί e R , q e M} .
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This result for dissipative systems was independently obtained by V.
Benci and M. Degiovanni in [BD] and by M. Furi and M. P. Pera in
[FP3].

Another consequence of Theorem 2.2 is the following global result
obtained in [FP4].

COROLLARY 2.2. Let M be compact and assume that the Euler-
Poincare characteristic χ{M) of M is non-zero. Then the equation
(2.1) admits an unbounded bifurcating branch.

Proof. Observe that, since M is a compact boundaryless manifold,
then deg(/) = χ(M) φ 0. So Theorem 2.2 applies yielding the exis-
tence of a global bifurcating branch. Now, to get the assertion it suf-
fices to observe that [0, oc) x Cj-(M) is complete and, consequently,
Γ must be necessarily unbounded. D

The following straightforward consequence of Theorem 2.2 is in the
spirit of a result obtained, for the flat case, by M. Martelli in [Mar].
In particular, it gives, in terms of the derivative of the average force
/ at an isolated zero q of / , a sufficient condition for the existence
of a ^-global bifurcating branch.

COROLLARY 2.3. Let q be an isolated zero for the average force f
and assume that the index of f at q is different from zero. Then (2.1)
has a q-global bifurcating branch. In particular, this occurs if f is dif-
ferentiable at q and dfq is nondegenerate (as a linear endomorphism
ofTq(M)).

In what follows, given an isolated zero q of / , we will denote
by C(q) the connected component of {q} U (X\M) containing q.
Observe that Corollary 2.3 implies that if the index of / at q in
nonzero, then C(q) is noncompact. It may happen, however, that for
some pair of isolated zeros q\ and q2, of index j \ and 72 respec-
tively, the union C(q{) U C(qι) is a compact connected set (clearly,
joining q\ with q-i). The following result shows that, in this case, one
has 71 + 72 = 0.

COROLLARY 2.4. Let YQ be a finite family of isolated zeros for f.
Assume that the union C(YQ) of all sets C(q), with q EYQ, is compact.
Then the sum of the indices of f at the points of Yo is zero.

Proof. Let Z denote the set of zeros of / and let TV be an open
subset of M such that N n Z = Yo. Since the sum of the indices
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of / at the points of Y$ equals the degree of / in TV, we have to
show that deg(/, N) = 0. Assume the contrary. Then (2.1) admits
an TV-global bifurcating branch Γ. Due to Theorem 2.1, the closure
of Γ in X must contain a point of YQ , so Γ c C ( Y o ) . Consequently,
the closure of Γ is a compact subset of C{YQ) , and this is impossible,
since, in this case, the closure of Γ could not meet M\N (observe
that, by definition, C(YQ) does not intersect M\Y0). π

Results analogous to the previous ones can be obtained, with only
minor changes in the proofs, for equations of the form

Xp(t) = λfι(λ,t,x(t)9x(t)), λ>0,

with fx: [0, oo) x R x T(M) -• W1 x Rn a Γ-periodic continuous
tangent vector field depending on the parameter λ > 0, provided that
in all statements one replaces the vector field / by fx: M -> Rn given

fi(e) = ψ Γfi(O,t,q,O)dt.1 Jo
Observe for instance that any smooth vector field (λ, t, q, v) ^

h(λ9t9q9υ) s u c h t h a t h(09t9q9v) = 0 f o r a l l (t9q9v) e R x T ( M )

can be written in the form λf\(λ9 t, q, v) by taking

fι(λ9t9q9υ)= —{
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