ERRATA TO:
 THE SET OF PRIMES DIVIDING THE LUCAS NUMBERS HAS DENSITY $2 / 3$

J. C. Lagarias
Volume 118 (1985), 449-461

Theorem C of my paper [2] states an incorrect density for the set of primes that divide the terms W_{n} of a recurrence of Laxton [3], due to a slip in the proof. A corrected statement and proof are given.

The corrected version of Theorem C of [2] is:
Theorem C. Let W_{n} denote the recurrence defined by $W_{0}=1$, $W_{1}=2$ and $W_{n}=5 W_{n-1}-7 W_{n-2}$. Then the set

$$
S_{W}=\left\{p: p \text { is prime and } p \text { divides } W_{n} \text { for some } n \geq 0\right\}
$$

has density $3 / 4$.
The proof below proceeds along the general lines of $\S 4$ of [2].
Proof. One has

$$
W_{n}=\left(\frac{3+\sqrt{-3}}{6}\right)\left(\frac{5+\sqrt{-3}}{2}\right)^{n}+\left(\frac{3-\sqrt{-3}}{6}\right)\left(\frac{5-\sqrt{-3}}{2}\right)^{n} .
$$

If

$$
\alpha=\frac{3+\sqrt{-3}}{6} \text { and } \phi=\frac{5+\sqrt{-3}}{5-\sqrt{-3}}=\frac{11+5 \sqrt{-3}}{14}
$$

then

$$
W_{n} \equiv 0(\bmod p) \Leftrightarrow \phi^{n} \equiv-\frac{\bar{\alpha}}{\alpha}(\bmod (p)) \quad \text { in } \mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right],
$$

where $-\frac{\bar{\alpha}}{\alpha}=\frac{-1+\sqrt{-3}}{2}$ is a cube root of unity. Consequently (1.1) p divides W_{n} for some $n \geq 0 \Leftrightarrow \operatorname{ord}_{(p)} \phi \equiv 0(\bmod 3)$.

The argument now depends on whether the prime ideal (p) splits or remains inert in the ring of integers $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$ of $\mathbb{Q}(\sqrt{-3})$.

Case 1. $p \equiv 1(\bmod 3)$, so that $p=\pi \bar{\pi}$ in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$. Since $\operatorname{ord}_{(\pi)} \phi=\operatorname{ord}_{(\bar{\pi})} \phi$, one has

$$
\operatorname{ord}_{(p)} \phi \equiv 0(\bmod 3) \Leftrightarrow \operatorname{ord}_{(\pi)} \phi \equiv 0(\bmod 3) .
$$

Now suppose that $3^{j} \|(p-1)$, in which case

$$
\begin{equation*}
\operatorname{ord}_{(\pi)} \phi \not \equiv 0(\bmod 3) \Leftrightarrow \phi^{(p-1) / 3^{j}} \equiv 1(\bmod (\pi)) . \tag{1.2}
\end{equation*}
$$

Set

$$
\zeta_{j}:=\exp \left(\frac{2 \pi i}{3^{j}}\right), \quad \phi_{j}:=\sqrt[3]{\phi}
$$

and define the fields $F_{j}=\mathbb{Q}\left(\zeta_{j}, \phi_{j}\right)$ and $F_{j}^{*}=\mathbb{Q}\left(\zeta_{j+1}, \phi_{j}\right)=F_{j}\left(\zeta_{j+1}\right)$. The last equivalence holds since F_{j} and F_{j}^{*} are normal extensions of \mathbb{Q}. Both F_{j} and F_{j}^{*} are normal extensions of \mathbb{Q}, because ϕ has norm one, so that the complex conjugate $\bar{\phi}=\phi^{-1}$, and $\bar{\phi}_{j}=\phi_{j}^{-1} \in F_{j}$. Now
(1.3) $3^{j} \| p-1$ and $\phi^{\frac{p-1}{3^{j}}} \equiv 1(\bmod (\pi))$
$\Leftrightarrow(\pi)$ splits completely in $F_{j} / \mathbb{Q}(\sqrt{-3})$ and not completely in $F_{j}^{*} / \mathbb{Q}(\sqrt{-3})$
$\Leftrightarrow(p)$ splits completely in F_{j} / \mathbb{Q} but not completely in F_{j}^{*} / \mathbb{Q}.
Applying the prime ideal theorem for the fields F_{j} and F_{j}^{*}, the density of primes such that (1.3) holds is

$$
\left[F_{j}: \mathbb{Q}\right]^{-1}-\left[F_{j}^{*}: \mathbb{Q}\right]^{-1}=\left(2 \cdot 3^{2 j-1}\right)^{-1}-\left(2 \cdot 3^{2 j}\right)^{-1}=3^{-2 j} .
$$

Hence the density of primes d_{j} having $3^{j}| | p-1$ and $p \mid W_{n}$ for some n, which are those for which (1.3) doesn't hold, is $d_{j}=3^{-j}-3^{-2 j}$ and the total density of primes $p \equiv 1(\bmod 3)$ dividing some W_{n} is $D_{1}=\sum_{j=1}^{\infty} d_{j}=\frac{3}{8}$.

Case 2. $p \equiv 2(\bmod 3)$, so (p) is inert in $\mathbb{Z}\left[\frac{1+\sqrt{-3}}{2}\right]$. Since (p) is inert

$$
\phi^{p^{2}-1} \equiv 1(\bmod (p)) .
$$

Assuming that $3^{j} \|(p+1)$, one has

$$
\begin{equation*}
\operatorname{ord}_{(p)} \phi \not \equiv 0(\bmod 3) \Leftrightarrow \phi^{\frac{p^{2}-1}{3^{3}}} \equiv 1(\bmod (p)) . \tag{1.4}
\end{equation*}
$$

Now for $3^{j} \|(p+1)$,

$$
\begin{align*}
& \phi^{{\frac{p^{2}}{3}}_{3}^{j}} \equiv 1(\bmod (p)) \tag{1.5}\\
& \Leftrightarrow \text { The inert prime ideal }(p) \text { in } \mathbb{Q}(\sqrt{-3}) \text { splits completely in } \\
& F_{j} \text { but not completely in } F_{j}^{*} .
\end{align*}
$$

This latter condition is characterized as exactly those primes whose Artin symbol $\left[\frac{F^{*} / \mathbb{Q}}{(p)}\right]$ lies in certain conjugacy classes of the Galois
group $G^{*}=\operatorname{Gal}\left(F_{j}^{*} / \mathbb{Q}\right)$. (More generally such a characterization exists for any set of primes p determined by prime-splitting conditions on (p) in the subfields of a finite extension of \mathbb{Q}, see $[1]$, Theorem 1.2.) To specify the conjugacy classes, we use the following facts. The group G^{*} is of order $2 \cdot 3^{j}$ with generators σ_{1}, σ_{2} given by

$$
\begin{array}{lll}
\sigma_{1}\left(\zeta_{j+1}\right)=\zeta_{j+1}^{2}, & \sigma_{1}\left(\phi_{j}\right)=\bar{\phi}_{j}, & \sigma_{1}\left(\bar{\phi}_{j}\right)=\phi_{j} \\
\sigma_{2}\left(\zeta_{j+1}\right)=\zeta_{j+1}, & \sigma_{2}\left(\phi_{j}\right)=\zeta_{j} \phi_{j}, & \sigma_{2}\left(\bar{\phi}_{j}\right)=\zeta_{j}^{-1} \bar{\phi}_{j}
\end{array}
$$

where $\bar{\phi}_{j}=\phi_{j}^{-1}$ is the complex conjugate of ϕ_{j}. A general element of G^{*} is denoted $[k, l]$ where $\sigma=[k, l]$ acts by

$$
\sigma\left(\zeta_{j+1}\right)=\zeta_{j+1}^{2^{k}}, \quad \sigma\left(\phi_{j}\right)=\zeta_{j}^{l} \phi_{j}^{(-1)^{k}}, \quad \sigma\left(\bar{\phi}_{j}\right)=\zeta_{j}^{-l} \phi_{j}^{(-1)^{k+1}}
$$

Here k is taken $\left(\bmod 2 \cdot 3^{j}\right)$ and $l\left(\bmod 3^{j}\right)$, and the group law is

$$
[k, l] \circ\left[k^{\prime}, l^{\prime}\right]=\left[k+k^{\prime}, l(-1)^{k^{\prime}}+l^{\prime} 2^{k}\right]
$$

Note that $\tau=\sigma_{1}^{3^{J}}=\left[3^{j}, 0\right]$ is complex conjugation. We claim that

$$
\begin{align*}
& 3^{j} \|(p+1) \text { and } \phi^{p^{2}-1} 3^{j} \tag{1.6}\\
& =1(\bmod p) \\
& \Leftrightarrow \text { The Artin symbol }\left[\frac{F_{j}^{*} / \mathbb{Q}}{(p)}\right] \text { is either }\left\langle\sigma_{1}^{3^{j-1}}\right\rangle \text { or }\left\langle\sigma_{1}^{-j^{j-1}}\right\rangle .
\end{align*}
$$

One easily checks that the conjugacy classes containing $\sigma_{1}^{3^{\prime-1}}$ and $\sigma_{1}^{-3^{J-1}}$ each consist of one element. To prove the \Rightarrow implication in (1.6), note first that the condition that $3^{j} \|(p+1)$ implies that the Artin symbol $\left[\frac{F_{f}^{*} / \mathbb{Q}}{(p)}\right]$ contains only elements of G^{*} of the form $\sigma_{1}^{ \pm 3^{j+1}} \sigma_{2}^{k}$. Indeed, consider the action of an automorphism σ in $\left[\frac{F_{j}^{*} / \mathbb{Q}}{(p)}\right]$ restricted to the subfield $\mathbb{Q}\left(\zeta_{j+1}\right)$. Now $\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{j+1}\right) / \mathbb{Q}\right)$ is isomorphic to the subgroup generated by σ_{1} and the restriction map sends $\sigma_{1} \rightarrow \sigma_{1}$ and $\sigma_{2} \rightarrow$ (identity). Then $3^{j} \|(p+1)$ says that σ restricted to $\mathbb{Q}\left(\zeta_{j}\right)$ is complex conjugation, but is not complex conjugation on $\mathbb{Q}\left(\zeta_{j+1}\right)$. Hence $\sigma=\left[\pm 3^{j-1}, l\right]$ for some l. Next, any element σ of $\left[\frac{F_{j}^{*} / \mathbb{Q}}{(p)}\right]$ when restricted to acting on the subfield F_{j} has order equal to the degree over \mathbb{Q} of the prime ideals in F_{j} lying over (p), which is 2. The group $G=\operatorname{Gal}\left(F_{j} / \mathbb{Q}\right)$ is isomorphic to the subgroup generated by σ_{1}^{3} and σ_{2}, with the restriction map $\Omega: G^{*} \rightarrow G$ sending $\sigma_{1} \rightarrow \sigma_{1}^{3}$ and $\sigma_{2} \rightarrow \sigma_{2}$. Thus $\Omega(\sigma)=\left[3^{j}, l\right]$ for some l. However the group law gives

$$
\left[3^{j}, l\right] \circ\left[3^{j}, l\right]=[0,-2 l]
$$

Thus $\left[3^{j}, l\right]$ is of order 2 only if $l=0$, and this proves the right
side of (1.6) holds. For the reverse direction, if $\sigma=\left[\pm 3^{j-1}, 0\right]$, then σ restricted to acting on F_{j} is $\Omega(\sigma)=\left[3^{j}, 0\right]$, which is complex conjugation τ, hence of order 2 , so that

$$
x^{p^{2}} \equiv x^{\sigma^{2}}=x(\bmod \mathfrak{p})
$$

for all prime ideals \mathfrak{p} in F_{j} lying over (p), for all algebraic integers x in F_{j}. Thus

$$
x^{p^{2}-1} \equiv 1(\bmod (\mathfrak{p}))
$$

for all such x, such that $(x,(p))=1$, including ϕ_{j}, and the left side of (1.6) holds.

Now the set of primes satisfying (1.6) has density $2\left[F_{j}^{*}: \mathbb{Q}\right]^{-1}=$ $3^{-2 j}$, by the Chebotarev density theorem. The density of primes with $p^{j} \|(p+1)$ and $p \mid W_{n}$ for some n then is $d_{j}^{*}=3^{-j}-3^{-2 j}$, and the total density of primes $p \equiv 2(\bmod 3)$ with p dividing some W_{n} is

$$
D_{2}=\sum_{j=1}^{\infty} d_{j}=\frac{3}{8}
$$

Finally $D_{1}+D_{2}=\frac{3}{4}$, completing the proof.
Remark. Of the 1228 primes less than 10^{4}, one finds:
$\#\left\{p: p \equiv 1(\bmod 3), p\right.$ divides some $\left.W_{n}\right\}=450$,
$\#\left\{p: p \equiv 2(\bmod 3), p\right.$ divides some $\left.W_{n}\right\}=466$,
$\#\left\{p: p\right.$ does not divide any $\left.W_{n}\right\}=312$.
These give frequencies of $36.6 \%, 37.3 \%, 25.4 \%$, which may be compared with the asymptotic densities $3 / 8,3 / 8,1 / 4$, respectively, predicted by the proof of Theorem C.

Acknowledgments. Christian Ballot brought the mistake to my attention. Jim Reeds computed the statistics on $p<10^{4}$ for W_{n}.

References

[1] J. C. Lagarias, Sets of primes determined by systems of polynomial congruences, Illinois J. Math., 27 (1983), 224-237.
[2] \qquad , The set of primes dividing the Lucas numbers has density $2 / 3$, Pacific J . Math., 118 (1985), 449-462.
[3] R. R. Laxton, On groups of linear recurrences II. Elements of finite order, Pacific J. Math., 32 (1970), 173-179.

Received March 2, 1992.

