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DEHN FUNCTIONS OF GROUPS
AND EXTENSIONS OF COMPLEXES

STEPHEN G. BRrIick

We study extensions of two-complexes and the Dehn functions (i.e.
the isoperimetric inequalities) of their fundamental groups.

If A C B are two complexes and their quotient X is diagramati-
cally reducible then we obtain an upper bound for the Dehn function
of 7;(B) in terms of the Dehn functions of 7;(4) and 7;(X). In
particular, we show that if the Dehn functions of 7;(4) and n;(X)
are bounded above by polynomials of degree n and 1, then the Dehn
function of 7,(B) is bounded above by a polynomial of degree n-m.

0. Introduction. In this paper, we look at extensions of two-
complexes and the Dehn functions of their fundamental groups. We
start by recalling some definitions from [Br1] (in addition, see [Gr],
[Ge2], and [CEHLPT)). Let K be a finite two-complex. We will con-
sider edge-paths (i.e. cellular maps of intervals into K) and will use
|*| for the length function. Write Ni for the set of edge-circuits that
are null-homotopic in K. Given an integer / > 0, we set

Ni(l) ={w € Nk | |w| < I}.

If w € Ng([l) then there is a Van-Kampen diagram for w , i.e. a pair
D = (D, j) where j: D — K 1is a cellular map and D is a simply
connected finite planar complex with boundary cycle 4D mapping to
w . Note that the boundary cycle 9D is different from the topological
boundary. In particular, as some edges appear twice, the length of
the boundary cycle may be larger than the number of edges in the
boundary.

Let a(D) (also written a(D)) be the combinatorial area of D, i.e.
the number of faces of D. Set

Ag(w) = min{a(D) | D is a diagram for w }.

We will say that a diagram D for w is minimal if Agx(w) = a(D). The
Dehn function of K isthemap dx: N— N,where N={0,1,2,...},
defined by

Ik (/) = max{Ag(w)|w € Ng(I)}.
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Observe that dg is monotone increasing. If & is a finite presentation
then its Dehn function is dg () where 7' (&) is the associated two-
complex. This may also be formulated algebraically; see [Brl1].

Given f, g: N— N, we write f < g if there are constants ¢;, ¢,
and c¢; with

f) <cil+cr-glesl)

for all / € N. We write f = g, and say that f and g are of the
same type, if both f < g and g < f. Observe that if f < g and g
is bounded above by a polynomial of degree m, with m > 1, then so
is f.

In [Br1] we proved the following result (also see [Al], [CEHLPT],
and [Ge2]):

ProposITION. If K and L are connected finite two-complexes with
isomorphic fundamental groups then g = 9dy .

So the type of Dehn function depends only on the fundamental
group. If n;(K) = G, where K is a finite connected two-complex, and
if dx is bounded above by a linear, quadratic, etc. function then we
say that G satisfies a linear, quadratic, etc. isoperimetric inequality.
Moreover, we abuse notation slightly and refer to dx as the Dehn
function of G (strictly speaking the Dehn function is a =-class).

Of particular interest is when the Dehn function is bounded by a
polynomial. Recall (see [Gr]) that a group is hyperbolic iff its Dehn
function is bounded above by a linear function.

Associate a degree > 1 to G, called the Dehn degree of G, where
deg(G) < n, for n > 1, provided dx < /", where K is a connected
finite complex with fundamental group G.

We find it convenient to work in the combinatorial category. A
cellular map is combinatorial provided it preserves dimension, while
a complex is combinatorial if each attaching map, after a subdivi-
sion of its domain, is combinatorial. Given a pair of combinato-
rial complexes 4 C B, the combinatorial quotient, B//A, is the
quotient of B/A gotten by “adjusting” its attaching maps to make
them combinatorial (see [Gel]). For example, if 4 = % (x|x?) and
B = X% (x,y,z|x*, [xy, z]) then their combinatorial quotient is
X=Z(y, zIly, z]).

A combinatorial extension is a sequence of finite combinatorial
complexes &: 4 C B — B//A. Observe that as B//A is combina-
torial no cell of B\ A can have its boundary lying entirely in 4.
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We will say that a combinatorial extension &: 4 C B — B//A is
acceptable if the following holds:
(1) A is m-injective in B, i.e. if x € A then i.: m (4, x) —
my(B, x) is injective, where i: A C B,
(2) B//A has no redundant faces, i.e. distinct two-cells have dis-
tinct attaching maps.

We will write & (X) for the set of acceptable extensions 4 C B —
B//A with B//A = X. Regarding & (X), observe that condition
(2) in the definition above is actually a condition on X. So & (X)
being non-empty implies that X has no redundant faces. Also, as we
are only considering extensions of finite complexes, X must itself be
finite.

A function g: N — N is said to be subnegative if

g(n)+ g(m) < g(n+m)

for all n, m € N. Given f: N — N, the least subnegative function
greater than or equal to f is called the subnegative closure of f,
denoted by #(f). It is given by the formula

k
En,:nandnieN}.
i=1

Observe that the subnegative closure is monotone increasing. Also if
f is bounded above by a linear (or quadratic, etc) function then so is
Z(f). Thus in a sense it suffices to study the subnegative closure of
the Dehn function.

We associate to any acceptable extension &: 4 C B — B//A afunc-
tion ag: N — N and to any complex X another function fy: N —
NU {oo}. These have the property that if & € .o/ (X) then

(1) ag < Bx

(2) 0 < ag +F(d4) oy, for some function o = ag .
Bx is an upper bound for the combinatorial area of reduced Van-
Kampen diagrams as a function of the length of the boundary cycle.
If we are able to compute fSx then, using the above formulas, we can
get an bound for dp.

We will show that Sy = dy when X is diagramatically reducible
and is eventually infinite otherwise. So if X is diagramatically re-
ducible then dp < dx + S(d4) o 0y for some function % = Jdx. In
terms of degrees, we have the more succinct result that deg(B) <
deg(A) - deg(X).

k
P(1)(n) = max { S finy)
i=1
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We are indebted to Hamish Short for suggesting that we study ex-
tensions of two-complexes.

1. The functions oz and Bx. Suppose &: A C B — B//A is in
& (X). We need to define the functions ag and fBy. Denote the
quotient map B — B//A by p.

We start with the definition of ag. Let w € Np(l). Take D =
(D, j), a Van-Kampen diagram for w. Also regard w as a map
j: 0D — B. Assume that w is not contained entirely in A4, i.e.
w ¢ Ny(/). The composites p(w) = poj | 8D and poj need
not be cellular. However, we will describe a method that yields an
edge-circuit, p’(w), and a diagram p’(D) for p’(w) where p’(w)
is homotopic to p(w) in X1, Begin by identifying each compo-
nent in p(w) and D of the inverse image (under po j) of 4 to
a point. Clearly the resulting path, p’(w), is an edge-circuit in X
with |p/(w)| < |w| < [. But these identifications on D may yield
a wedge of a simply-connected planar complex with a collection of
two-spheres, wedged together at possibly several different points. The
two-spheres result when some loop # C D maps into A yet the region
in D that u bounds does not. Simply discard any such two-sphere.
Call the resulting simply-connected planar two-complex p’(D). There
is an induced map of p’(D) into B//A with boundary cycle mapping
to p’(w). We thus have a Van-Kampen diagram for p’(w). Denote
it by p’(D). Note that a(p’(D)) < a(D).

If w € Ny(l) € Np(l) then it may happen that a minimal Van-
Kampen diagram D for w does not map entirely into 4. Of course
there are Van-Kampen diagrams for w that map into 4. But they
may have larger area. In any case, the above construction yields the
empty diagram for p’(D).

Given / € N, define

We(l) = {w € Np(l)|dp(l) = Ap(w)}.
A 0p(l)-diagram is a minimal Van-Kampen diagram of some w €
We(l). Define, for [ €N,
ag(l) = min{a(p’ (D)) | D is a dz(/)-diagram}

(if it happens that some Jp(/)-diagram or some w € Wg(/) maps into
A then ag(l)=0).

We turn to the function Sy . Given a Van-Kampen diagram (D, j)
a pair of distinct faces F and F’ of D are opposite under j if
F N F’ contains at least an edge and there is an orientation reversing
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homeomorphism g: F’ — F, fixing F N F’ pointwise, with jo g |
F’ = j | F. In other words the map j “folds” the faces across their
intersection. Note it is often difficult determining whether two faces
are opposite. One must consider the whole of each face and not just
the boundary, especially when the image of the boundary involves a
repetition of edges. A Van-Kampen diagram is reduced if it has no
opposite faces. A cut-and-paste argument shows that if w € Ny then
there is a reduced Van-Kampen diagram for w. The cut-and-paste
operation may yield a wedge of planar complex together with a sphere.
One discards any such sphere. And as the cut-and-paste operation
decreases a(D), we see that any minimal Van-Kampen diagram must
be reduced.
Given w € Nx(/l), let

Vx(w) = sup{a(D) | D is a reduced diagram for w}

and define

Bx(l) = sup{Vx(w)|w € Nx(/)}.
Compare these formulas with those defining Ax and dgx in §0. Note
that Sy is also given by the expression

Bx(l) = sup{a(D)|D is a reduced diagram
mapping into X with |9D| < /}.

Thus By gives an upper bound for the area of a reduced diagram
as a function of the length of the boundary cycle. The function Sy
may be infinite-valued. Consider, for example the two-sphere S with
two vertices, vy and v;, one edge, e, from vy to v;, and one face,
attached according to the word ee~!. Then Bg(/) = co forall / > 2
as can be seen from the reduced Van-Kampen diagram for the word
ee~! pictured in Figure 1.1 (this diagram also illustrates the subtlety of
deciding whether or not a diagram is reduced). Here, once orientations

WANAN

FiGURE 1.1
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for the diagram and the two-sphere have been fixed, the faces of the
diagram all map in the same way.
The relation between ag and fy is found in the result:

ProPOSITION 1.1. If & € &/ (X) then ag < Bx.

Proof. Write &: A Cc B — X and p: B — X the quotient map.
Fix / € N and suppose D is a dp(/)-diagram. Since D is a min-
imal diagram, it must be reduced. And since X has no redundant
faces, the induced Van-Kampen diagram p’(D) is also reduced. Since
|0p’(D)] < 10D| <! we have ag(l) < a(p'(D)) < Bx(|0D]) < Bx(/). O

2. Extensions. Given an extension &: 4 C B — B//A in & (X),
we want to use the function ag to obtain an upper bound for dp.
The key point is that ag tells us how a dp(/)-diagram “projects” to
X . It is then a matter of seeing how it pulls back.

ProposITION 2.1. If &: A C B — B//A is in & (X) then there is
some function oy = ag with dp(l) < ag(l) +(d4) o ax(l) for all
/leN.

Proof. Fix l € N and let D = (D, j) be a dg(/)-diagram for w
with ag(/) = a(p’(D)) (where p : B — X is the quotient map, and p’
is defined in §1).

Suppose there is some loop ¥ C D that maps into 4 but the region,
D,, in D that u bounds does not. Since & € & (X), A is m;-
injective in B. So there is some minimal diagram (D), j) for u
mapping into 4 (minimal in A4 ), though with possibly larger area than
D, . Cut D, from D and replace it with D; . Do this for each such
loop u. We will abuse notation and also call the resulting diagram D.
Observe that we may have increased the area of D, but the diagram
p'(D) is unchanged. So dp(/) < a(D) and ag(l) = a(p'(D)).

p'(D) and p’(w) differ from D and w only in that certain subcom-
plexes of D and subpaths of w—those that mapped into A—have
been replaced by vertices. Call these subcomplexes the A-subcom-
plexes of D, the subpaths the A-subpaths of w, and the vertices that
replace either of them the A-vertices. We need to count the areas of
the A-subcomplexes.

Each two-cell E’ of X corresponds to some two-cell £ of B. The
attaching map of E’ differs from that of E by the deletion of any
word mapping to AV, Let K be the maximum of the lengths of any
such deleted word for any two-cell of X . This bound is finite since
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X has only finitely many two-cells. There is also a bound K’ to the
length of the boundaries of the two-cells of X. Let K" =2 -K -K'.
We will show that

a(D) < ag(l) + F(04)( + K" ag(1)).

Note that the function o (/) =/ + K" - (ag(l)) is = t0 ag.
The A-vertices are of three different types:
(1) those that are interior vertices of p’(D),
(2) those that are on the boundary of some subdisc of p’(D), and
(3) those with one-dimensional neighborhoods.

These conditions partition the set of A4-vertices into subsets V;, V5,
and V3. See Figure 2.1 (where v; € V}).

Suppose v € V) replaces the A-subcomplex S,. Let p, be the
link of v in p’(D). This loop can be viewed as corresponding to the
boundary cycle 95, of S, in D. Denote the index of the vertex v
in D by i(v). Then clearly, we have that |0S,| < K -i(v). And thus,
since D is a minimal diagram,

a(Sy) < 04(K - i(v)).

Now suppose v is a boundary A4-vertex. Let w, be the A-subpath
of w that v replaces (of course w, may itself just be a vertex). As-
sume that v € V, and let v correspond to the A-subcomplex S, .
Then, as above, the boundary cycle of S, can be viewed as corre-
sponding to the concatenation of components of the link of w in D
with the subpath w,. And so |8S]| < |wy| + K -i(v). Since D is
minimal we have that

a(Sy) < d4(|wy| + K - i(v)).

Assume now that v € V3 and let w, be the A-subpath of w that
v replaces. Denote by S; the A4-subcomplex that v replaces. Then
the boundary cycle of S, corresponds to the subpath w, . Hence

a(Sy) < 84(Jwy)).
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So we have three types of A4-components. Adding their areas to-
gether with the area of p’(D) yields the area of D. The above formulas
yield:

a(D) < a(p'(D) + 3 Sa(K - i(v))
veY,

+ 3 Sa(lwo] + K -i(v)) + Y Sa(|lwyl).
vev, VeV,
Let zveV[UVz i(v) =N and ZveVZUVS |wy| = M . Using subnegativity
gives
a(D) < a(p' (D)) +F(d4)(M + KN).

Since the A-subpaths are disjoint we have M < |w| < /. Regarding
N, it is bounded above by twice the number of edges of p’(D). The
number of edges of p’(D) is bounded above by K’ - (the number of
faces of p’(D)). And the number of faces is ag(/). Thus N <
2-K'ag(l). Putting this together (using K” = 2KK’ and the fact that
#(d,4) is monotone increasing)

d5(1) < a(D) < ag(l) +F(B4) (I + K"ag (1))

as desired. ]

By Proposition 1.1 and the preceding, we see that knowing Sy al-
lows us to bound Jd4. In the final two sections we will compute Sy .

3. Non-DR complexes. Recall from [Gel] that a two-complex X is
diagramatically reducible (abbreviated DR) if any combinatorial map
of a two-sphere into X has a pair of opposite faces. Some examples
of DR complexes are collapsible complexes and hyperbolic surfaces.

In this section we will show that Sy is eventually infinite when X
fails to be DR.

We need two facts for our result:

(1) the composition of reduced maps is reduced,
(2) if X is the two-sphere then By is eventually infinite.

The first fact follows trivially from the definition of a reduced map.
The second comes from a generalization of the example given in §1
and pictured in Figure 1.1. If X is any cell structure of the two-
sphere, that has more than a single two-cell, then one can construct
similar reduced Van Kampen diagrams by letting e be any edge of X
that appears in exactly two faces of X (so what is pictured as a single
two-cell in Figure 1.1 is replaced by a complex homeomorphic to X
cut open along e ). We thus see that Sy(/) = oo for [ > 2.
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Using these facts, we obtain our result on Sy for non-DR com-
plexes:

ProPosITION 3.1. Suppose X is a two-complex that is not diagra-
matically reducible. Then Bx is eventually infinite.

Proof. Let ¢: T — X be a reduced map of a two-sphere. We
know from above that fr is eventually infinite. Let m > 2. Given
an integer k, there is a reduced Van-Kampen diagram j: D — T,
having boundary cycle length < m, with area greater than k. Then
the composition ¢oj: D — X is reduced, by the above, and has area
greater than k. As k was arbitrary, we get fx(m) = oco. O

4. DR complexes. We will show in this section that Sy = dy when
X is DR.

We define a sphere-graph complex to be a union of two-spheres to-
gether with some graphs glued together at vertices. Suppose ¢: L — X
is a combinatorial map of a sphere-graph complex. Let F and F’ be
a pair of opposite faces for ¢. One can cut out F and F’, identify-
ing OF and OF', using the orientation reversing homeomorphism g,
yielding a combinatorial map ¢ : L — X of a new sphere-graph com-
plex. The faces of L can be identified with the faces of L\ {F, F'}.

Assume that each two-sphere in L is partitioned into “upper” and
“lower” hemispheres. Note that each two-sphere of L inherits such a
partition. Now assume that F lies in some upper hemisphere while
F’ lies in some lower hemisphere, where F and F’ are opposite
under ¢. If E and E’ are opposite faces under ¢, both lying in
upper hemispheres then the corresponding faces of L are opposite
under ¢. Similarly for faces both lying in lower hemispheres.

We will use this in the following:

ProPOSITION 4.1. Suppose X is diagramatically reducible. Then
Bx = dx.

Proof. Suppose w is an inessential edge-circuit in X . If j;: D; —
X and j,: D,— X are reduced Van-Kampen diagrams that w bounds
then glue them together along their boundary cycles yielding ¢: L —
X . Partition L into upper hemispheres D; and lower hemispheres
D, . Now ¢ is a combinatorial map of a sphere-graph complex into the
DR complex X. Hence ¢ has a pair of opposite faces. Moreover,
since j; and j, were assumed to be reduced, the pair of opposite
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faces must lie in different hemispheres. A cut and paste operation
as described above yields a combinatorial map ¢: L — X of a new
sphere-graph complex. This complex is likewise partitioned into upper
and lower hemispheres and has a smaller number of faces. Again,
since X is DR, the map ¢ must have a pair of opposite faces. And,
by the comments above, the pair of opposite faces cannot both be
upper (or lower) hemispheres. In other words, one of the opposite
faces corresponds to a face in D, and the other a face in D,.

We then proceed by induction on the number of faces. The end
result is a bijection between the faces of D; and the faces of D,.
Hence the areas of D; and D, are the same

We thus see that any two reduced Van-Kampen diagrams have the
same area. Our result then follows. 0

Note that the above proof can be interpreted as saying that Plateau’s
problem and the minimal area problem for a DR complex have the
same solution.

Combining the preceding proposition with Proposition 2.1 yields:

COROLLARY 4.2. Suppose A C B are a pair of two-complexes with
combinatorial quotient X being diagramatically reducible. Then

0p X 0x +S(d,4) 0 Jy
for some function & = dx. And if A is two-dimensional then

05 < S(8.4) 0 8.

Proof. We need only observe that any extension 4 C B — X is
acceptable, i.e. that X has no redundant faces and that 4 C B is
m-injective. The former follows from the facts that the two-sphere is
not DR and a subcomplex of a DR complex is DR. The latter follows
from the fact that a DR complex is Kervaire and thus G-Kervaire (see
[Br2]). O

Since taking subnegative closures does not affect degrees, we have;

COROLLARY 4.3. Suppose A C B are a pair of two-complexes with
combinatorial quotient X being diagramatically reducible. Then

deg(m(B)) < deg(,(4)) - deg(71 (X))
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5. Examples. We close with a few simple examples (which can be
generalized in obvious ways). The first two make use of two theorems
of Gromov’s (see [Gr]):

(1) if G is hyperbolic then it does not contain Z®Z as a subgroup,
(2) if the Dehn function of G has subquadratic growth then G is
hyperbolic.
In fact, we will use a strengthened version of the second result (see
[O1)):
(2/) if G is not hyperbolic then its Dehn function is at least qua-
dratic.
Thus a group that contains Z® Z as a subgroup has Dehn function at
least a quadratic.

If A is a set, write W (A) for the semigroup of (unreduced) words

in the alphabet 4. Consider the group G with presentation

(a,b,c,d,x,ylw,[x,¥]),
where the natural retraction,
W({a> ba C, d,X,y})"" W({a’b5 C,d}),

sends w to [a, b][c, d] (note that no free reductions are allowed).
Writing B for the two-complex associated to this presentation, we see
that B is an extension

AcCcB—B//A

where A4 is two-complex associated to the presentation

(x,y]lx, y]).
The quotient B//A is the two-complex associated to
(a,b,c,d|[a, bllc, d])

which is a hyperbolic surface, and hence DR (thus B is an extension
of a torus by a hyperbolic surface of genus two). Applying Corollary
4.2, we see that G has Dehn function bounded by a quadratic. Since
G contains a copy of Z & Z, it follows that the Dehn function of G
is of quadratic type.

In a similar vein, one can show that the group having presentation

(x,y,a,b,c,d|[xw, yul, [a, bllc, d]),

where w and u are in W({a, b, c, d}), also has Dehn function of
quadratic type. Here we take A4 to be the two-complex associated to

the presentation
(a,b,c,d|la, bllc, d1)
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and then the quotient complex is

(x,yIlx, y1).

Thus we have an extension of a hyperbolic surface of genus two by a
torus. This yields a quadratic upper bound. And, as above, Gromov’s
theorems give a quadratic lower bound.

Now let G have presentation

(a,b,c,d,t|w)

where w isawordin W ({a, b, ¢, d, t}) thatis mapped to [a, b][c, d]
by the natural retraction

WH{a,b,c,d,t})— W({a, b, c,d}).

Take A to be the complex associated to (¢|), i.e. a circle. The
quotient complex is a hyperbolic surface of genus two. An application
of our results show that G is hyperbolic.

In closing, it is worth pointing out here that our theorem does not
apply naturally to most group-theoretic extensions. For example, con-
sider the Baumslag-Solitar group given by the presentation

(a,blaba! = b?)

has Dehn function of exponential type (see [Ge2]). The group is also
an extension of Z by Z. However expressing the associated two-
complex as a combinatorial extension in the “natural” way yields
quotient complex being the two-sphere (the complex associated to
(alaa~')) which is not DR.

REFERENCES
[A1] J. M. Alonso, Inegalités isopérimétriques et quasi-isométries, C.R. Acad.
Sci., 311 Serie 1 (1991), 761-764.
[Brl] S. G. Brick, Dehn functions and products of groups, to appear, Trans.

Amer. Math. Soc., 335 (1993), 369-384.

, A note on coverings and Kervaire complexes, Bull. Austral. Math.
Soc., 46 (1992), 1-21.

[CEHLPT] J.W.Cannon, D. B. A. Epstein, D. F. Holt, S. V. F. Levy, M. S. Paterson,
and W. P. Thurston, Word processing in groups, Jones and Bartlett, 1992:

[Gel] S. M. Gersten, Reducible diagrams and equations over groups, Essays
in group theory (MSRI Publ., Vol. 8), Springer, Berlin-Heidelberg-New
York, 1987, pp. 15-74.

[Ge2] S. M. Gersten, Dehn functions and lj-norms of finite presentations, Algo-
rithms and Classification in Combinatorial Group Theory (G. Baumslag
and C. F. Miller II1, eds.), M.S.R.L series, vol. 23, Springer-Verlag, 1991.

[Br2]




DEHN FUNCTIONS OF GROUPS AND EXTENSIONS OF COMPLEXES 127

[Gr] M. Gromov, Hyperbolic groups, Essays in Group Theory (S. M. Gersten,
ed.), M.S.R.L series, vol. 8, Springer Verlag, 1987.
[on A.Y. Ol'shanskii, Hyperbolicity of groups with subquadratic isoperimetric

inequality, TJAC, 1 (1991), 281-289.
Received June 15, 1991 and in revised form May 17, 1992.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF OKLAHOMA
NorMAN, OK 73019

Current address: Department of Mathematics
University of California-Davis
Davis, CA 95616

E-mail address: brick@ucdmath.ucdavis.edu








