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NONRIGID CONSTRUCTIONS IN GALOIS THEORY

PIERRE DEBES AND MICHAEL D. FRIED

The context for this paper is the Inverse Galois Problem. First we
give an if and only if condition that a finite group is the group of a
Galois regular extension of R(X) with only real branch points. It
is that the group is generated by elements of order 2 (Theorem 1.1
(a)). We use previous work on the action of the complex conjugation
on covers of P'. We also show each finite group is the Galois group
of a Galois regular extension of Q"(X). Here Q" is the field of all
totally real algebraic numbers (Theorem 5.7). Sections 1, 2, and 3
discuss consequences, generalizations, and related questions.

The second part of the paper, §4 and §5, concerns descent of fields
of definition from R to Q. Use of Hurwitz families reduces the
problem to finding Q-rational point on a special algebraic variety.
Our first application considers realizing the symmetric group S,, as
the group of a Galois extension of Q(X), regular over Q, satisfying
two further conditions. These are that the extension has four branch
points, and it also has some totally real residue class field special-
izations. Such extensions exist for m = 4,5, 6, 7, 10 (Theorem
4.11).

Suppose that m is a prime larger than 7. Theorem 5.1 shows that
the dihedral group D,, of order 2m is not the group of a Galois
regular extension of Q(X) with fewer than 6 branch points. The
proof interprets realization of certain dihedral group covers as corre-
sponding to rational points on modular curves. We then apply Mazur’s
Theorem. New results of Kamienny and Mazur suggest that no bound
on the number of branch points will allow realization of all D,, s.

0.1. Description of Theorem 1.1. Throughout, C denotes the com-
plex number field, X an indeterminate, and C(X) a fixed algebraic
closure of C(X). Let k be a subfield of C. We say a finite extension
Y/k(X) with C(X) DY is regular over k if kNY = k. Equivalently
[Y: k(X)] = [YC: C(X)]. Denote this degree by n. Regard the de-
gree n field extension YC/C(X) as the function field extension of a
degree n cover ¢: Yc — P!. Here P! is the complex projective line
and Y is an irreducible non-singular curve.

The map ¢ is ramified over a finite number of points x;, ..., X,.
We call these the branch points of the cover (or of the extension
Y/k(X)). Our first result (Theorem 1.1(a)) shows exactly when a
finite group G is the group of a Galois regular extension of R(X)
with only real branch points.
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This happens if and only if G is generated by involutions.

Theorem 1.1 uses formulas for the action of complex conjugation on
the fundamental group of P!\{x;, ..., x;} (cf. §2.3). Hurwitz [Hur]
knew these. Krull and Neukirch investigated them further [KIN]. Still,
no one has exploited this simple statement about groups generated by
involutions.

0.2. Relations with the inverse Galois problem. Here is a weak ver-
sion of the Inverse Galois problem. Does each group occur as the Ga-
lois group of a field extension of Q? As do others, we approach this
through its geometric analog. That is, we consider it over Q(.X) rather
than Q. This is a descent problem. Suppose we are given a group G,
a suitably large integer r, and r points x|, ..., x, € P}(C). Topology
then constructs a Galois extension of C(X) with Galois group G and
branch points Xx;, ..., x,. One must then restrict the scalars from C
to Q. Theorem 1.1 gives a form of descent from C to R. Proposi-
tion 2.3 and Comment 3 of §3.5 refine these for specific applications
(see §0.4).

We stress the condition on the branch points. Theorem 1.1 (a)
shows that Galois groups occur over Q (or even R) using r branch
points in P!(R) only if r elements of order 2 generate G. Therefore,
in practice, classical “rigidity” [Se3; Theorem 9.1] realizes only groups
over Q(X) that are generated by 3 elements of order 2.

Corollary 1.2 is another consequence of Theorem 1.1 (a). Each fi-
nite group has a totally nonsplit cover (cf. §1.2) that is not the Galois
group of a regular extension of R(X) with only real branch points.
Nevertheless, every finite group is the Galois group of a regular ex-
tension of R(X), with branch points consisting of complex conjugate
pairs ([Se3; Ex. p. 107] or Theorem 3.1). Theorem 5.7 notes that each
finite group is the Galois group of a regular extension of Q'(X). Here
Q' is the field of all totally real algebraic numbers.

0.3. Extension of Theorem 1.1. Theorem 1.1 (b) applies to not nec-
essarily Galois extensions. Finite group G is the monodromy group
of a cover p: Yo — P! defined over R with only real branch points
if and only if

(%) G has an automorphism # and a system of generators
ap, ..., as such that A(a;) =a;! for i=1,...,s.

Of course, (*) holds if G is generated by elements of order 2. Sec-
tions 1.2-1.5 have a more complete discussion on (x) and related
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conditions. In particular, we discuss the persistence of property (x).
Given a group G satisfying (*), when does there exist a totally non-
split cover of G that does not satisfy (*) (§1.5).

Notation and basic tools appear in §2. Classical identifications in
the theory of covers appear in §2.1 and §2.2. Skip these on a first
reading. Sections 3.1-§3.4 give the proof of Theorem 1.1. The final
descent argument for the constructive part (<) uses Weil’s general
criterion. This says that the field of moduli (§2.4) K of a cover is
a field of definition if a certain cocycle condition holds. We add an
observation to a result of Coombes and Harbater [CoH] for Galois
covers (Theorem 2.4 (ii)). Thus, K is also a field of definition for the
G-cover; the cover and its automorphisms can be defined over K .

This method is natural, but perhaps intricate. Serre suggested sim-
plifying this using the algebraic fundamental group rather than the
classical topological fundamental group. Section 3.6 gives a second
proof of Theorem 1.1 (a) following Serre’s viewpoint. This is con-
structive. Assume we have a group G and generators of G with
property (x). We give an explicit description, in terms of “branch
cycles,” of a cover ¢: Yo — P! that has the properties stated in Theo-
rem 1.1 (b). Furthermore, we can force this cover to have some fibers
of only real points.

0.4. FEnhanced applications. The topological action of complex
conjugation c¢ induces its arithmetic action. (Section 3.7 has a precise
formulation.) We note that no naive p-adic analog of this representa-
tion of complex conjugation holds for the Frobenius F, € G(Q,/Qy)
(§3.7).

Comment 3 in §3.5 answers a question of E. Dew in his thesis [D].
In so doing it refines the technique of descending from C to R. Con-
sider the field of moduli K of a G-cover when K is a number field.
How can we effectively decide if each completion of K is a field of def-
inition of the G-cover? We give iff conditions for the field of moduli,
on one hand, and the field of definition, on the other, of a G-cover to
be (in) R. Dew has started an investigation of a local-global question
for the field of moduli being a field of definition. Knowing the answer
over each local place (including infinite places) does not answer the
global question.

Descent to Q appears in §4. We consider G = S, and specific
choices of 3 generators of order 2. Then, we investigate if certain 4
branch point covers ¢: Yo — P! derived from Theorem 1.1 can be
defined over Q. “Rigidity assumptions” from [Se3; Ch. 8, 9] do not
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apply. They rarely do when there are 4 (or more) branch points.

In §4.1 and §4.2, we recall from [Fr1] how to handle nonrigid cases.
When r = 4, Hurwitz family ideas reduce the problem to finding a
rational point on a certain curve C(C). Section 4.3 gives a formula
for the genus of C(C). We can answer our original question about
Sm when the curve C(C) has genus 0. Our computation shows this
happens exactly when m = 4,5,6,7, 10. So, for these values of
m , we realize the symmetric group S,, as the Galois group of a reg-
ular extension of Q(X) with 4 branch points and with some totally
real residue class specializations (Theorem 4.11). Serre noted, with 3
branch points instead of 4, only one centerless group, G = S5, had
the same property [Se2].

We do not know how to improve on our sporadic 3 generator cases
to draw the conclusion of Theorem 4.11 for an infinite number of
groups. Descent from R to Q is the difficulty because we must find
rational points on low dimensional Hurwitz spaces. Even with easy
groups this is a difficult obstruction. For example, the dihedral group
D,, of order 2m is generated by 2 elements of order 2.

Consider a prime m > 7. Theorem 5.1 shows that D,, requires
covers with at least 6 branch points to be realized as the Galois group
of a regular extension of Q(X). Mazur has formulated conjectures
that imply that realization of all D,, s will require an unbounded num-
ber of branch points [KM]. We borrow some of his formulation from
an e-mail discussion with him.

0.5. Acknowledgments. David Harbater made expositional simpli-
fications in our proof on Comment 3—Dew’s question—in §3. In
addition, much of the proof of Theorem 2.4 (§2.4) is implicit in the
result in [CH]). Our concern is with Property (ii) which was not stated
there.

1. First results and consequences. Let Y/K(X) be a regular exten-
sion of degree n and ¢: Yc — P! the associated cover. That is, Y
is the set of places of the field YC and ¢ is the natural restriction of
places—points of P!—to C(X). Branch points X, ..., x, are the
places ramified in the extension YC/C(X).

1.1. Statement of Theorem 1.1. Let xy be a point in P!(R)\
{x1, ..., xr}. Denote the fundamental group
n— I(Pl\{xl PRI xr}, xO)

for short by 7;. There is a natural action T of 7; called the mon-
odromy action on the points of the fiber ¢~!(xp). For its description,
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start with [y], the homotopy class of a closed path based at x;. Then
T([y]) permutes ¢~!(xo); it maps y € ¢p~'(x0) to T([y])(¥), the
terminal point of the unique lift of y through ¢ with initial point y.

The permutation 7'([y]) is independent of the representative of [y].
Fix a labeling y;, ..., y, of the points of the fiber ¢~!(xq). Regard
T as an action 7:m; — S, of m; on the integers 1,...,n. Up
to conjugation by an element of S, , this action does not depend on
labeling the y;s or on the base point x;. Call the group 7(m;) the
monodromy group of the cover. This defines a subgroup of S, up to
conjugation by elements of S, .

THEOREM 1.1. (a) Consider a finite group G. It is the group of a
regular Galois extension of R(X) with only real branch points exactly
when

(1.1) G is generated involutions.

(b) Furthermore, G is the monodromy group of a cover ¢: Yc — P!
defined over R with only real branch points if and only if

(1.2) 3h € Aut(G), 3oy, ..., as € G|
(ay,...,a5) =G, h(ai)=ai_1, i=1,...,s.

Addition to Theorem 1.1 (a). We can take the number of generating
involutions of G equal to the number of branch points of the regular
Galois extension of R(X) in the statement.

Addition to Theorem 1.1 (b). The cover ¢: Yo — P! defined over
R produced in §3.3 for the only if part of (b) has branch cycles

-1 -1 -1
(a1, 0] @z, ..., 0 s, a5 ")

(cf. §2.3). It is Galois over C. Indeed, it is Galois over R if 4 is
induced by conjugation by A’ € G with A’ of order 2.

1.2. Group theoretical conditions. As noted, (1.1) = (1.2). The
converse is false: abelian groups distinct from (Z/2)™ satisfy (1.2)
but not (1.1). For example, the cyclic group Z/m is the monodromy
group of the Galois cover ¢: P! — P! given by ¢(y) = y™. For
m # 2, it is defined over R with only real branch points. Yet, the
corresponding function field extension R(y)/R(y") is not Galois.

Consider two further conditions.

(1.3) G is a subgroup of G’ with [G’: G] =2, and G’ is generated
by involutions in G'\G.
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Further: If 4’ € G of order 2 induces /, then G is generated by
involutions.

(1.4) G=12/2 or Aut(G) is of even order.

We now show (1.1) = (1.2) & (1.3) = (1.4).

(1.2) = (1.3). Define G’ to be G’ = G x S(h) the semi-direct
product of G and the group generated by the automorphism /4. The
elements (a;, h), i=1,...,5,and h generate G’ and they are of
order 2:

(ah h)(ai1 h) = (aih(ai) ’ hz) = (aiai_l s 1) =1
Also, (a;, h) € G'\G. Suppose & is represented by inner automor-
phism by an element 4’ € G with A’ of order 2. Then G is generated

by involutions; include A’ with o/, i=1,...,5s.
(1.2) <= (1.3). Consider the situation where g, g1, ..., g are in-
volutions in G’\G that generate G'. Then, B; = gogi, i=1,...,7r,

are in G. Clearly, gy conjugates them to their inverses: go(go8&i)80 =
88 = (gogi)~!. We have only to check if they generate G.

Take H to be the subgroup that the f;s generate. We show G is
the union of the cosets of H and gyoH to conclude the proof. Do
an induction on elements of G presented as words 8 8, in the
gi s. Assume words of length at most 7z — 1 are in one of the cosets H
or goH . Now do cases for g; ---g =0 in H or ggH. If 0 € H,
then gog; o is also in H. Multiply by g to see g; 0 € goH. On
the other hand, if o € ggH , then multiply by (8i,80)8o to get g; 0
in H. We’re done.

(1.3) = (1.4) Suppose G’ contains 7 of order 2 not in the central-
izer Ceng (G) in G'. Then, conjugation by 7 is an automorphism of
G of order 2. Thus, |Aut(G)| is even. Assume all elements of G’ of
order 2 are in Ceng (G). Pick an element a of order 2 from G'\G.
Then a € Ceny (G). Therefore, G’ is the direct product G x (a) and
involutions—au with u running over involutions of G’\G—generate
G . Since those generators of G are also in Ceng (G), the group G
is abelian. Conclude: |Aut(G)| is even unless G = Z/2. 0

So, groups distinct from Z/2, with odd order automorphism group,
are not monodromy groups of a cover over R with only real branch
points. Here is how to get such a group. Consider a p-group P with p
odd. Then, Aut(P) acts on the frattini quotient module P/[P, P1P?
with kernel a p-group [Hu; Satz 3.17, p. 274). There exists P with
any desired nontrivial representation occurs in the frattini quotient
[BK; Th. 1]. In particular, choose P so that its automorphism group
is odd.
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1.3. A corollary of Theorem 1.1. Recall that a cover of a group G
is a surjective homomorphism y: F — G. The cover is finite if F
is a finite group. It is rotally nonsplit if F has no proper subgroup
that maps surjectively to G. This is equivalent to the condition for
a frattini cover as after Lemma 1.3 below. The frattini subgroup of a
group H is the intersection of all the maximal proper open subgroups
of H.

COROLLARY 1.2. Let G be any finite group. Then there is a totally
nonsplit finite cover w: F — G of G where F is not the group of a
regular Galois extension of R(X) with only real branch points.

Corollary 1.2 follows from Theorem 1.1 (a) and this lemma.

LEMMA 1.3. Let G be a finite group. There is a totally nonsplit
finite cover w: F — G of G where F is not generated by elements of
order 2.

Consider a homomorphism y: H — K of profinite groups: pro-
jective limits of finite groups. Call it a frattini cover if the equivalent
conditions (i) or (ii) hold.

(i) w is surjective and ker(y) is contained in the frattini group
of H.
(i1) Subset S of H generates H if and only if y(S) generates K .

The main result for frattini covers is the existence of a universal frat-
tini cover for any profinite group. This is the cover G in the following
statement.

ProrosiTION 1.4 ([FrJ; Proposition 20.33]). Each profinite group
G has a cover G — G, unique up to isomorphism, satisfying this
condition. If y: H — G is any frattini cover of G, there exists a
cover y: G — H such that y oy = . Furthermore, g is a profinite
projective group.

1.4. Proof of Lemma 1.3. We may assume G # {l1}. Consider
the universal frattini cover, {7: G—G,of G. Let &/ = {Njli € I}
be the collection of all normal subgroups of finite index of G. Let
F; = G/N;, i €I, and for 2 indices i, j € I such that N; D N;, let
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n;j: F; — F; be the natural homomorphism. The system (F;, x;;) is
projective. From compactness of C~?, 131 F;, = G. Take n = |G| .
For each i € I, let gen,(F;) be the subset of F/ consisting of all
n-tuples o = (@, ..., ay) such that {ay, ..., a,)=F; and o? =1,
i=1,...,n. For i, jel with N; 2 N;, denote the restriction to
gen,(F;) of the natural map induced by n;; on F by =;;: gen,(F;) —

geny(Fj).
The system {gen,(F;), m;;} is projective and an element of
!ii‘l gen,(F;) is an n-tuple & = (&, ..., &,) such that (@, ..., &)

= G and 62 =1 for i =1,...,n. Yet, such an n-tuple cannot

exist. Indeed, from Proposition 1.4, G is projective. Therefore, it
has no nontrivial element of finite order [FrJ; Cor. 20.14]. Conclude
that lln gen,(F;) is empty. For all i € I, gen,(F;) is finite, hence
compact. Thus, gen,(F;) is empty for some i € . That is, elements
of order 2 in F; do not generate F;.

Next, set F = G/(ker ¥ N N;). We easily see that the natural map
v: F — G is a frattini cover. From Axiom (ii) for frattini covers,
the elements of order 2 in F do not generate F. The finite cover
v: F — G is the required cover. o

1.5. Persistence of condition (1.2) to frattini covers. The collection
of finite groups has no practical topology on it. Therefore, a state-
ment about a property being general for finite groups has traditionally
been applied by restricting consideration to natural sequences of finite
groups. For example, a statement that indexes the subscript » among
the alternating groups A, is typical.

On the other hand, suppose a property P can be interpreted for
all finite groups. Assume that G has property P. As above, consider
those frattini covers of G that also have property P. For one, Propo-
sition 1.4 shows these groups—as a collection—intrinsically attach to
G . Therefore, persistence of property P to hold for frattini covers
is intrinsic to the immediate seed group G. In addition, the kernel
of the universal frattini cover G of G is pro-nilpotent. Thus, there
are measures of the persistence of property P. The following question
introduces an analog of Lemma 1.3 that fits the above discussion.

Question 1.5. Consider a group G that satisfies condition (1.2).
Does its universal frattini cover satisfy (1.2)?

If “Yes” is the answer to Question 1.5, then a cofinal family of finite
frattini covers of G satisfies (1.2).
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If G isa p-group, then the universal frattini cover G of G isa free
pro-p-group . In addition, in all cases, G has the same rank—minimal
number of generators—as G [FrJ; §20.8].

Observation 1.6. Question 1.5 has a positive answer when G is a
p-group satisfying (1.2).

_Proof. A characteristic subgroup of G gives the quotient G . Since
G is a free group, there is an automorphism of G satisfying (1.2) that
extends condition (1.2) for G. m]

Let % be a nontrivial family of finite groups. We say % is full
[FrJ; p. 189] if # is closed under taking subgroups, quotients, and
middle terms of short exact sequences with end terms in . If &
is full, there is a unique free pro-%-group of any given rank [FrJ;
Prop. 15.17]. For the case of rank s, denote this by ﬁ‘s(%). In fact,
the free pro- % -group on s generators clearly has an automorphism #
that satisfies (1.2).

If G is not a p-group, then we do not know the answer to Question
1.5. We conclude this section by showing that the universal frattini
cover G of G is not of the form ﬁs(%). Here % can be any full
family of finite groups. In particular, this suggests a negative answer
to Question 1.5 for such a G. _

Suppose, on the contrary that ﬁ}(%) = G. Let p’ and p” be
distinct primes that divide |G|. Then, the kernel of G — G is pro-
nilpotent with at least two sylow subgroups, P, and P, correspond-
ing to these primes. These are nontrivial free pro- p-groups of finite
rank. Since ker(G — () is a subgroup of finite index of F(%), it is
of the form FSI(E;” ) for some finite number s’ > s [FrJ; Prop. 15.27].
The next result gives a contradiction by showing that F\S:(%) has a
non-nilpotent quotient. For this, denote the primes p’ and p” as p
and ¢g. Let Z/p acton 4 =(Z/q)? as cyclic permutations of the co-
ordinates. Consider the semi-direct product B = 4 x Z/p generated
by this action.

PrOPOSITION 1.7. The group B is a non-nilpotent group of rank 2.
Assume that pq divides |G|. Then, G is not of the form F(%) for
some full family € .

Proof. Assume we have shown B to have the properties of the
proposition. From above, we are done if the non-nilpotent group B
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is a quotient of ﬁsl (%). We know that % is full family, containing
groups whose orders are divisible by p aEd g . Thus, % contains B.
Since s’ > 2, there is a surjection of Fy(%) on B. It remains to
show the properties of B.

Here are two generators of B:a = (1,0,...,0) € a and 7 =
1 € Z/p. Indeed, the Z/p orbit of o gives a basis for 4. Fi-
nally, Z/p is a p-sylow for B. It is not, however, normal: ata™! is
(1,-1,0,...,0) x 7. Thus, B is not nilpotent. O

2. Basic tools.

2.1. Identification of Galois and monodromy actions. Let y; be
a primitive element of the regular extension Y/K(X). Take P €
K[X, Y] to be an irreducible polynomial such that P(X, y;) =0 and
degy P = n. Identify the curve Y¢ with projective normalization of
the affine plane curve P(x,y) = 0. Here ¢: Yc — P! is projection:
(x,y) — x. Take xp to be distinct from the branch points of the
cover.

Let YC be the Galois closure of YC/C(X). The Galois group
G()/’E/ C(X)) is the geometric Galois group of the extension Y/K(X).
Embed it in S, through its action on the n conjugates y;, ..., y, of
¥1. Since we assume Y/K(X) is regular, it is a transitive action.

Identify the points p;,...,p, in the fiber ¢~!(xg) and the
conjugates y;, ..., yn of y; as follows. Each embedding YC —
C((X—xg)) in the Laurent series around X, determines a point p; € Y
above x;. Since x( is not a branch point, there are n such embed-
dings. Each corresponds to one of thg\y,-s.

From now on, fix an embedding YC — C((X — xp)). That is, re-
gard YC as a subfield of C((X —xp)) and label the points p;, ..., p,
so that p; corresponds to the power series y; in C((X — xp)), i =
1,...,n. From classical analytic continuation theory, for this la-
beling, the images in S, of both T'(m;) and the geometric Galois
group G(?E /C(X)) are the same. Denote this common group by I'y
(or simply I'). Furthermore, denote the image in I" of an element
s € T(m;) by 5, and the image in I" of an element ¢ € G(}/’E/C(X))
by @. Even in the case where Yc — P! is Galois, automorphisms of
this cover do not naturally identify with automorphisms of YC /C(X).
In particular, restriction of the former automo/rghisms to the fiber over
Xo do not correspond to automorphisms of YC/C(X).

We make an assumption a little stronger than saying that x; is not
a branch point. We ask that a—‘%;(P(xo , Y)) has no repeated zeros.
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Then, the first term y;(xy) determines each of the power series y;.
Thus, for the labeling above, identify p, with the geometric point
(X0, vi(xp)) on the affine plane curve P(x,y)=0.

2.2. The arithmetic Galois group. From here on, assume the base
point x; is in P!(Q). Consider the automorphism group Aut(C).
An automorphism 7 € Aut(C) acts coordinatewise on the geometric
points of any affine variety defined over C. This action transforms
the affine curve with equation P(x, y) = 0 into the affine curve of
equation P*(x, y) = 0. Denote the projective normalization of the
curve P*(x,y) =0 by Y¢ and the associated cover by g&: Yg — P!,

On the other hand, there is a natural extension of 7 to C((X —xp))-
Apply 7 to the coefficients of a power series y to get y*. Indicate the
transform of a subfield F of C((X—xp)) by F*. This action maps the
power series yp, ..., ¥y, onto the n roots y{, ..., y; in C((X —Xxo))
of the polynomial P*. Also, the field extension (YC)"/C(X) is the
function field extension of the cover ¢&: Y& — P.

Points on Y{ above x( correspond to the power series y7, ..., y;.
Label these, respectively, p{, ..., p;. Asin §2.1, p} corresponds to
the point (xg, ¥;(x)®) on the affine curve of equation P*(x, y) =0
Conclude that the effect of 7 on p;, ..., p, agrees with the action
on the power series and with coordinatewise action on the geometric
points.

Denote the subgroup of Aut(C) consisting of all automorphisms
that fix K by Autg(C). Assume, in addition, that 7 € Autg(C).
Then P = P, YC = YC' and 7 permutes the points pq, ..., D,
in the fiber ¢p~!(xq). Thus, t induces a permutation 7 € S,. Now
consider Y, the Galois closure over K (X) of the extension Y/K(X).
Call the Galois group G(Y/K(X)) the arithmetic Galois group of the
extgnsion. Label the image of y € Y under the automorphism ¢ €
G(Y/K(X)) by o(y). Also, denote the permutation of {1,...,n}
induced by ¢ on {y, ..., yn} by @. Use I" for the group {7lo €

(Y/K (X))}. Note that T e T, forall 7€ Autg (C).

__ ProrosiTION 2.1. The group T is normal in T. The quotient group
I'/T consists of the cosets modulo T of the elements T, with 7 €
Autg(C).

Proof. Let K be the constant field of the extension )A’/K ( ) K=
YNnK. Clearly, YC = YC; restriction G(YC/C(X)) — G(Y/K( ))
is an isomorphism. In particular, I' is the image of G(Y/K(X)) in
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Sy . It is a normal subgroup of T because K /K 1is Galois. The map
Autg(C) to G(K/K) is onto. Therefore, 7, with 7 € Autg(C), form
a full set of representatives (perhaps not distinct) for the quotient
f‘/ I'. The result follows. O

2.3. Complex conjugation and monodromy. Retain §2.1-§2.2
notation. We know generators for the fundamental group 7n; =
i (P'\{x;, ..., %}, xo). These are homotopy classes [y;] of suit-
ably chosen loops starting from x; around the branch points x;, i =
1, ..., r. These freely generate except for one relation, [y;1[72]- - - [¥r]
=1.Fori=1,...,r,set s; = T([y;]); the s;s generate the mon-
odromy group of the cover and satisfy s;s,---s5, = 1.

Call the z-tuple (s, ...,S,) the branch cycle description of the
cover associated with the data (or bouquet) (y;, ..., 7). Itis an ele-
ment of S, when we label the points p, ..., p, in the fiber ¢p~!(xg).
Another labeling of the fiber ¢p~!(x() defines an element of S’ that
is coordinatewise conjugate by an element of S, to the first branch
cycle description of the cover coming from the bouquet (y;, ..., 7).
This produces a one-one correspondence between the following sets:

o degree n covers ¢: Yc — P! (up to equivalence of covers)

ramified over the points x;, ..., x,; and

e r-tuples (s;,...,s) € S, (modulo coordinatewise conjuga-
tion by S,) with sy5,---s, =1 and (sy, ..., s,) transitive on
1,...,n.

Unless otherwise specified, assume from here the following.

(2.1) Branch points xy, ..., X, r >3,
are in P!(R) and x; < x3 < --- < X, < 00.

Fix the base point x € P!(Q)\{co} on the arc between x; and x, not
containing X, on the real projective line. Denote complex conjugation
on C by c¢. It maps the homotopy class [y] € m; of a closed path
y based at xg to the homotopy class [y¢] of the conjugate path y¢.
With suitable loops around the Xx;s, we write this action explicitly.
For the rest of §2 and §3 use the specific bouquet (y;, ..., 7,) from
[FrD; §2.1]. For this we have the following.

PROPOSITION 2.2. The paths ¥5, ..., yf are respectively homotopic
to

2 ) 02w, (3 v T (s ),
cees ()7 Y e 7L
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Hurwitz knew these formulas [Hur; p. 357]. Krull and Neukirch
[KN] investigated them further. We consider them deriving from the
action of a general operator. Suppose we have a group U and an

integer r > 0. Define %,: U" — U" to send u = (uy,...,u,) € U’
to Zw) € ¥, ..., u%) with uf = u7! and
(2.2)  uf = (i) T (Ui ), i=1,...,r—1.
We also have
(2.3) u? o uf = (upu)7t, i=1,...,r—1

Consider a cover ¢: Yo — P! and its conjugate ¢¢: Y¢ — P!. The
fiber (9¢)~!(xo) consists of the points p¢, ..., p5. Let T¢ denote

the monodromy action on the fiber (¢°)~!(xy). For any closed path
y based at xp, we have T([y‘])(p{) = [T([¥])(p;)]°. Replace y by
»¢ and apply ¢ to both sides. This gives the equivalent expression:

(2.4) T<([yD@;) = T([rD(@)-

From (2.4):

(2.5) the r-tuple (T([7§]), ..., T([¥7])) is the branch cycle
description of the cover ¢¢: Y& — P! associated with
the bouquet (y;, ..., 7).

The (a) part of the next proposition rephrases (2.4) and (2.5). The (b)
part follows because the assumptions imply Y§ = Yc.

ProposiTION 2.3. (a) Suppose s = (sy, ..., S,) is the branch cy-
cle description of the cover ¢: Yo — P! associated with the bouquet
(P15 ---5 7). Then, & (s) = (s‘lg ey s,g ) is the branch cycle descrip-
tion of the cover ¢¢: Y& — P! associated with the bouguet (y, ... , ¥r).

(b) If RD K then %,(s) =¢sc. That is 52 =¢5¢, i=1,...,r.

2.4. Descending the base field—Weil’s method. We now descend
the base field in the second part of the proof of Theorem 1.1. Without
condition (ii) below, it results from Prop. 2.5 of [CoH]. Here is the
framework. Let ¥: E — P! be a Galois cover, and let H be the
subgroup of Aut(C) given as

{r € Aut(C/Q)|¥: E — P! and ¥*: E* — P! are equivalent covers}.

Take K = CH | the fixed field of H in C. Then, K is the field
of moduli of the cover. Choose Xx;, a point in Q distinct from the
branch points of the cover.
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THEOREM 2.4. Assume the conditions of the paragraph above. There
exists an extension Y/K(X), regular over K, such that
(i) the cover ¢: Yc — P! is equivalent to the cover ¥: E — P!,
and
(i) K((x —xp)) contains Y .

Condition (ii) is equivalent to the following.
(ii') Permutations T acting on the Galois closure of Y/K(X) have
a common fixed point for all 7 € H (notation as in §2.2).

Danger: Y/K(X) need not be Galois. It is Galois if and only if
T =1, for all T € H. That is, one point of the cover over Xx; is
defined over K. Thus, if the cover is Galois, all points over xp must
be defined over K. In the other direction, let K be lhe constants
of the Galois closure of the extension Y/K(X). Then K = K if and
only if Y/K(X) is Galois. We know the field generated by coordinates
of the collection of points above x; contains K . Therefore, if these
points are defined over K, then K=K.

Proof. By definition, for each t € H, there is an isomorphism
0:: E — E* such that ¥* o d; = ¥. The automorphism J; sends the
fiber ¥~1(xo) = {ey, ..., e} to the fiber (¥*)~!(xg) ={e}, ..., e}.
The cover W*: E* — P! is Galois. Thus, there exists an automor-
phism yx.: E* — E* such that x; o J,; sends e; to ef. Denote the
isomorphism yx; od,; by c¢;. The collection {c;}.cy satisfies the co-
cycle condition: cﬁf 0 Cr, = Crp 1, for all 7;, 7, € H. Indeed:

c:lz ocg(er) = C:lz(ei‘z) = (€)= eltlrz = ¢ 1,(€1).

Weil’s cocycle criterion now reduces the field of definition [We].

There exists a cover gg: E; — P!, defined over K with the following

properties. There is an isomorphism ©: Ex — E (defined over C)
such that
(2.6) (a) Yo®=g¢g, and

(b) ©° 0O l=¢,, forallteH.
Define Y to be the function field over K of Ex. The extension
Y/K(X) is regular and satisfies condition (i). In fact, ¢: Yc — P! is
the cover ¢g: Ex — PL.

Finally, consider the point p; = ©~!(¢;) on Eg. From (2.6) (b),
P} =p1,forall t€ H. Thatis, p; € Ex is K-rational. As before, let
¥1 be the power series corresponding to p;. Then y; € K((X — xp)) .
Since Y =K(X,y;), K(X—xp))D Y. O
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3. Proof of Theorem 1.1.

3.1. Proof of Theorem 1.1 (b) =. Let Y/R(X) be a degree n
regular extension whose associated cover ¢ : Yc — P! has monodromy
group I'y = G. Let s = (sy, ..., s,) be the branch cycle description
of ¢: Yc — P! associated to the bouquet (y;, ..., y,) of Proposition

2.2. From Proposition 2.3 (b), we have s¥ =¢5;c, i=1,...,r.
Apply (2.3). Then, (5;---5,)"' = ¢G;---5,)¢, i = 1,...,r. Set
oj=Sj41- S, i=1,...,r—1. Thus

(3.1) tai€ =a;!, i=1,...,r—1.

Conjugating G by ¢ € S, gives the ~£ that Theorem 1.1 (b)
requires. a

3.2. Proof of Theorem 1.1 (a) =. Here, Y/R(X) is a degree n
Galois regular extension with group I'y = G. So (3.1) of §3.1 still
holds. In addition, since fy =Ty, we have ¢ € G (statement prior
to Proposition 2.1). Thus, ¢, ca, ..., ca, are of order < 2 and
they generate G. O

3.3. Proof of Theorem 1.1 (b) <. Let G be a group with prop-
erty (1.2). Let r = s+ 1 and n = |G|]. Regard G as a subgroup
of S, through its regular representation. Consider the r-tuple s =
(515...,58) €S, defined by

(3.2) s = (ap, al'laz , az_la3, cees a,‘_‘za,_l , ar'_ll).

The s;s generate G. They also satisfy s;---s, = 1. Fix r + 1 points
X0s X1, ..., Xy in P! (R) and a bouquet (y;, ..., y,) asin §2.3. From
Riemann’s Existence Theorem (§2.3), there exists a cover ¥: E — P!,
unique up to equivalence of covers, with the following properties. Its
branch points are x;,...,x,, and s = (sy,..., ;) is the branch
cycle description of the cover associated to the bouquet (y;, ..., ¥r).
Furthermore, since G — S, is the regular representation, ¥: E — P!
is a Galois cover with automorphism group G.

From Proposition 2.3 (a), %(s) = (s¥, ..., s%) is the branch cy-
cle description of the cover ¥¢: E¢ — P! associated to the bouquet
(»15 ..., ¥r). From the definition of % and (1.2) check easily that
s& =h(s;), i=1,...,r. Suppose that conjugation by k¥ € S, coin-
cides with the automorphism # on G. Thus:

1

(3.3) s€ =xsix~! fori=1,...,r
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From Riemann’s Existence Theorem (§2.3), the covers ¥: E — P!
and ¥¢: E¢ — P! are equivalent covers. Apply Theorem 2.4 to con-
clude there exists a regular extension Y/R(X) with these properties.
(i) @: Yc — P! is equivalent to the cover ¥¢: E¢ — P!,
(i1) R((X — xp)) contains Y .
The cover ¢: Yc — P! is defined over R. It is the desired cover. O

3.4. Proof of Theorem 1.1 (a) <. Let G be a group generated
by involutions «y, ..., as. In particular, G has property (1.2) with
h = 1. Thus, the construction around (3.3) holds, with A =1, k =
1. Consider the regular extension Y/R(X) produced in §3.3. It is
Galois over C(x) with (geometric) Galois group G. Also, R((X —Xxp))

contains Y. The branch cycle description s = (s;, ..., s,) of the
cover ¢: Yc — P! associated with the bouquet (y;, ..., y,) has this
property:
(3.4) st =s; fori=1,...,r

From Proposition 2.3 (b), we also have s? =csic, i=1,...,r.

Therefore, ¢ € Ceng (G). Since R((X — xp)) contains Y, ¢ has a
Qxed point. Conclude that ¢ = 1. Therefore, from Proposition 2.1,
I'y = T'y: Y/R(X) is a Galois regular extension with Galois group
I'y=¢G. 0

REMARK. In the above argument, ¢ = 1. Thatis, ¢~!(xo) has only
real points. Equivalently, R contains the residue class algebra Y .O

3.5. Comments. This section consists of elaborate comments. Each
uses the proof of Theorem 1.1 for further exploration. These are the
topics.

e Branch points need not be real.
e The cover need not be Galois.
e You can decide when the field of moduli of a cover is R.

Comment 1. Dropping the assumption “the branch points are real.”
The “real branch point situation” of Theorem 1.1 allowed special
generators [y1], ..., [y,] of the fundamental group n; from §2.3.
Explicit formulas gave [y{], ..., [yf] as words in [y1], ..., [7/] (cf.
Proposition 2.2). We can work with the general cover defined over R
similarly.

Here, the branch points consist of r; real points and r, complex
conjugate pairs, where r = r; + 2r,. Use the paths of [FrD; §2.2]
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for which we know the complex conjugation action explicitly. Slight
adjustments to the proof above lead to this more general result.

THEOREM 3.1. Finite group G is the group of a regular extension
Y/R(X) with r branch points, r, of these real, exactly when G has
special generators. Specifically, (r + ry)/2 elements generate G with
at least ry of them involutions.

More precisely, the following statements are equivalent.
(a) There exists a Galois regular extension Y/R(X) of group G,

with r branch points Ly eeesly s Zr)sooes 215 Z15 ... » Zr,, Where
tieR,i=1,...,rn,and z;¢R, i=1,..., .
(b) There exists (g1, ..., g&) € G" which satisfy these conditions:
(i) g--g=1,
(i) (g,...,8)=G,
(iii) g, € G such that (g}---g)?>=1,i=0,...,rn—1,
&—i= g(’)(g;1+1+i)_lg<'), i=0,...,n-1L

The special case r = r; corresponds to Theorem 1.1 (a). For r; =0,
we get a result from the introduction. Namely, every finite group G
is the Galois group of a Galois regular extension of R(X).

Comment 2. Nonregular representations. Here, suppose G has an
embedding in S, (not necessarily the regular representation). As-
sume «;, ..., ag are generators for which (1.2) holds. Denote the r-
tuple of (3.2) by s(a). Let xg, X1, ..., X, be r+ 1 points in P{(R).
Take (y1, ..., 7r) to be a bouquet as in §2.3 with s(a) the associ-
ated branch cycle description of the cover with x;, ..., X, as branch
points. Denote the degree n (not necessarily Galois) cover from §3.3
by Ws).x: E — P!. We ask if we can define this cover over R.

We showed the answer to be positive in the Galois case, thanks to
Theorem 2.4. In greater generality, the answer is yes whenever you can
construct a collection {c:}.cg(c/r) as in Theorem 2.4. It must satisfy
the cocycle condition ch o ¢, = ¢y, , for all 7y, 7, € G(C/R). For
example, you can do this when the cover ¥: E — P! has no nontrivial
automorphism. This is the same as the condition Ceng (G) = {1}.

Comment 3—from E. Dew [D]. When the field of moduli is R.
Suppose y: E — P! is a Galois cover and complex conjugation gives
an equivalent cover W¢: E¢ — P!. We say R contains the field of
moduli. Suppose also that the covers have real branch points. Let
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y = (y1,..., ) be abouquet as in §2.3 and let (s;,...,s,) be the
branch cycle description associated to the bouquet y. With o; =
s1--+8,i=1,...,r—1, Proposition 2.3 gives this:

(%) The set Ny={k € Sy: ka;k ' =0, i=1,...,r—1}
is nonempty.
Thus, (*) is a necessary condition. We want to know what to add
to this for an if and only if condition for the following:

(%4) There is a cover equivalent to y: E — P! defined and
Galois over R.

It is tempting to answer: N, N G is nonempty. Here G denotes

the monodromy group of the cover. Yet, this condition may not be

sufficient in general. The correct answer is this:

(#%x) Ik € N,NG with k2 = 1.

Note. In the addition following Theorem 1.1 (b) we selected the s;s
so k = 1 liesin N,. Also, (**#) is equivalent to asking that k2
be the square of an element of the center Z(G); divide x by this
element.

Proof of the equivalence of (x*) and (x*x). Assume that the cover
w: E — P! is defined and Galois over R. Then the element ¢ (see
§2.2 for the definition of ¢) is in N, N G and it satisfies ¢> = 1.

In the other direction, assume (*x*x*). Following the proof of Theo-
rem 2.4 we use Weil’s criterion. Here, however, we choose a different
cocycle. Let H = {1, ¢} denote the Galois group of C/R. Recall
the dictionary between covers and branch cycle descriptions (for the
bouquet y). An isomorphism §: E — E° such that y°od = y comes
from an element k¥ in N,.

To use (*x*x), label points p on E above the base point xy. Apply
¢ to p; then permute the naming of the image points p¢ by «. The
new points xk(p°) give us points above xp in E¢. These produce
exactly the same branch cycle description (relative to y) for E€ as
do the points p for E. Thus, these respective namings of the points
give a unique isomorphism J.: E — E°¢ that sends points p to the
respective points x(p). In addition to y“od = y, J. satisfies these
two conditions:

(t) 0fo0d.=1; and
(t1) J. commutes with the action of ¢ that takes automorphisms
of E — P! to automorphisms of E¢ — P!.
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Indeed, (1) follows because the effect of the left side of (1) on p
is given by k2. As for (tt), automorphisms of the covers commute
with a renaming of the points of p.

For convenience take d; to be the identity. Condition (f) guaran-
tees that the collection {dJ,} satisfies the cocycle condition

T
2 —
517 © 512 - 5715'

Therefore, one can descend the field of definition of the cover to R.
Condition (1) assures the automorphisms are also defined over R.

Section 3.6 gives a more algebraic approach to the above. In par-
ticular, the equivalence of (xx) and (xx*) follows immediately from
Lemma 3.3.

3.6. Serre’s approach. Serre suggested that the algebraic funda-
mental group, rather than the topological fundamental group, would
be more convenient for proving Theorem 1.1 (a). We follow Serre’s
exposition [Se3; cf. Ch. 7, 8, 9].

Assume K has characteristic 0. Let x;, ..., X, be r distinct points
in P1(K). Denote the maximal algebraic extension of K(X) unram-
ified outside x;,...,x, by Q. The extension Q/K(X) is Galois.
Its group is the algebraic fundamental group of PY(K)\{x;, ..., x,}.
Denote this profinite group by 7z,

When K = C, n2®# is the profinite completion 7 of the topological
fundamental group n [Se3; Theorem 7.5, p. 69]. By analogy with the
complex case, denote the free group on r generators I'y, ..., I', with
the single relation I'j---T, = 1 by n. There is a map i: 7 — n?8
with the following properties.

(1) «Iy) & ; 1s a generator of an inertia group of the extension
Q/K(X) above x;, i=1,...,r.
(ii) The map i extends to an isomorphism i: & — 72,
If the divisor (x;) 4+ (xp) + - + (x;) of P! is K-rational, the ex-
tension Q/K(X) is Galois. Let mx denote the Galois group of this
extension. We have this exact sequence:

(3.5) 1 - %8 - g — Ag — 1.

Here Ag denotes the Galois group of the extension K/K. Note:
the map nx — Ag has many sections. Indeed, for each x;, €
PYK)\{x1, ..., x,}, we can embed Q in K((X — xp)) where the
elements of Agx act naturally (cf. §2.2).

Given a finite group G, a surjective homomorphism y €
Hom(n?#, G) produces a Galois extension E/K(X) with group G.
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We say E descends to K if there exists a Galois regular extension
Ex/K(X) with CEx = E. This happens if and only if the homomor-
phism y extends to 7k .

In our context, K = R and the branch points x;, ..., X, are real.
Section 2.3 gives generators I';, ..., I', of n2# so that complex con-
jugation ¢ € Ag acts on them by the formulas (2.2). Recall from §2.3
the operator % in our next result.

PROPOSITION 3.2. Assume the branch points x;, ..., X, are real.
Then, mx is isomorphic to the semi-direct product n®® x SZ/2 where
c=1€Z/2 maps T € n¥ to I° as follows:

(3.6) rc=r?¢, i=1,...,r

The group theoretical observation that supports Theorem 1.1 (a)
now appears clearly.

LeMMA 3.3. Let w € Hom(n?2, G) and g; = w([y)---w(y), i=
1,...,r. Then, y extendsto y € Hom(n®8x5Z/2, G) if and only if
there exists an involution k € G withall of kg, ..., kg involutions.

Proof. Assume {7 € Hom(n?8 x 5Z/2, G) extends y. Set Kk =
¥(c); |kl=2 and

(3.7) y(T) =rxyDx
for each I' € n%%¢. Substitute I'; for I' and use (2.3) to get g I =
kgk,i=1,...,r.

For the converse, define € Hom(n?8 x 5Z/2, G) by @([, &) =
w(D)xé for each T € 7?8 and ¢ = 0, 1. Use (3.6) to check that
(3.7) holds for ' =T, i=1,...,r, and so for all I" € n28. This
guarantees that 7 is a homomorphism of groups. o

3.7. p-adic analogs. Proposition 3.2 gives the effect of complex
conjugation ¢ :

(3.8) T¢ is conjugate in = to 7!, i=1,...,r.

The exponent —1 comes from the “branch cycle argument” ([Frl;
p. 62] or [DFr; §1.4 Proposition 1.9]). We explain. Consider the
cyclotomic character x: Ax — [[y G(K(un)/K), i=1,...,r. Here
uy denotes the group of Nth roots of 1. The action of each 7 € Ag
on the group 728 looks like this:

(3.9) I'? is conjugate in 7%# to Ff(’) where x; = x7.



NONRIGID CONSTRUCTIONS IN GALOIS THEORY 101

Now take K = Q. It is natural to ask if the Frobenius F, € Aq,
satisfies an analog of (3.8). One cannot just replace the exponent —1
in (3.8) by the exponent p. Indeed, if this were true, conjugates of
I‘f , i =1,...,r would generate m. This, however, would imply
that a group generated by elements of order p would be trivial, a
contradiction.

We are not tempted to use the exponent p when we recognize a
simple property of the Frobenius F,. It acts on uy as pth powers
only when p does not divide N . Question 3.4 below is subtler. Say
that a finite extension L/Q,(X) is p'-ramified if p does not divide
any of the orders e; of the inertia groups above x;, i = 1,...,r.
For such extensions, p is relatively prime to N = Icm(e;, ..., e).
In this case, the value in G(K(uy)/K) of the cyclotomic character
at F, is p. Define nzlg to be the projective limit lim n?e/D . Here
D ranges over normal subgroups of 7 of finite index where the field
extension corresponding to D is p’-ramified.

uestion 3.4. Is the action of the Frobenius F, on # = 7% induced
p D

by an action on 7 such that l"f" is conjugate in 7w to l"‘; where

F .
xXj=x;",i=1,...,r?

We believe the answer is still “No!” Here is an outline in this direc-
tion in the case of covers with branch pointsin Q, . Such a “frobenius”
action would give a formula like this:

(3.10) Fp0,F; ! = wi(o)of 0} (o), i=1,...,r

Here w;(o) is a word in the entries of . To regard the formula as
similar to that over R requires some conditions on the words (o).
At the minimum, they should be independent of considerable data
describing the cover.

Suppose we ask that w(s) be independent of the branch points and
the choice of elements in the conjugacy classes given by the entries of
o . Then, such a formula implies the existence of a correspondence—
much like a Hecke correspondence—on the naturally attached Hurwitz
space. We conclude by showing how this gives a contradiction.

When r = 4, consider the observation of [Fr, 2; §4.2]. This relates
all Hurwitz spaces to curves defined by the action of a subgroup of
finite index in SL,(Z) on the upper half plane. Our assumptions on
(o) would imply the existence of an actual nontrivial Hecke theory
on these curves. Some of these curves are modular curves, and they
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have a well known Hecke theory. Still, most are not. For these, this
contradicts a result of Atkin [A]: noncongruence subgroup curves have
only trivial Hecke correspondences.

ReMARK. The existence of a Galois regular extension of Qp(X)
with group any given group G was proved by Harbater [H]. In this
subsection we wanted more. An analog of Lemma 3.3 would be a
practical criterion for defining a given cover over Q. O

4. Hurwitz spaces and rationality over Q.

4.1. Reduction of the problem. Suppose G is a group with an em-
bedding G — S, . This need not be the regular representation. Let
ai, ..., as be generators for which condition (1.2) holds. Denote a
specific cover produced by Comment 2 of §3.5 by W) x: E — P!.
Finally, we assume either

(4.1) G — S, is the regular representation or Ceng (G) = {1}.
From Comment 2 of §3.5, we can define ¥, x: E — P! over R. In
this section, we try to descend to Q.

Question 4.1. Is there some choice of branch points x;, ..., X4 in
P!(R) that gives a cover Y0),x: E — P! produced by Comment 2
of §3.5 and defined over the rational number field Q.

We use Nielsen classes and Hurwitz families to investigate this.
Branch cycle descriptions provide much information (cf. §2.3 and
[DFr] §1.1). Still, they depend on many choices: a base point xp, a
labeling of the points in the fiber ®~!(x;), an ordering of the branch
points x;, ..., X,, and a sample bouquet p;, ..., y,. There is an
intrinsic notion.

Consider the data attached to any branch cycle description (sy, ...,
sy) of a cover. Most importantly, there is the group (s) generated by
the s;s. Up to conjugation by S, this is the monodromy group of
the cover. Secondly, there is the collection {C;, ..., C,} of conjugacy
classes of sy, ..., s in the group (s). From Lemma 1 of [Frl], up
to conjugation by S, , this data is an invariant of the cover. This
observation gives the definition of the Nielsen class of a cover.

Let G be a subgroup of S, andlet C = (Cy, ..., C,) be an r-tuple
of nontrivial (not necessarily distinct) conjugacy classes of G.

DEFINITION 4.2. To the data (G, C) we associate its Nielsen class:

n(C)={seG|(s)=G,s1---5, =1
and there exists w € Sy, 5)o €Ci, i=1,...,71}
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Suppose a cover ¥: E — P! has any branch cycle description s,
up to conjugation by elements of S,, in ni(C). We say the cover
is in ni(C). Alternatively, ni(C) is the Nielsen class of the cover.
The order in which we list the conjugacy classes does not matter. The
straight Nielsen class of (C, G) is

sni(C) = {seni(C)|s; € C;, i=1,...,r}

We speak of a cover ¥: E — P! with an ordering of its branch
points being in sni(C). This means, up to conjugation by elements of
Sy , that any branch cycle description of the cover with this ordering
is in sni(C). The normalizer (resp., the straight normalizer) of the
Nielsen class is

N(C) = {k € S,|conjugation by k¥ permutes C,, ..., C,},
N(C) = {x € S,|conjugation by x fixes C;, ..., C,}.

Note that N(C) acts on the Nielsen class ni(C) by conjugation: x €
N(C) maps s € ni(C) to xsk~! € ni(C). Similarly, SN(C) acts
on the straight Nielsen class sni(C). Denote the quotients of these
actions by ni(C)2, sni(C)2®, the absolute Nielsen classes.

Under certain assumptions, there is a space representing a solution
to a natural moduli problem. This is the problem of parametrizing
equivalence classes of covers in a given Nielsen class. Hurwitz mon-
odromy action interprets properties of this moduli space. We explain
the monodromy action.

Consider the free group on r generators, Q;, i =1,...,r—1,
with these relations:

(4.2) (@) Qi0i+10i=0i+10iQi41, I=1,...,r=2;
(b) Q:Q;=0Q;0;i, |i—j|>1; and
() Q1Q2-Qr1Qr—1---C1 =1

This group, a quotient of the Artin braid group [Bo], is called the
Hurwitz monodromy group of degree r. We denote it by H,. The
Q;s act on ni(C)? by this formula: for s € ni(C)?®

(4.3) (S)Qi= (815 vy Si1s SiSit157 s Sis Sit2s - Sr)s
i=1,...,r—1.

Thus they induce a permutation representation of H, on ni(C)% :
the Hurwitz monodromy action on the Nielsen class ni(C)2b.
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Denote the kernel of the natural permutation representation H, —
S, sending Q; to the 2-cycle (ii+1) by SH,. This is the straight Hur-
witz monodromy group. The group SH, acts on the straight Nielsen
class sni(C)2 . The next statement summarizes the basic moduli space
properties in the special case that all of the conjugacy classes are ra-
tional ([Frl; §4 and 5] or [DFr; §1]). (A conjugacy class is rational if
it is closed under putting elements to powers relatively prime to the
order of elements in the class.)

THEOREM 4.3. Assume that (4.1) holds, that G has no center, that
SH, acts transitively on sni(C)®, and that C,, ..., C, are rational
conjugacy classes. Then there is an algebraic family F (C) of covers
of P! (a priori over C)

F(C): T(C) - #Z(C) x P.
This universal Hurwitz family associated to ni(C) satisfies (4.4)—(4.7).

(4.4) Z (C) is a finite morphism of quasiprojective varieties,
# (C) is irreducible and the generic fiber of pr;o# (C):
I (C) — Z(C) is irreducible.

(4.5) The family # (C) is defined over Q.

(4.6) Each cover ¥: E — P! in the Nielsen class ni(C)? is
equivalent to a unique fiber cover . (C)y: 7 (C) — P!
(with h € Z(C)) of the family & (C). Also, & (C)p:
T (C)p — P! is defined over Q(h), the field of defini-
tion of the point h on the algebraic variety #(C); Q(h)
is the smallest field of definition for a cover that is
equivalent to the cover ¥: E — P!,

(4.7) Denote the subvariety of (P!)” consisting of r-tuples
with distinct coordinates by U”. Then, consider the al-
gebraic variety U” /S, = U, given by the quotient action
of S,. The “branch point reference map” ¥(C): #(C)

— U, sends each h € #(C) to the branch point set of
the fiber cover # (C)y: 7 (C)yp — P!. This is an étale
morphism of degree |ni(C)?®| defined over Q.

The original conjugacy classes, C;, ..., C,, are the conjugacy classes

in G of the entries of the r-tuple s(a). Theorem 4.3 has this conse-

quence.
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PROPOSITION 4.4. Assume the hypotheses of Theorem 4.3. The an-
swer to Question 4.1 is yes if and only if there are branch points,
X1, ..., X € PYQ), so that the point h € Z(C) that corresponds to
the cover Wy, x: E — Plis a Q-rational point on #(C).

4.2. Description of #(C) for r = 4. See [BFr; §1, Lemma 1.6)],
[Fr2; §4.1]. Both our examples will be 4 branch point situations. In
this case, Z(C) has a more explicit description. Consider natural
map U” — U,. Let Z(C)’ be an irreducible component of the fiber
product #(C) xy U" and p: Z(C)' — U’ the natural projection.
Theorem 4.5 uses the permutations of sni(c)?® induced by these el-
ements of SH,: Q}; 07'030:; Q7'Q5'030,0; . Denote these by
a2, a3, a4, respectively. These act on sni(C)2®. The transitivity
hypothesis of Theorem 4.3 implies that the g;;s are transitive on
sni(C)2b

THEOREM 4.5. For each (x3, x3, X4) € U3, denote the inverse im-
age p~ 1 (P! x (x5, x3, x4)) by Z(C)'(x2, x3, x4). Composition of p
with projection U™ — P! on the first factor gives an unramified cover

Z(C)(x2, x3, x4) = P\{x2, x3, x4}

Complete this to a (ramified) cover C(C) — P! of projective nonsingu-
lar curves. This will have the following properties.

(4.8) Xy, X3, X4 are the 3 branch points of the cover.

(4.9) (a12, a13, a1s) (acting on sni(C)®) is a branch cycle
description of the cover.

(4.10) The cover is defined over Q.

COROLLARY 4.6. The variety #(C) is birational to C(C) x P! x
P! x P!,

Proof. For (x,, x3, X4) take the generic point of U3 in the above.
The birational equivalence #Z(C)'(x;, x3, x4) = C(C) induces a bi-
rational map #(C) — C(C) x P! x P! x P!, i

Section 4.3 has examples where C(C) is P! (over Q). Conse-
quently, the space #Z(C)’ is a Q-rational variety. In particular, the
Q-rational points on #(C)’ form a dense subset of Z(C)(R) (for
the complex topology) and Question 4.1 has an affirmative answer.
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4.3. A formula for the genus of the curve C(C). The Riemann-
Hurwitz formula gives the genus g(C) of the curve C(C) (cf. Theo-
rem 4.5):

(4.11) ind(ay3) +ind(a;3) +ind(ayq) =2(N + g(C) - 1)

with N = |sni(C)?®|.
Here is how we compute ind(a;;). Denote the length of the orbit of
s € sni(C)® under ay; by iy(s), j=1,2,3. Then

(4.12) ind(a;,)= 3 ’—‘JI(L)Z—I-
. wab lj(s)
s€sni(C)

Check easily that

(4.13) (s)aiz = ((5152)s1(5182) 71, sus2s71, 53, 84)
= (81, 82, (5152)7'53(5182), (5152) ™ 'sa(5152))
(in sni(C)®).
Thus, a;, acts by conjugation by 515, on the third and fourth com-
ponents and leaves the others unchanged. It follows that (s)(a;3)? =s
in sni(C)® if and only if
(4.14) (51, 52, (5152)7983(5152)7, (5152) " 954(5152)7)
=K(S1, $2, 83, S4)K !
for some x € SN(C). For any subset 4 of G = (s), denote the cen-
tralizer of 4 in SN(C) by Z(A). Then, condition (4.14) is equiva-
lent to this:

(4.15)  There exists y € Z(sy, 5) such that y(s;5,)77 € Z(s3).

Hence, ij5(s) is the smallest integer ¢ > 0 with (s15)77 €
Z(s1,5)Z(s3). Therefore, the factor group (sy52)/(s152)NZ (51, 52)Z(53)
has order i,(s). Similarly, check that
(8)a12 = ((5254) " '51(5284) , 82, (5452)"'53(5452), 54), and
(s)as = (51, (5451) 7 52(5451) , (5451)7'53(s451), 54) (i sni(C)™).
Thus, the integer i;3(s) (resp. ij4(s)) is the smallest integer ¢ > 0
such that (s45,)7 € Z(s3, 54)Z(s3) (resp., (s451)7 € Z(s1, 54)Z(53)) .
Finally, we get
(4.16) i12(s) = [{s152)/(s152) N Z (51, $2)Z(s3)]
i13(8) = [(s452)/ (5452) N Z (54, 52)Z(53)| 5
i14(8) = |(s451)/{s451) N Z (54, 51)Z(s3)|-
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THEOREM 4.7. Assume the hypotheses of Theorem 4.3 and Theorem
4.5. Then, (4.11) gives the genus g(C), where (4.12) and (4.16) give
ind(alz), ind(a13) and ind(a14).

4.4, Symmetric groups. In this section, n = 2p+1 is an odd prime
and the group G is the symmetric group S, embedded in itself. Con-
dition (4.1) holds. Consider the following involutions of S, :

ay=Q2n-1)3n-2)---(p—1p+3)(pp+2);
a=(01n2n-1)Bn-2)---(p-1p+3)(pp +2);
a3=(1n-1)2n-2)3n-3)---(p—1p+2)(pp+1).

Since these generate a transitive subgroup of S, , it is easy to see that
they generate all of .S,,. Indeed, as n is a prime, the representation is
primitive. It is well known that a primitive subgroup of S, containing
a 2-cycle is all of S,,. As aja; is a 2-cycle, we are done. Therefore,
condition (1.2) is satisfied.

Here is the 4-tuple s(a) = (sy, 52, $3, 84) of (3.2):

si=a1=02n-1)3n-2)---(p-1p+3)(pp+2);

sy =ajay = (1n);

s3=a2a3=(nn—1---21);
Ss=a3=(1n-1)2n-2)3n-3)---(p—-1p+2)(pp+1).

Order C;, C,, C3, C4 so they respectively denote the conjugacy
classes of s4, 51, 52, 53. Thus (s1, s>, 53, 84) € ni(c)® and (s4, 51,
52, 53) € sni(C)2 . Specifically, we have: C; = {products of p dis-
joint 2-cycles}; C, = {products of p — 1 disjoint 2-cycles}; C; =
{2-cycles}; C4 = {n-cycles}. Any conjugacy class in S, is rational.
In particular, these are.

We now investigate the Hurwitz monodromy action on sni(C)2b.
First, a lemma helps us list the elements in sni(C)2 . In the following,
for s, w € S, we let s® denote the conjugate of s under w (i.e.,
59 =w sw). For ie{1,...,n}, i® is the integer (i)w.

LEMMA 4.8. Let a, b € S, be involutions. Let O be a disjoint
cycle in ab that contains an integer py fixed by b. There are two
possibilities.

(1) O = (pop1---pipl---pb) with t > 0 and none of the integers
pi, i>0, fixedby b; p, is then fixed by a and O is a cycle
of odd length.



108 PIERRE DEBES AND MICHAEL D. FRIED

(i) O = (pop1--- ppp? -+ p?) with t > 0 and none of the integers
pi, i>0, fixed by b; pf is then fixed by b and O is a cycle
of even length.

Conversely, we have these partial products from Ob.

(i) (pop1---pepl -+ pP2Y(P1pL) - (pip?) is a product of t disjoint
2-cycles.

(") (pop1-- ppipl - p2)(p1pY) - (pipl) is aproduct of t+1 dis-
Jjoint 2-cycles.

Proof. Conjugation by b turns ab into (ab)~!. Therefore, (0?)~!
is a disjoint cycle in ab. Since O and (0%)~! have an integer in
common, namely pg, we obtain O = (0?)~!. The only cycles with
that property are those described in statement (i) and (ii) of Lemma
4.8. The converse statements (i’) and (ii’) are immediate. o

We now show there is a one-to-one correspondence between the
elements of sni(C)2® and the subset S of N3 of triples [u, 8, 7]
satisfying

1<u<p; 1<pL2u—-1; p+u+1<y<n

Start with this observation. Every element of the absolute straight
Nielsen class sni(C)2 has a unique representative ¢ = (ay, 03,03, 04)
with g4 =(nn—1---1) and o3 = (12u), ne{l, ..., p}. Existence
is easy. Lemma 4.9 below (and Cen(S,) = {1}) gives uniqueness.

LEMMA 4.9. The group S, is generated by gy and ay.

Proof. Consider a partition I of {1, ..., n}. Wesay that  isaset
of imprimitivity for a subgroup H of S, ,if H permutes the elements
of I. Sets of imprimitivity of the n-cycle (nn—1---1) are the cosets
modulo a nontrivial divisor of n. Since n is prime, (03, 04) is a
primitive subgroup of S, , which contains a 2-cycle. Therefore, it is
all of S,. a

For the representative ¢ = (0, , 0, g3, g4) above, we obtain
0103 = (0'304)"l =(12---2u—1)Qu2u+1---n).

Both o, and o, are of order 2 and o, fixes 3 integers. Lemma 4.8
shows that only one of these integers, say S, occurs in the odd length
cycle (12---2u — 1) of g10o. The two other integers fixed by o,
appear in the even length cycle (2u2u + 1---n). Denote the integer
fixed by o, that is in the second half of {2u,2u+1,..., n} by y.
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That is, y is in the set {p + u + 1, ..., n}. This defines a triple
[u, B, y] which lies in the set S. The next proposition gives us the
genus of covers with branch cycles coming from our previous lemmas.
In §4.5 we draw conclusions from this about Question 4.1. Since the
result is not terribly positive, §4.6 makes further comment on what we
can expect from variations of this technique.

PROPOSITION 4.10. The map sni(C)?® — S that assigns to each el-
ement of sni(C)? the triple [u, B, y] defined above is one-one and
onto. In particular,

sni(C)®| = Y @u-Dp-p+1)=2
1<u<p

(p+1)(2p+1)
2 )

Proof. Let [u, B, y] beatriplein S. Set 64 =(rn—1---1) and
o3 = (12u). We need to show that there is a unique pair (o;, 03)
with these properties:

(4.16) o = (0, 0y, 03, 04) € sni(C) and o, fixes # and y.

Existence. One has (g304)~! = (12---2u—1)(2u2u+1---n). Using
Lemma 4.8 (i') and (ii'), write (12---2u — 1) = a’'b’ with &' and
b' products of (u — 1) 2-cycles with support in {1,2,...,2u— 1}
and B fixed by &’. Also, (2u2u+1---n) = a”"b"” with a” and b”
products of respectively (n—2u+1)/2 and (n—2u—1)/2 2-cycles with
support in {2u,2u+1, ..., n} and y fixed by b”. Take o, = a’'a”
and g, = b'b". The 4-tuple o = (01, 02, 03, 04) has the required
properties (4.16).

Uniqueness. o, and o, satisfy
010y =(12---2u—1)Qu2u+1---n).

From Lemma 4.8 (i) and (ii), (12---2u — 1) is of the form
(Pop1- ",szfz - --pf’) with pg = f,and (2u2u+1---n) is of the form

(ToT1- - T,TyT* -+ 132) with 79 = y. This determines o, on
{1,2,...,2u — 1} and on {2u,2u +1,...,n} (i.e., on all of
{1,...,n}). O

In the rest of this section identify each element of sni(C)2 with its
image in S. The next step consists in computing indices of a;,, a;3,
a4 acting on sni(C)2°.

Index of aj5.Let s =[u, B, y] € sni(C)? ; the centralizer Z(s;, 53)
is the subgroup of S, generated by (2u2u+1---n)?P~#+1  Indeed, let
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te Z(sy,s;). Then t commutes with
515=012---2u—-1)2u2u+1---n).

Therefore, ¢ is of the form (12---2u — 1)"(2u2u + 1---n)*. Since
t fixes B and permutes the 2 other fixed points of s,, # = 0 and
k =A(p — u+ 1), for some integer 4. Recall from §4.3, the integer
i12(s) is the smallest integer g > 0 such that, for some integer 4,

(12---2u— 1)9Q2u2pu + 1---n)d—Hp+u=1)

commutes with s3 = (12u) (i.e., fixes the pair {1, 2u}).

The two disjoint cycles (12---2u—1) and 2u2u+1---n) of 515
are of relatively prime order. Thus, ij5(s) = Qu—1)(p —u+1).
Formulas (4.16) gives this:

ind(alz) = Z (2,11 - 1)(p -—u—+ 1) (1 - (2/,( — 1)(1)1_2u + ]))

I1<u<p
p(p—-1)(2p +5)
3 )

Index of aj3. Let s =[u, B, ] € sni(C)®. We easily see the cen-
tralizer Z(s,, s4) is trivial. The integer i3(s) is the smallest integer
g > 0 such that (s45,)7 fixes the pair {1, 2u}. Let a and b in
{1, ..., n}. These observations are helpful:

(4.17)
(i) ifa=be{2u,...,n}and b2 # 2u, then a(s4s;)* = a%;
(i) ifa%=be{l,...,2u—1} and b2 # 1, then a(sss;)* = a%.

We prove (i)-(ii) is similar. From Lemma 4.8, s, fixes the set
{2u,...,n}. Thus, b € {2u,...,n} and b% # 2u. Therefore,
(b%)s3 = b and

(a)(5452)* = (b%)53528152 = (b)s15, = (@)5352815152 = (a)s3.

Let a=1. Wehave 1% =ne{2u,...,n} and n* # 2u. Indeed,
from Lemma 4.8 (ii), no two consecutive integers in the even length
orbit of s;5, can be images of one another by s,. The even length
orbit of 515y is (2u2u + 1---n). From (4.17)(i), (1)(s452) = 2u.
Let a =2u. We have 2u)s =2u—-1€{1,...,2u—1}. Lemma
4.8 (1) implies (2u — 1) =1 if and only if 24 — 1 = p,. Distinguish
two cases.

o If 2u—1+# p,, (4.17)(ii) gives (2u)(s452)? =1 and ij3(s) = 2.
(Note: i;3(s) # 1 because (1)(s4852) =n® #1, 2u.)
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oo If 2u—1= p,, weobtain (2u)(s452)% = 2u and (1)(s452)° = 1.
Hence i13(s) = 3.
The number of occurrences of ee is

> (p—u+1)=p(p2+1),

1<u<p

p — u+ 1 for each value of u. Therefore, ind(a;3) = p(p + 1)2/6.

Index of aj4. Let s = [u, B, y] € sni(C)2® . Again, the centralizer
Z(s1, S4) is trivial. The integer ii4(s) is the smallest integer g > 0
such that (s4s1)? = (s,83)77 fixes the pair {1, 2u}. The calculation
depends on the intersection set {1, 2u} N {1%, (2u)%}. Note: By
construction of [u, f,y], 1 <1%<2u—-1 and 2u < (2u)> <n. So
we only have 4 cases to consider.

1st case. 1% =1 and (2u)> =2u. Thatis, s=[u, 1, u+p+1].
Here, ij4(s)=1.

2st case. 1% # 1 and (2u)%: =2u. Thatis, s=[u, B, u+p+1]
with B # 1. Here, (2u)(s253)3 = 21 and therefore, (1)(sy53)3 = 1.
Thus ij4(s) = 3. (Note that ij4(s) # 1 since 1% # 1, 2u.)

3rd case. 1% =1 and (2u)% # 2u. Thatis, s = [u, 1, ] with
y # u+p+ 1. This is exactly as in the 2nd case.

4th case. 1% # 1 and (2u)% # 2u. Here, (1)(sys3)2 = 2u and
thus, (2u)(s253)% = 1. Therefore, i14(s) = 2.

We have only to count the possibilities for s in each case: p for
the first case, (2u — 2) for each u of the second case, (p — u) for
each u for the third case, and the rest for the fourth case. The result:

. 2 1
ind(ai) = > F(u+p-2)+5|N-p- 3 (u+p-2)|.
1<p<p 1<u<p

Finally, ind(a;4) = 22=0@+4)
Now (4.11) gives the genus g(C) of C(C) (cf. Theorem 4.5):

Thus, Question 4.1 has a positive answer for p = 2,3 (i.e., n =
5, 7). There is one condition, however, in Theorem 4.3 we have not
checked yet: transitivity of SH, on sni(C)2. We use two steps.

From (4.13), ay; = Q% conjugates by s,5, on the first two com-
ponents of the 4-tuple s and leaves the others unchanged. So for
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s=[u, B, y], we obtain:

[, B, vlaa=[u, (B)(s152)7", (1)(s182)7'1.

Still, the two disjoint cycles (12---2u — 1) and 2u2u+1---n) of
518, are of relatively prime order. Therefore, the group generated by
§15y acts transitively on the ordered pairs (f, y) with 1 < f<2u-—1
and p+ u+1 <y < n. Conclude that the orbits of a;, are the p
subsets of sni(C)? corresponding to each value of u.

Now consider a;3. We are done if we show that for any y =
1,...,p, a;3 sends some element [1, 1, ] to some element [u, B',
y']. For s =[1,1, 7], a;3 leaves s, and s, unchanged and turns
s3=(12) into

(5452) 71 53(8482) = (15225%%) = (n% 1).

That is, a;3 sends some element [1, 1, y] on some element [u, £', ¥']
with (12u) = (1 n%), up to conjugation by a power of s4.

We have 515, = (1)(23---n). Lemma 4.8 (i1) implies the cycle
(23---n) hasform (popy -+ pepgpl - - p?) with pg = y. Check: when
y ranges over {p+2,...,n}, n% takes on all valuesin {3, 5, ...,n}.
That is, 2u takes on all valuesin {2,4,...,n—1}. O

4.5. Conclusions from §4.4 Example.

THEOREM 4.11. For n = 5,7, S, is the Galois group of a regular
extension E/Q(T) with these properties:

(i) E/Q(T) is ramified over 4 rational points; and
(ii) for all t in a nonempty interval of the real line, the residue class
extension E;/Q is a totally real extension.

End of proof. For n =5,7, (4.18) yields g(C) = 0. Hence, the
curve C(C) is P! if it has a Q-rational point. The disjoint cycles
in the permutation a;; of sni(C)? are in 1-1 correspondence with
the points over the branch point x, € P! in the cover C(C) — P!
of Theorem 4.5. The previous study of a;; shows, for n =5 (resp.,
n = 7), there are 2 ramified points (resp., 3 ramified points) over
X, of ramification indices 1, 3 (resp., 3, 5, 6). Each of these points
has a unique ramification index. Thus, these points are rational over
Q(x2, X3, X4) .

Consider (y, x3, X3, x4) on C(C) x P! xP! x P! with y not lying
over one of x,, x3, X4. From Proposition 4.4 and Corollary 4.6, each
such Q-rational point corresponds to a cover w: Yc — P! defined
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over Q. Equivalently, such a point corresponds to a regular extension
Y/Q(T), with 4 rational branch points and monodromy group Ss
(resp., S7).

Pick a Q-rational point (¥, X3, X3, X4) that corresponds to a cover
having the 4-tuple (a;, ajaz, azasz, a3) asabranch cycle description.
(This is with respect to a bouquet as in §2.3.) The Q-points are dense
in the space #(C)'(R). Thus, such a choice of point is possible.
Choose x; between x; and x4 on the real projective line. The remark
in §3.4 shows that the action of complex conjugation is trivial on the
fiber ¥ ~!1(xo). That s, in the notation of §3.4, ¢ = 1. Let E/Q(T) be
the Galois closure of the extension Y/Q(T). It is a regular extension
with properties (i) and (ii). O

4.6. Additions to Theorem 4.11.

Comment (1). The §4.4 method applies to any 3-tuple (a;, oz, a3)
of generators of S, of order 2. For example, we have computed with
n = 2p where p is an odd prime and

a1 =(1n),
ay=02n)(Bn-1)4n-2)---(p-1p+3)pr+2),
(Inm)2n-1)B3n-2)---(p—1p+2)(pp+1).

The associated curve C(C) has genus g(C) = -};(p—3)(P—5). That
is, the conclusion of Theorem 4.11 holds for n = 6 and n = 10.

It also holds for the special case n = 4. Here, take a; = (23),
ay; =(14)(23), and a3 = (13).

as

Comment (2). There is only one centerless group G for which The-
orem 4.11 is true with 3 branch points instead of 4 branch points:
G = S3 ([Se2], [FrD]). If we allow a center, there are other candi-
dates: the groups Z/m x5Z/2, for m =2, 4, 6. Moreover, the group
Z/2 x Z/2 does satisfy the conclusions of Theorem 4.11 for 3 branch
points.

5. Two further applications. The dihedral group D,, is the easiest
non-abelian finite group. The reader must be surprised to hear that
there are serious questions about realizing it as a Galois group of a
regular extension L/Q(x). The problem is not realizing the group, it
is realizing it with extensions having few branch points. The problem
is similar to that of §4: finding rational points on variants of Hurwitz
spaces defined over Q as in §4.5. There we could only proceed when
we knew that a certain curve C(C) was of genus 0.
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Suppose, however, that the curve is of genus greater than 0. It could
still have rational points on it. One rational point was all we needed
to conclude realization of the groups with the properties of §4.5. With
dihedral groups we can interpret existence of rational points even when
the number of branch points is large. We owe this to identifications
of the particular Hurwitz spaces with variants on classical modular
curves. Section 5.1 gives a definitive result when the number of branch
points is less than 6. Section 5.2 considers larger values of r based
on generalizations of Mazur’s theorem.

Finally, we illustrate a new large field over which we know that all
groups are Galois groups of regular extensions. For each prime p,
there is a field Q' the rotally p-adic algebraic numbers. An algebraic
number o is in Q' if each conjugate of a is in Q,, the p-adic
numbers. Section 5.3 considers the case of the real valuation.

5.1. Dihedral groups with r small. In this section, m is an odd
prime. Consider the dihedral group D,, = Z/m x SZ/2 in its regu-
lar representation. The order of D, is n = 2m. Two involutions
generate it.

THEOREM 5.1. For m > 7 a prime, Dy, is not the Galois group of
a regular extension of Q(X) with 5 or fewer branch points.

Proof. Assume that G = D,, is the Galois group of a regular ex-
tension Y/Q(X). Let ®: Yc — P! be the associated cover. Take
X1, ..., Xr to be an ordering of the branch points. Identify G with
the monodromy group of the cover. For i =1,...,r, let C; be the
conjugacy class of the branch cycles associated with x;. That is, the
cover is in sni(C;, ..., C,). We divide the proof into 2 cases. Let C
be the conjugacy class of all involutions in G: C= {(a, l)|a € Z/m}.

1st case. One of Cy,...,C,, say C;, is different from C. Let
(a, 0) € C;. This is an element of order m and its nontrivial pow-
ers lie in (m — 1)/2 distinct conjugacy classes of G. We show that
r>(m-1)/2 > 5. Indeed, this follows from the rationality proper-
ties that the inertia groups inherit from the rationality of the cover.
Specifically, apply the branch cycle argument §3.7, expression (3.9) in
the following form. The order of C; is the order of the elements in
C;.

(5.1) For each i € {1, ..., r}, for all a relatively prime to
the order of C;, ¢ = C; forsome je€{1,...,r}.
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To complete the first case we show r # 5. For r =5, G = Dy,

and C;, ..., Cs are conjugacy classes of 11-cycles. These classes,
however, do not generate D;;, a contradiction.
2nd case. C; =---=C, =C. Observe that r # 2 when g is not

a cyclic group. Also, that r # 3, 5; the relation s;---s, = 1 implies
that r is even. Assume r = 4. The Riemann-Hurwitz formula yields
the genus g of the cover ®: Yo — P!:

m+m+m+m=2n+g-1).

That is, g = 1. In addition, the elliptic curve Y has an automor-
phism x of order m, for example (1, 0).

Assume first that Yc(Q) # @: Yc¢ is an elliptic curve over Q.
Translation by a point p of order m on Y¢ gives x. Since Y/Q(X)
is regular, y is defined over Q and p is a rational point in Y¢.

Thus, we have produced an elliptic curve Y¢ and a point p of order
m . Both are defined over Q. It is classical that the data (Yc, p)
corresponds to a rational point on the modular curve X;(m)\{cusps}.
As m > 7, this contradicts Mazur’s theorem [Sel; Theorem 3] (or
[M], [MS])).

If Yc(Q) = @, the same argument works on the Jacobian Pic®(Y¢)
of Yc. Recall: Pic®(Y¢) consists of divisor classes of degree 0 on Yc .
The automorphism group of Y¢ naturally embeds as automorphisms
of Pico(YC). Thus, this is an elliptic curve over Q. And, it has an
automorphism of order m defined over Q. Therefore, r # 4. o

5.2. Bounding r with dihedral groups. This subsection discusses
Conjecture 5.2.

Conjecture 5.2. Let m run over odd primes. There is no finite r
such that each D,, is the group of a regular Galois extension L/Q(x)
with at most 7y branch points.

Kamienny and Mazur have recent results that approach what we
need to show this conjecture [M]. Suppose that such a bound ry as in
the conjecture exists. The proof of Theorem 5.1 shows we can realize
only a finite number of the D,,s under the following conditions. At
least one inertia group generator is an m-cycle and there are no more
than ry branch points. We restate the conjecture as follows.

Conjecture 5.2'. Realization of L/Q(x) with group D,, and all
inertia group generators involutions requires more than r, branch
points if m is suitably large.
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We call a Galois realization of D,, over Q satisfying the condition
that all inertia group generators are involutions an involution realiza-
tion of D,,. Consider such an involution realization.

The fixed field T of an automorphism of order m is a degree 2
extension of Q(x) ramified over r (even) points. Also, L/T is a
cyclic unramified extension of degree m . That is, T is the function
field of a hyperelliptic curve of genus ’—52 .

We want ¢: X — P! of degree 2m with a description of the branch
cycles of form (oy, ..., 0,). Here, each o; is in the conjugacy class
C (85.1) of involutions. A complete combinatorial count of these
is easy. At least two of these are not equal (to generate D,,). Write

= (a;, 1). Then, the product of the ags is 1 reduces to a; —a;+--

a, = 0. Calculations are sufficiently easy to compute elements a; js
Jj=2,...,r that generalize those in §4.2. Their action on sni(C) is
transmve. Formula (4.11), with r replacing 4, gives the genus of the
analog of C(C). The computation shows this grows quadratically with
r when m is fixed. The 1st complex cohomology group of a projective
algebraic variety is a birational invariant. Consider the analog for
general r of Theorem 4.5. Conclude that the variety #(C)’ for this
Nielsen class cannot be unirational if r is large. (See Problem 5.6.)

The variety /#(C)’ covers the actual variety # (C) = #(r, m) that
parametrizes the equivalence classes of covers that we want. Consider
Z(C) as the parameter space for these covers with some ordering
on the branch points of the covers. From [FrV2] there is a variety
Z(C)® = Z(r, m)*, defined over Q, whose rational points give us
the desired extensions. Rational points exactly correspond to regular
extensions L/Q(x) that give involution realizations of D,,. Below
we use cover notation. These field extensions correspond to Galois
covers @: X — P! defined over Q with group D,,. Our problem is
to decide if #(r, m)™ has Q points. We relate #(r, m)™ to more
classical looking objects. R

Take a € D,, of order m. Form X/{a) = Y, the quotient of X
by the group generated by . The degree 2 cover ¥ — P! presents
Y as a hyperelliptic curve of genus ’—‘2—3 . Also, X is a cyclic degree
m unramified cover of Y. Lemma 5.3 interprets existence of X as
a property of PicO(Y) , the Picard group of divisor classes of degree 0
on Y. Denote the points of order m on Pic’(Y) by T}, = Tp(Y).
Then, G(Q/Q) = Gg actson T,,. If p € T,,\{0} is a point defined
over Q, then G(Q/Q) has trivial action (p). When a point has this
property, denote the group it generates by Z/m. This says Gg has
trivial action on it.
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Similarly, Gg acts on the mth roots of 1. This is another copy
of Z/m, but to show Gg has a particular nontrivial action on it,
denote it by u,,. Consider the set G,,(d), d = ’—‘rz , of involution
realizations of D, , as above with r branch points, defined over Q.
Let Pic!(Y) be the Picard space of divisor classes of degree 1 on Y .

LEMMA 5.3. Continue the notation above. The set of involution re-
alizations of D,, associated to a fixed Y as above naturally inject into
the set of Gg equivariant injections from W, into T,,(Y). The image
of this map includes all Gg equivariant injections m — T (Y) when
Pic(Y) has a Q point.

Proof. Consider multiplication by m on Pic’(Y). Denote this en-
domorphism by y,,. The kernel is exactly 7;,. Since Y consists of
positive divisors of degree 1, Y naturally embeds in Pic'(Y) (assum-
ing g(Y) > O—thatis, r > 4). Suppose we have an involution realiza-
tion of D,, attached to Y as above. Universal properties of Pic’(Y)
produce a natural surjective Gg equivariant map 7,,(Y) — Z/m.
Here Z/m represents the Galois group of the cover X — Y as above.
Below we show how this gives an injection from u, into 7,,(Y).

Suppose q € Pic‘(Y) is defined over Q. Define translation Aq:
Pic!(Y) — Pic®(Y) as the map that takes a divisor class [D] of degree
1 to [D —q]. Denote the image of Y under 44 by Yy. This curve in
PicO(Y) is isomorphic to Y over Q. The preimage y,,'(Y) = Y q
is the maximal exponent m abelian unramified geometric cover of Y .
At least that is correct over Q. We cannot expect the automorphisms
to be defined over Q.

We want a Gg invariant hyperplane V' in T, such that the quo-
tient 7,,/V is a copy of Z/m. That is, Gg acts trivially on the
quotient. In more homological terms, we want a surjective element

B € Homg, (T, Z/m) € M . Then, ¥ is the kernel of .

Conclusion. The quotient Yy, o/V — Ym,q/Tm = Yq is the cyclic
unramified cover we seek. We have identified its automorphism group
with Z/m with trivial Gg action. That is, the automorphisms are
defined over Q. The lemma is complete—from the first paragraph
of proof—when we have shown how to go from an injective map
B tm— T, toa B above.

The abelian variety Pico(Y) is principally polarized. That means it
is isomorphic to its dual abelian variety. This is the abelian variety of
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linear equivalence classes of divisors on Pic’(Y) that are algebraically
equivalent to 0. In particular, the Weil pairing produces a nondegen-
erate symplectic form w: T, x Ty, — U [L]. Thus, Homg Q(Tm s m)
is isomorphic to T, as a Gg module.

Apply Hom%(- > Um) to the map B: u, — T,,. This gives

B: HomGQ(Tm s Um) — HomGQ(ﬂm s Bm)-

The first term identifies to 7,,. Check easily that the second term is
just Z/m acting as multiplications. O

REMARK 5.4. When Pic!(Y)(Q) is empty. The proof of Lemma 5.3
used a Q point in Pic!(Y) to construct the cover Y,, — Y canoni-
cally. We have not shown that a x, point on Pic’(Y) produces the
Galois sequence of an involution realization of D, . This is a subtler
problem.

We can interpret this as a question on the fibers of a map of the
Hurwitz space #(C)® = #(r, m)®™ to the space of cyclic order m
subgroups of m division points on hyperelliptic jacobians. These
fibers are homogeneous spaces for the action of PGL(2). If the image
of a fiber is a u,, point, when does the fiber have a rational point?

We list some boundedness assertions. Then, we comment on how
these effect Conjecture 5.2.

(1) Let S(d) be primes that are orders of rational points on the
elliptic curve defined over some number field K with [K: Q] <d.

(2) Let T(d) be primes that are orders of rational points on some
abelian variety of dimension d over Q.

(3) Let V(d) be primes m that are orders of Go modules isomor-
phic to u, in abelian varieties over Q of dimension 4.

(4) Let W (d) be elements of V(d) from jacobians of hyperelliptic
curves of genus d .

The results of [M] include this: S(d) is finite for d < 9. In ad-
dition, S(d) is of density zero for all d. According to Lemma 5.3,
a density O result for V'(d) would be a satisfactory contribution to
Conjecture 5.2. Mazur communicated the following observations.

PROPOSITION 5.5. We have S(d) c T(d). Also, if m € V(d), then
meT((m-1)d).

Proof. Suppose E is an elliptic curve over K with [K: Q] < d.
Denote the Galois closure of K/Q by K. It is common to call the
following formalism, “taking the Weil trace” of the elliptic curve over
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the number field down to Q. Choose a primitive element o = «; for
K/Q. Let «a;, ..., a; be the complete list of conjugates of «a;j.

Each conjugate «; gives a conjugate elliptic curve E;, defined over
Q(e;). Let G = G(I?/Q) acton A = E; xE,;x---xE; by permutation
of the coordinates. For ¢ € G indicate this action by 7(g)(4). In
addition, regard o as giving a conjugate of 4 by its action on the
coefficients of the equations for 4. Call the conjugate 4°. Thus, for
each o € G, the sets T(o07')(4°) and A4 are identical. Now apply
Weil’s cocycle condition to assert that we can define 4 over Q. To
draw the strongest conclusions, we note this construction is universal
in the following sense [FrJ; Proposition 9.34].

Consider A" defined over K . There is a linear map L: A" — A"
defined over K with the following general property. For any subvari-
ety V c A" defined K, there is a subvariety W c A" defined over
Q such that (L, L,, ..., Ly): A" — (A")? maps W isomorphi-
callyto ¥V} x --- x V;. Here the L;s are the conjugates of L and the
V;s are the conjugates of V' . This means that we also can apply this
to the K subvarieties in V. This produces a Q rational subvariety
of W from the product of their conjugates. Thus, conjugates of a K
point p € E of order m produce a Q point of order m on the Q
form of A. From this conclude S(d) c T'(d).

Now suppose m € V(d). Apply the Weil trace to K = Q({») as
above to conclude that m e T((m — 1)d). a

Problem 5.6. For each prime m consider the spaces #(r, m)®
at the beginning of this subsection. Is there a value ry such that
#(r, m)™ is unirational over C for r > ry?

A variety W is unirational if there is a map ¢: P! — W defined on
an open subset of P’ with image a zariski open subset of W . If W
and ¢ are defined over Q, we say W is unirational over Q. Since
P! has so many rational points, this would imply W has a dense set
of rational points. Thus, if Problem 5.6 has an afirmative answer for
a given prime m, there are many involution realizations of D,, for
an arbitrary prime m. (Although it is not hard to realize D,, as a
Galois group of a regular extension of Q(X).)

5.3. Descent to the totally real algebraic number field. Denote the
field of all totally real algebraic numbers by Q. These are the al-
gebraic numbers whose complete set of conjugates are real. In this
section we prove the following result.
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THEOREM 5.7. Each finite group G is the Galois group of a regular
extension of Q"(X).

Section 4.1 recalls the theory of Hurwitz spaces of covers. [FrV2]
develops a similar theory, but for G-covers—Galois covers given with
their automorphisms. Consider a centerless group G and an r-tuple
of conjugacy classes of G. The Hurwitz space #(G, C) is a (re-
ducible) algebraic variety defined over an explicitly computable field
K(C). Here is the key property of this space. Let K be a field con-
taining K(C). Then, G-covers in the Nielsen class ni(C), defined
over K, correspond to K-rational points on Z*(G, C).

Proof of Theorem 5.7. Consider a finite group G. Lemma 2 of
[Frv2] constructs a cover G' — G with these properties.

(5.2) The center of G’ is trivial and commutators generate
the Schur multiplier of G'.

We do not explain the commutator statement in (5.2). It appears as
a condition in the main theorem of [FrV2] which carefully explains
it. Suppose we realize G’ as a Galois group of a regular extension
of Q"(X). Then we automatically realize the quotient G as such a
Galois group. Therefore, without loss, assume G satisfies (5.2).

Let b be an integer. Let C;, ..., C; be an ordering of nontrivial
conjugacy classes of G. Assume each conjugacy class of G appears
in this list with the same multiplicity, say m . It is automatic that if
we pick g; out of the conjugacy class C;, then

(5.3) g=(g&,---, &) generate G.
With r = 2sb, consider the r-tuple C
.ot et et G, Gy, Gy, G

Here, the first sb components are the conjugacy classes C; !, ..., Cl‘l
repeated in this order b times. The last sb components are the conju-
gacy classes C;, ..., C; repeated in this order b times. The Nielsen
class ni(C) is not empty. With g from (5.3), the r-tuple

(&g & 8T 8l s By e s 8Ly e s )

lies in the Nielsen class ni(C). Observe that all conjugacy classes
appear the same number of times, namely 2bm, in the r-tuple C.
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The main theorem of [FrV2; Appendix] shows that, if b is suitably
large, then # = #"(G, C) is defined over Q and irreducible over
Q. This uses (5.2) to apply a theorem of Conway and Parker [Frv2;
Appendix].

We are left with finding QY-points on the absolutely irreducible
variety #Z . Pop [P] proved that every absolutely irreducible variety
defined over Q' has QY-points provided it has R-points. This reduces
the problem to finding R-points on #(G, C). And their existence
follows from Theorem 3.1. Indeed, take gy =1 and r; = 1 in (iii) of
condition (b) of Theorem 3.1. This shows that (g, ..., g ) satisfies
the hypotheses of that theorem. o

REMARK. [FrV] consists of applications of [FrvV2]. In particular,
this observes that each finite complex extension L of QY is

P(seudo)A(lgebraically)C(losed)

and Hilbertian. A field P has the PAC property if each absolutely
irreducible variety over P has a P-point. The main theorem of [FrV]
applies to show that the absolute Galois group G(Q/L) is a free profi-
nite group.

On the other hand, QY is not even Hilbertian. In fact, involutions—
conjugates of complex conjugation—generate the absolute Galois
group of Q. Thus, Galois extensions of Q' have only groups that
are generated by involutions. o
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