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THE COHOMOLOGY RING OF THE SPACES OF LOOPS
ON LIE GROUPS AND HOMOGENEOUS SPACES

KATSUHIKO KURIBAYASHI

Let X be a simply connected space whose mod p cohomology is
isomorphic to that of a compact, simply connected, simple Lie group
as an algebra over the Steenrod algebra. We determine the algebra
structure of the mod p cohomology of QX algebraically. Moreover
we give a method to determine the algebra structure of the mod p
cohomology of the space of loops on a homogeneous space.

0. Introduction. Let G be a compact simply connected Lie group
and QX the space of loops on a space X . In [4], R. Bott has given
a method to obtain generators of the Pontryagin ring H.(QG) and
has determined its Hopf algebra structure explicitly for G = SU(m),
Spin(m) and G,. By applying this method, T. Watanabe [23] has
determined the Hopf algebra structure of H.(QF;). A. Kono and
K. Kozima [8] have determined the Hopf algebra structure over the
Steenrod algebra &7 (2) of H.(QG; Z/2) for G = F4, Eg, E; and
Eg, without using Bott’s method. In order to determine the alge-
bra structure, they have made use of the Eilenberg-Moore spectral
sequence [16] which converges to H*(G; Z/2) and whose E,-term is
isomorphic to Ext}}"(QG;Z /2(Z/2, Z/2) . Moreover a homotopy fiber
of Qx4: QBG — QK(Z, 4) has been used to examine the coalgebra
structure, where x4: BG — K(Z, 4) is a map representing the gener-
ator of H4(BG). The consideration of the dual of those results ([4],
[8], [23]) enables us to determine the Hopf algebra structure of the
modp cohomology of QG for the Lie groups G. On the other hand,
we can decide the coalgebra structure of H*(QG; Z/p) algebraically
from the algebra H*(G; Z/p) over the Steenrod algebra &/ (p). The
following result is due to R. M. Kane [5].

THEOREM 0.1. Suppose that X is a simply connected H-space and

(0.1): there exists a compact, simply connected, simple Lie group G
such that H*(X ; Z/p) =< H*(G; Z/p) as an algebra over the mod p
Steenrod algebra 7 (p). (We do not require the existence of any map
between X and G which induces the isomorphism.)

Then H*(QX ; Z/p) = H*(QG; Z/p) as a coalgebra.

361



362 KATSUHIKO KURIBAYASHI

This result motivates the conjecture that H*(QX ; Z/p) is isomor-
phic, as an algebra, to H*(QG; Z/p) under the condition in Theorem
0.1. In this paper, we will show

THEOREM 0.2. If X is a simply connected space and satisfies (0.1),
then H*(QX ; Z/p) = H*(QG ; Z/p) as an algebra.

(Note X is merely a simply connected space. We do not assume that
it space is an H-space.)

Theorem 0.2 is obtained as a consequence of algebraic calcula-
tion of the algebras H*(QG; Z/p). In particular, when H,(G) is
p-torsion free, the algebra structure of H*(QG; Z/p) is determined
by virtue of Proposition 1.6, which asserts that algebraic calculation
of H*(QX ;Z/p) is possible when H*(X; Z/p) is an exterior alge-
bra. In order to calculate the algebra H*(QG; Z/p), we make use
of the Steenrod operations in the Eilenberg-Moore spectral sequence
([15], [20]) and [10, Theorem 2.3], which is an answer to extension
problems in spectral sequences.

In the latter half of this paper, we examine the algebra structure of
the cohomology rings of spaces of loops on homogeneous spaces. In
[19], L. Smith has shown the following.

THEOREM ([19; Theorem P2]). Let G be a compact simply con-
nected Lie group, U a closed connected subgroup of G and i: U — G
the inclusion map. Consider H*(U ; Z/p) as an H*(G; Z/p) module
via the map i*: H*(G; Z/p) — H*(U ; Z/p). Then if H*(G; Z/p) is
an exterior algebra on odd dimensional generators, there is a filtration
{F"H*(Q(G/U); Z/p); n > 0} such that Ej*(H*(Q(G/U); Z/p)) =
Tory- G,2/p)(Z/p, H*(U; Z/p)) as a Hopf algebra.

From this theorem and [10; Theorem 2.4], we will obtain a proposi-
tion (Proposition 1.10) on the algebra structure of H*(Q(G/U); Z/p).
By applying our proposition, the mod p cohomology rings of

Q(SU(m +n)/SU(n)),  Q(Sp(m + n)/Sp(n)),
Q(Sp(m + n)/ Sp(m) x Sp(n))
can be computed. But if G is not simply connected or H*(G; Z/p) is

not an exterior algebra, it is not easy to calculate the cohomology ring
of Q(G/U) in general. In order to determine the algebra structure of

H*(Q(U(m +n)/U(m) x U(n)); Z/p),
H*(Q(SO(m + n)/SO(n)); Z/p), H*(Q(Es/(SU(9)/Z/3)); Z/2),
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we cannot apply Proposition 1.10 because U(m + n) and SO(m + n)
are not simply connected and H*(Eg; Z/2) is not an exterior algebra.
In the concrete, we will attempt to compute the mod p cohomology
rings of

QU(m+n)/U(m) x U(n)), Q(SO(m + n)/ SO(n))
and the mod 2 cohomology ring of

Q(Eg/(SU(9)/Z/3)).

This paper is organized as follows. In §1, we state our results. In
§2, we prove them by using results of [1], [2], [3], [7], [14] and [22].

1. Results. In this paper, we may denote p/ by p[f] for any prime
number p. K, means a field of characteristic p. In this section, for
algebras 4 and B, A = B means that A is isomorphic to B as an
algebra.

Let G be an exceptional Lie group. When H*(G) has p-torsion,
the algebra structure of the mod p cohomology of the space of loops
on the exceptional Lie group G is determined by considering the
Eilenberg-Moore spectral sequence converging to H*(QG; Z/p).

THEOREM 1.1.

(1) H*(QGy; 2/2) 2 Z/2[s™'x3]/(s™'x5) ® TTwio, ysl,
1

degs 'x3=2, degyg=28, degw;y=10.
(2) H*(QF,; 2/2) = Z/2[s~ ' x3]/(s 7' x3)
® Iwio, ys, s~ x15, s x23],
degs™'x;=i—1, degyg=28, degw;o=10.

(3) H*(QEs; Z/2) = 2/2[s™ ' x5]/(s ' x3°) ® {®>1Z/2[ef]/(€})}
® Iwyg, s7 x5, 57 x23]
degs™'x;=i—-1, degw;=10, dege, = 2/+2,

(4) H*(QE;;Z/2)
= 7/2[s ' x31/(s 7' x3°)
®F['LU10, Wyg, Wig, V32, S_lxls s S—1x23 s S—1x27],
degs™!x;=i—1, degw;,=1i, degys =32.
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(5) H*(QEsg; Z/2)
= 7/20s™ " x3]/(s7'x3%) @ Z/2[s ™ xi51/ (s x)
® Mwag , W3g, W3s, Wsg, VY32, Vs6» S ' X23, 57 x27],
degs™'x;=i—1, degw;=1i, degy; =i.

THEOREM 1.2.
(1) H*(QF,; Z/3) = Z/3[s ' x3]/(s7'x3)
@ Twaz, y1g, s~ 1xiy, 57 x5,

Ixi=i—-1, degyg=18, degwy =22.

degs™
(2) H*(QEq; /3) = Z/3[s~ ' x3]/(s7'x3)
@TTwyy, yig, s~ X9, s7'x11, 57 x5, s Ix7],
degs™'x;=i—1, degy;s=18, degw,y, =22.

(3) H*(QE7;2/3) =2/3[s" " x3)/(s7'x3") ® {®51Z/3les)/ (€]}

-1 -1 -1 -1
QIMwy, s7 Xx11, 8 X5, 8 X27, 5~ X351,

1

degs™'x;=i—1, degwy =22, dege,= 6-3.

(4) H*(QE3;Z/3)
= 2/3[s~"x31/(s~'x3)

-1 -1 —1 -1 -1
QIMway, wsg, Vsa, S~ X15, 8 Xa7, 8 "X35,5 X39,8  X47],

1

degs 'x;=1i—1, degysq=254, degw;=1I.

THEOREM 1.3.
H*(QEg; Z]5)
=7/5[s"x3]/(s7' x3°)
®Mwss, ¥so, s~ x15, 57 x03, 57 x27, 57 X35, 57 x39, 571 x47],

1

degs™'x;=i—1, degysop=50, degwsg=>S58.

Before we state the algebra structure of the mod p cohomology of
the space of loops on G whose integral cohomology has no p-torsion,
let us define some notation.

NoTATION 1.4. Let k be a non-negative integer, p a prime number
. . k—
and p', Sq' the Steenrod operations. Put Pk, m) = gf 1"”--~p’"
where k >0, p' =Sq* if p=2,and P(0, m)=id.
The following lemma will be needed to study the Steenrod opera-
tions in the Eilenberg-Moore spectral sequence.
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LEMMA 1.5. Let H* be a Hopf algebra over &/ (p). Suppose that
H* is isomorphic, as an algebra, to an exterior algebra on odd dimen-
sional generators. Then we can choose generators x; which satisfy the
following properties.

(1.1) H* = A(xy, ..., Xs), where degx; =2m(i)+ 1.

P(k, m(i))x; = exj for any k > 0 and i, where ¢ = 0 or 1,
degx; = 2m(i)pk + 1 and x; =0 if (QH*)2m(P'+1 =0,

Also, for any i and j (i # j), if P(k, m(i))x; = P(k’, m(i))x;,
then P(k, m(i))x; = P(k’, m(j))x; =0.

In Proposition 1.6, we treat a space X which satisfies the following:
(A) X 1is a simply connected space and

H*(X; Kp) = A(-)52~m(1)+1 RER x2«m(s)+1) >

where degxym(i)+1 = 2m(i)+1 and m(1) <--- < m(s).

(B) When K, = Z/p, H*(X; Z/p) has a Hopf algebra structure
over &/ (p). Moreover if we choose generators Xj4; satisfying
(1.1), then one of the conditions (1.2) or (1.3) is satisfied for any
i1 €J, where J = {ilelm(i)_H # P(k, }n(j))X2.m(j)+1 for any k£ > 0
and j}.

(1.2): m(j)-plf1# m(i) forany j€J and f>1.

(1.3): If there exist j € J and f > 1 such that m(j)-p[f]= m(i),
then f < k(j), where k(j) = min{k|P(k, m(j))Xo.m(jy=1 = 0}. If
m(i) - plk(i)+ f1=m(j) - p[t] forsome je€J, t<k(j) and f>1,
then k(i) > k(j).

Let {F"},<0 be the decreasing filtration of I' = H*(QX; Z/p)
which is obtained from the Eilenberg-Moore spectral sequence con-
verging to I'. Roughly speaking, the condition (1.2) or (1.3) is suffi-
cient for deciding whether, for any algebra generator x of I" belonging
to F", x? and the algebra generators of I belonging to F™*! are
independent.

ProrosiTION 1.6. (1) If p = 0 and X satisfies the condition (A),
then
H*(QX ; Ko) = Kols ' X2 m(1)415 -+ » S Xam(s)41]
where degs™'X).mi+1 =2 m(i).
(2) Suppose that K, is a perfect field whose characteristic is non-zero,
X satisfies the condition (A), and that m(1) -p > m(s). Then
H* QX ; Kp) =T Xomiysts -+ 5 S Xamsy 1]

where degs™ Xy ()11 =2 m(i).
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(3) If X satisfies the conditions (A) and (B), then
H*(QX; Z/p)

= {®Z/p[yp[f](s-lxz-m(i)+l)]/(yp[f](s-lx2~m(i)+l)p[k(i)])} ,

ieJ | f>0

where deg v, r1(5™ Xa.m(iy+1) = 2- m(i) - p[f ], and y1(s™ Xpm@iy1) =
S~ Y% m(i+1. Throughout Proposition 1.6, s~!x; transgresses to x; .

By making use of Proposition 1.6, we can determine the algebra
structure of the mod p cohomology of QG, where G is a compact,
simply connected, simple Lie group whose integral cohomology has no
p-torsion.

In Proposition 1.6, if X is a simply connected Lie group G whose
typeis (2n(1) +1,...,2n(t) + 1), then S2(D+1 x ... x §2n(+1 g
mod 0 equivalent to G. Therefore, Proposition 1.6 (1) holds clearly
in this case. Since $3x 83 x---xS8?""1~, SU(n) (mod p-equivalence)
if p>n,and $3xS7 x ... x§1 ~, Sp(n) if p > 2n, Proposition
1.6 (2) holds clearly in the cases where X = SU(n) and Sp(n).

REMARK. In the assumption of Theorem 0.2, if the condition “G is
simple” is omitted, then we cannot deduce the assertion of Theorem
0.2 by applying Proposition 1.6. In fact, the condition (1.3) does
not hold in general for cohomology of semi-simple Lie groups. For
example, let us consider the mod 3 cohomology ring

H*(SU(2) x Spin(20); Z/3)
= A(x3)®@Aes, e7, €11, ..., €3, €27, €31, €35) @ A(y19) .
If we take notice of the elements x3 and y;9, then it follows that
condition (1.3) is not satisfied because m(j) = 1 and m(i) = 9,
thatis 1-32 =9 and f = 2 > 1 = k(j). This means that we
cannot determine, by using our method, the mod 3 cohomology ring
of the space of loops on a simply connected space X whose mod 3
cohomology is isomorphic to H*(SU(2) x Spin(20); Z/3).
Applying Proposition 1.6 (3), we have

THEOREM 1.7.
(1) H*(QG;; Z/p)

N { Tls~'xs, s7'xnl ifp=3o0rp>5,
T L ® 50 Z/01rorr1(571X3)) (o1 (57 1x3)%) ifp =5.
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(2) H*(QFy; Z/p)
s~ x3, s 111, s 'xis, s71x03] ifp > 11,
{® 50 Z/Plypr 17 x3)1/ (2o (5™ x3)P121)}
®TTs~'x11(5), s71x15(7), 7' x23(11)]
ifp=5,7o0rl1l.

(3) H*(QEs; Z/p)

( TIs~'x3, s71x9, s7 11, s71x1s, s71x17, s71x23]
ifp>11,

{® 150 Z/D7pr1 (57 x3)1/ (Pprry (s~ 1 x3)P121)}

s Ixg, s71x11(5), s71x15(7), s71xy7, s71xp3(11)]

\ ifp=5,T7o0rll.

IR

(4)

H*(QE7; Z/p)

[ TTs~ x5, s7Ix1r, s7xs, s7hxpg, s71x03, s71x27, 57 1x35]
ifp>17,

{®/s0 Z/p[7prr1(s71x3)1/ (prry (s~ Lx3)P121)}

®ITs~1x11(5), s71x15(7), 7 x19, s71x23(11), 57 x27(13),
57 1x35(17)]

ifp=5,7,11,13 or 17.

IR

.

\

(5) H*(QEg; Z/p)
( TIs™ x5, s71x15, s~ 1x23, 7 1x27, 57 1x35, 57 1x39,
s71x47, 57 xs0] ifp>29,
{® 150 Z/P1prr1(s7 %3)1/ (prr1 (5™ x3)P121)}
®ITs~1x15(7), 7 x23(11), 57 1x27(13),
s71x35(17), 57 x30(19), 571 x47(23), 57 x50(29)]
ifp=5,7,11,13,17,19, 23 and 29.

IR

\

Throughout Theorem 1.7, degs™'x; =i—1, degs~!x;(¢)=i—1,
and s~ x;(q) is removed from the divided polynomial algebra if p = q .
Moreover s~'x; (s~'xi(q)) transgresses to x;, which is a suitable free
algebra generator of H*(G; Z/p) .

Before we state results about the cohomology rings of spaces of
loops on classical groups, let us define the following
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NoTATION 1.8. Let T be a set consisting of some natural numbers.
Put M(T,p)={n € T|n # mp/ forany me€ T and f > 1} and

t(m, k) = min{¢|2mp' + 1 > k} for me M(T, p).

THEOREM 1.9.

(1)
H*(QSpin(2n + 1); Z/p)

~ -1 -1 ,4n—1
= ® ®Z/p[7p[f](s €2m+1)]/(}’p[”($ ezm+1)p[t(m " )])
meM(T,p) \ /20
where T ={1,3,...,2n—1}andp #2.

(2)
H"(QSpin(2n); Z/p)
) ® {®Z/p[yplf](s_lezmﬂ)]/(Vp[f](s_lezmﬂ)p[t(m"m—sn)}
meM(T,p) \ f>0
®r[s_le;n_]]
where T ={1,3,...,2n—-3}andp #2.
(3)
H*(QSU(n); Z/p)
= ® {®Z/p[yp[f](s_lezmﬂ)]/(J’p[f](s_leZmH)p[’(’"’2"‘1)])}
meM(T,p) \ f20
where T ={1,2,...,n—1}.
(4)

H(QSp(n); Z/p)
® {® Z/p[yp[f](s_lezm+1)]/(yp[f](s_le2m+l)17[t(m,4n—1)])}

meM(T,p) \ f20

IR

where T={1,3,...,2n—1}andp #2.

(5) H*(QSp(n); Z/2) = I“[s_lx3 , s_lx7 yeees s’lx4n_1].

Throughout Theorem 1.9, the free algebra generator s~'e; (resp. s 'el,
s~1x; and s='x]) transgresses to an appropriate free algebra generator
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e; (resp. e}, x; and x) of H*(G; Z/p) (see the proof of Theorem 1.9
in §2).

Let G be a simply connected Lie group whose mod p cohomol-
ogy is an exterior algebra on odd dimensional generators, U a closed
connected subgroup of G, and i: U — G the inclusion map. By
[13; 7.20 Theorem (Samelson-Leray)], we see that the sub-Hopf al-
gebra H*(G; Z/p)\\i* (= sub-keri*; see [18; Notation, p. 312]) of
H*(G;Z/p) is an exterior algebra on odd dimensional generators.
Moreover, from the method of construction of H*(G; Z/p)\\i* (see
[18; Proposition 1.4]), we see that H*(G; Z/p)\\i* is a sub-Hopf al-
gebra of H*(G; Z/p) over &/ (p). Under the above conditions and
notations, the following proposition holds.

ProprosiTiON 1.10. Suppose that the condition (1.2) or (1.3) is sat-
isfied in the algebra

H*(G; Z/p)\\i* = A(Xom(1)+15 +++ > Xam(s)+1) »
where Xi,;+1 are algebra generators satisfying (1.1), and that
QUH*(U; Z/p)/ /i) P+ /T = 0
forany ieJ and f>0. Then
H*(Q(G/U); Z/p)
= {® Z/p[yp[f](s_IXZm(iHl)]/(yp[f](s_lx2m(i)+l)p[k(i)])}

ies | >0
®H*(U; Z/p)/ /i

as an algebra.
Applying Proposition 1.10, we have the following:

THEOREM 1.11.

(1)
H™(Q(SU(m + n)/SU(n)); Z/p)

® {® Z/p[yp[f](s‘leSH)]/(yp[f](s~1xzs+l)P[t(S,2m+2n—1)])}

seM(T,p) \f20

IR

where T ={n,n+1,..., m+n—1}.
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(2)
H"(Q(Sp(m + n)/ Sp(n)); Z/p)

® {® Z/P[Vp[f](s—lxzsﬂ)]/(yp[f](s_lxhﬂ)P[!(S‘4m+4n—1)])}

SEM(T,p) \ />0
where T ={2n+1,2n+3,...,2m+2n— 1} andp # 2.

1R

(3) H*(Q(Sp(m +n)/Sp(n)); Z/2)
= Ts ™' Xant3, S Xant7s oo s S Xameran_1].

THEOREM 1.12.

H*(Q(Sp(m + n)/ Sp(m) x Sp(n)) ; Z/p)
= Tl Xame3, S Xama7s - S Xampan—1]
QA(XS, X5, ooy Xap_1)

1

where degs™'x; =j—1,degx;=iand m>n.

The following theorems are obtained by computing in the concrete.

THEOREM 1.13.

H*(Q(SO(m + n)/ SO(n)) ; Z/p)
® {@ Z/p[yp[f](s‘_lx25+l)]/(?p[f](s—lxlwl)p[t(s’2m+2n_3)])}

SEM(Ty,p) f>0
ifnis odd, m is even,
® {@ ZIp[pr1(5 ™ Xas1) 1 Doy (8™ dpgq g PS> 2mt2n=5)])
SEM(T,,p) \ 20

®I[s e, 1] ifn and m are odd,

® {® Z/PLpr1(5 ™ Xasa1)1/ (Vo1 (8™ gy )PUE> 220 =3)] }

R

SEM(Ty,p) | f20
®A(x,—1) ifniseven, misodd,

® ® Z/p1yprr1(5 ™ X2501)1 (Porr1 (8™ gy )P 2m2n=5))
SEM(T,,p) | /20

QITs ™ erin_11® A(Xn—1) if n and m are even,

’

where p #2, Ty ={n,n+2, ..., m+n=-2}, T, ={n,n+2, ..., m+
n-3}, I3={n—-1,n+1,....m+n-2} and Ty={n—-1,n+
l,...,m+n-3}.
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THEOREM 1.14. When n > 2,
H*(Q(SO(m + n)/SO(n)); Z/2)

g{ X r[w,-]}
jEL,s}>1

®A® { ® Z/Z[S-IXj]/(S‘liZ“mU)‘"‘*"—1))}
m(j)

EM(T,2)

® { X w1 @ A(S"lxj)}

jeL'
where
L={jlj=2m@()+1,n<j<m+n-1}, T={m(j)|ljeL},

L' = {j|j = 2m(j), n < j <min(2n, m +n)},

( Q® TI'vam;p] fm+n—-2#0mod4orn>m,
JEL,s =1

®  I'aml
jEL,s}:l

S
® {f@o Z/z[Vz[f](J’m+n—2)]/(3’2[f1(ym+n-2)4)}

m(j)m+n-2)/4, im+n-2)/2
ifm+n—-2=mod4andn<m,

\
j2sj—11<m+n<j-2[s;], degw; = j-2[s;]-2, degs~lx; =i-1,
degy; =t.
THEOREM 1.15.
H*(Q(U(m +n)/U(m) x U(n)); Z/p)
=T[tp1, P2, ..., TPxlQA(s ey, s ea, ..., 57 en),

where degtp; =2m +2i—2, degslc;=2i—1, m>n.

THEOREM 1.16.
H*(Q(Eg/(SU(9)/2/3)); Z/2)
= A(e7, e}y, ej3, Us, Ug, Uy7, U2g)
Q@ I'wsg , W3a, Wae, Wsg, V22, V26, V2sl

where dege] =i, degu; = j, degw; =1, degv, = m.
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Furthermore, j*(e;) = e if i = 7,11 or 13, and j*(e;)) = 0 if
i=3,5,9,15,0r 17, where j is the inclusion map in the fibration

Q(Es/(SU(9)/z2/3)) EN SU9)/Z/3 — Eg

and
e; € H*(SU(9)/Z/3;Z/2) = Ales, es, ..., €17).

2. Proofs. In this section, we will prove all the results stated in §1.

Proof of Theorems 1.1, 1.2 and 1.3. Let (G, p) be one of pairs of the
exceptional Lie group and the prime number in Theorem 1.1, 1.2 or
1.3. For an appropriate algebra generator x; of H*(G; Z/p), choose
a continuous map f to the Eilenberg-MacLane space K(Z/p, degx;)
from G representing the generator x;. We can compare the Eilenberg-
Moore spectral sequence {E,, d,} converging to H*(QG; Z/p) with
the spectral sequence converging to H*(K(Z/p, degx; — 1); Z/p) by
using the morphism of spectral sequences which is induced by the map
f:G—K(Z/p, degx;). By applying [18; Lemma 3.9], all differentials
d, are determined. This enables us to obtain the explicit form of EX.
We have Theorems 1.1, 1.2 and 1.3 by virtue of [10; Theorem 2.4].
(Cf. the proof of Lemma 2.2.)

In order to prove Lemma 1.5, we will prepare a lemma.

NotATiON. Put U = {u|u # O mod p}. For any u € U, let i(u)
be the least integer i which satisfies (QH*)2#'+1 £0.

LEMMA 2.1. For any u € U, put m = up*® . Under the assump-
tions of Lemma 1.5, for any [, we can choose a basis {x|, ..., Xy}
Jor Qo<i<141(QH *)2"'1’I+1 so as to satisfy the following conditions.

(i) x1,..., Xy are primitive.

(ii) If deg P(k, m(i))x; < 2mp'*! + 1 (degx; = 2m(i) + 1), then
P(k, m(i))x; = exj, where ¢ = 1 or 0, degx; = 2m(i)p* + 1 and
x; =0 if (QH*)m0p'+1 =0,

(iii) Forany i and j (i #J), if

deg P(k, m(i))x; = deg P(k', m(j))x; < 2mp'*! + 1

and
P(k, m(i))x; = P(k', m(j))x;,

then
P(k, m(i))x; = P(k", m(j))x;=0.
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Proof. All basis elements x; can be replaced by primitive elements
modulo decomposables, by the Samelson-Leray theorem and associa-
tivity of homology. Let us prove this lemma by induction on dimen-
sions. Suppose that Lemma 2.1 holds up to an integer /, that is, we
can choose a basis

M = {P(t;, mp'D)x;}ies o<t <si)

for @OStsl Jrl(QH*)Z”‘I’t+l so that x; is primitive, where degx; =
2mp') 41 and s(i) is the lesser of / + 1 — I({) and the integer ¢
satisfying

Pit+1,mp'Mx; =0 and P(t, mp'D)x; #0.

We can see that basis elements of (QH*)Z’”F’M+1 can be uniquely
expressed as P(I +1—1(j), mp'¥)x;. Let S be a subset

{p™"" - P(I+1-1(j), mp'D)x;}
of (QH*)2"P""+1 which is obtained from the basis
{PU+1-1(j), mp'D)x;}.

Choose a maximal subset S’ consisting of linearly independent ele-
ments of S. The subset S’ is written as

{"" P+ 1= 1(j;), mp"9)x; hrcisn
If there exists an integer j € J —{j;, ..., jy} such that
" - P(1+ 1= 1(j), mp'P)x; #0,
then, from the maximality of S’, we have that
™" P(L+1-1(j), mp'D)x;
= X (A)e™ PO+ 1=10G) - mp' ),
1<i<N

where the coefficients 4; are not all zero. Choose an element X;
of maximal degree from the elements Xj. (1 £ i £ N) such that

Ai#0. Put y; =X; + Yocicn, i MPUG) = 1), mp'U0)x; , where
Xj, = Xj, Ao = 1 and A} = 4;/4;. By replacing x; with y; and
P(k, mp'Ud)x; with P(k,mp'W)y; forall k <1+1-1(j), we
see that ™" . P(1 + 1 — I(jy), mp'U))y; = 0. The subset of H*
obtained from M Dby this replacement is a basis for H* and satisfies
the conditions (i), (ii) and (iii) up to the integer /.
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If the argument started from the unique expression of the base
of (QH *)2"’1”l+l+l continues infinitely, then we obtain infinitely many
bases P(/ + 1 — I(j), mp'D)x; of (QH*)2mP"'+1 such that pm'"" .
P(I+1-1(j), mp'D)x; = 0, which is a contradiction. Finally, by re-
peating the argument, we can obtain a basis {P(/+1-1(j), mp'V)x;}
for (QH *)2’”1’1+I+l such that all non-zero elements

I+1 . .
™ P(l+1-1(j), mp'D)x;

are linearly independent. From such elements, we can obtain a basis
for @o</<; +2(QH"‘)2"’1’1+1 which satisfies the conditions (i), (ii) and
(iii). (Note that all basis elements x; for QH* are primitive.) Sim-
ilarly, we can choose a basis for Po,<;(QH )2mp'+1 g0 as to satisfy
(i), (i1) and (iii). This completes the proof of Lemma 2.1. O

Proof of Lemma 1.5. The vector spaces

Wu)+r

Pk, up'®*r) - (QH*#""*1 and @) (QH"M7"" !

0<t

do not intersect for any k, r and u, ¥ € U (u # '). Therefore
Lemma 1.5 follows from Lemma 2.1. O

Proof of Proposition 1.6 (1) and (2). Let {E,, d,} be the Eilenberg-
Moore spectral sequence (with K,-coefficients) of the path-loop fibra-
tion QX — PX —- X. Put I'= H*(X; K,).

(1) In the case where p = 0, since I' = A(Xom(1)415 --- » X2m(s)+1) >
we see that E, = TOI’F(KO , Ko) = Ko[S—1x2m(1)+1 yeees S_1x2m(s)+l] .
Since the total degree of each algebra generator in E3* is even, this
spectral sequence collapses at the E;-term. Hence, by [12; Example
11 (page 25)], we have (1).

(2) By the same argument as in the proof of (1), we can conclude
that Ef* = Ex = E3* = Ts™ ' Xom(1)+15 - -- » S Xom(s)+1]. Therefore,
a subset S = {Vp171( ™ Xom(iy41)} 120, 1<i<s of H*(QX;K,) is a p-
simple system of generators. In order to apply [10; Theorem 2.4], we
must verify that

(2.1) Potr 18 Xam(iy+1) & N(S)
and

(2.2) Vo178 Xam(iy41)” ¢ NP(S) forany i (1<i<s)
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(see [10; Notation 2.2]). If there exists some integer i such that
Yo1£108 ™ X2m(i+1) € N(S), then we have an equation

(2.3) YAk +w =y Xam(iye1) »
J

where a; € S and w represented by S does not have a term

A1 Xome1)  (A#0).

Comparing the degree of the elements in the equation, we see that
p/*1-2m(j) = p’ - degs™'Xom(iys1 = p-2m(i) when the filtration de-
gree of «; is p[f’]. Suppose that m(j) < m(i). Then f'+1> f and
so p < p/H-/ = }:T(% < %(% But this contradicts the assumption

% < p. For a similar reason, the case m(j) > m(i) does not occur.
Hence we have that m(j) = m(i). Thus each «; in the equation (2.3)
is written as yp[f_u(s‘lxz,,,(,,)ﬂ) , where m(t;) = m(i). The element
a? is in a smal.ler filter than the filter including y, f](s“‘me(i)H).
From the equation (2.3), we have that

(2.4) Vot 18 Xam(iyer) —w =Y Ajod.
j

Let / be the least of the filtration degrees of the terms in the left-hand
side of (2.4). Consider the equation (2.4) in E(l)’*. The right-hand
side of (2.4) is zero and the left-hand side is non-zero. Finally, we
obtain (2.1). In a similar manner, we have (2.2). From the above
argument, we see that h(yp[f](s“xzm(,-)+1)) = p for any i (see [10;
Theorem 2.4]). Hence we have (2) by applying [10; Theorem 2.4]. O

In order to prove Proposition 1.6 (3) by using [10; Theorem 2.4], we
must obtain a good p-simple system of generators for H*(QX ; Z/p).
First, applying the same argument as in the proof of (2), we can
conclude that Ej* = EX = E3* = Ils Momi)yr1s -+ » ST Xom(s)+115
where {E,, d,} is the Eilenberg-Moore spectral sequence (with Z/p-
coefficients) of the path loop fibration QX — PX — X. There-
fore, we can choose a subset S = {yp[f](s“lxzm(,-)+1)} £>0,1<i<s Of
H*(QX ; Z/p) as a p-simple system of generators for H*(QX ; Z/p).
The following lemma guarantees that we can choose a good p-simple
system of generators.

LEMMA 2.2. A p-simple system of generators

S = {Pprr1(S™ Xam(i+1)} £20, 1<i<s
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for H*(QX ; Z/p) which satisfies the following conditions (2.5), (2.6)
and (2.7) can be organized from the system S.

(2.5) Pprr1(8 ™ Xamiypr+1)” = Fotr 18 Xopippriyy) forany i € J and
0 <r < k(i)—2. (About the integer k(i) and the set J of integers,
see the remarks following Lemma 1.5.)

(2.6) Porry(s™ ' X2m(ie1) ¢ N(S).
(2.7) Forr1(8™ X iy pei-141)P & NP(S) forany i€ J.

Proof of Proposition 1.6 (3). Let AG be a subset

{Forr 1™ Xam(iy+1) e, £>0

of S. By Lemma 2.2, we see that the conditions of [10; Theorem 2.4]
are satisfied and that A(J,(1(5™ X2m(i)+1)) = p[k(i)]. Thus we have
(3) by virtue of [10; Theorem 2.4]. O

Lemma 2.2 can be proved by virtue of the following lemma.

LEMMA 2.3. In the module F~PUIH*(QX ; Z/p), if k(i) =1, then
Yoir 18 Xam(iy+1)? = wo and if k(i) > 1, then yprr1(S™ Xgpm(iyprp1)? =
yp[f](s‘lem(i)pmH) +w; for any 0 < t < k(i) — 2, where w, €
F-PURIH*(QX ; Z/p). (See Figure 1.)

Proof. By [15], we know that the module E}* is an . (p)-module
and that the isomorphisms Ej* = EX; and E; = E* are morphisms
of &/ (p)-modules, where 27 (p) is the Steenrod algebra. Let us con-
sider pgj("l)‘p s ]yp[ 1657 X2m(iy+1) in EZ forany i € J. By identifying
the Torf*(Z/p, Z/p) which is obtained from the Koszul resolution
and that which is obtained from the bar resolution, we can regard

o1 1057 X2m(iy+1) as

[2my+11%2meiy+1] - 1X2mi)+1]-
- plf] ——
(See [19; Proposition 1.1] and [11; Proposition 1.2].) Therefore

prey o1~ Xam@iy 1) = @Zﬁ})'p[f][xzm(i)ﬂl “o | Xam(iy+1]

= ["DX2m(iy41] -+ 10™ D Xom(iy1]
+ Y 10" D xom@iyat | 16" Doy 41,
(D) +---+1(n(f)) =m@)-plf],
(1), ..., l(n(f))) # (m@D), ..., m(i)).
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gom(i)-p[f+2]
-1
Y i1 ST Xam(iypte) T W
Wi
(@ plf+1]
-1
-~ Y o115 X2m(irp+1) + Wo
@ P
o
-1
Y15 Xam(iy+1)

FIGURE 1
In the above last expression, the second summations are zero from
the instability axiom of the Steenrod operation. From (1.1),
X2m(i)p+1 if k(’) >1
0" D Xpmiy1 = in H*(X; Z/p).
0 if k(i) =1
Note that there is an integer j such that m(i)p = m(j) if k(i) > 1.
Hence we obtain that

-1 . .

m(i)-p[f] Sty PG Xamp) 1 K() > 1,

PEM TN Xomio1) { 0 if k(i) =1,
in E;p[f]3* .

Therefore, we see that

o168 Xam(iy+1)? = ™ OPU Ly (5™ X2m(iy41)
_ { Yot 18 Xamiyp+1)  if k(@) > 1,
0 ifk(i)y=1,
in Ej PL/L*  where @' is the ordinary Steenrod operation. This fact
allows us to conclude that
_ Yor 1105 Xamiypa1) + wo  if k(i) > 1
1 Loy = ) felf] 2m(i)p+1
YP[f](s x2m(z)+1) { wo lf k(l) — 1 ,
in FPU/1IH*(QX ; Z/p), where wy € FPUHIH*(QX ; Z/p). Using
the same argument as above, it follows that the latter half of Lemma
2.3 holds.

Proof of Lemma 2.2. Put

o . » S
P15~ Ko +1) = Vo118 Famnpr ) Fwh w4,y
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for 1 <r<k(i)—1,and put J,r1(5™ Xom(iy+1) = Yprr1(8™ Xam(iy+1) -
From Lemma 2.3, it follows that (2.5) holds.

Let S be the subset of H*(QX; Z/p) which is obtained from §
by replacing y,(71(5™ Xppi)pr41) With ?p[f](S_lxzm(i)p’+1~) in S for
any i € J. Let us prove (2.6). If ?p[f](s‘lxz,,,(,-)ﬂ) € N(S) for some
i € J, then we have following:

(2.8) ot 1™ Xam(iyr1) = D iTprrin(S ™ Xam(iy41)P + w
J

in H*(QX; Z/p), where u;j # 0 and w represented by S does not
have a term Ajy[r1(s™ Xom(iy+1) (A #0).

First let us consider the case where i satisfies (1.2). Choose an
integer j in the right-hand side of the equality (2.8) such that j € J.
By comparing the degrees of the elements in the equality (2.8), we
have that 2m(i) - n(f) = p - 2m(j) - p[f(j)]. From (1.2), we can
conclude that m(i) = m(j). Hence

(2.9) Porrin(S ™ Xom(iy+1) € FPU-UH*(QX ; Zp).

Choose an integer j so that j ¢ J. Then there exist some integers
t € J and n € N such that xy,,j)+1 = P(n, m(t))Xom+1 - Since
Yot X2m(y+1) = Vorr (S Xam(ey+1)P1M, from (2.8), we see that
2m(t)-[f(J)]- pln + 11 = 2m(i) - p[f]. From the condition (1.2), we
have that m(i) = m(¢) and f > f—n—1 = f(j). Thus we can
conclude that

(2.10) Fprr(in (™ Xam(iy+1) = P(n, m())Fprin(S™ Xamiey+1)
= P(n, m(0)7prr—n—11(S" Xam()+1)
e FPU-"-11g*(QX ; Z/p).

From (2.9) and (2.10), we see that the equality (2.8) causes a contra-
diction to the module structure of Ej*. Thus we have (2.6).

Next let us consider the case that i satisfies the condition (1.3). As-
sume that there exists an element s j)](s‘lxzm( j)+1) which satisfies
f(j) > f in (2.8). Applying the same argument as above, we see that
there exist integers £ € J and n € N such that J,5 j)](s‘lxz,n(j)+1)
= ?p[f(j)](s‘lxz,,,(,)H)p["] .If n+1<k(¢), then

fil-deg 7, () (5™ Xamey+ 1P = —p L ()].

Therefore, by using the usual argument of the filtration, we see that
(2.8) causes a contradiction. Hence n+1 > k(¢). From the argument
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of the total degree in (2.8), we obtain that p[f]-2m(i) = p[f(j)]-
pln + 1] - 2m(¢) and so p[f] - m(i) = p[f(j)+n+ 1] - m(t). But
this equality contradicts the condition(1.3) because f(j) > f and
n+ 1> k(t). Hence we conclude that f(j) < f for any j in (2.8).
Suppose that f(j) = f for some j. From the condition (1.3) and the
fact that m(i) = p[n + 1]- m(¢), where i and ¢ € J, it follows that

Porrin(S ™ Xam@py+1)P 1 € FPUW HY(QX ; Z/p)
if n+1=k(t) and that

~ -1 1 _ =~ ~1
Potrn(S™ Xam(eye )P = Fop11(5™ Xgpmepret 1)

if n+1< k(). From (2.8), we have an equality:
J~’p[f](~"'_1xzm(i)+1) = Zlu?p[f](s“xz,,,(u)H) +w in EO—p[f],* ,

where ;"/p[f](s"lxz,n(,-)H) # ?p[f](i‘lxz,n(u)ﬂ) and A, # 0. But this
equality contradicts the fact that .S is a p-simple system of generators
for Ej*. Finally, f(j) < f for any j, which is a contradiction. We
have (2.6). ’

Let us verify (2.7). If there exists an integer { such that

ot 168  Xam(iypik(iy—1141)7 € NP(S),
then we have the following:
(211) Fyr1(™ Xamtiyptey-11+1)” = D ATt (S ™ Xampet) + '
j

in H*(QX; Z/p), where w’ expressed by S does not include terms
Aprr (™ Xamjy+1) (A #0).

Suppose that there exists an integer j in (2.11) such that j € J.
By applying the same argument as the proof of (2.6), we see that the
equality (2.11) causes a contradiction. Hence it follows that j ¢ J
for any j in (2.11). For any j, there exist integers {; € J and n;
such that

Dot (™ Xam(e 417V = o (™ Xam(jya1) -

From (2.11), we have the following equality:

(2.12) Fpi71(5™ Xome PO = D A1 (5™ Famge )7 + .
J

We can suppose that the element

Potr 108 Xampie(iy-11+1)° (= Forr 1™ Xam(iy1)PEN)
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has the least degree of elements F,(7(j)1(5™! X2m(j)+1)P¥U)] which be-

~

long to N?(S). Hence
Potr1(5 ™ Xom(iye1) # 0 and  Fppr(y(s™ Xam(r)+1) # 0

in @u<p[f+k(i)]_2m(i)(QH*(QX; Z/p))* (cf. the proof of [10; Propo-
sition 2.5]). When the condition (1.2) is satisfied, it follows that the
equality (2.3) induces a contradiction (compare the degrees of the el-
ements in the left-hand side of (2.12) with those of the right-hand
side). If the condition (1.3) is satisfied, then k(i) > k(¢;) for any ;.
Therefore, by regarding H*(QX ; Z/p) as an algebra which is a tensor
product of monogenic algebras, we see that the equality (2.12) induces
an equality contradicting the algebra structure of H*(QX ; Z/p) (cf.
the proof of [10; Proposition 2.5] and [13; 7.11 Theorem (Borel)]).
Finally, we have (2.7). O

Proof of Theorem 1.7. By using the result in [14] concerning the
Steenrod operation in H*(G; Z/p) and Proposition 1.6 (3), we can
have this theorem. O

Proof of Theorem 1.9. (1) As is known,

H*(Spin(2n +1); Z/p) = A(e3, €7, ..., €an_1)
and
k my(i)
(2.13) P em(iyr1 = | )€2mliyr2k(p-1)+1

if there exists the algebra generator €;,,(;)+2x(p—1)+1» and gokez,,,(i) 1=
0 if indecomposable elements do not exist on the degree 2m(i) +
2k(p — 1) + 1. Therefore the set {m(i)|i € J} is equal to M(T, p)
and the number k(i) is equal to #(m, n). By virtue of Proposition
1.6 (3), we have (1).

(2) Since Spin(2n — 1) x $2*~1 ~, Spin(2n), it follows that

QSpin(2n — 1) x QS?*~! ~, QSpin(2n).

Hence we obtain (2) from (1). (In this case, since the condition (1.3)
is satisfied, (2) can be proved by applying Proposition 1.6 (3) without
using (1).)

(3) and (4). If p # 2, then (2.13) holds in

H*(SU(n); Z/p) = Ales, es, ..., exp_1)

and
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H*(Sp(n); Z/p) = Ales, e7, ..., ean-1).

If p=2, then Sq¥ey;_; = (";l)ezmj_1 in H*(SU(n); Z/2), where
ey_1 =0 if t > n. By applying Proposition 1.6 (3), we can obtain
(3) and (4).

(5) By considering the degrees of the subalgebra generators of
H*(QX; Z/2), we see that P(k, m)xy,41 =0 forany m and k > 0.
Therefore, J ={1,2,...,n}, m(i)=2i—1 and k(i) =1 in Propo-
sition 1.6 (3). We have (5) by Proposition 1.6 (3). O

The method used to prove Theorems 1.1, 1.2, 1.3, 1.7, 1.9 and
[10; Theorem 2.4] is indeed algebraic, that is, properties of G as Lie
groups are not used. Therefore we can have Theorem 0.2.

Proposition 1.10 can be deduced from the results of [19].

Proof of Proposition 1.10. By virtue of [19; Theorem P2], it follows
that
(2.14) Eg*(H*((G/U); Z/p)) = Tort'(Z/p , H*(U ; Z/p))
= H*(U; Z/p)//i* ® Torn\+(Z/p , Z/p),
as Hopf algebras (see [19; Proposition 1.5]), where I' = H*(G; Z/p),
[H*(U; Z/p)//i* ® Torf3, - (Z/p , Z/p)I'""

= @ WH"(U;2/p)//i*)" ® Tory}-(Z/p, Z/P)].

m+n=t
Moreover, from the proof of [19; Theorem P2], we see that the fil-
tration {F~"H*(Q(G/U); Z/p)} is given from the Eilenberg-Moore
spectral sequence {E,, d,} of a fibration Q(G/U) — U - G, and
that the isomorphism (2.14) is as follows:

Ey*(H*(Q(G/U); Z/p)) = EZ = E; = Tori (Z/p , H*(U ; Z/p)).
Therefore, we can conclude that
(2.15) the isomorphism (2.14) is a morphism of %/ (p)-modules.

Since H*(U; Z/p)//i* is a Hopf algebra, by the Hopf-Borel theorem
([13; 7.11 Theorem]), it follows that H*(U ; Z/p)//i* is isomorphic
to

AWt .. ) ®Zfpluy, ..., um)/ VDY, bt/
as an algebra, where y; and u; are appropriate algebra generators.
Since I'\\i* = H*(G; Z/p)\\i* = AXom(1)+15 -+ > X2m(s)+1) » We

obtain that
Tori\\ i+ (Z/p, Z/p) =TI~ Xom(1)41» -+ » §~ Xom(s)+1] -
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Let us express the element in Ej* and its representative element with
the same notation. Let .S be a subset

it i<i<e U <jem U {01087 Xamiy+1)} 120, 1<i<s

of H*(Q(G/U); Z/p), where degy,ir1(5™ Xom@i+1) = PLf]-2m(i).
Then S is a p-simple system of generators for H*(Q(G/U); Z/p).
From (2.15), by using the same argument as the proof of Proposition
1.6 (3), we can have this proposition. O

Proof of Theorem 1.11. Let i: SU(n) — SU(m + n) be the inclu-
sion map. We know that i*(x;,_;) = x3;_1 if 1 < i < n and that
i*(x2;_1) =0 if n < i < m+ n, where i* is the morphism of al-
gebras from H*(SU(m + n); Z/p) = A(x3, X5, ..., Xom42n—1) into
H*(SU(n); Z/p) = A(x3, X5, ..., Xon—1) , and the x; are appropriate
generators of each algebra. Hence we can conclude that

H*(SU(n); Z/p)//i* =0

and that

H*(SU(m + n); Z/p)\\i* = A X2n+15> X2n435 « -+ s X2mr2n-1) -
By applying Proposition 1.10, we can obtain Theorem 1.11 (1). Sim-
ilarly, we have Theorem 1.11 (2) and (3). O

Proof of Theorem 1.12. Let i: Sp(m) x Sp(n) — Sp(m + n) be the
inclusion map and Bi: B Sp(m) x BSp(n) — BSp(m + n) the map
which is induced from i. We know that Bi*(q;) = 34— 4; " 4% »
where Bi* is the morphism of algebras from

H*(BSp(m+n); Z/p) = Z/pla1, 2 --- > dm+n]
into
H*(BSp(m) x BSp(n); Z/p) ZZ/pl4)> @3s - > > D1 5 --- > dn]>

gi, q;, and gq; are appropriate algebra generators of each algebra,
and deggq; = degq; = degq; = 4i. Therefore, we see that i*(x4;_1) =
X+ x4 if 1<i<n, i*(x4i1) =x);_, if n+1<i<m,and
i*(x4i—1) = 0 if m+ 1 < i, where i* is the morphism of algebras
from i*: H*(Sp(my,); Z/p) = A(x3, X7, ... » X4ms4an—1) iNtO

H*(Sp(m) x Sp(n); Z/p)
'-E:"A(xg, xé, cer s xf,m_l, xé’, x"7’, cees xélt’n—l ’
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and the algebra generators x;, x; and x; transgress to ¢; g; and g/
respectively. Hence we can conclude that

H*(Sp(m) x Sp(n); Z/p)//i* and H*(Sp(m + n); Z/p)\\i*
are isomorphic to
A(x3, X7, ..., Xap_1) and  A(X4m43> Xam47s -+ » Xam+dn—1)

respectively. We have Theorem 1.12 by virtue of Proposition
1.10. O

Proof of Theorem 1.13. Let p be an odd prime. As is known,
H*(SO(m + n)/SO(n); Z/p)

f A(e2n+1 s €Int5s o0e s e2m+2n—3) if n is odd and m is even,
Aeznt1, €2n45, -+ 5 €2mi2n-55 €pyin_1)
if n and m are odd,
= {0 Al€wm+3s €ni7s -+ » C2ms2n-3) ® Z/D[xn]/(X7)

if n is even and m is odd,

A(e'2n+3 > €2nt75 -+ - €2m+2n-5> e;n.m_l) ® Z/p[xn]/(xr%)
L if n and m are even,

and pFerm(iye1 = (") €am(iys2k(p-1)+1 > Where @Feypy.q = 0 if inde-
composable elements do not exist on the degree 2m(i)+2k(p—1)+1.

Consider the Eilenberg-Moore spectral sequence {E,, d,} of the
fibration

Q(SO(m + m)/ SO(n)) — SO(n)/ SO(n — 1) — SO(m +n)/SO(n—1).
We have that
E3* = Torf(Z/p, H*(S""'; Z/p))

and
Er* = H*(Q(SO(m + n)/ SO(n)); Z/p),

where I' = H*(SO(m + n)/SO(n - 1); Z/p) .
Let n be odd and m be even. Then we see that i*(x,_1) = yu—1,
where i* is the morphism of algebras from

H*(SO(m +n)/SO(n — 1); Z/p)

into
H*(S™'; Z/p) = Z/plyn11/(¥2_))
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induced from the inclusion map i. Therefore, by computing the
Koszul complex, it follows that

~ Tro—1 -1 -1
E3* =T[s™ eyn-1)+3> 5" €x(n-1)+75---> 5 €mi2n-3]-

Hence E* = E}; = Ej*. By applying [10; Theorem 2.4], we obtain
the desired result in the case where n is odd and m is even.

Let n and m be odd. By using the same argument as the above,
we see that

~ Tro—1 -1 -1 —1
Ey* =T[s™ eyn-1)+3>5" €(n-1)+7>--- >S5 €mi2n-5,5 €myn_1].

Let S be the p-simple system of generators determined from the di-
vided power algebra Ej*. Put 2t+1=m+n—1. Then 2pt+1 >
2(m+n-3)+1. Using this fact and the usual argument of the filtration
degrees and the total degrees, we see that y, f](s‘le;n 1)’ & NP(S).
Furthermore, using the Steenrod operation in the Eilenberg-Moore
spectral sequence, we see that (s~ e, 1) ¢ N(S). Hence we
have our result in the case where n and m are odd.
Let n be even and m odd. We can obtain that

E3 =T[s™ en-1)+1>5" €n-1)+5> +++ > €m2n-31® A(Xy_1),

where bidegs~'e; = (-1, i) and bidegx,_; =(0,n—1).
Let {E,, d,} denote the mod p Eilenberg-Moore spectral sequence
of the path loop fibration

Q(SO(m + n)/ SO(n)) — P(SO(m + n)/SO(n)) — SO(m + n)/ SO(n).

We see that this spectral sequence collapses at the E,-term by applying
[6; DHA Lemma]. Therefore H*(Q(SO(m + n)/SO(n)); Z/p) can
be determined as a vector space. By comparing each dimension of
H*(Q(SO(m + n)/SO(n)); Z/p) and the total complex @ E5*, we
conclude that E3* = EZ¥ = Ej*. Asusual, we can have an appropriate
p-simple system of generators for H*(SO(m + n)/SO(n); Z/p). By
[10; Theorem 2.4], we get our result in the case where n is even and
m is odd. In a similar manner, we can also get it in the case where »
and m are even. o

In general, it is not easy to determine the algebra structure of
H*(Q(SO(m + n)/SO(n)) ; Z/p)

from the associated bigraded algebra E,” which is obtained from the
Eilenberg-Moore spectral sequence {E,, d,} in the above proof. For
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example consider {E,, 3,} in the case where p =3, m = 5n—4 and
n is an even integer greater than 3. Then we see that

e—1 33 ~ — — _ _1
Ey =Ts 'esns3, s ernsrs oo S Camianes, s eh il
® It(x7)]® A(s™' x,)
as an algebra, where

bidegs~le; = (-1, i),
bidegs~le,, ., 1 =(-1,m+n—1)=(-1,6n-75),
bideg 7(x2) = (=2, 2n).
Since 7(x2) = [xn|xn] in EZ*, it follows that

O t(xn) = Patlxalxal = ) [0'xalp’ xa]
i+j=n—1
in EZ2*. p'x, is decomposable for dimensional reasons. Therefore,
if p'x, # 0, then n+2i(3—1) > 2n+3+2n+7 and so n+4i > 4n+10.
Hence n+2j(3—1) <4n+10, because i+j = n—1. We can conclude
that @/x, = 0. Finally, [p’x,|@/x,] = 0 for any i and j such that
i+j=n-1. We have that 7(x2)3 = p"'t(x2) € F 'H".

The element 7(x2)* may be equal to s~!e/_, ,,because s~le, m_

belongs to F' H®"=6 1t is difficult to show whether 7(x2)3 is equal
to s“‘e;n +n—1 Or not even if we use the argument of the filtration and
the Steenrod operation in the Eilenberg-Moore spectral sequence.

Proof of Theorem 1.14. As is known, H*(SO(m+n)/SO(n); Z/2) =
A(xn > Xngls «ees xm+n—l) and

(2.16) Sq/x; = (Jl_)xl-+j, where x, =0if t >m+n.
Therefore,
* ~ 2[
H*(SO(m + n)/SO(n); Z/2) = Q) Z/2[x,1/(x; Sh
jeJ

where J = LU L’. Consider the Eilenberg-Moore spectral sequence
{E;, d,;} of the path loop fibration on SO(m + n)/SO(n). Then we
have that

E}* = Tort(2/2,Z/2) (T = H*(SO(m + n)/SO(n); Z/2))

%’{ X (I‘[w;]@A(s’lxj))}tX){ (9 F[S_lxj]}

jeJ,sJ>1 jeJ s =1
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and E* = H*(Q(SO(m + n)/SO(n)); Z/2), where bidegs~'x; =
(=1, j) and bidegw; = (-2, j-2[s;]) . By applying [6; DHA Lemma],
we see that this spectral sequence collapses at the E)-term: Ej* =
E3 = E3*. Let S be the simple system of generators obtained from
Ep. If j e L' and s; = 1, then pyr)(s~!x;) ¢ N(S). In fact,
suppose that yy f](s‘lxj) € N(S); we see that there exists an integer
i€ J suchthat (j—1)=2[f"]-(i-2[t]—2), where f">1 and t> 1.
But the left-hand side of the equality is odd and the right-hand side is
even, which is a contradiction. Next let us verify that f](s‘lx )? ¢
N%(S) if j € L’ and s; = 1. Suppose that yy,i(s~!x;)? € N%(S).
From [10; Lemma 3.1], we have the following equality:

Sq YU Dyyry(70x)) = parpy(571%)? = Apagpy(s™ i) + w

in E; AL , where 4 # 0 and w expressed by S does not have the
term uyyr)(s~!x;) (u #0). Therefore

Sagad U xlxg - 1% = Alxilx| - |l +w in EZ2U1>
—2[f1— —2[f1—
and the left-hand side is equal to

i(D+-+iQLD=2[f1G-1)

For any term [Sq'(Ux;|---|Sq¢"®/Dx;], provided that there exists
some integer i(¢) such that i(z) > j, there exists an integer i(¢')
such that i(¢) < j— 1. Since j is even, from (2.16), we obtain
that [Sq'Vx;|---|Sq’@/Dx;] = 0. Similarly, we see that the term
[Sq'Vx;|---|Sq"@ Dx;] is zero if i(¢) < j for any i(¢). Hence

A Xl +w =0 in EZUD,

which is a contradiction. Thus we conclude that yy f](S_li')z ¢
NZ(S). Using the above fact and [10; Lemma 3.1], we have Theorem
1.14. (Note that m+n—-2)/2+1€ L ifandonlyif m+n—-2=
Omod4 and n < m.) O

Proof of Theorem 1.15. Let {E,, d,} denote the Eilenberg-Moore

spectral sequence of the path loop fibration

Q(U(m + n)/U(m) x U(n)) — P(U(m + n)/ U(n))
—U(m+n)/U(m) x U(n).
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Note that this spectral sequence has a Hopf algebra structure. We
know that

H*(U(m + n)/ U(m) x U(n); Z/p) = Z]plcy, ..., cnl/(p1, .., Pn)

as an algebra, where p;, ..., p, is a regular sequence, p; is decom-
posable for any i, degc; = 2i, degp; = 2m +2i and m > n (cf.
[11]). By virtue of [19; Proposition 1.1], we obtain that

E3* = Torf(Z/p, Z/p) = A(s™ 1, ..., s en) ®TTTp1, .. v s TPn)

as an algebra, where bidegs~!c; = (-1, 2i) and bidegtp;, =
(=2, 2m+2j). Since the free algebra generators with less total degree
than totdegs—!c, + 1 have column degree —1, by applying [6; DHA
Lemma], it follows that those images by the differential d, are zero
for any r > 2. By applying [10; Theorem 2.4], we have Theorem
1.15. O

In order to prove Theorem 1.16, we will calculate a Koszul complex
in the concrete.

Proof of Theorem 1.16. As is known,
H*(SU(9)/Z/3;Z/2) = Aes, es, ..., e17),
(2.17) Squez,-_l = (l ; 1)62,'+2j_1 , where ey;_1 =0ift>9,

and

(2.18)
H*(Eg; Z/2)
=Z/2[x3, X5, X9, X15)/(x3°, x§, X3, x{5) ® A(x17, X23, X27, X29),
Sq*x3=x5,0 Sq*xs=x9, Sqg’xi5=x17, Sq®x9=x17,
Sq8xis = X3, Sq*xp3=x37 and Sq’xp7=xy9.
Let us show that
. e, ifi=3,5,9,150r17
(2.19) Fx) = { 0 ifi=23,270r29,

where i: SU(9)/Z/3 — Eg is the inclusion map.

First, we have that i*(x3) = e; since j.: H3(SU(7)) — H3(E3g) is an
isomorphism, where j: SU(7) — Ejg is a composition of the inclusion
maps i: SU(9)/Z/3 — Eg and k: SU(7) — SU(9)/Z/3.
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Using the Steenrod operation, we have that i*(xs) = es5, i*(x9) = eg
and i*(x;7) = e;7. Let us show that i*(x;5) = e;5. Since {e;s, e3 -
es-e7} is a basis of H'3(SU(9)/Z/3; Z/2), we can write as follows:
i*(x15) = Aey5+4’e3-es-e; . Therefore, applying the Steenrod operation,
we have that

Sq*i*(x15) = Sq*(Aeys + Ves - es - €7)
and so
eip=Ae;r+Ae;-es5-e9.
We see that A =1 and A’ = 0. Hence we obtain that
(2.20) i*(x15) = ej5.

From (2.17), (2.18) and (2.20), we conclude that i*(x;) = 0 if i =23,
27 or 29. Thus we have (2.19).

Next let us consider the Eilenberg-Moore spectral sequence {E;, d,}
of the fibration Q(Eg/(SU(9)/Z/3)) — SU(9)/Z/3 — Eg. By using
the Koszul resolution, we can obtain the explicit form of the E>-term:

Torr"(Z/2, H*(SU(9)/Z/3; Z/2)) = H(Z , 9),
where I' = H*(Eg; Z/2),
F =As"x3, 57 x5, 57 xg, s71x15)
@ Twi, wy, w3, wa, s~ x17, 57 x23, s71x7, s 9]
®A(€3, €5, ..., e17),

bidegs~!x; = (-1, j), bidegw; = (-2, 48), bidegw, = (-2, 40),
bidegw; = (-2, 36), bidegw,; = (-2, 60), bidege; = (0, i) and
6(s x)=¢ if i=3,5,9,15 or 17,

S(rarr1(s7 x17)) = Yar 11 (s x17) ® ey

and J(a) = 0 for any other algebra generator a. (The differential
0 is determined from (2.19), see Figure 2.) Computing the above
complex, we obtain that

E3* = A(eq, eq1, €13)

QA Ix3®e3, 5 xsQes, s Ixg®@ ey, s x5 ® eys)
-1 -1 -1
®I'wy, wy, w3, wal @T[s™ X23, 57 X27, 57 X29]
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wy +60 Wy 160
Ta(s7xp9) Tals™xp9)
Yo(s7xy7) Ta(s7xp7)
w, wy
Tl xp3) 1o(s71x53)
W2 T W2
ws W3
Ta(sxy9) §—i 7, ®ey;
_ - . 130
5719 30 S 1
s~ x15®e15
571xy, 5™y
-1 T
sy | ——§—— i€, 57 X%®eg
_— 5——te
€13 213
e - 1
5 "e;l 57 1xs®es T
4 e
—_— eg 571x;®ey 7
sy {5l e
-2 -1 -2 -1
FIGURE 2 FIGURE 3

(see Figure 3). Applying the same argument as the proof of Theorem
1.15, we see that

d;(a) = 0 for r > 2 and any algebra generator « in E3*.
Hence Ej* = E3; = E3*. Put

AG ={e7, e, 13,5 'xs®e5, 5 X9 @ €9, 57 x15 @ €y5}
U{Parri(wi), vap(w2) s Yapsy(ws) s Papr)(wa)}r>0
U {21,1(57 " %23) » P21,1(57 " X%27) » P21,1(5 ™" %29) } >0

The usual argument of the filtration of H*(Q(Eg/(SU(9)/Z/3)); Z/2)
allows us to conclude that e? = 0 and (s~'x;®e;)* = 0. Furthermore,
h(a) = 2 for any a € AG because there is no pair of non-negative
integers (f, f') which satisfies



390

KATSUHIKO KURIBAYASHI

22.2/=26-2,28.2" 462,382/ ,34.2 582/,
26-2/ =282 46-2,38.2/ 34.2/ 58.21,

28.2/ =46.2,38.2 34.2 5821,

46-2/ =38.2/ 34.21  58.21

38.2/=34.2 582/,

34.2/ =58.2/

(see [10; Theorem 2.4]).
We have Theorem 1.16 by [10; Theorem 2.4].
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