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DEC GROUPS FOR ARBITRARILY HIGH EXPONENTS

B. A. SETHURAMAN

For each prime p and each n > 1 (n > 2 if p = 2), examples
are constructed of a Galois extension K/F whose Galois group has
exponent p" and a central simple F-algebra 4 of exponent p which
is split by K but is not in the Dec group of K/F .

1. Introduction. Let K/F be an abelian Galois extension of fields,
and let G = Z(K/F). Let G = G; X G, X --- x G} be a direct sum

decomposition of G into cyclic groups, with G; = (g;) (i=1, ..., k).
Let F; be the fixed field of G; x --- X Gij_1 X Gjyy X --- X Gy (i =
l,...,k). Thus, the F; are cyclic Galois extensions of F, with

Galois group isomorphic to G;. The group Dec(K/F) is defined as
the subgroup of Br(K/F) generated by the subgroups Br(F;/F) (i =
1,..., k). This group was introduced by Tignol ([T1]), where he
shows that Dec(K/F) is independent of the choice of the direct sum
decomposition of G. If p is a prime, we will write ,» Br(K/F) and
0 Dec(K/F) for the subgroups of Br(K/F) and Dec(K/F) consisting
of all elements with exponent dividing p”.

A key issue in several past constructions of division algebras has
been the non-triviality of the factor group , Br(K/F)/, Dec(K/F) for
suitable abelian extensions K/F . For instance, the Amitsur-Rowen-
Tignol construction of an algebra of index 8 with involution with no
quaternion subalgebra (JART]) depends crucially on the existence of
a triquadratic extension K/F for which , Br(K/F) # ,Dec(K/F).
Similarly, the constructions of indecomposable algebras of exponent p
by Tignol ([T2]) and Jacob ([J]) also depend on the existence of an (el-
ementary) abelian extension K/F for which ,Br(K/F)#,Dec(K/F).

The extension fields K/F that occur in these examples above are
all of exponent p, and it is an interesting question whether there exist
abelian extensions K/F whose Galois groups have arbitrarily high (p-
power) exponents for which the factor group , Br(K/F)/, Dec(K/F)
is non-trivial. The purpose of this paper is to show that for each
n>1(n>2if p=2), there exists an abelian extension K/F with
Galois group Z/p"ZxZ/pZ (and thus, of exponent p") and an algebra
A €, Br(K/F) such that 4 ¢ ,Dec(K/F). (Note that if K/F is an
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Z/2 xZ]2 extension, then , Br(K/F) is always equal to , Dec(K/F),
see [T3] for instance.)

Our field F will be the rational function field in 3 variables over
a field Fy of characteristic O that contains sufficiently many roots of
unity. (For instance, F; may be algebraically closed.) Our algebras
will in fact be generalizations of the example given by Tignol in [T2].
Moreover, we will prove that for 4, K, and F as above, A®r L ¢
pDec(K-L/L) for any finite degree extension L/F with p{[L: F].

The special case » = 2 (and p odd) of these computations was
done in [Sel], where the result was used to construct non-elementary
abelian crossed products of index p3 and exponent p?2.

We remark that using different techniques, Rowen and Tignol ([RT])
have shown that if the ground field is assumed to only contain a prim-
itive pSth root of unity but not a primitive pst!th root of unity for
some s > 1, then examples of non-trivial factor groups

p» Br(K/F)/p Dec(K/F)

exist for suitable abelian extensions K/F whose Galois groups have
arbitrarily large (p-power) exponents. Using ultraproducts ([R]), their
example can be extended to also cover the case where the ground field
contains all primitive p’th roots of unity (i=1,2,...).

2. p-adic valuations on rational function fields. Let p be a prime,
which, for now, can be either odd or even. Let F, be a field of char-
acteristic 0. The subfield Q of F, has a standard valuation v: Q — Z
obtained by writing any non-zero element in Q as p”a/b, where n,
a, and b are integers, and p is relatively prime to a and b, and
defining v(p"a/b) = n. We will refer to any valuation on F; that ex-
tends this distinguished valuation on Q as a p-adic valuation. Since
the residue field of Q under v is Z/pZ, the residue of Fy under any
p-adic valuation is of characteristic p.

Now let F = Fy(xy, X3, ..., Xx) be the rational function field over
Fy in k indeterminates (k > 1), and let v be a fixed p-adic valua-
tion on Fy. Then v admits an extension w to F defined as follows:
for any polynomial f € Fy[x;, X2, ..., Xx], w(f) is the minimum of
the values of the coefficients, and for f and g in Fy[x;, x5, ..., x¢],
w(f/g) = w(f) — w(g). (It is easy to check that w is indeed
a valuation on F.) It can be shown that the residues X; of the
x; (i=1,..., k) are algebraically independent over the residue F,,
of F,; and that, moreover, F is precisely the rational function field
Fo(x1,X3,...,X5). (It is also clear from the definition of w that
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I'r =TF .) We will refer to w as the standard extension of v to F.
Also, we will abuse notation and continue to write x; for the residues
X;.

REMARK 2.1. Furthermore, it can be shown that w is the unique
extension of v to F with the property that the values of the x; are
0, and the residues of the x; are algebraically independent over Fj.
(See [B, §10, Proposition 2].)

The following is well known, but we include a proof here for con-
venience.

LEMMA 2.2. Let p be any prime, and let F be a field of character-
istic 0. Let v be a p-adic valuation on F. Let K = F(f1/?), where
f ¢ F**, and v(f) = 0. Assume that [ = f§ +nfi + 0, where
v(fo) = v(fi)) =0, 0 <v(x) < (p/(p — D)v(p), and v(J) > v(m).
Assume, too, that f; ¢ FP, and that there exists 0 € F* such that
07 = . Then v extends uniquely to K, and K = F(_ll/ .

Proof. Let r € K* satisfy r? = f, and let s = (r — f3)/6. Then
s+ (fo/0) = (r/0), so s satisfies

nY R+nfi+o
(1) (s+§0) =

Expanding the left-hand side of (1) and noting that 6” = n, we find

p—1 p—i
p P\l = i)

) s+§(i)s (0) —f1+<0p :

Now for i=1,...,p—-1, v((})) = v(p), while v(67~") < v(67~!)
= v(z-D/P) < wv(p). (The last inequality is because v(n) <
(p/(p — 1)v(p).) From this, as well as the fact that v(fy) = 0,
we find that each of the expressions (2)(fo/6)?~' (i=1,...,p—1)
has positive value. It follows that for any extension w of v from
F to K, if w(s) < 0, then the left-hand side of (2) would have
the same value as s?. (Here we use the fact that if w(a) < w(bd),
then w(a + b) = w(a).) Since this contradicts the fact that the
value of the right-hand side of (2) is O (note that v(f;) = 0, while
v(d/67) > 0), we must have w(s) > 0. Similarly, if w(s) > 0,
then from w(a + b) > min(w(a), w(d)), it follows that the left-hand
side of (2) must have positive value. Hence w(s) = 0. Taking the
residues of each term in (2) and noting again that all terms except s”

and f; have positive value, we find 3 = f;. Thus K D FFHy.
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Since f; ¢ FP?, and since [K : F] = p, we find by the funda-
mental inequality ([E, Corollary 17.5]) that w is unique, and K =

FFHy. O

Now let F; be a field of characteristic 0. We will assume that F
contains p!/?" forall i(i=1,2,...). Let F be the rational function
field Fy(x;, x2,y). For each n (n >0), let

(3) b= (X0 —p?")(xE = yP").

Let H, = F (qb},/ Py. Let v be the standard extension of any p-adic
valuation on Fy to F. The manner in which v extends from F to
H, will be crucial to our Dec results, and the rest of §2 is devoted to

this topic.
First, some notation. For p odd,and i=1,2,...,p—1, let
(=P ip

(so each 4; is an integer). For p odd, again, define g,(x,y) €
Zix,yl](n=0,1,2,...) by
p—l n_ . n .
(5) gn(x,y) = A(xP ) (yP )P,
i=1
SO
(P =y P =xP" — P 4 pga(x, ).
Now for p odd, define A,(x;, X2, y) € Z[xy, x2,y](n=0,1,2,...)
by

(6) hn(x1, X2, ¥) = (X —y?" VP gn(x2, ¥) + (X = y7 VW gu(x1, ¥),

and for p =2, define h,(xy, X2, y) € Z[x1, X, y](n=0,1,2,...)
by

(1) ha(x1, X2, ¥) = (6F +9¥)2xF y? + (53 +y¥)2x7 y?.

REMARK 2.3. We will abuse notation and continue to write g, and
hy, for the images of g, and A, in Z/pZ[x, y] and Z/pZx;, x;, y]
(respectively).

The special case n = 1 (and p odd) of the following was proved
in [T2, Lemma 3.7].
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PropPoSITION 2.4. For every prime p ani forall n (n > 1), v
extends uniquely from F to H,, and H, = F(ho(x1, x2, y)'/P).

Before proving Proposition 2.4, we need some further notation, as
well as some easy lemmas.
For p =2, define e,(x;, X3, y) € Z[x,, X3, y] (for n > 1) by

(8) en(x1, X2, ) =y2 (x} +x3),

and yu(x1, X2, y) € Z[xy, X3, y] (for n > 0) by

(9) Wn(x1, X2, ¥) = (xF +37) (x5 +»7).
For n€Z (n > 1), define a, € Q by

1 ifn=1
10 =< 7 ’
(10)  on {1+1/p+1/p2+---+1/p”"1, ifn>1.

Finally, for any k € Q, abbreviate the phrase “terms of value at least
v(p*)” by [[p*]].

REMARK 2.5. Just as with g, and #,, we will abuse notation and
continue to write e, for the image of e, in Z/2Z[x;, x;, y].

LEMMA 2.6. Let f, g, fi, and g be polynomials in Z[x,, x;, y].
Then, with respect to the restriction of v to Q(xy, x3,y) (i.e, the
standard extension of the p-adic valuation on Q to Q(x;, X2, ¥)),

L If f=g+Ip]), and fi = g1 +[[p]], then f+ fi = g+ g +IIr]]
and ff1 = gg +I[p]l.

2. (f+g)l=fP+gl+[p]l

3. Let k > 1, and suppose

D A O LICEALIE; OLR
for some ¢; ; ; €Z. Define f'/P € Zlx,, x2, y] by
PP =3 e ()08,
Then f = (f'7) +[[p]].
Proof. Note that the values of f, g, fi,and g; are non-negative.

(1) and (2) are now elementary. (3) follows from (2) along with the
fact that a? =a (mod p) forany a€ Z. |



378 B. A. SETHURAMAN

LEMMA 2.7. With respect to the restriction of v to Q(x1, x2,¥),

1. For n> 1 and forall p, hy, = h%_, +[[p]l, and for n > 2 and
p=2, ex=¢e2_, +[[2]].

2. For n>1 and p odd, ¢ = ¢%_, — phy—1 + [[P*1].

3. Forn>1and p=2, ¢p=Yn—2es, and Yn = w2 | —2hy_1 +
[[41] (so ¢n = w2 | —2(hy_1 +en) +[[4]]).

Proof. (1) follows from the definitions of 4, and e, and Lemma
2.6. For instance, for p odd (and n > 1) we have

n—1

=y = (T =y T [P = (7 =P+ [[p]).
Also,

p—1
gn(x2, ) = Y A(xd ) (P )
i=1

p_l n—1 . n—1 . p
= (Z Ai(x3 ) P )""’) +[[p]]
i=1

= (gn-1(x2, ¥))? + [[p]].

Since similar relations hold for (xé’ " yP" )? and g,(x;,y), we find

o= (X2 = Y7V (gno1 (X2, ¥))P
+ (T =y (gt (31, )Y +1IP]]
= (T =P Vg1 (x2, ¥)
+ (2 =P VP gt (31, ) + 2]
= h2_, +[Ip]l.

The proof for p = 2 is similar. For (2), we have
bn = (X" = yP")(xE" = yP")
= [ =P — pgi (31, V)]
A6 =y — pgai (%2, ¥)]
e (C A A 16T S ]
— Pl = P i (%2, ¥)
+ (2 =y Vg1 (%1, )]+ [IPH]
= @2, — phy_y +[[P*1].



DEC GROUPS 379

As for (3),

dn=(xF —y?)(xF —p¥)
= (7 +y¥ = 2P)(xF + ¥ - 27
= (xF +y) o + v =27 (o + D)
= Yn — 2ep.

Also,

wn = (xF +¥)(xF +»%)
e (C T A I -y | (E ST A LR P A
O (TS A 167 A ) ¢
) (E 7 S A Lo A NS > S A L i I 1)
=2 | =2k, + 410 O

LemMA 2.8. Forall p and for all k >0, o). <ay+1/p.

Proof. Since a; < a; < ay + 1/p, we may assume k > 2. Now
ars1 = 1+ 1/p+---+1/pF and ay = 1 4+ 1/p, so it is sufficient to
prove that 1/p%+---4 1/p* < 1/p. Multiplying both sides by p, we
need to prove that 1/p +---+ 1/p*¥~! < 1. But this is clear, since

Up+-+ 10" = 1p(1+1/p+- +1/p*?)
<1/p(1+1/p+ 1/p2+~--)
=1/p-1) <L O

Proof of Proposition 2.4. We divide the proof according to whether
p 1is odd or whether p =2.

Case 1 (Odd p). If n =1, this follows from Lemmas 2.7 and 2.2.
For, by Lemma 2.7, ¢; = ¢{ — pho + J, for some J € Z[x,, X3, y]
with v(6) > v(p?). By assumption, p!/? € F. Clearly, —hy ¢ F? =
7 (x?, x5, y?). Thus, by Lemma 2.2, v extends uniquely to Hj,
and H = F((~ho)'/?) = F(hy/?).

In general, for n > 1, we have by Lemma 2.7,
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(11)  ¢n=¢5_, phn 1+ P71
¢h_y —p(h_, +IIp]) + [[P°1]
i — phf,’_z +[p?1]
=¢b_| — (0" Phy_2)? +[[P°]]
= (Gn-1 — PPhy_2)" — p&o(bn-1, PP hn_3) + [[P?]]
= ($n-1 = P Phy_2)P — p™2dh | hn_s + [[p*+/7]].
(For the last equality, note that

P8 (Sn—1, P Phy_3) = p(p'/P)hy_r¢"" ]
+ (5) @ rh 2+

Also, note that pl+1/? = p% and p!*+2/P = p+1/P | Finally, note that
since p>3, 1+2/p<2)

Claim. For 2<k<n-1,if
Sk =af —p*h 1B h i e + [P,
for some a;, € F with a; = ¢,_; + [[p'/7]], then
Sk=al,, —pndh 1 b5 B by + [0V,
for some a,; € F with ap. = ¢,_1 + [[p'/?]].
Proof of claim. For, by Lemma 2.7, ¢; = ¢*_| +[[p]] and h; =
hf_l +[[p]] forall j > 1, so
S = af — p(¢h_, + [P1)" " (#h_5 + 1))
(0 i+ [P~ (R _ ey + [Ip1]) + [p*17P]]
= al — p (2% + e (@245 + [lp])
(@8 + (I (RE_,_, + Up1]) + [t/
=az = P (P27 - (B )PP VRE_, |
+ [P+ 1] + [[p2*1/7]]

= af — (PP ($p2) P70+ ($n) "™V hp—r)? + [[0%1P]]
(asaz+1/p<ar+1)

= (ax =Py i nkr)”
_pgo(ak’pak/p(bflzé...qgl-khn_k_l)+[[p012+1/p]].
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Expanding pgo(ay, pak/l’¢ﬁ:é e q&ﬁ:,lch,,ﬁk_l) and considering the
first two terms of lowest value, we find
S = (ax —p/PE ) P By g )P
—p Py T B oy + [P TEAP] + [[p% P,
Now 14 ay/p =ay,. Also, 1+ (2ax/p) = apry +ax/p >az+1/p
(as ayy1 > ap and o > 1 when k > 2). Thus,
S = (ar —pPR P By g )P
—ponal b T ey + [0,
Now recalling that a; = ¢,_;+[[p"/?]], we find a?~' = ¢2~ | +[[p'/"]].
Hence,
S = (ag —p*/PG) - 2 hy 1)
= P Ty B ko + % TPT + [[pOr 1Y),

Since ay,y > @z, a1+ 1/p>az+1/p. Thus,

Sy = (ar — /P P hy_pe1)P
— P g BT T by + [[p%TP]).

Take apy; = (ax — po/P@E - "y hy_y_1). Since ap = ¢u_1 +
[[p'/7]] and since 1/p < ax/p (as k > 2), 4y = ¢n1 + [[P'/7]].
This proves the claim.

Proof of Case 1 (continued). We now use the claim above to induc-
tively reduce (11) until it yields

(12) ¢n = a? +p*bhy+9,

for some a € F with v(a) = 0, some b € F with v(b) = 0
and b € F?, and some 6 € F with v(d) > a,. Since p*/? =
pl/pH1p++1p" = Fo it will follow immediately from Lemma 2.2
that v extends uniquely from F to H,, and H, = F(h(l,/ Py.

If n =2, then (11) is already in the desired form, since ¢, € F?.
Otherwise, we write (11) as

$n =Sy + [[p*1/7]],
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with a; = ¢,_; —p'/Ph,_, . By repeatedly applying the claim, we find
n=Sp +[lp%*"7]1,

with S, = a{,’—panqbg:} . --¢‘l"1ho, for some a, € F with a, = ¢,_;+
[[p!/?]]. By Lemma 2.8, o, < ap+1/p forall n > 3. Observing that
the residues of ¢,_;, ..., ¢; are all pth powers in F, we find that
¢n is now in the form (12), and we are done.

Case 2 (p = 2). The basic steps for the p = 2 case are the same as
for the odd p case, the differences are only in the details.

If n =1, then, by Lemma 2.7, ¢; = y¢ — 2(ho + €;) + [[4]], so
by Lemma 2.2, v extends uniquely to H;, and H; = F(/(hy +€;)).
But e; is already a square in F, so H; = F(\/hg).

In general, for n > 1, we have, by Lemma 2.7

bn =W = 2(hn_1 +en) + [[4]]

= w2 ;= 2(h2_, + [[2]] + €2_, + [[21]) + [[4]]

=yr_ = 2h;_ 5 +er )+ 4]

= Y2 = 2((An—2 + €n—1)* + [[21]) + [[41]

= W2 ) = 2(hn_2 + en1)? + [[4]]

= '/’r%—l + 2(hn—2 + en—1)2 —4(hy—y + en—l)2 + [[4]]

=2 1 + 2 (hy_y + €n_1))? +[[4]]

= (Wn—1 + (2Y2(hyr + €n_1)))
- 2(2)1/2Wn—1(hn—2 +e,-1) + [[4]]

(13) = (Wp-1+ (21/2(hn—2 + en—l)))2

—2%Wy_1(hp—2 + €p_1) + [[4]].

Claim. For 2<k<n-1,let
Sk =af = 2% Y1 Wiyt (n + €n_i1) + (1411,
for some a; € F with a; = w,_; +[[21/2]]. Then,
Sk =ag, = 2%y, o Wy (i1 + eni) + 411,

for some a4, € F with ai,; = y,— + [[2!/2]].
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Proof of Claim. We have

Sk = ai — 2%/ (yy_p +1121)
s (W + 121D (B _je_y + (1211 + e + [121D) + [[41]
=ap— 2%yl vty +en )
+ [[21F2/ 7] + [[4]]
=ap - %2y o Y i (hp 1 +eq 1) + [1211) + [141]
= ap — (2% Yy Yk (Ayg_1 + €a_))* +[[41]
= a]% + (za"/z'//n—Z o Wnk(Pp—g—1 + en—-k))2
—2(2% %Yy Yt (hy—k—1 + €n))* + [[4]]
=ap + (2% Wy Wi (hy_ie—1 + €4_x))? + [[4]]
= (@ + 2% * Wz Uk (Pui—1 + €ni))*
—2Q2% ) Wz - Yy (Pn_—1 + €ni) + [[4]]
= (a + 20"/2Wn—-2 Wk Py + en—k))z
- 21+ak/2(‘//n—-1 + [[21/2]])Wn—2
o Wn_k(Ap_g—1 + €n_i) +[[4]]
= (ak + 2ak/z'//n—Z o ‘//n-—k(hn-—k—l + en—k))2
= 2%y Wn_2 Wnk(Pn_k—1 +€n_i)
+ [[2%+1/2]] + [[4]]
= a0y — 2% W W2 Wk (Pniemy + €nic) + [[41],
where
W1 = A+ 2%y Wi (By_p—1 + €ni),
(50 @pi1 = Wnor + [[2V21) + [[2%/2]] =y + [[2/2])).

Proof of Case 2 (continued). We now use the claim above to induc-
tively reduce (13) until it yields

(14) bn = a®+2%b(hy+e))+ 0,

for some a € F with v(a) = 0, some b € F with v(b) = 0
and b € F2, and some 6 € F with v(d) > a,. Since 2%/2 =
21/2+1/2+-+1/2" ¢ Fy it will follow immediately from Lemma 2.2
that v extends uniquely from F to H,, and H, = F(y/hy+e) =

F(v/ho).

If n =2, then (13) is already in the desired form, since ¥ € F2.
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Otherwise, we write (13) as

¢n =82 +[[4]],

with a; = w,_1+2Y2(h,_,+e,_;). By repeatedly applying the claim,
we find

¢n = Sn + [[41],

with S, = a2 — (2%)W,_1--- w1 (ko +€;) , for some a, € F with a, =
Wn_1 + [[2!/2]]. By Lemma 2.8 (or by more direct means), a, < 2

for all » > 3. Observing that the residues of y,_;, ..., y; are all
squares in F , we find that ¢, is now in the form (15), and we are
done. O

3. The Dec results. Let Fy be a field of characteristic 0 containing
all primitive p’th roots of unity w; (i = 1,2, ...), chosen so that
o?, | = w;. (We will write @ for w;.) If L2 F; is any field, and if
a and b are in L*, then, as in [D, Chapter 11}, (a, b; p", L, w,)
will denote the algebra generated over L by two symbols « and f
subject to o =a, BP = b, and af = w,af, and will be referred
to as a symbol algebra. Now let F = Fy(x;, X2, y) be the rational
function field over Fp in the three indeterminates x;, Xx;, and y.

For each n > 1, define
Ay =(x1, X2 —y;p, F,0)®F (x2, X8 —y;p, F, ).

LEMMA 3.1. For each n > 1, A, has index p* and exponent p.
Further,

X ) )
An"’(y,( L pr):(p% ;pn+lsFawn+1 .
X1 X3

Proof. This is very similar to the proof of Proposition 2 in [Se2], and
we only sketch the proof. The factor (x;, x{’" -y;p, F, w) is NSR
with respect to the x;-adic valuation on F , with residue isomorphic to
Fy(x3, z), where z = y1/7 | The factor (x,, xfn-y ; D, Fo(xz, 2), w)
(i.e., defined over Fy(x;, z)) is NSR with respect to the x5 " _ 2 adic
valuation (with residue isomorphic to Fo(x21 /P)) . It follows from [JW,
Theorem 5.15] that 4, has index p?. It is clear that exp(4,) =p.
As for the final statement of the lemma, standard symbol algebra iden-
tities (e.g., [D, Chapter 11, pages 77-82]) along with the assumption
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about the roots of unity in F; show that
Ap~ (X}, xV —y; "L F, 04)

" " . pn+l
®F(x§ 9xg '—yapn aFawn+l)

x""-—y
~ (_y, ‘L—r—§Pn+l s F’ wn+l)

D
X1
xg” — Y. n+l
®F -y, PR D ) Fa Wp41
X2
a(l yr)x(% y);pn+laF’wnl ]

P p +

X1 X3

Now write ¢, for (x? — y)(xF — ») (this notation will be seen to be

consistent with that of §2), and write K, for the field F(y'/?", $1/7).
Then 4, € Br(K,/F). Tignol ([T2, Theorem 1]) showed that when
p isodd, A; ¢ Dec(K,/F). We have

THEOREM 3.2. 1. For p oddand n > 1, 0or p =2 and n > 2,
A, ¢ Dec(Ky/F).

2. More generally, for p odd, n>1,and 0<I<n-1,0r p=2,
n>2,and 0</<n-2,let Fj = F(yl/l") (so F; C K;,). Then,
Ay ®F F; ¢ Dec(Kn/F).

3. Further, let E be any finite extension of F, with pt[E : F]. For
podd, n>1,and 0<I<n-1l,orp=2,n>2,and 0<I1<n-2,
let E; = E(y'/?") (so E; C Ky-E). Then, An®rE; ¢ Dec(Ky-E/E}).

Proof of Theorem 3.2. 1t is clearly sufficient to prove (3). Moreover,
it is sufficient to prove (3) for the case / = n — 1 (for p odd) and
l =n-2 (for p =2). For, assume that for / <»n—1 and p odd, or
for I<n—-2and p=2,

1
An ®F Ej ~ (yl/p , by ;pn—l’ E;, w,_p) ®E, (bZ’ én; D, Ep, ),
for some b, and b, € Ej. Then, extending scalars to E,_; (for
p odd) and E,_, (for p = 2), we find by standard symbol algebra
identities
An®F By ~ W7 bi5p, Eusy, 0)®F_ (b2, ¢n3 P, Eno1, ©)
for p odd, and

n—2

An ®F En_y ~ (7" by; p?, Ey_a, 02) ®,_, (b2, $n D> En2z, @)
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for p = 2. Thus, we find that for p oddand / <n -1, if
An®F E| € Dec(K, - E/E))

then
An ®F E,_1 € Dec(Ky - E/Ey,_y),

andfor p=2 and I<n-2,if
An ®F E; € Dec(Ky, - E/E))

then
A, ®F E,_, € Dec(K, - E/E,_»).

We find it convenient at this point to divide the proof according to
whether p is odd or even.

Case 1 (p odd). Assume that

An ®F En—l ~ (yl/p"_ s bl s D, En—l ’ w)®En—1(b23 ¢n;p, En—l ’ w)’

for some b, and b, € E;_,. By Lemma 3.1 and standard symbol
algebra identities,

An ®F En—l ~ yl/p"_l s ?n T s p2 ’ En—l ,» W2 ).
x{ x3
Put z = y!/?" . Then, extending scalars further to E, = E (z), and

noting that x{’n and xfn are pth powers, we find
(z,¢n;0, En, @)~ (b, ¢n;p, En, @),
where we have written b for b,. Hence,
(z/b, én3p, En, @) ~ 1,
$O
(15) z/b = N(u)

for some u € E,((¢,)!/?), where N denotes the norm from
E,((¢n)'/?) to E,. We will prove that it is impossible to find b € E,,_;
and u € E,((¢,)'/?) such that (16) holds.

If Fy denotes the algebraic closure of Fy, then Fy(x;, X3, y) is
normal over Fy(x;, X2, ¥), so if E = Fy(x;, X5, y)(¢t) for some ¢ €
E*, then it is standard that the degree of the minimum polynomial of
t over Fy(x;, x,y) divides the degree of the minimum polynomial
of ¢ over Fy(x;, x2,y). Hence p{[E-Fy(x;, X2, ¥): Fo(x1, X2, ¥)].
Thus, while showing that (15) cannot hold, we may assume that Fj is
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algebraically closed. In particular, we may assume that Fy contains
p!/P" forall i (i=1,2,...), so we may apply the machinery of §2.

Now write x for hy(x;, x», z), where Ay is as in §2. As with the
polynomial Ay, we will abuse notation and continue to write y for
the residue of Ay under appropnate p-adic valuations. Observe that
over E,, ¢, = (x1 —zF )(x” —zP"), which, after renaming variables
is indeed the same as the “¢,” of §2.

We first need an easy lemma:

LeEMMA 3.3. Let p be a prime, and let (F,v) be a valued field.
Let K be a finite dimensional separable extension of F such that
p1[K : F]. Then for some extension of v to K, pt[K : F].

Proof. Let v; (1 < i <s) be the extensions of v to K, and let (K);
denote the residues of K with respect to the valuations v;. Let F;,
denote the henselization of F with respect to v, and let K; ;, denote
the henselization of K with respect to v; (1 < i < s). Then (by
[E, Theorem 17.17]) [K : F] = Y ;_[K; » : Fy], so if p t [K : F],
then p ¢ [K;  : F] for some i. Now K; , = (K); and F, = F,
so by Ostrowski’s theorem ([O, Satz 4], see also [E, Theorem 20.21]),
[(K)i : F1| [K; »: Fy]. Hence, for this i, p{[(K);:F]

Proof of Theorem 3.2 (continued). Now let L = Fy(x;, X, z) and
let v be the standard extension of any p-adic valuation on Fy to L
(so L= Fy(x;, X2, z)). Let Ly = Fy(x;, X, z7), and let vy denote
the restriction of v to L;. Choose an extension w of vy to E,_;
such that p { [E,_, : L|]. (Since [E,_; : L] = [E : F], the lemma
above shows that such a choice is possible.) By Proposition 2.4 v
extends uniquely from L to L(q&,,/” ), with residue L(x!/?). Since

p {1 [E,—1 : L], while [L(d):,/”) L] = p?, it follows easily that w
extends uniquely from E,_; to E,(¢y'?), with residue E,(x!/?).
Now, continue to write w for the (unique) extension of w to
En(qb,l,/p ) and consider the relation (15). Since v(z) = 0, we get
w(b)+w(N(u))=0. Since I'y_ =T, - (877) > thereisa c € E,_; such
that w(c) = w(u). Then, bN(u) = bcPN(u/c) and w(u/c) = 0,
w(bc?) = w(b) +p - wu) = w(b) + w(N(u)) = 0, and of course,
bc? € E,_;. Hence, we may assume in (15) that w(b) = w(u) =0.
Now let o be a generator of & (Ey(¢n'?)/En), s0

Nu)=u-ou)---c® (u).



388 B. A. SETHURAMAN

Hence, N(u) =%-@(%)---@”~ (%), where @ is the induced automor-
phism of E,(x'/?)/E, (i.e., 3(X) = o(x) forall X € E,(x'/?)). Since
the extension E,(x!/?)/E, is purely inseparable, G is just the iden-
tity, so find N(u) = % . Thus, reducing the relation z = bN(u) mod-
ulo the maximal ideal of the valuation ring of w, we find z = b#?,
where b € E,_;, and u € E,(x'/?). We will show that such a relation
is impossible.

Let E,_, =L;(),sothat 1, 6, ...,0°! formabasis for E,_, /L,
with s = [E,_; : L;]. Since p t s, it follows easily that E,_; =
Li(6°), and 1,67, ...,66"17 also form a basis of E, /L;. Like-
wise, 1,0,...,605 ! aswellas 1,67,..., 05 DP are both bases
of E,(x'/?)/L(x'/?). Now let

1/27-2b0+b10p+...+bs_10(s—l)p’
where the b; € Ly (i=0, 1,..., s~ 1). Similarly, let
ﬁ=u0+u10+...+us_10s—l,

where the u; € f(xi/l’) (i=0,1, T 1). Substituting the expres-
sions above for 1/b and # in z/b = w? and comparing like terms,
we find

(16) zby = uf),

where of course, by € L; and uy € L(x!/?). The impossibility of (16)
above is just the impossibility of [T2, (23)], and follows immediately
from the proof given there. However, for the sake of completeness,
we will reprove this result here. Our proof will be different from that
in [T2]; instead, it will be similar in spirit to the proof below of a
corresponding result for p = 2.

Write ¢ for 1/by and u for ugy, so we need to show that
there do not exist ¢ € L; (= Fy(x;, x2, z”)) and u € L(x'/7)
(= Fo(x1, x2, z)(x'/?)) such that z/c = u?. By considering the z-
adic valuation on L, , it is easy to see that forany ce ;" z/c ¢ L.
Now assume that z/c = u? for some ¢ € L, and some u € L(x!/?).
Then L((z/c)!/?) c L(x'/?), sowe find L((z/c)/?) = L(x'/?). Thus,
there exist ;e L’ (i=0,1,...,p— 1) such that

p—1

(17) X (=ho(x1, X2, 2)) =Y fi(z/c)

i=1
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Since 1, z, ..., zP~! form a basis for L/L;, we may write
p—-1
ho(xy, Xy, z) =) ez’ fore €Ly,
~

where the values of the ¢; may be derived from the definition of 4
in (6). Then, (17) takes the form

=1 p-! o
(18) PN e | =) Sl
i=0 i=0

Now c € L;, and I¥ c I;. Hence, comparing the coefficients of z’
in (18), we find ce; = f; (i = 0,1,...,p —1). In particular, we
find eje,_; = fify_1/c?. Since fi, f—1, and ¢? € L, this shows
eie,_1 € L. Now from (6), it is easy to see that

-1 -1
er = —[(x} = 22)x8" + (x5 — 22)xP 7],
ep—1 = [(x} = 22)xp + (xf — 27)x1].

Multiplying out, we find xpx2~" + x,x7 el =FR'(xP, X2, 2?).
Since p > 2 (so x;x5 1y Xox7 ~1 £ 0), this is clearly impossible.

Case 2 (p = 2). Assume that

An ®F En~2 ~ (yl/zn_ ’ bl; 22 ’ En—2 ’ 0)2)
®En~2(b2; ¢ns 2: En—29 _1)’

for some b; and b, € E*_,. Then, letting z = »'/?" and E, = E(z),
we find, exactly as in the p odd case, that z/b = N(u) for some
b € E: , and u € E,(y/¢n), where N denotes the norm from
E.(\/¢n) to E,. Letting y = ho(x;, X2, z), assuming Fy is alge-
braically closed, and considering the standard extension of any 2-adic

valuation on Fy to Fy(xy, X3, ..., z), we find, jﬁt as in the p odd
case that for some by € Fy(x;, X2, z*) and ug € Fo(x1, X2, 2)(/X) »
(19) zby = ud.

We will show that (19) is impossible.

Write L for the field Fy(x;, X3, z), L; for the field Fy(x;, X2, z2),
and L, for the field Fy(x;, x5, z*). Assume that (19) holds for some
bo € L, and uy € L(\/X). By considering the z-adic valuation on L
and noting that by € L,, it is easy to see that zby ¢ L?>. Hence,
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zby = u3, then L(\/X) = L(y/zbg). From this, as well as the defini-
tion of Ay in (7), it follows that

2((6F + 29X + (%3 + 20)x1) = f§ + Sz,
for some f; and f; € L. Since 1 and z form a basis for L as an
L, vector space, and since f7, f2, (x2+2z%)x, + (x2 + z2)x; , and by
are all in L, we find

(x? + z¥)xy + (x} + 23 x| = fEby.

We write this as
X2+ x3x1 | 22+ Xx1)

+ = ff.

bo bo

Now f? € L? = L?(z?). Thus f? = g} + g?z* for some g, and
g1 € L, . Substituting this in (20), we find

(20)

x2xy + x2x N z2(x3 + Xx1)
bo bo
Now xlzxz + x%xl , X2+ X1, and by (note!) are all in L,. Moreover,

Lf Cc L,. Since 1 and z? form a basis of L; as an L, vector space,
we find on viewing (21) as an equation in L; that

(21)

= g8 + giz%

2
xEx; + x3x;

bO = gO s
and Xy + X
2 1 2
R
Dividing, we find x;x, = (go/g1)? for some gy and g; € L;. But
X1Xxy 1is clearly not a square in L;, and we are done. ]
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