JORDAN ANALOGS OF THE BURNSIDE AND JACOBSON DENSITY THEOREMS

L. Grunenfelder, M. Olmladič and H. Radjavi

Abstract

If \mathscr{A} is an (associative) algebra of linear operators on a vector space, it is well known that 2-transitivity for \mathscr{A} implies density and, in certain situations, transitivity guarantees 2-transitivity. In this paper we consider analogs of these results for Jordan algebras of linear operators with the standard Jordan product.

0. Introduction. Let $\mathscr{L}(\mathscr{V})$ be the algebra of all linear operators on a vector space \mathscr{V} over the field \mathbb{F}. A subset \mathscr{S} of $\mathscr{L}(\mathscr{V})$ is called transitive if $\mathscr{S}_{x}=\mathscr{V}$ for every nonzero x in \mathscr{V}. More generally, \mathscr{S} is called k-transitive if given linearly independent vectors $x_{1}, x_{2}, \ldots, x_{k}$ and arbitrary vectors $y_{1}, y_{2}, \ldots, y_{k}$ in \mathscr{V} there exists a member S of \mathscr{S} such that $S x_{i}=y_{i}, i=1,2, \ldots, k$. If \mathscr{S} is k-transitive for every k, then it is called (strictly) dense. It is a remarkable fact due to Jacobson [2] that if \mathscr{S} is an (associative) subalgebra of $\mathscr{L}(\mathscr{V})$, then 2-transitivity implies density for arbitrary \mathbb{F}. In particular, if \mathscr{V} is finite-dimensional, then $\mathscr{L}(\mathscr{V})$ is the only 2-transitive algebra on \mathscr{V}. There are transitive algebras that are not 2 -transitive even if \mathbb{F} is algebraically closed. In the presence of certain conditions (e.g., topological) transitivity implies density. The most well-known result of this kind is Burnside's theorem [3]: if \mathscr{V} is finite-dimensional and \mathbb{F} is algebraically closed, then the only transitive algebra over \mathscr{V} is $\mathscr{L}(\mathscr{V})$.

In this paper we consider analogs of these results for Jordan algebras of operators: linear spaces \mathscr{A} of operators such that A^{2} and $A B A$ belong to \mathscr{A} for all A and B in \mathscr{A}. If the characteristic of the field \mathbb{F} is different from 2, this is equivalent to the requirement that \mathscr{A} be closed under the Jordan bracket $\{A, B\}=A B+B A$. Over this kind of field a Jordan algebra \mathscr{A} may be equivalently defined as a linear space closed under taking positive integral powers. For the sake of completeness we include proofs of a few elementary facts obtainable from the general theory of Jordan algebras [4].

In what follows we often find it convenient to view members of $\mathscr{L}(\mathscr{V})$ as matrices over \mathbb{F}; this should cause no confusion. The set
of all $n \times n$ matrices over \mathbb{F} will be denoted by $\mathscr{M}_{n}(\mathbb{F})$. A member A of $\mathscr{L}(\mathscr{V})$ (or $\mathscr{M}_{n}(\mathbb{F})$) is called a projection or an idempotent element if $A^{2}=A$.

1. Transitive Jordan algebras over arbitrary fields.

1.0. All the Jordan algebras \mathscr{A} considered in this section are subalgebras of the algebra of all linear operators $\mathscr{L}(\mathscr{V})$ on a vector space \mathscr{V} over a field \mathbb{F}. In finite dimensions Jacobson's theorem says that any 2-transitive associative algebra of linear operators of \mathscr{V} is all of $\mathscr{L}(\mathscr{V})$ [2]. The proof of this result for Jordan algebras of operators needs some preparation.
1.1. Proposition. Let \mathscr{A} be a Jordan algebra of linear operators on a vector space \mathscr{V}. Then:
(a) $E \mathscr{A} E$ and $(I-E) \mathscr{A}(I-E)$ are Jordan subalgebras of \mathscr{A} for every E in \mathscr{A}.
(b) If \mathscr{V} is finite dimensional and \mathscr{A} is 2-transitive, then for every subspace \mathscr{W} of \mathscr{V} there exists a projection $E \in \mathscr{A}$ such that $E \mathscr{V}=$ \mathscr{W}.
(c) If \mathscr{V} is finite dimensional and \mathscr{A} is 2-transitive, then $I \in \mathscr{A}$.

Proof. (a) follows directly from the definition and from the observation that $(I-E) \mathscr{A}(I-E)=A-E A-A E+E A E$.
(b) Assume first that \mathscr{W} is a 1 -dimensional subspace. By 2 -transitivity there exists a singular $A \in \mathscr{A}$ such that $A \mathscr{W}=\mathscr{W}$. Choose A to be of minimal rank having this property and write it in the form $A=J \oplus N$, where J is invertible and N is nilpotent. As all the powers of A are in \mathscr{A} and its rank is minimal, we have necessarily that $N=0$. The minimal polynomial $p(t)=\sum_{0 \leq i \leq m} a_{i} t^{i}$ of J has nonzero constant term a_{0} because J is invertible. Thus, $I=$ - $\left(\sum_{1 \leq i \leq m} a_{i} J^{i}\right) / a_{0}$ is the identity operator on the range of A and the idempotent $E=-\left(\sum_{1 \leq i \leq m} a_{i} A^{i}\right) / a_{0}=I \oplus 0$ is in \mathscr{A}. Moreover, $\operatorname{rank} E=\operatorname{rank} A$ and $E \mathscr{W}=\mathscr{W}$. If the rank of E is strictly greater than 1, then let $E \mathscr{Z}$ be a 1 -dimensional subspace in the range of E distinct from $E \mathscr{W}=\mathscr{W}$. By 2-transitivity there is a $B \in \mathscr{A}$ such that $B E \mathscr{W}=\mathscr{W}$ and $B E \mathscr{X}=0$. But then $E B E \mathscr{W}=\mathscr{W}$ and $E B E \mathscr{X}=0$ so that the rank of $E B E$, which is in \mathscr{A} by part (a), is strictly smaller than the rank of A contradicting the minimality assumption.

The rest follows by induction on the dimension of \mathscr{W}. Let \mathscr{X} be a subspace of codimension 1 in \mathscr{W} and $E \in \mathscr{A}$ a projection such
that $E \mathscr{V}=\mathscr{X}$. Note that $\mathscr{Y}=\mathscr{W} \cap \operatorname{ker} E$ has dimension 1 and that $\mathscr{W}=\mathscr{X} \oplus \mathscr{Y}$. Let $F \in \mathscr{A}$ be a projection such that $F \mathscr{V}=\mathscr{Y}$; then $\mathscr{V}=\mathscr{W} \oplus \mathscr{U}$, where $\mathscr{U}=\operatorname{ker} E \cap \operatorname{ker} F$. Let P be a projection in \mathscr{V} on \mathscr{W} along \mathscr{U}; then $N=E+F-P$ has square equal to zero and therefore, $P=2(E+F)-(E+F)^{2}$ is in \mathscr{A}. To get (c) take $\mathscr{W}=\mathscr{V}$ in (b).

Some of the proofs of the following results could be shortened slightly, at the expense of keeping the paper self-contained, by using the Pierce decomposition associated with an idempotent.
1.2. Theorem. Let \mathscr{A} be a Jordan algebra of linear operators on a finite dimensional vector space \mathscr{V}. Then \mathscr{A} is 2-transitive if and only if $\mathscr{A}=\mathscr{L}(\mathscr{V})$.

Proof. $\mathscr{L}(\mathscr{V})$ is clearly 2 -transitive. The converse is proved by induction on the dimension of \mathscr{V}. The assertion obviously holds if $\operatorname{dim} \mathscr{V}=2$. So, let $\operatorname{dim} \mathscr{V}>2$. Let \mathscr{X} be a 1 -dimensional subspace of \mathscr{V} and find by $1.1(\mathrm{~b})$ a projection $E \in \mathscr{A}$ such that $E \mathscr{V}=\mathscr{X}$. Next, find a 1-dimensional subspace $\mathscr{Y} \subset \operatorname{ker} E$ and corresponding projection $F \in \mathscr{A}$ such that $F \mathscr{V}=\mathscr{Y}$. It is clear that $E F=0$ and with no loss of generality we may assume that $F E=0$ as well, since otherwise, we could replace F by $F-F E=$ $(I-E) F(I-E) \in \mathscr{A}$. The Jordan subalgebra $\mathscr{B}=(I-E) \mathscr{A}(I-E)$, respectively $\mathscr{C}=(I-F) \mathscr{A}(I-F)$, of \mathscr{A} can be viewed as a 2 transitive algebra of operators on $\operatorname{ker} E$, respectively $\operatorname{ker} F$, and by induction hypothesis $\mathscr{B}=\mathscr{L}(\operatorname{ker} \mathscr{E})$, respectively $\mathscr{C}=\mathscr{L}($ ker $F)$. The subalgebra \mathscr{C} is also called the Pierce zero-space relative to F. Choose now any $T \in \mathscr{L}(\mathscr{V})$ and let us show that $T \in \mathscr{A}$. By 2 transitivity we may assume with no loss of generality that $E T F=$ $F T E=0$. But, then, $T=R+S$, where $R=(I-E) T(I-E) \in \mathscr{B}$ and $S=E T+T E-E T E \in \mathscr{C}$.

Theorem 1.2 can be generalized as follows for Jordan algebras of finite rank operators. For a further strengthening of this result see Theorem 3.4.
1.3. Theorem. Let \mathscr{A} be a Jordan algebra of finite rank operators on a vector space \mathscr{V}. If \mathscr{A} is 2-transitive, then it is dense, i.e. n transitive for all $n \geq 1$.

Proof. This can be done by reduction to the finite dimensional case. Observe that the proof of 1.1.(b) remains valid if we replace
the condition " \mathscr{V} is finite dimensional" by weaker conditions " \mathscr{V} is finite dimensional and the elements of \mathscr{A} have finite rank". Therefore, we can find for every finite dimensional subspace \mathscr{W} of \mathscr{V} a projection E in \mathscr{A} such that $E \mathscr{V}=\mathscr{W}$. By 1.1.(a) $E \mathscr{A} E$ is a Jordan subalgebra of \mathscr{A} and it is 2-transitive as a Jordan algebra of operators on $E \mathscr{V}=\mathscr{W}$. Thus, $E \mathscr{A} E=\mathscr{L}(\mathscr{W})$ by 1.2. If vectors $\left\{x_{1}, x_{2}, \ldots, x_{k}\right\} \subset \mathscr{V}$ are linearly independent and vectors $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\} \subset \mathscr{V}$ are arbitrary, then apply this consideration to the span \mathscr{W} of these two sets of vectors.

2. Some characterizations of proper transitive Jordan algebras.

2.0. In this section we shall assume that the characteristic of the field \mathbb{F} is different from 2. Let $\mathscr{S}_{n}(\mathbb{F})$ be the (transitive) Jordan algebra of all symmetric $n \times n$ matrices over \mathbb{F}. We give a proof that if \mathbb{F} is algebraically closed, then $\mathscr{S}_{n}(\mathbb{F})$ is, up to similarlity, the only proper transitive Jordan subalgebra of $\mathscr{M}_{n}(\mathbb{F})$. This, of course, does not hold if \mathbb{F} is not algebraically closed. However, for a formally real closed field the algebra $\mathscr{S}_{n}(\mathbb{F})$ has no proper transitive Jordan subalgebras. These results do not seem to be easily derivable from Jacobson's general structure theorems for Jordan matrix algebras [4]; our presentation here is self-contained and elementary.
2.1. Theorem. Let \mathbb{F} be any formally real closed field. Then, the only transitive Jordan algebra of symmetric $n \times n$ matrices over \mathbb{F} is $\mathscr{S}_{n}(\mathbb{F})$.

Proof. We shall use induction on n. The assertion is trivial for $n=1$. So, assume \mathscr{A} is a transitive Jordan subalgebra of $\mathscr{S}_{n}(\mathbb{F})$ with $n \geq 2$. Let E be an idempotent of minimal positive rank in \mathscr{A}. Idempotents abound in \mathscr{A} because in the spectral decomposition

$$
A=\sum \lambda_{i} E_{i}, \quad E_{i}^{2}=E_{i}, \quad E_{i} E_{j}=0, \quad i \neq j
$$

for a member A of \mathscr{A}, every E_{i} corresponding to a nonzero λ_{i} is a polynomial in A (with constant term zero) and thus belongs to \mathscr{A}. The existence of spectral decompositions in \mathscr{A} follows from the fact that \mathbb{F} is real-closed [5].

The transitivity of \mathscr{A} implies that it has nonscalar members, so that $E \neq I$. Since E is symmetric there exists an invertible matrix T with $T^{-1}=T^{t}$ such that

$$
T^{-1} E T=\left(\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right),
$$

where k is the rank of $E, 0<k<n$. Replacing \mathscr{A} by $T^{-1} \mathscr{A} T$ we can assume that

$$
E=\left(\begin{array}{cc}
I_{k} & 0 \\
0 & 0
\end{array}\right) .
$$

Writing the corresponding matrix for a typical member of \mathscr{A}

$$
A=\left(\begin{array}{ll}
X & Y^{\prime} \\
Y & Z
\end{array}\right),
$$

we observe that

$$
B=E A E-(I-E) A(I-E)=\left(\begin{array}{cc}
X & 0 \\
0 & -Z
\end{array}\right) \in \mathscr{A},
$$

and thus

$$
\frac{1}{2}(B E+E B)=\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
X & 0 \\
0 & 0
\end{array}\right)-B=\left(\begin{array}{cc}
0 & 0 \\
0 & Z
\end{array}\right)
$$

are in \mathscr{A}. By Proposition 1.1(a) we conclude that $E \mathscr{A} E$ and $(I-E) \mathscr{A}(I-E)$ are Jordan subalgebras of \mathscr{A}; they are also easily seen to be transitive on respective spaces im E and $\operatorname{ker} E$. Hence, by the inductive hypothesis, $E \mathscr{A} E=\mathscr{S}_{k}(\mathbb{F})$ and $(I-E) \mathscr{A}(I-E)=$ $\mathscr{S}_{n-k}(\mathbb{F})$. This means that \mathscr{A} contains all symmetric matrices of the form $\left(\begin{array}{cc}L & 0 \\ 0 & M\end{array}\right)$. In particular, $k=1$ by minimality. To complete the proof observe that the transitivity of \mathscr{A} forces it to contain a matrix with an arbitrarily assigned first column. Thus, for a given $(n-1) \times 1$ matrix N there is a member $\left({ }_{N}^{L} N_{M}^{t}\right)$ in \mathscr{A} with some L and M. Since by the argument above, $L=L^{t}$ and $M=M^{t}$ are arbitrary in this expression, we have that $\mathscr{A}=\mathscr{S}_{n}(\mathbb{F})$.

The following example shows that the hypothesis of real closure in the theorem is needed. Let \mathbb{F} be the field \mathbb{Q} of rational numbers and

$$
\mathscr{A}=\left\{\left(\begin{array}{cc}
a+b & b \\
b & a-b
\end{array}\right): a, b \in \mathbb{Q}\right\} .
$$

Then, \mathscr{A} is a proper Jordan subalgebra of $\mathscr{S}_{2}(\mathbb{Q})$. It is easily seen that \mathscr{A} is transitive: it is generated by I and

$$
A=\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) .
$$

The minimal polynomial of A is irreducible over \mathbb{Q}, and thus if x is any nonzero vector, then the span of x and $A x$ is the whole underlying space.

Our next theorem is a more general result in the case of algebraically closed fields; it includes, as a corollary, the analog of the above theorem. We need the following lemmas.
2.2. Lemma. Let \mathscr{A} be a transitive Jordan algebra of $n \times n$ matrices over an algebraically closed field \mathbb{F}. Then \mathscr{A} contains an idempotent of rank 1 .

Proof. For $n=1$ this is trivially true. We first prove it for $n=2$. Assume there is no idempotent of rank 1 in this case. This implies, by considering spectral projections of matrices in \mathscr{A}, that every member of \mathscr{A} has singleton spectrum, i.e., it is of the form $N+\alpha I$ with N nilpotent. Since the characteristic of \mathbb{F} is different from 2, a member of \mathscr{A} is nilpotent if and only if it has trace zero.

If \mathscr{A} consists of nilpotents alone, then $0=(A+B)^{2}=A^{2}+$ $B^{2}+A B+B A=A B+B A$ for all $A, B \in \mathscr{A}$ implying that if $B \neq 0$, then its range is invariant under every $A \in \mathscr{A}$. Thus, \mathscr{A} is triangularizable; this contradicts the transitivity of \mathscr{A}. Thus, we can assume that \mathscr{A} has an invertible member, which implies, by taking an appropriate polynomial, that $I \in \mathscr{A}$. Hence, N is in \mathscr{A} for every $N+\alpha I$ in \mathscr{A}. Let \mathscr{A}_{0} be the set of all nilpotent elements in the algebra. It follows that for A and B in \mathscr{A}_{0} and $\alpha \in \mathbb{F}$, the matrix $A+\alpha B$ has trace zero and is thus nilpotent. In particular $A+B$ is nilpotent and hence $A B+B A=(A+B)^{2}-A^{2}-B^{2}=0$. This shows that \mathscr{A}_{0} is a Jordan algebra. We see, as before, that \mathscr{A}_{0} is triangularizable and so is $\mathscr{A}=\mathscr{A}_{0}+\mathbb{F I}$, contradicting the transitivity of \mathscr{A}.

We can now assume $n>2$. If \mathscr{A} contains a nontrivial idempotent, i.e., an idempotent E with $0<\operatorname{rank} E<n$, then by (1.1)(a) $E \mathscr{A} E$ is a Jordan subalgebra of \mathscr{A} which is forced, by the transitivity of \mathscr{A}, to be transitive as an algebra of operators acting on the range of E. We conclude, by induction on n, that $E \mathscr{A} E$ and thus \mathscr{A} contain idempotents of rank 1 . To complete the proof we must only show the existence of a nontrivial E.

Assume \mathscr{A} contains no nontrivial idempotent. Then, as in the first paragraph of the proof, every member of \mathscr{A} is seen to be or the form $N+\alpha I$ with N nilpotent. There must be nonzero nilpotent matrices in \mathscr{A}. (Just observe that if $N+\alpha I \in A$ with $\alpha \neq 0$, then, considering the characteristic polynomial of this matrix, we show that $I \in \mathscr{A}$ and hence $N \in \mathscr{A}$. Surely \mathscr{A} cannot consist of scalar matrices.) Let N be a nilpotent member of \mathscr{A} with minimal positive rank. Since N^{2} has smaller rank than N, we must have $N^{2}=0$. We next show that N has rank 1 . Considering members of \mathscr{A} as operators on \mathscr{V} and noting that the kernel of N contains its range, let \mathscr{V}_{1} be the
range of N, \mathscr{V}_{2} a complement of \mathscr{V}_{1} in the kernel of N, and \mathscr{V}_{3} a complement of $\mathscr{V}_{1} \oplus \mathscr{V}_{2}$ in \mathscr{V}. With respect to the decomposition $\mathscr{V}=\mathscr{V}_{1} \oplus \mathscr{V}_{2} \oplus \mathscr{V}_{3}$ (where \mathscr{V}_{2} may of course be zero) and with an appropriate choice of basis, N will have the form

$$
\left(\begin{array}{ccc}
0 & 0 & I_{k} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
$$

where k is the rank of N. If the corresponding block matrix of a typical A in \mathscr{A} is $\left(A_{i j}\right)_{i, j=1}^{3}$, then $N A N \in \mathscr{A}$ and its matrix equals

$$
\left(\begin{array}{ccc}
0 & 0 & A_{31} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) .
$$

The matrix $N A N-\alpha N$ is a nilpotent member of \mathscr{A} and all its blocks except $A_{31}-\alpha I_{k}$ are zero. The minimality of the rank k forces the block A_{31} of every A to be scalar. But this would contradict the transitivity of \mathscr{A} if $k>1$. Thus, $k=1$. (These facts about algebras consisting of scalar translations of nilpotent operators can also be deduced from more sophisticated results on Jordan algebras [6].)

Finally, we shall exhibit a single member of \mathscr{A} with an eigenvalue 1 , showing that not every member of \mathscr{A} is the sum of a nilpotent and a scalar. To this end, pick $x \in \mathscr{V}$ with $N x \neq 0$. By transitivity, there is an $A \in \mathscr{A}$ such that $A(N x)=x$. Then, $N^{2}=0$ implies $(N A+A N)(N x)=N A N x=N x$. Since N has rank 1, the matrix $N A+A N$ has rank at most 2 . Since $n>2$, this matrix is a singular member of \mathscr{A}.
2.3. Lemma. If \mathscr{A} satisfies the hypotheses of Lemma 2.2, then \mathscr{A} contains idempotents $E_{i}, i=1,2, \ldots, n$, of rank one with $E_{i} E_{j}=0$ for $i \neq j$.

Proof. We shall use induction on n. Let $n \geq 2$ and assume the assertion true for $n-1$. Let $E_{1}=E$ be an idempotent of rank one in \mathscr{A} as in Lemma 1.1. We can assume with no loss of generality that $E=\operatorname{diag}(1,0, \ldots, 0)$. The Jordan algebra $(I-E) \mathscr{A}(I-E)$ is contained in \mathscr{A} by Proposition 1.1(a). Since it also acts transitively on the range of $I-E$, which has dimension $n-1$, we conclude from the inductive hypothesis that $(I-E) \mathscr{A}(I-E)$ contains idempotents E_{2}, \ldots, E_{n} with the desired property. The proof is completed by observing that $E_{1} E_{j}=E_{j} E_{1}=0$ for $j \geq 2$.
2.4. Theorem. Let \mathbb{F} be an algebraically closed field, and let \mathscr{A} be a transitive Jordan algebra of $n \times n$ matrices over \mathbb{F}. Then either $\mathscr{A}=$ $\mathscr{M}_{n}(\mathbb{F})$ or there exists an invertible matrix T such that $T^{-1} \mathscr{A} T=$ $\mathscr{S}_{n}(\mathbb{F})$.

Proof. We shall show first that \mathscr{A} contains $\mathscr{S}_{n}(\mathbb{F})$ up to a similarity. By Lemma 2.3 we can assume that \mathscr{A} contains diagonal idempotents E_{j} of rank one: $E_{1}=\operatorname{diag}(1,0, \ldots, 0), \ldots, E_{n}=$ $\operatorname{diag}(0, \ldots, 0,1)$. Consider the special case of $n=2$. In this case the transitivity of \mathscr{A} implies that its dimension is either 3 or 4 . If the dimension is 4 , then $\mathscr{A}=\mathscr{M}_{2}(\mathbb{F})$; if it is 3 , then \mathscr{A} contains a nonzero matrix of the form $\left(\begin{array}{ll}0 & t \\ s & 0\end{array}\right)$ (after adding a suitable linear combination of E_{1} and E_{2}). Now, both s and t have to be nonzero by transitivity. Thus, we have shown that, when $n=2$, the algebra \mathscr{A} must contain a matrix of the above form with $s=1$ and $t \neq 0$.

Returning now to the general case, let $\left\{M_{i j}\right\}$ be the set of matrix units, i.e., the only nonzero entry of $M_{i j}$ occurs at the (i, j) position and equals 1 . Observe that for $j>1$ the Jordan subalgebra $\left(E_{1}+E_{j}\right) \mathscr{A}\left(E_{1}+E_{j}\right)$ acts transitively on the 2-dimensional range of $E_{1}+E_{j}$. As in the paragraph above, it must contain, together with E_{1} and E_{j}, at least one matrix of the form $A_{j}=M_{1 j}+t_{j} M_{j 1}$. Letting $T=\operatorname{diag}\left(1, \sqrt{t_{2}}, \ldots, \sqrt{t_{n}}\right)$, we see that the Jordan algebra $T \mathscr{A} T^{-1}$ contains the symmetric matrices

$$
B_{j 1}=\frac{1}{\sqrt{t_{j}}} T A_{j} T^{-1}=M_{j 1}+M_{1 j}
$$

(and, of course, E_{1}, \ldots, E_{n}).
If $1, i$, and j are distinct, then $B_{i j}=B_{i 1} B_{j 1}+B_{j 1} B_{i 1} \in T \mathscr{A} T^{-1}$. Observe that $B_{i j}=M_{i j}+M_{j i}$. We have shown that $T \mathscr{A} T^{-1}$ contains a basis for symmetric matrices. Hence, $T \mathscr{A} T^{-1} \supset \mathscr{S}_{n}(\mathbb{F})$.

To complete the proof of the theorem it suffices to show that if \mathscr{A} contains $\mathscr{S}_{n}(\mathbb{F})$ properly, then $\mathscr{A}=\mathscr{M}_{n}(\mathbb{F})$. Thus, assume \mathscr{A} contains a nonsymmetric matrix $C=\left(c_{i j}\right)$. Some principal 2×2 submatrix must be nonsymmetric and by passing from \mathscr{A} to $P^{-1} \mathscr{A} P$, where P is a permutation matrix, we can assume $c_{12} \neq c_{21}$. Observe that the matrix

$$
M=\left(E_{1}+E_{2}\right) C\left(E_{1}+E_{2}\right)-c_{11} E_{1}-c_{22} E_{2}-c_{21} B_{21}
$$

belongs to \mathscr{A} and is a nonzero scalar multiple of M_{12}. We shall show that $M_{i j} \in \mathscr{A}, i, j=1, \ldots, n$. Every $M_{i i}$ is in \mathscr{A} and we have just seen that M_{12} and hence $M_{21}=B_{21}-M_{12}$ are in \mathscr{A}.

For $j>2, M_{1 j}=M_{12} B_{2 j}+B_{2 j} M_{12}$, and $M_{j 1}=B_{j 1}-M_{1 j}$ which implies that $M_{1 j}$ and $M_{j 1}$ are in \mathscr{A}. Similarly, for $j>i>1$, $M_{j i}=M_{1 i} B_{j 1}+B_{j 1} M_{1 i}$, and $M_{i j}=B_{i j}-M_{j i}$ so that $M_{j i}$ and $M_{i j}$ are in \mathscr{A}.
2.5. Corollary. Let \mathbb{F} be an algebraically closed field. If \mathscr{A} is a transitive Jordan algebra of symmetric $n \times n$ matrices over \mathbb{F}, then $\mathscr{A}=\mathscr{S}_{n}(\mathbb{F})$.

The example given after Theorem 2.1 can be modified to show that the algebraic closure hypothesis is essential in the preceding result. Consider $\mathbb{Q}(i)$ instead of \mathbb{Q} and let

$$
\mathscr{A}=\left\{\left(\begin{array}{cc}
a+b & b \\
b & a-b
\end{array}\right): a, b \in \mathbb{Q}(i)\right\} .
$$

Then, \mathscr{A} is a proper Jordan subalgebra of $\mathscr{S}_{2}(\mathbb{Q}(i))$; it is also transitive.

The following example shows that the assumption char $\mathbb{F} \neq 2$ is essential in the results above: the 3 -dimensional Jordan algebra spanned over \mathbb{F}_{2} by $\left\{I, M_{12}, M_{21}\right\}$ is transitive and contains no idempotent of rank 1.

3. Results on ideals.

3.0. We continue to assume that the characteristic of the field \mathbb{F} is different from 2. In the associative algebra case some transitivity properties are inherited by ideals. This is of course trivial if $\operatorname{dim} \mathscr{V}$ is finite, since then $\mathscr{L}(\mathscr{V})$ is simple. In the Jordan case, restriction to ideals seems to be accompanied with some loss of transitivity. The following result is well known for general associative algebras [2].
3.1. Proposition. Let $\mathcal{J} \neq 0$ be an ideal in an associative algebra \mathscr{A} of operators on a vector space \mathscr{V}. If \mathscr{A} is n-transitive, then so is \mathcal{F}.

Here are our results on this question for Jordan algebras of linear operators and their Jordan ideals.
3.2. Theorem. Every Jordan ideal $\mathcal{J} \neq 0$ of an $(n+1)$-transitive Jordan algebra \mathscr{A} of operators on a vector space \mathscr{V} is n-transitive, $n \geq 1$.

Proof. If \mathscr{V} is $(n+1)$-dimensional then $\mathscr{A}=\mathscr{L}(\mathscr{V})$ and, by [1, Theorem 1], we have $\mathscr{J}=\mathscr{A}$. So, assume with no loss of generality
that \mathscr{V} contains $n+2$ linearly independent vectors. Fix a linearly independent set of vectors $\left\{x_{1}, \ldots, x_{n}\right\} \subset \mathscr{V}$ and let \mathscr{X} and \mathscr{Y} be the span of $\left\{x_{1}, \ldots, x_{n}\right\}$ and of $\left\{x_{1}, \ldots, x_{n-1}\right\}$, respectively. We will show first that
(a) $\exists J \in \mathscr{J}$ such that $J \mathscr{Y}=0, J x_{n} \notin \mathscr{X}$.

Assume the contrary; then
(b) $J \in \mathscr{J}$ and $J \mathscr{Y}=0$ implies $J x_{n} \in \mathscr{X}$.

Then, for any $A \in \mathscr{A}$ such that $A \mathscr{Y}=0$ it holds that $K=J A+A J$ is in \mathscr{J} and that $K \mathscr{Y}=0$. Therefore by (b), $K x_{n}$ belongs to \mathscr{X}. Let α be such that $K x_{n}=(J+\alpha) A x_{n}$. Since \mathscr{A} is n-transitive, A may be chosen so that it satisfies the required conditions and that $A x_{n}$ is an arbitrary vector in \mathscr{V}. This shows that
(c) $J \mathscr{Y}=0$ implies $(J+\alpha) \mathscr{V} \subseteq \mathscr{X}$ for some α.

Thus,

$$
J=-\alpha+\sum_{1 \leq i \leq n} x_{i} \otimes f_{i}
$$

for some linear functionals $f_{i}, i=1, \ldots, n$. But then, for an arbitrary $A \in \mathscr{A}$ with $A \mathscr{Y}=0$ define K as above and use the expression for J to get

$$
K=-2 \alpha A+A x_{n} \otimes f_{n}+\sum_{1 \leq i \leq n} x_{i} \otimes f_{i} A
$$

Thus K belongs to \mathscr{J} and $K \mathscr{Y}=0$. Hence, by (c), it must be of the same form as J, i.e.,

$$
K=-\beta+\sum_{1 \leq i \leq n} x_{i} \otimes g_{i}
$$

Now, we choose vectors $u, v \in \mathscr{V}$ such that $\left\{x_{1}, \ldots, x_{n}, u, v\right\}$ are linearly independent, and find an $A \in \mathscr{A}$ such that $A \mathscr{Y}=0$, and that $A x_{n}=u, A u=v$. Then

$$
K u=-2 \alpha v+f_{n}(u) u+\sum_{1 \leq i \leq n} f_{i}(v) x_{i}=-\beta u+\sum_{1 \leq i \leq n} g_{i}(u) x_{i}
$$

which forces $\alpha=0$. A similar argument with K playing the role of J shows that $\beta=0$. Also, using the freedom in the choice of u, we conclude that f_{n} is trivial. Thus, from the fact that (b) holds for every $J \in \mathscr{J}$ we obtain
(d) $J \in \mathscr{J}$ and $J \mathscr{Y}=0$ implies $J \mathscr{V} \subset \mathscr{Y}$.

The conclusion (d) contradicts the assumption that $\mathscr{J} \neq 0$ in case $n=1$. In other words, we have shown that given $x \neq 0$, there is a $J \in \mathscr{J}$ such that x and $J x$ are linearly independent. Observe that this proves the theorem for $n=1$: if $x \neq 0$ and y are given
and $J \in \mathscr{J}$ is such that x and $J x$ are linearly independent, then by 2-transitivity choose an $A \in \mathscr{A}$ with $A x=x$ and $A J x=y-J x$. Then $A J+J A \in \mathscr{J}$ and $(A J+J A) x=y$.

Assume now for $n>1$ inductively that \mathcal{J} is ($n-1$)-transitive and find an $E \in \mathscr{J}$ such that $E x_{i}=x_{i}, i=1, \ldots, n-1$. As $E^{2} \in \mathscr{J}$ and equals E on \mathscr{Y}, we have by (d) that $\left(E-E^{2}\right) \mathscr{V} \subset \mathscr{Y}$. Assume now that there exists a vector $u \in \mathscr{V}$ such that u and $E u$ do not belong to \mathscr{Y}. It follows from $\left(E-E^{2}\right) \mathscr{V} \subset \mathscr{Y}$ that $E^{2} u$ equals the sum of $E u$ and a vector from \mathscr{Y} (so $E^{2} u \neq \mathscr{Y}$). By n-transitivity of \mathscr{A} find an $A \in \mathscr{A}$ such that $A x_{i}=x_{i}, i=1, \ldots, n-1$, and $A E u=0$. This implies for $K=E A+A E \in \mathscr{J}$ that $K x_{i}=2 x_{i}, i=1, \ldots, n-1$ and $K E u \in \mathscr{Y}$. Hence, $K-2 E$ annihilates \mathscr{Y} and its image is not contained in \mathscr{Y}, because $(K-2 E) E u$ equals the sum of $-2 E^{2} u$ and a vector from \mathscr{Y}, contradicting (d). The freedom in the choice of u shows that for every $E \in \mathscr{J}$ such that $E x_{i}=x_{i}, i=1, \ldots, n-1$, we have necessarily that $E \mathscr{V} \subset \mathscr{Y}$ and E is a projection on \mathscr{Y}. Choose now a nonzero vector $u \in \operatorname{ker} E$ and find by $(n+1)$-transitivity of \mathscr{A} an $A \in \mathscr{A}$ such that $A x_{1}=u, A x_{i}=0, i=2, \ldots, n-1$, and $A u=x_{1}$. Then, $K=E A+A E-2 E A E \in \mathscr{J}$, and $K x_{1}=u, K x_{i}=0$, $i=2, \ldots, n-1$, and $K u=x_{1}$. It follows for $L=K^{2}-E K^{2} E \in \mathscr{J}$ that $L \mathscr{Y}=0$ and $L u=u$ contradicting (d). Consequently, we have shown that (b) leads to a contradiction and we have (a). So, fix a $J \in \mathscr{J}$ such that $J \mathscr{Y}=0$ and $J x_{n} \notin \mathscr{X}$. Now, pick by $(n+1)$ transitivity of \mathscr{A} an $A \in \mathscr{A}$ such that $A \mathscr{X}=0$, and $A J x_{n}=u$ an arbitrary vector from \mathscr{V}. Thus, for $K=A J+J A \in \mathscr{J}$ we have that $K \mathscr{Y}=0$, and $K x_{n}=J A x_{n}+A J x_{n}=u$. The n-transitivity of \mathscr{J} in the theorem now follows easily by cyclicly permuting the vectors x_{i}, $i=1, \ldots, n$ and taking sums of corresponding operators K.

The following result can also be obtained from work of Osborn and Racine [7].
3.3. Corollary. Every Jordan ideal of a dense Jordan algebra is dense.
3.4. Theorem. Let \mathscr{A} be a 2-transitive Jordan algebra of operators on a vector space \mathscr{V}. If \mathscr{A} contains at least one operator of finite rank, then the Jordan ideal \mathscr{J} of all finite rank operators of \mathscr{A} is strictly dense, and so is \mathscr{A}.

Proof. Assume with no loss of generality that \mathscr{V} is not finite dimensional. By $3.2 \mathcal{J}$ is transitive. Thus, we may find an $E \in \mathcal{J}$
such that $E x=x$ and such that it is of minimal rank with this property. Similarly as in the proof of 1.1.(b), we may find that E is a projection of rank one and that for every finite dimensional subspace \mathscr{W} of \mathscr{V} we may find a projection $E \in \mathscr{J}$ such that $E \mathscr{V}=\mathscr{W}$. Now, for any $\{x, y\}$ linearly independent and $\{u, v\}$ arbitrary vectors of \mathscr{V}, let \mathscr{W} denote the linear span of these four vectors and let $E \in \mathscr{J}$ be the corresponding projection. Use 2-transitivity of \mathscr{A} to find $A \in \mathscr{A}$ such that $A x=u$ and $A y=v$, use 1.1.(a) to see that $B=E A E \in \mathscr{J}$, and observe that again $B x=u$ and $B y=v$. Thus, \mathscr{J} is 2-transitive and it is strictly dense by 1.3.

The reader will no doubt have noticed that we left the following questions unanswered.

Question 1. Is there an n-transitive Jordan algebra \mathscr{A} with a Jordan ideal $\mathcal{J} \neq 0$ which is not n-transitive?

Question 2. Is there an n-transitive Jordan algebra which is not ($n+1$)-transitive for any $n \geq 2$?

References

[1] I. N. Herstein, On the Lie and Jordan rings of a simple associative ring, Amer. J. Math., 77 (1955), 279-285.
[2] N. Jacobson, Structure of rings, Amer. Math. Soc. Colloq. Publ., vol. 37, Amer. Math. Soc., Providence, RI, 1984.
[3] __, Lectures in Abstract Algebra, vol. II, Van Nostrand, (1953).
[4] _-, Structure and representations of Jordan algebras, Amer. Math. Soc. Colloq. Publ., vol. 39, Amer. Math. Soc., Providence, RI, 1968.
[5] S. Lang, Algebra, Addison Wesley, (1971).
[6] J. M. Osborn, Jordan and associative rings with nilpotent and invertible elements, J. Algebra, 15 (1970), 301-308.
[7] J. M. Osborn and M. L. Racine, Jordan rings with nonzero socle, Trans. Amer. Math. Soc., 251 (1979), 375-387.

Received December 15, 1991.
Dalhousie University
Halifax, Nova Scotia B3H 4H8
Canada
AND
University of Liubljana
61000 Ljubliana
Slovenia

