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SPIN MODELS FOR LINK POLYNOMIALS,
STRONGLY REGULAR GRAPHS

AND JAEGER'S HIGMAN-SIMS MODEL

PIERRE DE LA HARPE

We recall first some known facts on Jones and Kauffman poly-
nomials for links, and on state models for link invariants. We give
next an exposition of a recent spin model due to F. Jaeger and which
involves the Higman-Sims graph. The associated invariant assigns
to an oriented link the evaluation for a = - τ 5 and z = 1 of its
Kauffman polynomial in the Dubrovnik form, where τ denotes the
golden ratio.

1. Introduction. A knot is a simple closed curve in R3 and a link is
a finite union of disjoint knots. We denote by L a link L together
with an orientation on each of its components. Two oriented links
L, L' are isotopic, and we write L' « L, if there exists a family
(Φt)o<t<\ of homeomorphisms of R3 such that the map [0, 1] —• R3

sending t to φt(x) is continuous for each x e R3 and such that φo =
id, φ\(L) = L1, where the last equation indicates that orientations
correspond via φ. Links considered here are always assumed to be
tame, namely isotopic to links made of smoothly embedded curves.
A Ω-valued invariant for oriented links is a map L »-• I(L) which
associates to each oriented link L in R3 an element I(L) of some
ring Ω, for example C or a ring of Laurent polynomials, in such a
way that I(Lf) = I(L) whenever Lf « L.

Classically, one of the most studied example of link invariant is
the Alexander-Conway polynomial Δ(L) e Z[t±ι] defined by J. W.
Alexander in 1928 [Ale], with a normalization made precise by J.
H. Conway in 1969 [Con]; the notation (L rather than L) indicates
that, at least for knots, Δ(L) does not depend on the choice of an
orientation on the knot. The polynomial invariant L —• Δ(L) is well
understood in terms of standard algebraic topology (homology of "the"
infinite cyclic covering of the complement of L in R3) see e.g. [Rha],
[Rol] or [BuZ].

The subject entered a new era in 1984 [Jol] with the discovery
of the Jones polynomial V(L) e Z[t±ι/2]. This was the starting
point of several other invariants, including the Kauffman polynomial
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reviewed below [Ka2]. (See also [F+], [Jo2] and the survey in [Lil];
for 3-manifolds, see e.g. [Kup], [Tu2].) Let us mention three striking
features of these new invariants:

(i) They have been used to solve old problems, including a conjec-
ture of Tait on "alternating links" going back to last century (see [Kal],
[Mur], [Thi] as well as expositions in [HKW], [Ka3], [Lil], [Tul]).

(ii) They remain quite mysterious. For example, we do not know
whether there exist nontrivial examples with V(L) = 1, and we do
not know when / e Z[t±{/2] is of the form V(L). (Compare with
Δ: Seifert [Sei] has constructed nontrivial examples of L such that
Δ(L) = 1 he has also shown that / e Z[t±ι] is Δ of a knot if and
only if f(Γι) = f(t) and /(I) = 1.)

(iii) They are related to an amazingly wide variety of subjects such
as von Neumann algebras ([Jo5], [Wen], [HJ1]), representations of
semi-simple Lie algebras, finite groups, and more generally of quantum
groups [ReT], statistical mechanics ([Jo3], [Kal], [HJ2]), topological
field theory [Ati], and so on.

In this report, we shall focus on combinatorics, and indicate the
connection between link polynomials and statistical mechanics going
via state models ([Bax], [Kal], [Jo3]), in particular via the spin models
defined below. More precisely, we will explain how F. Jaeger [Jae] has
found new models for evaluations of the Kauffman polynomial, using
very special association schemes and strongly regular graphs such as
the Higman-Sims graph.

In §2, we recall the definition of the KaufFman polynomial F+\(L)
of an oriented link L in terms of a diagram D which represents L
(we distinguish F+i from its Dubrovnik variant JF-I). In §3, we
define spin models for oriented links using signed graphs associated
to diagrams. The simplest nontrivial examples appear as a family of
Potts' models providing values of the Jones polynomial, as exposed
in §4. The main ingredient of a spin model is the matrix i?+ of its
so-called Boltzmann weights. As a Potts' model is characterized by
these weights having two different values, the next step is to look for
models with three values. We show how such a model is associated
with a graph S which has to be strongly regular; this is explained in
§5, which contains also examples with S having four or five vertices.
The remarkable spin model related to the Higman-Sims graph [HiS]
and which has been discovered by Jaeger [Jae] is exposed in §6. It is
conceivable that the "pentagonal model" of §5 and the Jaeger model
of §6 are members of a larger family on which we speculate in §7.
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The results up to §5 are standard; those of §§6 and 7 are in [Jae],
but our exposition is slightly different. More precisely, we unfold
as much as possible the consequences for spin models of the Reide-
meister moves of type III. Following [Jo3], we show how this gives
rise to a braid relation for the Boltzmann weights (Equation (12) and
Proposition 1). The strength of this braid relation allows us not to
introduce any of the association scheme machinery of [Jae]. In §6,
we also proceed to a geometric discussion of the Higman-Sims graph
which is more detailed than in [Jae], and we describe Jaeger's model
independently of the general considerations of §7; indeed the reader
interested first by this example could go quickly through §§1, 3 and
5.1 before focusing on our exposition in §6.

I am most grateful to R. Bacher, F. Jaeger and V. Jones for many
useful conversations, as well as to J. Seidel and to the referee for their
comments on a first draft of this paper. It is also a pleasure to thank
for its hospitality the MSRI at Berkeley, where part of this work was
done in September 1991.

2. Reidemeister moves for link diagrams and Kauffman polynomial.
Consider R3 as an oriented Euclidean space. Given an oriented plane
E in R3 we denote by HE the orthogonal projection of R3 onto E.
We identify E with R2 and R3 with £ x l . As R3 and E are
oriented, it makes sense to say that a point (Λ; , z') e E x R is above
(x, z) e E x R if z' > z.

Let L be an oriented smooth link in R 3 . An oriented plane E is
generic for L if the plane curve ΏE(L) is smooth up to double points
with transverse tangents. The corresponding oriented link diagram D
is then the projection Π E ( L ) together with some indication showing
at each double point which part is above the other.

Let D be a link diagram in R 2 . (The notation indicates that we
forget the orientation for a while.) One may always colour the con-
nected components of R2 — D in black and white in such a way that
(i) the unbounded component is white, (ii) two components which
have a common boundary of strictly positive length are of different
colours. By definition, the signed graph X associated to D has one
vertex by black region, and edges between two given vertices x, y of
X are in bijection with the double points of D in the intersection of
the closures of the two corresponding components. Moreover, each
edge of S has a sign encoding the type of the corresponding crossing,
as in Figure 1. (It can be checked that D\ and D2 represent isotopic
knots—right trefoil—though X\ and X2 are not isomorphic!)
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DΛ

FIGURE 1. Diagrams and signed graphs.

A classical result [Rei] shows that two oriented diagrams D, D1

represent isotopic links if and only if one can change D into D' by
a finite number of diagram isotopies and of so-called Reidemeister
moves, as indicated in Figure 2. In this figure, two related pictures
represent portions of diagrams of which the portions not represented
are identical; it is understood that each of these moves holds for any
pair of corresponding orientations (two pairs for each move of type
I, four for type II, and eight for type III). The corresponding pictures
for signed graphs are shown in Figure 3 on p. 62.

Each oriented crossing has also a sign as indicated in Figure 4 on
p. 63. (This is completely independent of the colours around the
crossing.) The Tait number Tait(Z)) of an oriented diagram D is the
sum of these signs.

Kauffman's generalization of Jones polynomial is characterized by
the next theorem for which we refer to [Lil]. Recall that two unori-
ented link diagrams D, Dr are regular isotopic if one can change D
into Df by a finite number of diagram isotopies and of Reidemeister
moves of types II and III.

THEOREM. Choose β € {1, - 1 } . There exists a function

Λ ε : {unoriented link diagrams in R2} —• Z[a±ι, z±ι]

that is defined uniquely by

(i) Aε(U) = 1 if U is the diagram with one component and no
crossing.
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Type I

Type II

\

Type III

FIGURE 2. Reidemeister moves for diagrams.

(ii) Aε(D) = Aε(D') if D, D' are regular isotopic,
(iii) Λε( [ D X 3 ) = aAε(D) and Aε( |D]>O) = a~ιAε(D),
(iv) Aε(D+)+εAε(D-) = z{Λε(Z)0)+εΛε(Z)oo)} whenever D+,D-,

DQ , Doc are the same except near one point where they are as shown
in Figure 5 (see p. 63).

If D is an oriented diagram (with underlying unoriented diagram

D) representing a link L, then Fε(L) = a~TΆit^Aε(D) depends only

on the isotopy class of L. Moreover

F_x(L)(a, z) = (-iy&-ιF+ι(L)(ia, -iz)

where c(L) denotes the number of connected components of L, and

is the original Jones polynomial, normalized as in [Jo2].

The invariant JF+1 is often denoted by F, and F_\ by F* the
latter is the so-called Dubrovnik polynomial. For the equations relat-
ing F+ι to F-\ and V to F+\, see [Li2]. The known proofs of this



62 PIERRE DE LA HARPE

Type I

-rf/frr

=» f λ» .o o

I
Type II

#1

or

Type III •-——

>55 T

# _ ± _ #

Λ - A
FIGURE 3. Reidemeister moves for signed graphs.
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and and

FIGURE 4. Tait numbers for oriented diagrams.

D D D

FIGURE 5. The local unoriented diagrams Z>+, D- , DQ , Doo .

theorem, say when ε = 1, are much longer ([Ka2], [TuR]) than the
simplest proofs (such as that of [Kal]) for the particular case of the
polynomial V.

Given a, z € C , the complex-valued function D ι-+ Aε(D)(a, z)
and the related L »-> Fε(L)(a, z) may also be uniquely characterized
by (i) to (iv).

About complex-valued invariants related to Λε or to Fε and in-
volving z = 0, let us first recall that zc&~1 Fε(L)(a, z) £ Z[a±ι, z]
has positive powers of z only for any oriented link L (see Proposi-
tion 2.5 and 4.7 of [Lil]). Let us also mention that there are several
complex-valued invariants satisfying (i) to (iv) for ε = — 1, z = 0
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and a € {1, - 1 } : for any d e C* the complex-valued invariant
D ,_> dc(L)-\aτait(D) satisfies (i) to (iv). (See the discussion of the
so-called degenerate examples in §7 below.)

3. Reidemeister conditions and spin models. Graphs of interest here
may have loops and multiple edges. A signed graph X has a set of
vertices denoted by X° and a set of edges X1 = X\ II Xi partitioned
in two subsets; for each edge e £ X1 we denote arbitrarily one of
its ends by e' and the other by e" (and e" = e1 iff e is a loop). A
spin model for signed graphs is a quintuplet M = (S, w+, W- , Ω, d)
where S is a finite set, where Ω is a ring given together with an
invertible element d e Ω, and where w+, W- are symmetric maps
S x S —• Ω called the Boltzmann weights. Given such a model M and
a signed graph X , the corresponding partition function is here (as in
[HaJ], except that d = 1 there)

σ: X°-+S eeX1

where |X°| is the number of vertices of X\ we write we for w+
when e G X | and for W- when e E X l .

Here are two examples for ordinary graphs; in this case w+ = W-
is simply denoted by w . One has S = {1929 ... 9 n}9 Ω = C and
d = 1 for the two examples.

EXAMPLE 1. Set w(a9 β) = 0 iΐ a = β eS and w(a, β) = 1 oth-

erwise. Then Zjf is the number χχ{n) of so-called draper colourings
of X namely of maps σ: X° -* S such that σ{e') Φ σ{e") for all
e e X1. In other words Zjf is the evaluation at n of the chromatic
polynomial χx of X, as studied by Birkhoff [Bir] and Whitney [Whi].
This example is a prototype for many other "chromatic invariants",
as discussed in [HaJ].

EXAMPLE 2. Choose a constant L e C; set w{a9 β) = exp(^) if
a = β and ϊ/;(α, /?) = e x p ( ^ ) if a Φ β, where fc and T hold for
the Boltzmann constant and the temperature. Set also ε(α, β) = - 1
if α = β and ε(a, j») = 1 if α ̂  jff . Then

σ : A —>o

where each state σ has an energy

E{X,σ)=ΣLe{σ(e')9σ(e>')).
eex1
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In statistical physics, Z^ is viewed as a function of T and is known
as the partition function of X for the Potts' model of ferromagnetism
(here without external field): X represents a crystal, vertices of X its
atoms, and edges of X its interacting pairs of atoms. The quantity

is interpreted as a probability for the state a among all possible states,
and these probabilities define the so-called Gibbs measure on the (here
finite) set of states. The particular case n = 2 is that of the (zero field)
Ising model, first studied in the early 1920's [Bru].

It could seem natural to ask whether there exist examples of models
M = (S, w+ , w_, Ω, d) such that Z% = Z$ whenever the signed
graphs X, X1 correspond to diagrams D, Dr representing links L,
V which are isotopic. But one has to modify slightly the question, in
two ways.

First, consider the two following examples, (i) A trivial knot U
represented by a diagram which is a circle, hence by a signed graph
reduced to one point, (ii) A trivial link UU represented by a dia-
gram made of two concentric circles, hence by a signed graph which
is again reduced to one point. It would not be appropriate to study
invariants whose values on U and UU are always the same! For this
reason, we agree from now on with the following: whenever a link L
is represented by a diagram D which has several connected compo-
nents £ > ! , . . . , Dm, we represent D by a signed graph X which is
the disjoint union of the corresponding signed graphs X\, . . . , Xm '.
In particular U and UU as above are respectively represented by one
and two points.

Second, a closer look taking orientations into account shows that
the correct condition on M = (S, w+, W-, Ω, d) is:

there exists an invertible α e Ω such that a ^

a-τ*w{D')>£M whenever the signed graphs X, X1 cor-

respond to diagrams D, Df representing oriented links

L, L1 which are isotopic.

Figure 3 suggests three types of natural sufficient conditions for this.
The conditions for moves of type II are

ξes
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(2) w+(a,β)w-{a,β)=l

for all a, β eS. (The first illustration for Type II in Figure 3 shows
firstly the case where the number of connected components of the
corresponding diagram does not change, and secondly the case where
this number does change by 1.) The conditions for moves of type III
are

(3)

ξes
= w+(a, β)w-(β, γ)w-(γ, a),

(4)

ξes

= w-{a, β)w+(β, γ)w+(γ, a)

for all a, β,γ eS. If (2) holds, (3) and (4) with a = γ imply first
that there exists some invertible element a € Ω such that

Γ w+(a,a) = a,

\ W-(a, a) = CΓX

for all a€.S and second that
1

(6)
ξes

ξes

for all β €S.
Observe that (5) and (6) are the natural sufficient conditions on

M associated to moves of type I, which are thus consequences of the
conditions (1) to (4) associated to moves of types II and III. It may
also be shown that, if (1) and (2) hold, each of (3), (4) is a consequence
of the other (see Figure 6).

Observe also that (1) and (2) imply

(7) d2 = n.

Let us now introduce the free module V = Ωs together with
its canonical basis (va)aes The matrices w+(a, β)a,βes a n d
W-(a, β)a,βes correspond to endomorphisms of V. Traditionally,
they are denoted respectively by R+ and R- , and we write also

M = {S,R+,R-,Ω, d)
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II II
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FIGURE 6. Two kinds of type III moves.

for (S9w+9w-9Ω9d). The matrix δ(a9 β)a,βes corresponds to
the identity / £ End(F) and the matrix with all coefficients 1 to
an endomorphism / whose image is the scalar multiples of U =
Σαes VOL . We denote by A oB the Hadamard product of two matrices
A, Be End(F), defined by {A o B)(a, β) = A(a, β)B(a, β). If all
entries of A are invertible, A~ι denotes the Hadamard inverse of A 9

so that A o A~ι = A'1 o A = / .
Equations (1) and (2) can respectively be written as

(o) X?-{-JΓV_ = d I or R— = u R^_ 5

(9) R+oR_ = J or R.=R+

while (5) and (6) can be written as

= da~ιJ.(11)

We define moreover R\, R2 € End(F <g> V) by

υβ

= </«;_(α, β)va (8)
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for all a, β E S. It is straightforward to check that (3) can be written
as

(12) RXR2R{ = R2RXR2.

As R\, R2 are invertible (because of (8) and (9)), one may multiply
(12) to the left by R^1 and to the right by R^1 to obtain

and it is again straightforward to check the latter is a rewriting of (4).
One has also the relations

(12+) Rι = (RιR2)-ιR2(RιR2),

(12-) Rϊι =&&)-* R^iR^)

each of which is equivalent (when (8) and (9) hold) to (12).

DEFINITION. A spin model for oriented links is a spin model for
signed graphs M = (S 9 i?+, R-, Ω, d) such that equations (8) to
(12) hold for some invertible element a e Ω called the modulus of
the model. The number d is called the loop variable of the model;
recall from (7) that it is a square root of the cardinal n of S.

We may sum up the discussion above as follows.

PROPOSITION 1. Let M = (S, i?+, i?_ , Ω, d) be a spin model for
oriented links with modulus a. Given an oriented link L represented
by a diagram D with corresponding signed graph X, the element

a-Ίzx\{D)2ιM £ Q depends only on the isotopy class of L. In other
words, the assignment

is a well defined Ω-valued link invariant.

As an exercise, the reader may check that a~Ί3lX^Zχ = d for

various pairs (D, X) representing the trivial knot.

4. Spin models for the Jones polynomial. Let

be a spin model for oriented links such that n = \S\>2. Denote by m
the number of distinct values of the nondiagonal entries of i?+ . One
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may introduce symmetric iS-times-^ matrices AQ = / , A\, . . . , ̂
with entries in {0, 1} such that AiφQ and

AQ + AI H + ^4m = / ,

as well as pairwise distinct elements ίo > h , . . . , ίw e Ω such that

0</<m

Equation (10) shows that *o *s the modulus of M. It follows from
(9) that the ί, 's are invertible and that i?_ = Σo</<m T ^ '

In this section, we consider the case m = 1, ami we write

R+ = aI + b(J - / ) , Λ_ = a r 1 / + Zr1 (/ - /).

Equations (8), (11) and (12) read now respectively

(13) ab~ι+a-ιb = 2-n,

a2b~l + a~ιb2 + (n- 2)b = dab~2,{
2a + a~x + a~ιb2 + {n- 3)b = db~K

(Write {RιR1Rι-R2RιR1)(vCί®υβ) = ΣηCa,β,ηVη®vβ = 0. Because
of (14), it is enough to consider the case aφ β . The three equations
in (15) correspond then respectively to C α > ^ > α = 0, Cθ9β9β = 0,
and Cα ?£ ̂  = 0 with η £ {α, jS} the last of these comes only when
n>3.)'

Viewing first (14) as a linear system in a and a~ι, we obtain
a = b + db~\ a~ι =b~ι+db.

This implies d = -Z>2 - 6~2 by elimination of a, and also a =
b + db~ι = - 6 ~ 3 (recall that d2 = n by (7)). One obtains in this way
the following proposition, which appears already as Example 2.17 in
[Jo3], and again (with A for b~ι) as the last example of [HJ2].

PROPOSITION 2. Consider an integer n>2 and a complex number

b such that

(b2 + b~2)2 = n.
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I-

FIGURE 7. On the skein relations.

Define M = (S, i?+, R- , C, d) by S = {1, 2, . . . , n) and

R+ = -b~3I + b(J - I), R- = -b3l + b~ι(/-/),

77zerc M is a spin model for oriented links.
Moreover, if L, D and X are as in Proposition 1, one has

I(_£-3)-Tait(D)zM = γίJΛίtf)

wΛere ίΛ^ right-hand term is the evaluation at b4 of the Jones polyno-
mial of L.

Proof. The first claim has been proved above. For the second claim,
we know already from §3 that ^(-b~3)~Ίait^Z^ provides a link in-
variant, say V*(L) e C, giving the value 1 to the trivial knot. To
finish the proof, it is thus enough to check that V* satisfies the ex-
change property (see e.g. [Lil], or indeed almost any reference on the
Jones polynomial).

Consider a skein related triple (D+, D- , DQ) of oriented link dia-
grams. Around the distinguished crossing, the black and white colour-
ings and the associated graphs look as in one of the two situations
represented in Figure 7.

The exchange property

ΓιV(L+)(t) - tV(L-){t) + (Γχl2 - t^2)V(L0)(t) = 0

follows from the identities

-:b~4(—b~3)~lW-i-(a,β)—τb
4(—b~3)w-(a,β) + (b~2 — b2)δa R = 0,

a a iH

b-4(-b-3)~ιW-(a, β) - b4(-b~3)w+(a, β) + b~2 - b2 = 0

for all a, β G {1, . . . , n} , which are both easy to check. D
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The models of Proposition 2 are called Potts' models, because the
values of u;+(α, β) and W-(a, β) depend only on a and β being
equal or not, as in Example 2 of §3.

5. Reidemeister conditions and strongly regular graphs. We keep the
notations of §4, with the exception that S is now denoted by S°. We
consider a spin model M = (S°, i?+, i?_ , C, d) such that there are
exactly m = 2 distinct nondiagonal entries of R+ (or of i?_). We
introduce a simple graph S with vertex set S° and with adjacency
matrix Ai: a pair (α, β) G S° x 5° defines an edge of 5 if and only
if

5.1. Strong regularity of the graph S. As i?+ is now given by

i?+ = ί0/ + M l + *2̂ 2 = tθl + M l + *2(/ - / ~ Ax) ,

equation (11) shows that / ^ i is a scalar multiple of / and equation
(8) shows then that A\ satisfies a relation of the form

(16) c0Aj + C\AX + c2l = c3J

for some complex constants CQ Φ 0, C\, C2, C3. This implies the
following.

(i) There exists a number, say k, such that each vertex of S has
exactly A: neighbours; in other words, the graph S is k-regular. (In-
deed k = CQ1(CI-C2) follows from the equality of the diagonal entries
in (16).)

(ii) There exists a number, say λ, such that two vertices a, β e S°
joined by an edge in S have exactly λ common neighbours. (Consider
the entries (α, β) in (16) such that A\(a9 β) = 1.)

(iii) There exists a number, say μ, such that two distinct vertices
a, β £ S° not joined by an edge have exactly μ common neighbours.
(Consider the entries (α, β) in (16) such that a φ β and A\(a9 β) =
0.) In other words, one has the following.

PROPOSITION 3. With the notations above, S is a strongly regular
graph with parameters (n, k, λ, μ) and one has

(17) A{J = JA{ =kJ,

(18) A\ + (μ- λ)Ax + (μ- k)I = μJ.
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Observe that one has necessarily

(19) n>4.

Indeed, for a regular graph with n = 2 or n = 3, one would have
either A\ = 0 or A2 = / - / - A\ = 0 and this would imply m = 1,
in contradiction with our hypothesis m = 2.

5.2. F/rsf conditions on the weights. Equations (8) to (12) impose
strong conditions on the weights to, h > *2 appearing in i?+ . Equa-
tion (9) can be seen as a definition of i?_ = R+ι, and equation (12) is
often complicated to deal with (see Propositions 6 and 7 below). We
reformulate now (8), (10) and (11).

PROPOSITION 4. Let i?+ = to + t\A\ + t2{J - I - A\) be the (+)-

matrix of weights of a spin model for oriented links, associated as above
to a strongly regular graph of parameters (n, k, λ, μ). Then one has

(20) tA+

tA + i k - μ ) +

h to \*2 h

(21) £ + ί L - ( £ + £ ) - ( λ -

(22) ίo = α (/Ae modulus of the model),

(23) ίo1 +A:?-1 + ( n - A r - l ) ^ 1 =da,

(24) to + ktl+(n-k 1

Proof. Equations (22) to (24) are nothing but ways to write (10) and
(11) in the present case. Next, a straightforward computation using
(18) shows that

/?+/?_ = [ ( ί 0 - h ) i + (ί! - t i )A x + t2J][(tQl -qι)i

2(λ-μ+ί)l.Aιl.

and it follows that (8) is equivalent to (20) and (21).
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EXAMPLE. The case n = 4. (This is alluded to in [Jo3], just before
Example 2.17.) Here, one must have k e {1, 2}. Indeed, k = 0
would imply A\ = 0 and k = 3 would imply ^2 = 0, and these are
incompatible with m = 2. Upon exchanging ^ and ^2? w e m a Y
assume that k = 2, namely that the underlying graph is a square. Up
to renumeration of the four vertices of S, one has then

iί-L =
h to *i ί2

t2 h to h
A h h to)

for some to, t\, 2̂ € C*.
As the parameters of the square are given by (n, k, λ, μ) = (4,2,

1 ι0, 2 ) , equation (20) reduces to + ^ι
+2 = 0, namely to

(to + ti)2 = 0, so that t2 = -to, and this in turn implies that (21)
holds. Now (23) and (24) read 2ΐ[x = dtQ and 2tχ = dq1. By
(7) there exists ε G {1, -1} such that d? = —2β; then ίi = - ε ^ 1 -
A tedious but straightforward computation shows that (12) holds, so
that we have shown the first half of the following.

PROPOSITION 5. Given any aeC* and ε G {1, -1} , set

where

-εa

a -εa
-1

-1
-a

a -εa
-1

\-εa

-a -εa
- 1

-1

-a -εa

-εa~ι\
-a

-1
a -εa

-1 a J

Then Ma,ε is a spin model for oriented links with module a and loop
variable d = -2ε.

Moreover, if L, D and X are as in Proposition 1, we have

}_
εa -

Proof, Set z — -εa - a~x and i?_ = i?+ !. From the definition of
i?+ a straightforward computation shows that

- = z(dI + εJ).
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It follows from the Theorem of §2 that one has, with the notations of
this Theorem:

and consequently ^a-TΆit^Z^a' = Fε(L)(a, z). U

Recall that the invariant of Proposition 5 has a topological inter-
pretation [LiM]:

F+{L){-q,q
XCL

F-{L){x~x, x~ι - x) = i _
XCL

for all g , x e C * , where the summations are over all pairs of compo-
nents of L (including X = 0 and X — L) and where Ik denotes a
linking number (with lk(0, L) = 0) in particular

for all q, x eC* in case L is an actual knot.

EXAMPLE: a pentagonal model. (See [Jo4].) The pentagon is a
strongly regular graph with parameters

(n, k, λ, μ) = (5, 2, 0, 1).

Let 4̂i denote the adjacency matrix of this graph (with vertices num-
bered in a cyclic order) and set

ω = exp

i?+ = - / / - iωAγ - iω~ι(J -1 - A\)
/ I ω ω~ι ω~ι ω

ω 1 ω ω~ι ω~]

v~ι ω 1 ω ω~]

rΌ~ι ω~ι ω 1 ω
CO CO~^ CO~l CO 1

PROPOSITION 6. Let S° = {0, 1, 2, 3, 4} denote the set of vertices
of a pentagon-, with R+ as above,
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FIGURE 8. See the proof of Proposition 6.

is a spin model for oriented links with

modulus α = - / ,
loop variable d = -\/5.

Moreover, if L, D and X are as in Proposition 1, we have

L ^ _/, 2/cos(2π/5))

Proof. The following proof is a warming up exercise for that of
Proposition 7.

Let us first show that M5 is a spin model for oriented links, namely
that equations (8) to (12) are verified. For (8) to (11), it is enough by
Proposition 4 to check (20) to (24), and this is straightforward (recall
that Re(ω) = cos(2π/5) = (Λ/5-1)/4). The proof of the claim is now
reduced to checking (12), or equivalently (3) for all a, β, γ e S°.

We know already that (3) holds when a = γ or β = γ, because we
know that (9) and (11) hold. If a = β, equation (3) reduces to

and one may assume a Φ γ. Thus, one has to check

, ,2 ,-1 ,2,-1 , ,2 ,-1 ,2,-1 1 Ani-2

hh -aat\
if a and γ are connected by an edge in the pentagon, and

/2,-l , ,2.-1 , .2^-1 , ^2^-1 , ^2^-1 1 Anf-2

tQt2 +tιtι +t2t0 +t2tx +hh =dat

9

if not. These two identities = are straightforward to check when to,
t\, tι are replaced respectively by — i, ~/ω, -iω~ι.

We may now assume that a, β, γ are all distinct: 5 x 4 x 3 = 60
cases left. But one can use the symmetries of the pentagon, and it is
enough to check (3) for the four cases of Figure 8.
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In the first case, (3) reduces to

tot2q
ι + We1 + t2t0q

1 + t2hqι + txt2q
ι =

which is again straightforward to check when (to, t\ , t2) = (—*', —io),
-iω~ι). The three other cases are similar, and the first claim is
proved.

Set now z = -t\ + t\λ = 2/cos(2π/5). An easy computation shows
that

R+-R~ι = z(dl-J).

It follows from the theorem in §2 that one has

^Zp =Λ_i(D)(- i , 2/cos(2π/5))

and consequently

1 -τait(5) z^ 5 = F_χ(L)(-i, 2/cos(2π/5))

, 2cos(2π/5)). D

The invariant of Proposition 6 has again a topological interpreta-
tion. We refer to [GoJ] and [Jo4] for a complete description; but let
us recall here that, for an actual knot K, one has

\F+ι(K)(l, 2cos(2π/5))| = \F-X(K)(-i, 2ϊcos(2π/5))| = (yβ)r

where r is the rank of the first homology with coefficients Z/5Z of
the 2-fold branched cover of S3 branched over K.

5.3. A digression on products. Consider a finite sequence M\, . . . ,
Mk of spin models for oriented links, where

has modulus α, for j € {1, . . . , k}. The product M = (S, i? + , i?_ ,
Ω, rf) of these models is defined by

s= Π sj,
\<j<k

w±((<*u ,(*k),{βι9...9βk))= Π wJ9±(aj9βj)9

d=
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The following are straightforward to check:

M is again a spin model for oriented links;
its modulus is given by a = Πi</<fc aj ί

one has Zχ = Πi</<fc ̂ χi f°Γ a nY signed graph X

the link invariant L ι-* a"™^Z^ associated to M as in
Proposition 1 is the product of the invariants associated to the
Mj 's.

For a specific example, consider integers n > 2, fc > 1, and let
M\, . . . , Mfc be fc Potts' models with n spins, with the model Mj
corresponding to a root bj of the equation (&2 + b~2)2 = n, as in
Proposition 2. The entries of the matrix i?+ of M are

-δf 3

 9bι if A: = 1,

bϊ3bϊ\-bϊ3b2,-bιbϊ\bιb2 ifk = 2,

and so on. Suppose moreover that « = 2, so that each &7 is in

If b\ = b2 = eiπl%, the entries of M = Mi x M2 are

= a the modulus of M,

6 2 = eiπ'4 = - α

which is one of the cases covered by Proposition 5. Observe that such
products cover finitely many cases of Proposition 5, so that the latter
goes really beyond this product's construction. On the other hand, the
product defined by b\ = eiπ^ and b2 = e~iπ^ is a model for which
7?+ has three distinct off-diagonal entries, namely /, — /, and 1 (which
is also the diagonal entry), and consequently which is not covered by
Proposition 5.

6. The Higman-Sims graph and the Jaeger model.

6.1. The graph. We are interested here in the graph HS discov-
ered in the late 1960's by D. Higman and C. Sims [HiS]. For details
of what follows, we refer to the exposition of Biggs and White [BiW];
for some more geometry in the projective plane PG(2, 4) over the
field of order 4, one may also see [Edg]. For other definitions of HS,
see [GoS] and [CoS].

Let & and 3* denote respectively the sets of points and lines in
PG(2,4) . One has
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A hexad (or hyperoval) in PG(2,4) is a subset of 3P consisting of 6
points such that 3 of them are never collinear. It is known that the set
<̂ tot of all these hexads has 168 elements, and that the natural action
of the group PSL3(4) [respectively PGl3(4)] on ^tot has 3 orbits of
56 elements each [resp. is transitive]. Choose one of these 3 orbits
and denote it by %? for distinct H, K e βf, it is also known that
HnK consists of either 0 or 2 points.

The graph HS has two distinguished vertices denoted here by 0
and oo, and one more vertex for each element of &, 3? and %?.
In particular

\HS°\ = 1 + 1 + 21 + 21 + 56 = 100.

The edges of HS are the following:

one edge with ends 0 and oo,
one edge with ends 0 and p for all p e £P,
one edge with ends oo and / for all / e 3*,
one edge with ends p and / for all p e &, I eJϊf such that
pel,
one edge with ends p and H for all p £ &, H e %? such
that peH,
one edge with ends / and H for all / € 3 , i ϊ G / such that
/n/f = 0,
one edge with ends H and K for all H e βf, K e βf such
that HnK = 0,

and Figure 9 should aid memory.
The numbers on Figure 9 should be read as follows: each p e &

defines a vertex in HS° which is adjacent to the vertex 0, to 5 vertices
from 3 and to 16 from ^ each H <£%? defines a vertex adjacent
to 6 vertices from &, to 6 from J? and to 10 other vertices from
%* and so on.

We denote as in §5 by A\ the adjacency matrix of HS and by
Aι = / — / - A\ that of the complementary graph.

It is known that the group of all automorphisms of HS has a sub-
group Γ of index 2 with the following properties (more precisely
Γ = Aut(HS) Π J/ioo if Moo is the group of all even permutations
of HS°).

(a) Γ acts transitively on each of:

the set HS° of vertices of HS,
the set {(α, β) e HS° x HS° : Ax(a9 β) = 1} of its oriented
edges,
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FIGURE 9. On the Higman-Sims graph.

the set {(α, β) € HS° x HS° : A2(a9 β) = 1} of its oriented
nonedges.

(b) For each a e HS° 9 the isotropy group Γα acts transitively on
each of the 10 following sets:

{βeHS0: Aj(a,β) = l} for./e { 1 , 2 } ,

{(β, γ)eHS°xHS°: Aj(a9 β) = 1, Ak(a9 γ) = I, Mβ9 y) = 1}

f o r . / , * , / € { 1 , 2 } .

(c) Γ is a "sporadic" simple group of order 44 352 000.
Claim (c) is useless here, but nice to know. Claims (a) and (b) have
strong consequences on the geometry of HS. (In claim (b), the set
with j = k = / = 1 is empty because one has λ = 0 for the graph
HS.)

Claim (a) implies that HS is a strongly regular graph. One may
compute its parameters

22,0 , 6)
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TABLE I. On the Higman-Sims Graph.

ifc-λ-l=21 n-

μ = 6 fc-μ=16 A: - μ = 16 w-

(see Proposition 3) and the eigenvalues of the adjacency matrix A\:

22 with multiplicity 1,
2 with multiplicity 77,

-8 with multiplicity 22.

The strong regularity implies that, given two distinct a\, a2 £ HS°
and given δ\, δ2 € {0, 1}, the cardinality of

{β e HS° \β + ak a n d Ax(ak, β) = δkϊoτ k = \ ,2}

depends only on A\{a\9a2). These cardinalities are shown in Table
I where two vertices are joined by a line if they define an edge and by
a dotted line otherwise.

Claim (b) implies that, given three distinct a\, α 2 , 0:3 G HS° and
given δ\, δ2, δ3 € {0, 1}, the cardinality of

{β e HS° : β φ ak and ^ ^ α ^ , β) = δk for k = 1, 2, 3}

depends only on ^4i(c*i, α^) ? ^1(^2 ? ^3), ^1(^3 , α i ) . These cardi-
nalities are shown in Table II. (The eight cardinalities corresponding
to the situation A\{a\, CK2) = A\{aι, 0̂ 3) = A\(a^9 a\) = 1 are 0,
because λ = 0.)

Here are some indications for Table II. For the first octet, choose
p e^ and observe that (Figure 10 on p. 82)

20, \{l eJ? : / 3 p}\ = 5,
= 16, 9 7 - ( 2 0 + 5 + 2 x 16) = 40.
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15 15

10

45

12 12

12

47
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,0

FIGURE 10

H

FIGURE 11

For the second octet, choose H E%? , p eH, and observe that (Figure

69 \{q e& : q £ H}\ = 15,

|{/ e^f : / ΠH φ 0 and / ^ p } | = 10,

9 7 - ( 2 x 6 + 1 0 + 2 x 15) = 45.

For the three appropriate cases of the third octet let x [respectively
y, z ] denote the cardinality which has to be shown equal to 2 [resp. 4,
12]. The numbers of ordered 4-tuples (c*i, c*2? a$) of distinct vertices
of HS° providing the configurations of Figure 12.i are the same, so
that

100 x 77 x 6 x 20 = 100 x 77 x 60 x x => x = 2.

Similarly for those of Figures 12.ii and 12.iii, so that

100 x 77 x 6 x 40 = 100 x 77 x 60 x y => y = 4,

100 x 22 x 56 x 45 = 100 x 77 x 60 x z => z = 12.

The last cardinality is of course 97 - (2 + 3 x 4 + 3 x 12) = 47.
Given any vertex a e HS°, the graph spanned by its neighbours has

22 vertices (because kH$ = 22) and no edge (because λπs = 0) The
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graph spanned by the vertices of HS at distance 2 from a is again
strongly regular (because of Claim (b) above), say with parameters
(* ' ,* ' , λ',/ι') given by

ri = nHS - fcjre - 1 = 77,

k' = kHS-μHs= 16,

= 0 >
i-λ>-\)_

It is known that there exists a unique strongly regular graph with pa-
rameters (77, 16, 0, 4); see the remarks following Theorem 13.1.1
in [BCN]. It is also known that there exists an unique strongly regular
graph with parameters (100, 22, 0, 6) see §9 in [CGS].

6.2. The weights. We may now define the main example, due to F.
Jaeger, of the present paper. It is a spin model with two nondiagonal
Boltzmann weights in the matrix R+ , as discussed in the beginning of
§5. The relevant finite set is the set HS° of vertices of the Higman-
Sims graph. The loop variable is d = -10 (observe that equation (7)
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holds). Let
. 1

τ = —2
be the golden ratio. Set

( , 0 = _ 5 τ - 3 = - τ 5 , [ tΰι = -5τ + S,

(25) I t ι = e t = - τ ,
[ t2 = rι = τ-l,

and define
R+ = t()I + t\A\ -

i?_ = ί/ + * % + q\j -1

where A\ denotes the adjacency matrix of the Higman-Sims graph.
(Recall that ίo is als° denoted by a, and is the modulus of the model.)

PROPOSITION 7. The Jaeger's model JM = (HS°, i?+, Λ_, C, -10)
defined above is a spin model for oriented links. The notations being
again as in the Theorem o/§2 and the Proposition 1, one has

( τ )

for any oriented link L represented by a diagram D and the corre-
sponding signed graph X. {Recall from §2 that F__χ is the Dubrovnik
version of the Kaujfman polynomial)

Proof. The steps are similar to those of the proof of Proposition 6.
To show that JM is a spin model for oriented links, one has first

to check (20) to (24), which is straightforward; one has then to check
(3) for all a, β, γ e HS°, a priori 106 checks! We know again that
(3) holds when a = γ or β = γ, because we know that (9) and (11)
hold. If a = β, equation (3) reads

ζeHS0

and it suffices to check this when a Φ γ. Because of Claim (a) in 6.1,
this reduces to two computations. The first one, for A\(a, γ) = 1, is

2 x \ x \qι + t\t\x) + 56ί2 = dat\2

t\
(the left-hand side has one term for ξ = a, one for ξ = γ, and the
others for the cases of multiplicities 21 and 56 in Table I) and the
second one, for AI{OL, γ) = 1, is

a2qx + t\arx + 6tx + Iβitfq1 + φ f 1 ) + 60t2 = daq2.
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Both of these = are identities easy to check when a, t\, t2 are
replaced by the values of (25).

We may now assume that a, β, γ are all distincts: 970-200 cases
left. Claims (a) and (b) in Subsection 6.1 show that these cases reduce
to precisely 5 which are shown in Figure 13.

Reading Table II, we can write down equation (3) for (say) the first
two cases of Figure 13 as

+ tiktϊ1 + ίiMά1 + 20t2t2tϊι

and
l + 20tιt2q

ι+

\6t2t2t~
ι + \6t2txq

l +40t2t2q
ι

Both these = , as well as those corresponding to the three last cases
of Figure 13, are again easy to check when ί0 > h , t2 are replaced by
the values of (25).

The proof of the second claim is similar to that of Proposition 2.
Consider four diagrams D+, Z>_, Z>o, Aχ> as in §2. Around the
distinguished crossing, the black and white colourings look as in one
of the two situations represented in Figure 14 (next page).

The exchange property

yJM ΎJM _ yJM yJM
^D+ ~^D_ -^Z)o " \

holds because one has the identity

R+-R- = dI- J.
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FIGURE 14

Indeed, the latter follows from the three equalities

t0 - t~ι = d - 1 (matrix entries (α, β) such that a = β),

/i — /J"1 = — 1 (matrix entries (α, β) such that {a, β}e HSι),

t2 - ί j ! = - 1 (matrix entries (α, jff) such that {a, β} e 7ΪSl)

which are straightforward. The last claim of Proposition 7 follows
now from the Theorem in §2. D

7. Looking for other models. It is tempting to see the pentagonal
model of §5 and Jaeger's model as members of the same sequence.
At the time of writing, it is an open problem to decide whether this
sequence has any more terms. In the present section, we show what
could be some of the properties of the corresponding graphs (if they
exist).

Consider as in §5 a graph S with adjacency matrix A\ and a spin
model for oriented links

such that the matrix

R+ = tol + Mi + ti(J -I-Aι)

has exactly two distinct nondiagonal entries. We know from Propo-
sition 3 that S is a strongly regular graph, say with parameters
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(n, k, λ, μ). As the cases with n < 4 appear already in Proposi-
tion 5, we assume from now on that n > 5.

7.1. Formal self duality of S. As ^ i / = Λ4i = A:/, the image of
/ is a one dimensional eigenspace of A\ of eigenvalue k. By (18),
the restriction to ^ to Ker(/) has two eigenvalues denoted by r, 5
with multiplicities respectively denoted by m\, m2 = n-m\-\. The
numbers r, s are the two roots of the polynomial

x 2 + (μ - A)x + μ - A:

and the multiplicities can be computed from the relation Trace(^i) =
0 = k

PROPOSITION 8. With the notations above, one has

(26) π = ( r - * ) 2 ,

(27) A: G {r2 + r - rs, s 2 + s - rs}.

Proof. The eigenvalues and multiplicities of R+ = (fy
(ίi - t2)Ax + t2J are

f ίO + ίlfc + ί2(Λ-fc-l), f ί o - k + ί ί l - fc) ' ,

\ simple, \ multiplicity nt\,

f ίo-ί2 + (ίi-ί2)5,
\ multiplicity m2,

and those of R2 (as defined in §3) are

idtf, (dt-\ (dq\
\ multiplicity n, \ multiplicity nk, \ multiplicity n(n - k - 1).

As i?! = i?+ 0 id is conjugate to i?2 by (12), one has either m\ =
n — k — I, and then *o - *2 + (h ~ h)r = dt^x, or m\ = k, and then
*o - 2̂ + (ίi - h)r — dt\x. We are going to discuss these cases one after
the other; moreover we deal first with the generic situation μ Φ 0, and
second with the situation μ = 0.

In this proof, we choose notations such that r > 0 and s <—l (but
we'll agree for another choice later! See (29) and (30)).

In the "generic" situation for which μ Φ 0, one has s + 1 ^ 0,
μ = k + rs and

" - k + rs ' mχ~ (k + rs)(s-r)

(see e.g. Theorem 1.3.1 in [BCN]).
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If rπ\ = n-k-1, the values in (28) give a formula which simplifies
to k = r2 + r - rs. Then one has also the eigenvalue relations for
R\ ~ R2 (where ~ means "conjugate")

h - h + (t\ - t2)s = dtχ

 λ

and similarly for R7ι ~ Ry ι

tf -qι + (tϊι -qι)s = dtx

It follows that (r - s)2 = d2.
If m\ = k, one obtains similarly k = s2 + s-rs and (r - s ) 2 = d2.
In the situation μ = 0, one has moreover r = k and 5* = - 1 the

graph S is a union of b cliques, and b = ^ y (see again Theorem
1.3.1 in [BCN]). One has ni\ = b - 1 and ni2 = kb. The eigenvalues
of i?+ may be written as

f to-t2 + (ti-t2)k + t2n9 f ίo-ί2 + (ίi-ί2)*,

\ simple, \ multiplicity mi ,

f ίo - ίi ,
\ multiplicity m2

If one had m\ = ^ - 1 = n — fc — 1, one would have n = k + 1
and S would just be a clique, which is ruled out (t\ Φ t2). Thus
πiχ = £^γ - 1 = k, namely π = (/: + I) 2 = (r - 5) 2 , and s 2 + 5 - rs =
1 - 1 + r = /:, so that the proof is complete. D

A strongly regular graph S with parameters (n, k, λ, μ) and eigen-
values /c, r, 5 is said to be formally self-dual if it fulfills the condi-
tions of Proposition 8. The parameters of such a graph satisfy also
the relations

μ = r2 + r, λ = r2 + 2r + s

(because μ = k + rs and λ = k + rs + r + s in any strongly regular
graph).

The words "formally self-dual" come from a duality property of
the Bose-Mesner algebra defined by such a graph. For the background
behind this definition, see e.g. [Neu], in particular Corollary 2 of The-
orem 1. Let us only indicate here the following: a strongly regular
graph which is formally self-dual has in particular its eigenvalues r,
s with multiplicities πt\, m2 satisfying

{mi, m2} = {k, n-k-I}.
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For simplicity, we assume from now on that the graph S has pa-
rameter μφO. As observed in the proof of Proposition 8, Equation
(12) implies t0 + t\k + t2(n - k - 1) = dqι and

{to -t2 + (h - t2)r, to-t2 + {h - h)s} = {dqι, dq1}.

We choose to denote by r the eigenvalue of S such that to - t2 +
{tλ - t2)r = dq1. This may imply r < - 1 and s > 0 (unlike [BCN]).
But this does imply

(29) k = r2 + r-rs

and

(30) f ίg + ίjffc+ £ ( * - * - l ) ^ *

I ig - £ + (ί? - S)r = Λj 1 '

for */ G {-1, 1}. (Compare (29) with (27), and observe that the first
equation in (30) just repeats (23) and (24).)

Observe the following. If the multiplicities m\, m2, of r, s are
distinct, namely if S is not a so-called conference graph, then our
choice of notations is simply defined as follows: r is of multiplic-
ity n — k — l and s of multiplicity k. I f m i = ra2 = ft-/c-l = fc,
I don't know a simple description of the appropriate choice, but this
case hardly happens at all (Proposition 9.H below).

7.2. On the weights to, t\, t2. Consider again a model M and
the corresponding strongly regular graph S, satisfying the hypothesis
above (n > 5, μ φ 0). From d2 = n (see (7)) and from n = (r- s)2

(see Proposition 8), we know that there exists a sign e such that

(31) rf = e ( r - $ ) , ε e { l , - l } .

Our conventions on r and the proof of Proposition 8 show that t\ -

h = ε(t2

 l - ql) - As tx Φ t2, this implies

= εtχ namely
f ίi = βί,

for some t eC*.
Writing a for to, we have from (30)

a + etk + t~ι(n - k - 1) = da~ι.

a~ι + εΓιk + t(n - k - I) = da

as well as

a~ι -
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The first pair of equations implies

εa - a~ι + (t - εΓι)(2k - n - 1) = ed(a~ι - ea).

As

(1 + εd)(\ + r + s) = (l+r-s)(l + r + s)=l + 2r + r2-s2

= 2k-n + l

by (29), (7) and (31), this simplifies to

εa-a~ι + (t - εt~ι){\ +r + s) = 0

(observe that 1 + εd Φ 0, because d2 = n Φ 1). The second pair of
equations implies

εa + a~ι - εt~ι - t = εd(t + ε^"1)

or

(32) εa + a'1 - (ί + εΓι)(l + r-s) = 0.

Solving for a and a~ι one obtains

a = Γι(ί + r) -εts,c a = Γ

-eΓιs.

The obvious compatibility condition aa~ι = 1 implies

1 = (l + r) 2 + s2 - ε(l + r)s(t2 + Γ2).

Given r and s, this equation is of degree 4 in t. (Indeed, s ^ 0,
otherwise the equation above implies (r + I) 2 = 1, hence r = — 2,
hence n — (r — s)2 = 4, and we have assumed that n > 5 similarly
r φ —\, otherwise s = 1, and again AI = 4.)

We have shown (i) of the following. For (ii), see the proof of Propo-
sition 7 in [Jae].

PROPOSITION 9. Assume that there exists a spin model M = (S, i?+,
i?_ , C, rf) ybr oriented links with associated strongly regular graph S
such that the parameters (n, k, λ, μ) o/ 5 satisfy

π > 5 , μ / 0 .

(i) Suppose that n Φ 2k + 1. Lei r [r^p^cί/vβ/y 5] denote the
eigenvalue of S of multiplicity n-k - 1 [ras/?. fc], α«ί/ to ε 6^ ίΛ^
sign such that d = ε(r - s). 77jen the weights to, t\, t-χ of the matrix
R+ = al + εtAi + ^ 2 satisfy the following equations

(33) s2 + (r + I) 2 - εs(r + \){t2 + Γ2) = 1,
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(34) a = (r+l)Γι-εts,

(35) to = a, ti=et9 t2 = rK

(ii) Suppose that n = 2k + 1, namely that S is a so-called confer-
ence graph. Then S is either a pentagon as in Proposition 5, or the
lattice graph 1*2(3) with 9 vertices which is a Cartesian product of two
triangles (see §5.3).

In [Jae], there are necessary and sufficient conditions on a strongly
regular graphs S for the existence of a model M involving S. These
conditions are the following:

(i) S is formally self-dual,
(ii) the subconstituents of S are strongly regular,

(iii) both S and its complement are connected (recall that \S°\ >
5).

(By definition, to each vertex a e S° correspond two subcon-
stituents: the subgraph of S induced by the neighbours of a and
the subgraph of S induced by the vertices β e S° at distance 2 from
a.) If S fulfills these conditions, the three equations of Proposition
9 are necessary and sufficient conditions on the weights a, et and tι
which enter the model.

Of course, a graph may satisfy (i) to (iii) above without giving a
really new model: this is for example the case of the so-called lattice
graphs £2(0), also called Hamming graphs of diameter 2 and denoted
by H(l, q) in [BCN]: the corresponding models are just squares (in
the sense of the products of §5.3) of Potts' models. A graph S may
also lead to a "degenerate model" (see below).

PROPOSITION 10. Let the notations be as in Propositions 8 and 9, so
that in particular

R+ = aI + εtAi + Γ1A2, R- = a~xI + εΓιAx + tA2.

Set

z = t + eΓι.

Then

i?+ + εR- = (a + εa~ι)I + (εt + ΓX){AX + A2) = z(dl + εJ).

Suppose moreover that z Φ 0. The notations being also as in the
Theorem o/§2 and in Proposition 1, one has
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for any link L represented by a diagram D and the corresponding
signed graph X. In particular, the model M gives an evaluation of
the Kauffman polynomial Fε.

Proof. As

a + εa'1 -εt- Γι = ε(t + εt~ι)(r -s) = zd

by (31) and (32), one has the formula for R++εR- . The proof of the
last statement follows, as that of the exchange property in the proof
of Proposition 2. D

A degenerate example. Let M be a model as above, and assume now
that the underlying graph has eigenvalues r, s such that s(r + 1) Φ 0
and r + 5 + U { l , ~ l } . Then s2 + (r + I ) 2 + 2s(r + 1) = 1 and
comparison with (33) shows that t2 = -e. This implies

z = t + εΓι =0.

By (34) one has a = (r + s + l)Γι, and then -εa - a~ι = 0 because
t2 = -ε.

Assume for simplicity that ε — - 1 , so that i?+ = i?_ by Propo-
sition 10, and a = a~ι. Consider an oriented link L with c(L)
components represented by a diagram D and a signed graph X con-
sider also a trivial link LQ with c(L) components, represented by
a diagram Z)Q made up of c(L) disjoint circles and by the edgeless
graph Xo having c(L) vertices. As R+ = i?_ one has

1 -Tait(Z))zM = 1 -Tait(/50)Z|f = *
/ X d od

In particular ^a~T^il^Z^ = 1 whenever L is a knot, and the model
is of little use for links. However such models may be of interest to
graph theorists, and we describe now briefly an example.

Let C be the complement of the Clebsch graph: its vertices are
subsets of { 1 , 2 , 3 , 4 , 5 } of even cardinality, and two such are ad-
jacent in C if their symmetric difference has cardinality 4. Stan-
dard computations show that C is strongly regular with parameters
(n9 k, λ, μ) = (16, 5 , 0 , 2 ) . Its eigenvalues are 5, 1, - 3 , respec-
tively with multiplicities 1, 10, 5. Its constituents are on one hand
graphs with 5 vertices and no edge, on the other hand Petersen graphs.
Thus C satisfies conditions (i) to (iii) stated after Proposition 9. In
our notations, r is of multiplicity /ί — fc—l = 10,so that r = 1,
s = - 3 and d = 4ε.
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One has t2 = -ε by (33) and a = - r 1 by (34). There are two
possible models with ε = 1, d = 4 and weights

(α, ί i , ί2) = (±ι, ± J \ τ O

and two other models with ε = - 1 , d = - 4 and weights

In all cases one has z = 0 = -εα — UΓ 1 .
F. Jaeger has found other similar examples of models with under-

lying graphs having eigenvalues r, s such that s(r + 1) ^ 0 and
r + * + l e { l , - l } .

The reader should carefully distinguish the values of the Clebsch
model described here from the following limit case of the Kauίfman
polynomial. For an oriented link L, the values F_i(L)(α, a - a~ι)
are well understood [LiM]. In particular F_i(L)(α, a - a~ι) = 1 for
all a G C* such that aφ±\ in case L is an actual knot, and

, a - O = 2c^~ι

in all cases. This limit is clearly not the value (—4) c^~ ι given by the
Clebsch model (see above the end of §2).

Variations. A model M with underlying graph S as above has
various companion models. We use below the same notations as in
Propositions 9 and 10.

One may describe a first variation of M in terms of the complement
S of S. If S has parameters (n, k, λ, μ) and eigenvalues k, r, s,
then S has parameters

and eigenvalues n-k - \ , -s - 1, - r - 1 . This variation has the

same parameters d, ε, a, z as M, but

/ is replaced by εt~ι.

One may also keep S and change the sign and the weights according

to

ε, α, t, z=>-ε, -iεa, iεt, iεz.

This is compatible with the relations

α, z) = (-lr^-^KLX-zα, iz)
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of the theorem in §2. In §6, we have chosen the variant with ε = -1
to have a = - τ 5 , t = τ and z = t + εt~ι real. The same choice
ε = -1 implies that a and z are imaginary in our pentagonal model.

Final questions. Let us finally review our favourite examples.
The Potts' models of Proposition 2 provide an infinite number of

evaluations of the Kauffman polynomial F+\(L)(a, -t - t~ι) on the
curve of equation

a = t\

The square models of Proposition 5 provide evaluations of
Fε(L)(a, -εt - t~ι) at all points of the curves

a = εt~ι

(for ε = 1 and ε = -1).
The pentagonal model M5 of Proposition 6, of which the underly-

ing graph is a conference graph with eigenvalues r = τ-1 and s = - τ
(both of multiplicity 2), provides the evaluation of F_i(L)(α, ί- r ! )
for

α = -/, ί = /exp ί —— j => a = -ί 5 .

The Clebsch model discussed after Proposition 10, for which the
parameters a, t satisfy

a = - r 1 =ε ί 5 .

The Jaeger model JM of §6 provides the evaluation of

, ί - r 1 ) forα = - τ 5 , ί = τ => α = -ί 5 .

One may thus make more precise the question asked in the begin-
ning of §7:

Do there exist other models as above which provide evaluations of
the Kauίfman polynomial Fe(L)(a, —εt - t~ι) at other points of the
curves

a = εί5?

Here is one more question in purely graph theoretical terms. Con-
sider the class 5? of strongly regular graphs with the following prop-
erties:

(a) they are not lattice graphs (see the end of §7.1),
(b) they satisfy conditions (i) to (iii) stated after Proposition 9,
(c) they are "nondegenerate" in the sense that their eigenvalues

r, s are such that r + s + 1 £ {1, -1}

does S? contain any graph with n > 100 vertices?
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