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WHEN L1 OF A VECTOR MEASURE IS AN AL-SPACE

GUILLERMO P. CURBERA

We consider the space of real functions which are integrable with
respect to a countably additive vector measure with values in a Banach
space. In a previous paper we showed that this space can be any
order continuous Banach lattice with weak order unit. We study a
priori conditions on the vector measure in order to guarantee that the
resulting Lι is order isomorphic to an AL-space. We prove that for
separable measures with no atoms there exists a Co-valued measure
that generates the same space of integrable functions.

Introduction. Given a vector measure v we consider the space of
classes of real functions which are integrable with respect to v in
the sense of Lewis [L-l], denoted by Lι{y). In [C, Theorem 8] we
showed that every order continuous Banach lattice with weak unit can
be obtained as Lι(u) for a suitable vector measure v. In particular
we have Hubert spaces as L 1 of a vector measure. A natural question
arises. Under what conditions on the vector measure, or on the Banach
space in which the measure takes its values, is the resulting L 1 of
the vector measure order isomorphic to an AL-space? Recall that a
Banach lattice is an AL-space when the norm is additive for disjoint
vectors. An order isomorphism is a linear isomorphism that preserves
the lattice operations. So the question can be restated in the following
way. When can Lx(u) be equivalently renormed so that endowed
with the new norm and the same order is a Banach lattice where the
norm is additive for disjoint functions?

In § 1 we fix notation and basic definitions.
In §2 we show the special role that the space Lι(\u\) plays in the

problem we are studying, where \v\ is the variation of υ . It is shown
in Proposition 2 that Lx(v) is an Jϊ?\-space, in the sense of Linden-
strauss and Pelczynski [L-P], if and only if it is order isomorphic to
Lι(\v\). From this it follows that bounded variation of the measure is
a necessary condition. The conditions cannot be placed on the Banach
space in which the measure takes its values. This is shown in Example
1, that also shows that neither bounded variation nor domination of
the variation by the semivariation are sufficient conditions.

In §3 we study measures with values in C(K) spaces. In Theorem 1
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we show that if v is a Banach space valued measure that is separable
and has no atoms then there exists a Co-valued measure μ such that
Lι(u) and Lι(μ) are order isomorphic and isometric. We also show
that this is not the case in general for purely atomic measures. The-
orem 2 gives a characterization of the purely atomic measures with
values in C{K) that generate an AL-space.

In §4 we study the dual of Lι(v) in Loo(|i/|) via the Gelfand trans-
form. This allows us to characterize the measures for which Lι(v) is
given by a finite number of spaces Lι(\x*v\) where x* is in X*, X
being the Banach space in which v takes its values (Theorem 3). We
study the characterization of weak convergence in Lι (u) by weak con-
vergence of the integrals over arbitrary sets and show that when this
does not happen Lx{v) contains a complemented copy of I1 (Theo-
rem 4).

In §5 we exhibit examples of measures that separate the properties
studied in the paper.

1. Let (Ω,Σ) be a measurable space, X a Banach space with
unit ball Bx and dual space X*, and v: Σ —> X a countably ad-
ditive vector measure. The semivariation of v is given by ||i/||(-4) =
sup{|x*i/|(.4): x* e Bx*}, where \x*v\ is the variation of the scalar
measure x*v. A Rybakov control measure for v is a measure λ =
|jcgi/| such that λ(A) = 0 if and only if \\u\\(A) = 0 (see [D-U, The-
orem IX.2.2]). Thus the concepts of ||i/|j-almost everywhere and λ-
almost everywhere are equivalent.

Following D. R. Lewis [L-l] we will say that a measurable function
/ : Ω —• R is integrable with respect to v if

(1) / is x*v integrable for every x* e X* (scalarly integrable),
and

(2) for each A e Σ there exists an element of X denoted by
SAfdv, such that

x* / fdv = I fdx*v for every c* e X*.
JA JA

Identifying two functions if the set where they differ has null semi-
variation we obtain a linear space of classes of functions which when
endowed with the norm

becomes a Banach space. We will denote it by Lι{v). It is a Banach
lattice for the natural λ-almost everywhere order. Simple functions are
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dense in Lι(v) and the formal identity is a continuous inclusion of the
space of /l-essentially bounded functions into Lx(u). An equivalent
norm for Lx(u) is given by | | / | | = sup{|| JAfdv\\χ: A e Σ} .

Let λ be a Rybakov control measure for v. Then Lx(y) is an
order continuous Banach lattice with weak order unit over (Ω, Σ, λ)
(see [C, Theorem 1]). Thus it can be regarded as a lattice ideal in
Lι(λ) and Lι(u)* can be identified with the set of functions g in
Lι(λ) such that fg is λ integrable for all / in Lx{u). The action of
such a g over Lx{y) is given by / e Lx(u) *-+ (g, f) = f fgdλ (see
[L-T, vol. II, Theorem l.b.14]). Lx(v)* is a lattice ideal in Lι(λ),
that is, if g is in Lx(v)*, h is in Lx{λ) and |Λ| < \g\ holds but for
a set of A-measure zero, then h is in Lx(u)*.

For general facts on vector measures we refer the reader to [D-U].
For Banach lattices see [A-B], [MN] and [S].

2. It is a general fact that if |i/| is the variation of v then the
formal identity is a continuous inclusion of the space L ^ M ) into
Lx(y) and \\f\\u < \\f\\x = J\f\d\u\ [L-2, Theorem 4.1]. However it
is important to notice that |i/| is not involved in the construction of
the space Lx{v). Thus, ^ ( M ) *s n o t relevant for the general theory
of the space Lx(v). Consider for example the following measures,
defined on the Lebesgue measurable sets of [0, 1], i G / H i / ( ^ ) =
XA Ξ LP[Q, 1] for 1 < p < +oo. Then Lx(v) is order isomorphic and
isometric to Lp[0, 1], but I^fli/I) = {0} as |i/| is infinite in every
nonnull set.

The following proposition characterizes the elements of Lx(u) that
belong to Lx(\u\).

PROPOSITION 1 ([L-2, Theorem 4.2]). Let f be in Lx{y) and con-
sider the measure Vf with density f with respect to v. Then f is in
Lx{\v\) if and only if the measure Vf has bounded variation, and in
this case

\vf\{A)= \\f\d\v\ for all A e l
J A

The role of the space Z,1(|z/|) in the problem we are investigating
is more important than at first it seems. The following proposition
illustrates this point. For the theory of £fv -spaces we refer the reader
to [L-P].

PROPOSITION 2. Let v\ Σ —• X be a vector measure. The following
conditions are equivalent, and imply that v has bounded variation:
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(a) Lι(u) is an 3[-space.
(b) Lx(v) is order isomorphic to an AL-space.
(c) The natural inclusion is an order isomorphism from Lγ(\v\) into

L\u).

Proof. As Lι(u) is an order continuous Banach lattice the results
of Abramovich and Wojtaszczyk on the uniqueness of order [A-W]
show that (a) is equivalent to (b). Thus we just have to prove that
(b) implies (c). In view of Proposition 1 we have to prove that for
every / G Lι(u) the measure with density / with respect to v has
bounded variation. We can assume that / is positive. Let T be an
order isomorphism from Lι(v) into an AL-space. Consider a finite
measurable partition (An). Then:

/ fdu
JA

due to the fact that the T(f χA ) are positive and disjoint functions
in an AL-space. Taking the supremum over all partitions we get the
desired result. To see that the variation is bounded just consider / =

In view of the previous proposition we will assume from now on
that the measure v has bounded variation.

There is another condition equivalent to Proposition 2 that should
be mentioned. The integration map u: Lι(u) —> X is defined by
u(f) = J fdu. The condition is that the set u*(Bx*) is order bounded
in Lx{u)*. This implies, in particular, that if the measure takes its
values in an AL-space an equivalent condition is that the integration
map is regular, i.e. the difference of two positive maps (see [S, IV. 1.2,
IV. 1.5]). This occurs, for example, when the AL-space valued measure
is positive, or when it has a Hahn decomposition.

We seek conditions in order that Lι(u) is order isomorphic to an
AL-space. Our first example shows that these conditions cannot be
placed on the Banach space X in which the measure takes its values.
It also shows that neither the condition that u has bounded variation
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nor the stronger condition:

(A) there exists C > 0 such that \u\(A) < C \\u\\(A)

for every AeΣ,

although both necessary by Proposition 2, are sufficient.

EXAMPLE 1. Let X be an infinite dimensional Banach space. Let
xn be a sequence in X such that the series ]Γ) xn converges uncondi-
tionally but not absolutely. Let ^ ( N ) be the σ-algebra of all subsets
of the natural numbers. Consider the measure u: ^ ( N ) —• X given

It is well defined and countably additive. Moreover it has bounded
variation as the variation of the measure is given by \v \ {A) = ΣneA * l^n

for A c N. A sequence b = (bn) belongs to Lι(u) if the series
II *ΛII 2n)χn converges unconditionally in X, and belongs to

) if the same series converges absolutely, that is Σ |£ M | /2 W is
finite. Thus b = (||JC«|| 2n) gives an element in Lι(u) but not in
I^fli/I), so from Proposition 2 we have that Lι(v) is not an AL-
space. Let A c N, set ΠQ = min{n : n eA}\ then:

- Σ i * Σ i - ά-2"
n£A n>n0

On the other hand: \\u\\(A) > sup{\\u(B)\\: B c A} > \\u(no)\\ =
l/2no. Thus \v\(A) < 2\\p\\{A) for every A c N. Thus condition (A)
is satisfied.

3. We study in this section measures with values in a space C{K)
of continuous functions on a compact Hausdorίf topological space K.
This case includes measures with values in AM-spaces. Recall that a
Banach lattice is called an AM-space if ||JC + y\\ = max(||x| |, \\y\\)
for disjoint elements x, y. By a theorem of Kakutani, every AM-
space is lattice isomorphic and isometric to a sublattice of C(K) for
some compact Hausdorίf topological space K. On the other hand the
following theorem shows that for separable measures with no atoms
we can restrict our attention to measures with values in CQ .

The measure v is said to be separable if the Saks pseudometric
space associated to a Rybakov control measure λ is separable. Clearly
this is equivalent to Lι(u) being separable. A measurable set is an
atom for v if and only if it is an atom for λ (this also being equivalent
to XA being an atom in the lattice Lx(v)).
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THEOREM 1. Let v\ Σ —* X be separable and with no atoms. Then
there exists a measure μ: Σ —• CQ such that Lι(μ) is order isomorphic
and isometric to Lι(v).

Proof. Let A be a Rybakov control measure for v. Lι(v) is sep-
arable and the simple functions are dense so we can find a sequence
(fn) of simple functions that is dense in Lι(u). Recall that Lι(v)*
can be regarded as a lattice ideal in Lι(λ).

Step 1. There exists a sequence (hn) of simple functions which is
w*-dense in the unit ball of Lι(v)*.

o be in the unit ball of Lι(u)*. There exists a sequence (gn)
of simple functions such that \gn\ < \go\ for all n, and gn converges
pointwise to go. This implies that Jgnfdλ = {gn,f) converges
to /gofdλ = (go, f) for every / in Lι(u). So (gn) converges to
go in the w*-topology in Lι(v)*. From \gn\ < \go\ it follows that
ll&ill < ||£bll < l Thus the simple functions are w*-dense in the
unit ball of Lι{y)*. The claim follows from the separability of Lι(u)
which implies that the unit ball of Lι(u)* is w*-metrizable.

Step 2. There exists an increasing sequence of finite sub- σ-algebras
(Σn) and a sequence (gn) of simple functions such that the func-
tions / i , . . . , fn are Σn-measurable, \gn\ = \hn\ holds for all n and
(gn, Σn) is a martingale difference sequence, that is, the conditional
expectation of gn with respect to Σn_i is zero.

Set g\ = h\. Let us define gn . Set

the smallest σ-algebra that makes the functions f\, . . . , y^_i, g i , . . . ,
gn-ι measurable. It is finite as the functions are simple. Let A be a
set of constancy of hn where it has the value a and let B be an atom
of Σ r t _i. By the nonatomic nature of A we can find two disjoint sets
of equal measure whose union is AπB. Define gn to be α on one and
- α on the other. It is plain to see that gn satisfies the requirements.

Step 3. Define the measure μ: Σ -> c0 by μ ( ) (JAgn)ff,
where go is identically one. It is well defined, countably additive and
if / is in Lι(u) then / is in Lι(μ).
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To see this let / be in Lx(u). Given ε > 0 find «o such that
/ - / « J k <6 Then

//«. dλ J(f-fno)gn

= \\f ~ fn0 > Sn)]J

fnQgndλ

dλ J fnogndλ

I fnogndλ

For n > ΠQ the function /ΠQ is Σw_! measurable and thus the last
integral is zero. This proves that the measure is well defined.

Let x* = (an) be in Z1. Then

X*μ(A) = Σan gndλ=

as the gn are bounded in Lι(v)* and so bounded in Lι(λ). Thus the
measure x*μ is countably additive. So μ is weakly countably additive
and by the Orlicz-Pettis theorem it is countably additive. The two
previous equations show that if / is in Lι(u) then / is in Lι(μ).

Step 4. The inclusion of Lι(u) into Lι(μ) is onto and norm pre-
serving.

Let / be in Lι(μ). Fix x* in X*. For every n eN denote fn =
f'XAn 9 where An = {ω: |/(ω)| < n). As fn is essentially bounded it
belongs to Lι(u). Set hx* for the Radon-Nikodym derivative of the
measure x*v with respect to λ. It is in the unit ball of Lι(v)*. Find
a subsequence [hn) that w*-converges to \hx*\. Then

f \fn\d\x*v\=

< limJ\fn\\hnι\dλ = \imI\fn\\gni\dλ

To see this we have used that λ is a Rybakov control measure for μ
and thus integration with respect to gn dλ defines a linear functional
on Lι(μ) with norm not greater than one. Thus / is \x*v\ integrable.
So / is scalarly integrable with respect to v and

sup
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To see that / is actually in Lι(u) just apply the previous argument
to fn - fm to get \\fn - fm\\v < \\fn - fm\\μ. So fn is a Cauchy

sequence in Lι(u) that converges Λ-a.e. to / . Hence / is in Lx(v)
and 11/11, < ||/IU.

On the other hand for x* = (an) in the unit ball of I1, we have
that Σangn is in Lι(v)* and has norm not greater than one, so

H e n c e \\f\\μ < \\f\\v . π

The situation in the purely atomic case is quite different. Purely
atomic countably additive vector measures can be realized over the
σ-algebra ^ ( N ) of all subsets of the natural numbers. The spaces
Lι(u) generated by these measures are sequence spaces where the
characteristic functions of singletons form an unconditional basis and
the order is the coordinatewise order. Let u: &>(N) —> X be given
by v({n}) = xn. Then a sequence (an) is in Lι{y) if and only if
the sequence in (anxn) is unconditionally summable in X and in this
case its norm in Lι(u) is

\\{an)\\y = sup { ^ \an{**, Xn)\: ** e Bx*}.

It follows that ||/{w}||z/ = | |xπ | | . Conversely let E be a Banach space
with an unconditional basis (yn). E is a Banach lattice for the coordi-
natewise order and the equivalent norm ||| X) anyn ||| = sup{ || J2A a^yn II •
^ c N } . Then E can be obtained (order isomorphically) as Lι(v) for
the measure v\ ^ ( N ) -> E defined by v({n}) = anyn where Σanyn

is in E and an > 0 for all n (see [C, Theorem 8 and Lemma 2]).
The previous discussion shows that Co can be obtained from a Co-

valued measure. The space Z1 can be obtained from the measure
v\ &>(N) -> R c c0 defined by */(W) = an , where (αΛ) is in Z1 with
αrt > 0 for all n.

On the other hand, consider a Banach space E with a normalized
unconditional basis (yn) that does not contain subspaces isomorphic
to I1 or Co (-B reflexive). Then E cannot be obtained (order isomor-
phically) as Lι(u) for a measure v\ ^ ( N ) —> CQ . Assume by way of
contradiction that this is not the case. Let v: E —• CQ be the integra-
tion map associated to the measure v. Set v(yn) = xn e c0. Then
Σ ŵ̂ w converges unconditionally in E if and only if X) αrtxw con-
verges unconditionally in Co. As yn is an atom in E, it follows that
ll^ll = ||JCΠ|| . So (xn) is normalized in c 0 . As E does not contain
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subspaces isomorphic to I1 the basis (yn) is shrinking. So (yn) is
weakly null. The integration map v is continuous, so (xn) is weakly
null in CQ > and normalized. By the Bessage-Pelczynski Selection Prin-
ciple (see [L-T, vol. I, Proposition La. 12]) there exists a subsequence
(Xnk) which is a basic sequence and equivalent to a block basis of CQ .
Thus (Xnk) is an unconditional basic sequence and so the restriction
of the operator v to the closed linear span of (yUk) in E is an iso-
morphism onto the closed linear span of (Xnk) in c 0 . This last space
is isomorphic to CQ (see [L-T, vol. I, Proposition 2.a.l]), so we arrive
at a contradiction.

For particular situations we have a complete characterization.

THEOREM 2. Consider a measure v: ^ ( N ) —• C(K) ,forKa com-
pact Hausdorff topological space. Set fn = v({n}) and let \fn\ be the
modulus of fn in C(K). Then the following are equivalent:

(a) Lι{v) is order isomorphic to an AL-space.
(b) The measure v satisfies the following condition:

(B)

Proof. In view of Proposition 2 we have to prove that Lι(u) is
isomorphic to Lι (|i/|). The simple functions are dense and a function
and its modulus have the same norm. Thus, by using the equivalent
norm in Lι(v) mentioned in the introduction, it follows that (a) is
equivalent to the existence of a positive constant C > 0 such that for
nonnegative an and N e N we have

N

neB

:Bc{l9...9N}

since M({/i}) = ||/«||. Set gn = fn/\\fn\\. By homogeneity the previ-
ous expression is equivalent to

C < sup

where an > 0 and £ i an = 1 The above supremum is not greater
than || Y^ an\gn\ ||oo. Proving the equivalence of both expressions
would finish the proof. For some to e K we have

N N

= Σan\gn(tθ)\ =
1
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where B\
{ 1 , . . . ,

N

1

{1 < n < N: gn(to) > 0} and Bj is its complement in
; thus

< 2 sup

neB

:Bc{l,...9N}\. D

4. If v has finite variation the natural inclusion of L ^ M ) into
Lι (v) has dense range, since the simple functions are dense in Lι {v),
and so Lι(v)* can be identified with a linear subspace of the Banach
algebra Loo(|i/|). Moreover, Lι(v)* is an ideal in LoodH), ^n ̂ oih
the lattice and the algebraic sense (which coincide in Loo(|i/|)) To see
this consider a Rybakov control measure λ. Lι(y)* is a lattice ideal
in Lι(λ). On the other hand λ and |i/| have the same null sets and

Let us consider the space C(Δ) of continuous functions over the
compact totally disconnected topological space Δ of continuous, lin-
ear and multiplicative functionals (characters) over the space LoodH)
Then Loo(|i/|) and C(Δ) are order and algebraically isomorphic and
isometric under the Gelfand transform:

fGLoo(\v\)*-+f~eC(A) where for s GΔ f~(s) = s(f).

We define the following sets in Δ. Let H be the set of all characters
that are null over Lι(v)*, i.e. the set of zeros of the image of Lι(v)*
by the Gelfand transform in C(Δ).

Given x* e X*, let hx* be the Radon-Nikodym derivative of the
scalar measure x*v with respect to |i/|. The map / G Lι(u) \-+
f fdx*v defines a bounded linear functional on Lι(u), so we have
that hx* is in Lι(v)*. We will denote by *f the ideal generated by
the set {hx*: x* e X*} in L\v)*.

Let H* be the set of all characters that are null over J^, i.e. the
set of zeros of the image of S by the Gelfand transform in C(Δ).
Obviously H c H*.

The next proposition follows easily, by taking into account that the
closure of a proper ideal is itself a proper ideal.

PROPOSITION 3. The following conditions are equivalent:
(a) H is empty.
(b) Lι(v) is order isomorphic to an AL-space.
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The usefulness of the definition of H* for the problem we are in-
vestigating is shown in the next proposition.

PROPOSITION 4. The following conditions are equivalent:
(a) H* is empty.
(b) There exists a finite partition (At)" of the measure space and

x\, . . . , x* in X* such that Lx(v) is order isomorphic\ via the iden-
tity, to Lι(μ) where μ = ΣΊ Pi and μ, is the restriction of the measure
\x*v\ to the trace of Σ over A\.

Proof, (a) => (b) If H* is empty then H is empty so from Proposi-
tion 3 Lι(v) is order isomorphic to an AL-space and from Proposition
2 it is order isomorphic to Lx(\v\). On the other hand the ideal gen-
erated by {hx*: x* G X*} is dense; thus it is Loo(\v\). So, there exist
x\, . . . , x* in X* such that XQ < ΣΊ \hx*\. By multiplying, if nec-
essary, the functional x£ by positive constants, we can assume that
there exists a disjoint partition {A^ such that χ& < ΣΊ \hχ*\ ' XAI

Integrating with respect to \v\ we have \v\(A) < Σ\ \χ*v\{AΓ\Ai) for
all A in Σ. As we always have Σ" \xiu\(^ n ^ / ) ̂  m a χ / IIXΓIIφ \U\(A)
we see that i-Hl^l) ^s order isomorphic to Lι(μ). So (b) follows.

(b) =^ (a) From Proposition 2 it follows that Lι(\u\) is order iso-
morphic via the identity to Lι (μ). Thus there exists a constant C > 0
such that for every measurable set A we have

1

By integrating with respect to \u\ we have

for every measurable set A. So χςi < C~ι Σι \hχ*\ * Z t̂ί |^|-almost
everywhere. Thus, the unit of Loo(|z/|) is in the ideal generated by the
functions hx*. Hence H* is empty. D

The following result is well known. It describes how the action of
a character on a function can be computed.

LEMMA. Let s be a character on Loo(Ω, Σ, μ). Then there exists
an ultrafilter % in Σ///"1(0) such that
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for every f in L^Ω, Σ, μ). Conversely, for every ultrafilter as above,
the previous expression defines a character over Loo(Ω, Σ, μ).

The previous propositions allow us to give an answer to the problem
we are investigating. For a vector measure v: Σ —> X, consider the
following condition:

(C) o * S

THEOREM 3. The following conditions are equivalent:
(a) L 1 ^ ) is order isomorphic, via the identity, to Lι(μ) where the

measure μ is as in Proposition 4.
(b) There exists a finite partition (Bj)\ of the measure space such

that the restriction of v to each set Bj satisfies condition (C).

Proof, (a) =Φ> (b) From our hypothesis there exists a constant C > 0
such that C \u\(A) < Σ i I**H(^ n Ai) f o r disjoint At. For each
/ apply a Hahn decomposition to the measure x*v and decompose
Ai into two disjoint sets An and 4̂/2 so that on the first x*v is
nonnegative and on the second is nonpositive. Consider the restriction
of v to Afo for I < i < n and A: = 1, 2. We have that

1 κ } >C foτaΆAeΣ,AcAik
\"\(A)

and this implies that v satisfies condition (C) on each Aik .
(b) => (a) Let Vj be the restriction of v to Bj . As the Vj are dis-

jointly supported, Lι(v) is order isomorphic to (@\ Lι(vj))ι. Thus
we can assume that v satisfies condition (C). By Proposition 4 we just
have to verify that H* is empty. Suppose not; then there exists s e Δ
such that s(hx*) = 0 for all x* in X*. The lemma tells as that there
exists an ultrafilter % in ΊLj\v\~x(ϋ) such that for every x* in X*.

0 = hm J^, ^ , ' = hm
\v\{A)

that is, the net {v{A)/\v\(A) : 4̂ e ^} is weakly null, contradicting
our hypothesis. D
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The coincidence of the sets H and H* is related to a natural char-
acterization of the weak convergence in Lι{y). This is shown in the
next theorem. For this theorem no assumptions are made on the varia-
tion. Thus we will consider Lι(v)* as an ideal in Lι(λ) for a control
measure λ. For x* e X* and A e Σ we will denote by φx*A the
element of Lι(y)* defined by / e Lι{y) ^ fAfdx*v e R (which
corresponds in Lι(λ) to the Radon-Nikodym derivative with respect
to λ of the measure x*v restricted to the set A). Let J^ denote the
ideal generated in Lι(v)* by the set {φx*A x* €X*, AeΣ}.

THEOREM 4. Consider the following conditions:
(a) Lι(v) does not contain a complemented subspace isomorphic to

n.
(b) The ideal J" is dense in Lι(v)*.
(c) In Lι(u) weak convergence of bounded nets is characterized by

weak convergence {in X) of the integrals over arbitrary sets, that is, if
supα||/α|| <+oo then

(D) fa^f in Lι(u) <* / fadu^ I f dv in X for every A e Σ.
JA JA

Then (a) implies (b) and (b) implies (c). If v has finite variation, then
(c) implies

(d) H = H*.

Proof, (a) => (b) Assume Lι{y) does not contain a complemented
subspace isomorphic to I1. It follows from results of Bessaga and Pel-
czynski that Lι (i/)* does not contain a subspace isomorphic to /oo . As
Lx(v)* is an order complete Banach lattice, we deduce that Lx(v)* is
order continuous (see [A-B, Theorem 14.9]). In order continuous Ba-
nach lattices every closed ideal is a band (see [MN, Corollary 2.4.4]).
As Lx{v) is order continuous it follows that every band in Lι(v)* is
w*-closed (see [MN, Corollary 2.4.7]). Thus, the closure of the ideal
*f (which is itself an ideal) is w*-closed in L!(i/)*.

On the other hand, the set {φx*A: x* e X*, A e Σ} is total. To
see this let / e Lι(u) be such that {φx*A ? / ) = 0 f°Γ every x* e X*
and every A e Σ. Then JA fdx*v = 0 for every x* e X* and every
A e Σ, so / Ξ O . This fact implies that the closure of the ideal *f is
w*-dense in Lι(u). Hence J^ is dense in Lx(y)*.

(b) => (c) We have to prove that condition (D) holds. In fact
in (D) we just have to prove sufficiency as necessity follows from
the continuity of the integration map. Let (fa) be a net such that
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SAfadx*v goes to zero for every x* in X* and every A eΣ. For
fixed JC* , by considering the Hahn decomposition of the measure x*v,
we deduce that (fa) is a weakly null net in Lι(\x*v\). Given h in the
ideal generated by {φx*A : x* e X*, A eΣ} there exist x*9 ... 9 x*
and A\, ... , An such that |λ| < ΣΊ \φx*A\. Set μ for the measure
with density \h\ with respect to λ. The space ( φ * -t1(|ΛΓ*i/|))i is
continuously included in L 1 ^ ) and thus (^) is weakly null in Lι(μ),
and this implies that JAfa\h\dλ goes to zero, for every measurable set
A. By decomposing h into its positive and negative parts we conclude
that / fahdλ = (h, fa) goes to zero. From (b) and the boundedness
of the net (fa), this result holds for every h in Lι(v)*. Thus (fa) is
weakly null.

(c) => (d) Assume now that \v\ is finite. Let s e H*. It is given by
an ultrafilter % in Σl\v\~x(§). Consider the net {fA = χA/\v\(A) :
A e %} in L !(ι/). It is bounded as \\fA\\ = \\u\\(A)/\v\(A) < 1. Let
Be%\ then

lim / fΛ dx*v = limlim / fA dx*v = lim
Ae&JB Ae&

= l im ^ T

since s e H*. The same holds for 5 φ %. So the net (fA) has the
property that the integrals over arbitrary sets go weakly to zero in X.
Thus by (c) (fA) goes weakly to zero in Lι(v), so for every h in

s{h) = lim ^h,fl^ = lim (A, fA) = 0.

Hence s(h) = 0, so s is in H. D

It should be noticed that, as Lx(v) is an order continuous Banach
lattice, it follows from results of Tzafriri [T, Theorem 16] that when-
ever it contains a subspace isomorphic to Z1 in fact it contains a com-
plemented subspace isomorphic to Z1. Condition (d) does not imply
(a), in general. To see this consider the following measure defined on
the Lebesgue measurable sets of [0, 1]. Let v: J£ —> CQ be defined as
u(A) = (fArn(t)dm(t)) where the rn are the Rademacher functions.
It was shown in [C] that Lι(u) is order isometric to Lι[0, 1]. On
the other hand, as τ\ = 1 and as the variation of v is the Lebesgue
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measure m, it is easy to see that condition (C) is satisfied and so
H* = H = 0 . S. Okada has proved independently, using a different
technique, the implication (a) =>• (b) for sequences of functions, [O].
From the Nikodym Boundedness Theorem (see [D-U, Theorem 1.3.1])
it follows that a sequence in Lι(u) satisfying that the integrals over
arbitrary sets are weakly convergent, is norm bounded.

5. We exhibit several measures in order to show that the conditions
studied in this paper are indeed different.

EXAMPLE 2. In every infinite dimensional Banach space there exists
a countably additive vector measure of bounded variation not satisfy-
ing condition (A).

To see this let (xn) be a sequence in X such that the series Σxn

converges unconditionally but not absolutely. Suppose that we can
find a sequence (an), 0 < an < 1, for all n, such that

(a) Σ^lk«ll<+oc,and
(b) (Σ,>n "ίlND (sup{Σ/>ι, 1****1 ** € BΓ})~1 -> +oo.
Consider the measure A e ^ ( N ) •-» u(A) = Y^neA

anχn* It has
bounded variation by (a). By considering An = {n, n + 1,...},
we deduce from (b) and from the fact that 0 < an < 1, that
|i/(i4π)|/||i/||(^[Λ) goes to infinity, so v does not satisfy condition
(A).

The existence of the sequence (an) follows from the next claim
by setting βn = \\xn\\, γn = sup{Σ/>π 1̂ *̂ /1 : ^* € Bx*} and an =
(an-an+ι)/βn.

Claim. Let sequences (βn) and (γn) be given with γn decreasing to
zero and Σβn = +oo. Then there exists a sequence (an) decreasing
to zero such that

(a) βn>an- an+λ, and
(b) anγ-{ -*oo.

To prove this notice that the sequence (y/γϋ) decreases to zero and
the series Σ fin diverges. Using these two facts we can find, via an
inductive process, a strictly increasing sequence of positive integers
(/I*) and a sequence of sets J^, such that (J J^ = N and n < m for
every n e Jk and meJk+\, satisfying

» > ^ ' a n d 2 ^ ~ ^ > 2 « ^ f o r n e Jk'
n€Jk
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Set a\ = 1 and an+\ = an - βn/(2kAk) for n e Jk. This is the
sequence we were looking for.

EXAMPLE 3. We now exhibit a measure for which Lι(u) is an AL-
space but it is not given by a finite number of spaces Lι(\x*v\). That
is 0 = H Φ H*. It follows that condition (D) does not hold in
Lι(v). Suppose that we can find a sequence of functions (fn) in
C[0, 1] that satisfy the following conditions: \\fn\\ = 1, zero is a
weak cluster point of (fn) and there exists an ε > 0 and a norm one
functional μ € C[0, 1]* such that μ{\fn\) > ε > 0 for all n. Consider
the measure

u(A) = Σ ±fn € C[0, 1].
4

It is countably additive and has bounded variation. Lx{v) is order
isomorphic to an AL-space by Theorem 2 as the measure satisfies con-
dition (B): for a convex combination of |I/(W)|/||I/||(W) we have

On the other hand, as zero is a weak cluster point of (fn), the measure
v cannot be decomposed into a finite number of disjointly supported
measures each one of them satisfying condition (C). So, from Theorem
3 and Proposition 4, it follows that H* is not empty.

The existence of a sequence satisfying the required conditions fol-
lows from the separability of C[0, 1] and the fact that the map
/ G C[0, 1] i-* I/I G C[0, 1] is not weak-to-weak continuous at zero.
To see this it suffices to prove, by using Liapunov's and Lusin's Theo-
rems, that for any μ\, μι, . . . , βk in C[0, 1]* and ε > 0 there exists
a continuous function g such that | / gdμι\ < ε for 1 < / < k, and
/ \g\ dm > 1/2, where m is the Lebesgue measure in [0, 1].

EXAMPLE 4. Let 1 < p < +oo and an > 0 with Σan < +°°
Define μ: «^(N) -> lp by μ{A) = Y^Aotnen where (en) is the canonical
basis in lp. For this measure 0 £ H = H*. Consider the disjoint
sum of μ and the measure v of the previous example. The resulting
measure satisfies 0 £ H £ H*.

This work is part of the author's Ph.D. thesis which is being pre-
pared at the University of Sevilla under the supervision of Professor
F. J. Freniche.
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