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THE COHOMOLOGY RING OF THE SPACES OF LOOPS
ON LIE GROUPS AND HOMOGENEOUS SPACES

KATSUHIKO KURIBAYASHI

Let X be a simply connected space whose mod p cohomology is
isomorphic to that of a compact, simply connected, simple Lie group
as an algebra over the Steenrod algebra. We determine the algebra
structure of the mod p cohomology of Ω.X algebraically. Moreover
we give a method to determine the algebra structure of the mod p
cohomology of the space of loops on a homogeneous space.

O Introduction. Let G be a compact simply connected Lie group
and ΩX the space of loops on a space X. In [4], R. Bott has given
a method to obtain generators of the Pontryagin ring H*(ΩG) and
has determined its Hopf algebra structure explicitly for G = SU(m),
Spin(ra) and C?2 By applying this method, T. Watanabe [23] has
determined the Hopf algebra structure of H^QF^). A. Kono and
K. Kozima [8] have determined the Hopf algebra structure over the
Steenrod algebra J / ( 2 ) of //*(ΩG; Z/2) for G = F4,E6,EΊ and
E%, without using Bott's method. In order to determine the alge-
bra structure, they have made use of the Eilenberg-Moore spectral
sequence [16] which converges to H*(G; Z/2) and whose f^-term is
isomorphic to Ext# (QG ;Z/2)(Z/2> Z / 2 ) Moreover a homotopy fiber
of Ωx 4 : ΩBG -» ΩK(Z, 4) has been used to examine the coalgebra
structure, where x4: BG —• K(Z, 4) is a map representing the gener-
ator of H4(BG). The consideration of the dual of those results ([4],
[8], [23]) enables us to determine the Hopf algebra structure of the
modp cohomology of ΩG for the Lie groups G. On the other hand,
we can decide the coalgebra structure of H*(ΩG; Z/p) algebraically
from the algebra H*(G\ Z/p) over the Steenrod algebra $t{p). The
following result is due to R. M. Kane [5].

THEOREM 0.1. Suppose that X is a simply connected Hspace and
(0.1): there exists a compact, simply connected, simple Lie group G

such that H*(X\ Z/p) s H*(G; Z/p) as an algebra over the mod/?
Steenrod algebra s/{p). (We do not require the existence of any map
between X and G which induces the isomorphism,)

Then i/*(ΩX; Z/p) £ H\ΩG\ Z/p) as a coalgebra.
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This result motivates the conjecture that H*(ΩX; Z/p) is isomor-
phic, as an algebra, to H*(ΩG Z/p) under the condition in Theorem
0.1. In this paper, we will show

THEOREM 0.2. If X is a simply connected space and satisfies (0.1),
then H*(ΩX\Z/p) = H*(ΩG; Z/p) as an algebra.

(Note X is merely a simply connected space. We do not assume that
it space is an H-space.)

Theorem 0.2 is obtained as a consequence of algebraic calcula-
tion of the algebras //*(ΩG; Z/p). In particular, when H*(G) is
/7-torsion free, the algebra structure of H*(ΩG; Z/p) is determined
by virtue of Proposition 1.6, which asserts that algebraic calculation
of H*(ΩX\ Z/p) is possible when H*(X; Z/p) is an exterior alge-
bra. In order to calculate the algebra H*(ΩG; Z/p), we make use
of the Steenrod operations in the Eilenberg-Moore spectral sequence
([15], [20]) and [10, Theorem 2.3], which is an answer to extension
problems in spectral sequences.

In the latter half of this paper, we examine the algebra structure of
the cohomology rings of spaces of loops on homogeneous spaces. In
[19], L. Smith has shown the following.

THEOREM ([19; Theorem P2]). Let G be a compact simply con-
nected Lie group, U a closed connected subgroup of G and i: U «-• G
the inclusion map. Consider H*(U; Z/p) as an H*(G; Z/p) module
via the map i*: H*(G Z/p) -+ H*(U Z/p). Then if H*(G Z/p) is
an exterior algebra on odd dimensional generators, there is a filtration
{F-»H*(Ω(G/U) Z/p) n > 0} such that Eξ*(H*(Ω(G/U) Z/p)) =

> H*W\ Z/p)) as a Hopf algebra.

From this theorem and [10; Theorem 2.4], we will obtain a proposi-
tion (Proposition 1.10) on the algebra structure of H*(Ω(G/U) Z/p).
By applying our proposition, the mod p cohomology rings of

Ω(SU(m + n)/ SU(/i)), Ω(Sp(m + n)

Ω(Sp(m + «)/Sp(ra) x Sp(/i))

can be computed. But if G is not simply connected or H*(G Z/p) is
not an exterior algebra, it is not easy to calculate the cohomology ring
of Ω(G/U) in general. In order to determine the algebra structure of

H*(Ω(U(m + n)/U(m) x U(n)) Z/p),

H*(Ω(SO(m + n)/ SO(n)) Z/p), IT(Ω(£8/(SU(9)/Z/3)) Z/2),
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we cannot apply Proposition 1.10 because U(m + n) and SO(m-hn)
are not simply connected and H*(E$ Z/2) is not an exterior algebra.
In the concrete, we will attempt to compute the mod p cohomology
rings of

Ω(U(m + ή)l U(m) x U(n)), Ω(SO(m + n)/ SO(n))

and the mod 2 cohomology ring of

Ω(£8/(SU(9)/Z/3)).

This paper is organized as follows. In §1, we state our results. In
§2, we prove them by using results of [1], [2], [3], [7], [14] and [22].

1. Results. In this paper, we may denote pf by p[f] for any prime
number p . Kp means a field of characteristic p . In this section, for
algebras A and B, A = B means that A is isomorphic to B as an
algebra.

Let G be an exceptional Lie group. When H*(G) has /?-torsion,
the algebra structure of the mod p cohomology of the space of loops
on the exceptional Lie group G is determined by considering the
Eilenberg-Moore spectral sequence converging to H*(ΩG; Z/p).

THEOREM 1.1.

(1) 7ί*(ΩG2 Z/2) = Z/2[S-
ιx3]/(s-ιx$) ® Γ[w1 0, y*],

(2) H*(OFA Z/2) = Z/2[S-
ιx3]/(S-

ιx*)

(8) T[Wιo , y 8 , ^ ^

(3) H*{CIE6 Z/2) = Z/2[5-1x8]/(5"1x8

16) ® {<8>f>ιZ/2[ef]/(e})}

dtgs~ιXi = / - 1, degwio = 10,

(4) i

= Z/2[s-ιx3]/(s-ιxι

3

6)

® Γ[WΪO , WΪS , W34 ,

1 = 32
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(5) H*(ΩE8; Z/2)

, w34, w58, y32, y5β, s~ιx23,

degs"1*,- = 1 - 1, degWj = 1, degy, = i.

THEOREM 1.2.

(1) H*(ΩF4;Z/3) = Z/3[s-1x3]/(s-ιx9

3)

®Γ[w22,yιs, s~ιxn,s~ιxiS],

deξ,s~ιXi = i - l , degyis = 18, dcgw22 = 22.

(2) H*(ΩE6 Z/3) =

(3) iί*(Ω£
7
 Z/3) = ^

® Π ^ 2 2 , S~
l
X

n
 , S~

X
Xιs , S~

1
X

2
J , S~

l
X
3S
],

degί ^'x, = / — 1, degw2 2 = 22, dege/ = 6 3-̂ .

(4) H*(ΩE3; Z/3)

deg,s~lXj = i - 1, degy54 = 54, degw; = /.

THEOREM 1.3.

Z/5)

, s~ιx23, s~ιx27, s~ιx35, s~ιx39, s'ιx47],

clegs"1*/ = / - 1, deg^5 0 = 50, degw;58 = 58.

Before we state the algebra structure of the mod p cohomology of
the space of loops on G whose integral cohomology has no p-ioxύon,
let us define some notation.

NOTATION 1.4. Let k be a non-negative integer, p a prime number
and p', Sqι the Steenrod operations. Put P{k, m) = p^* ' m <pm

where k > 0, p ' = Sq2i if p = 2, and P(0, m) = id.

The following lemma will be needed to study the Steenrod opera-
tions in the Eilenberg-Moore spectral sequence.
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LEMMA 1.5. Let H* be a Hopf algebra over stf(p). Suppose that
H* is isomorphic, as an algebra, to an exterior algebra on odd dimen-
sional generators. Then we can choose generators Xj which satisfy the
following properties.

(1.1) H* = A(xΪ9 . . . , xs), where deg*/ = 2m(i) + 1.

P(k, m(i))Xi = εxj for any k > 0 and i, where ε = 0 or 1,

degXj = 2m(ϊ)pk + 1 and Xj = 0 if (β#*)2"ΦV+i = 0.
Also, for any i and j (i φ j), if P(k, m(/))xz = P{kf, m(i))Xj,

then P(k, m(/))x; = P(k', m(j))Xj = 0.

In Proposition 1.6, we treat a space X which satisfies the following:
(A) X is a simply connected space and

H*(X; Kp) = Λ ( x 2 m ( l ) + 1 ? ••• > x2-m(s)+l) >

where degx2m(0+i = 2m(/) + 1 and m(l) < < m(s).
(B) When Kp = Z/p, ΛΓ*(X; Z/p) has a Hopf algebra structure

over j / ( p ) . Moreover if we choose generators X2m(/)+i satisfying
(1.1), then one of the conditions (1.2) or (1.3) is satisfied for any

ie J, where / = {i\x2.m(i)+ι Φ p(k> MJ))x2-mU)+ι f o r any /: > 0
and j}.

(1.2): m(j)p[f] φ m{ι) for any j e J and / > 1.
(1.3): If there exist j eJ and / > 1 such that m(j) p[f] = m(i),

then / < k(j), where k(j) = min{k\P(k, m(j))x2.mφ=i = 0}. If
m(i) p[fc(/) + f] = m(7) /?[£] for some 7 € / , ί < k(j) and / > 1,
then k(i) > k(j).

Let {i^jrKo be the decreasing filtration of Γ = H*(ΩX;Z/p)
which is obtained from the Eilenberg-Moore spectral sequence con-
verging to Γ. Roughly speaking, the condition (1.2) or (1.3) is suffi-
cient for deciding whether, for any algebra generator x of Γ belonging
to Fn, xp and the algebra generators of Γ belonging to Fn+ι are
independent.

PROPOSITION 1.6. (1) If p = 0 and X satisfies the condition (A),
then

~ X2() s~X2 m(l)+1 9 ••• > s~ X2 m(s)+l]>

where deg^-1x2.m ( / ) + 1 = 2 • m(i).
(2) Suppose that Kp is a perfect field whose characteristic is non-zero,

X satisfies the condition (A), and that ra(l) p > m(s). Then

H*(ΩX Kp) = Γ[^~ X2 m(l)+1 ? > s~~ x2-m(s)+l] 5

where degs-ιx2.mmι = 2 m{ι).
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(3) If X satisfies the conditions (A) and (B), then

H*{ΩX;Z/p)

where degγp[f](s-ιx2.m{i)+x) = 2 mO) Plf]> and y\{s-χx2.m{ϊ)+x) =
s~lχi m(ϊ)+\ - Throughout Proposition 1.6, s~ιxt transgresses to xt.

By making use of Proposition 1.6, we can determine the algebra
structure of the mod p cohomology of ΩG, where G is a compact,
simply connected, simple Lie group whose integral cohomology has no
p-torsion.

In Proposition 1.6, if X is a simply connected Lie group G whose
type is (2n(l) + 1, ... , 2n(t) + 1), then S2nW+x x x S2n^+ι is
mod 0 equivalent to G. Therefore, Proposition 1.6 (1) holds clearly
in this case. Since S3 x S5 x x S2n~ι ~ p SU(n) (modp-equivalence)
if p > n, and S3 x SΊ x x S4n~ι ~p Sp(n) if p > In, Proposition
1.6 (2) holds clearly in the cases where X = SU(n) and Sp(n).

REMARK. In the assumption of Theorem 0.2, if the condition "G is
simple" is omitted, then we cannot deduce the assertion of Theorem
0.2 by applying Proposition 1.6. In fact, the condition (1.3) does
not hold in general for cohomology of semi-simple Lie groups. For
example, let us consider the mod 3 cohomology ring

/Γ(SU(2)xSpin(20);Z/3)

Θ A(e3 ,eΊ,en, ... ,e23,e27,e3ι, e35) Θ A(yϊ9).

If we take notice of the elements x3 and y\g, then it follows that
condition (1.3) is not satisfied because m(j) = 1 and m(ί) = 9,
that is 1 32 = 9 and / = 2 > 1 = k(j). This means that we
cannot determine, by using our method, the mod 3 cohomology ring
of the space of loops on a simply connected space X whose mod 3
cohomology is isomorphic to i/*(SU(2) x Spin(20) Z/3).

Applying Proposition 1.6 (3), we have

THEOREM 1.7.

(1) H*(ΩG2;Z/p)
_ f Γ[s-ιX3,s-ιxn] ifp = 3orp>5,

" I <S>f>o^/p[yP[f](s-ιχ3)]/(γP[f](s-ιχ3)
25) ifp = 5.
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(2) H*(ΩF4;Z/p)

,s~ιx23] ifp>\\,

367

if /> = 5, 7 or 1 1 .

(3) H*(ΩE6;Z/p)
( FTe~lv~ o- lγ Λ1 \S A3 , S Xg ,

ifp = 5 , 7 or 1 1 .

(4)

H*(ΩE7ιZ/p)

, S~lXl5 , S~lXl9

ifp>n,

, S~lX23(l 1) , J " ^ 2 7 ( 1 3 ) ,

if p = 5 , 7 , 1 1 , 13 or 17.

(5)

ifp > 29,

, ^ ^ 2 7 ( 1 3 ) ,

s-ιx35(Π),s-ιx39(l9),s-ιx4Ί(23),s-ιx59(29)]

ifp = 5,7, 11, 13, 17, 19,23 and29.

Throughout Theorem 1.7, degs~lXj = / — 1, degs~ιXi(q) = i - I,
q) is removed from the divided polynomial algebra ifp = q.

Moreover s~ιXf (s~ιXi(q)) transgresses to X;, which is a suitable free
algebra generator of H*(G Z/p).

Before we state results about the cohomology rings of spaces of
loops on classical groups, let us define the following
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NOTATION 1.8. Let T be a set consisting of some natural numbers.
Put M(T, p) = {n e T\n φ mpf for any m e T and / > 1} and
t(m, k) = min{t\2mpt + 1 > k} for meM(T9p).

THEOREM 1.9.

(1)
//*(ΩSpin(2n + l);

= ® j®

(2)

/ί*(ΩSpin(2rt);Z//>)

m€M(T,p) I />0

(m,4n— l
"1^+,)]/(wi(5"1^+.rv""-""i;j)

where T = {1, 35 . . . , 2« - 1} am//? ^ 2 .

e2m+ι)]/(γp[f](s
,4/i—5)K

(3)
H*(ΩSυ(n);Z/p)

m€M(T,p) (f>

(4)

Θ (®
meM{T,p) (f>0

where T = {1, 3, ... , In - 3} and p φ 2.

where T={\, 2,... , n - 1 } .

—1 — 1 ^p[t(m,4n— 1

w/*m?Γ={l, 3, ... , 2 Λ - 1} andpφl.

(5) //*(ΩSp(/i) Z/2) s

Throughout Theorem 1.9, the free algebra generator s~~ιei (resp. s~le^
s~ιXi and s~ιx[) transgresses to an appropriate free algebra generator
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β{ (resp. e'i9 Xi and x ) of H*(G\ Z/p) (see the proof of Theorem 1.9
in §2).

Let G be a simply connected Lie group whose mod p cohomol-
ogy is an exterior algebra on odd dimensional generators, U a closed
connected subgroup of G, and /: U °-> G the inclusion map. By
[13; 7.20 Theorem (Samelson-Leray)], we see that the sub-Hopf al-
gebra H*(G\ Z/p)\\i* (= sub-ker/*; see [18; Notation, p. 312]) of
H*(G; Z/p) is an exterior algebra on odd dimensional generators.
Moreover, from the method of construction of H*(G; Z/p)\\i* (see
[18; Proposition 1.4]), we see that H*{G\ Z/p)\\i* is a sub-Hopf al-
gebra of H*(G; Z/p) over £f(p). Under the above conditions and
notations, the following proposition holds.

PROPOSITION 1.10. Suppose that the condition (1.2) or (1.3) is sat-
isfied in the algebra

H*(G Z/p)\\i* = A(x2m(\)+ι, . • • ,

where X2m(i)+i a r e algebra generators satisfying (1.1), and that

Q(H*(U\ z/p)//

for any i e / and / > 0. Then

H*{Ω(G/U);Z/p)

a s a n a l g e b r a .

Applying Proposition 1.10, we have the following:

THEOREM 1.11.

(1)
i/*(Ω(SU(m + ή)lSU(/i)) Z/p)

s£M(T,p) [

where T = { n 9 n + l , . . . , m + n— I } .
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(2)

,p[t(s,4m+4n-l)],

seM{T,p) {f>0

where T = {2n + 1, In + 3, ... , 2m + 2n - 1} and p φ 2.

(3) jr(Ω(Sp(ro + /i

= i [S

THEOREM 1.12.

7T(Ω(Sp(m + n)l Sp(m) x Sp(/i)) Z/p)

= Γ [ 5 ^ 4 3 S X 4 7 ^

where degs ιXj = j - 1, degx = i and m> n.

The following theorems are obtained by computing in the concrete.

THEOREM 1.13.

J Γ (Ω(SO(/w-

f>0

^ ^ . ! ] //« α«ί/ m are odd,

(
seλf(T3,p) [f>0

, m is odd,

z//ι α/irf m are even,

where p φ 2, Γi = {n, n + 2 , . . . , m + n - 2 } , T2 = {n, n+2, ... ,m+
n - 3}, 73 = { Λ - l , n + l , . . . , m + Λ — 2}

1, . . . , m + ft - 3}.
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THEOREM 1.14. When n>2,

/Γ(Ω(SO(m + n)/ SO(»)) Z/2)

T[wj]

371

jeL,Sj>ι

(g)

where

J€L'

L = {j\j = 2m{j) + l,n<j<m + n-l}, T = {m{j)\j e L},
U = {j\j = 2m(j), n < j < min(2n, m + ή)},

0 ΓΊJ 4 W Q)] ifm + n — 2 ψ 0 mod 4 or n > m,

Θ
jeL,Sj=i

A =

") φ(m + n- 2)/4, (m + n - 2)/2
ifm + n-2 = mod 4 αma? n <m,

m + n < j 2[sj], degWj = j 2[Sj]-2, ι

degyt = t.

THEOREM 1.15.

/Γ(Ω(U(m + ή)l U(m) x

τρ2, ... , τ s~ιcx,s'ϊc2, ... ,s~ιcn),

, = 2/ - 1, m>n.where deg τ/?( = 2m + 2i-2,

THEOREM 1.16.

/Γ(Ω(lΓ8/(SU(9)/Z/3));Z/2)

= A(e'Ί,e'n, e'n,u5,u9, u 1 7 , u29)

® Γ[W 3 8 , t ϋ 3 4 , W46 , W58 , V22 , V26 , V28]

where deg^ = /, degw7 = j , degtϋ/ = /, degvm = m.
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Furthermore, j*(βi) = e\ if i = Ί, U or 13, and ]*{&) = 0 if
i = 3, 5, 9, 15, or 17, wAere 7 w the inclusion map in thefibration

Ω(£8/(SU(9)/Z/3)) Λ SU(9)/Z/3

*,- e iT (SU(9)/Z/3 Z/2) =

2. Proofs. In this section, we will prove all the results stated in §1.

Proof of Theorems 1.1, 1.2 and 1.3. Let (G, p) be one of pairs of the
exceptional Lie group and the prime number in Theorem 1.1, 1.2 or
1.3. For an appropriate algebra generator xt of H*(G; Z/p), choose
a continuous map / to the Eilenberg-MacLane space K(Z/p, deg X/)
from G representing the generator Xi. We can compare the Eilenberg-
Moore spectral sequence {Er, dr} converging to H*(ΩG; Z/p) with
the spectral sequence converging to H*(K(Z/p, degx; — 1) Z/p) by
using the morphism of spectral sequences which is induced by the map
/ : G —• K(Z/p, deg JC/) . By applying [18; Lemma 3.9], all differentials
dr are determined. This enables us to obtain the explicit form of E™ .
We have Theorems 1.1, 1.2 and 1.3 by virtue of [10; Theorem 2.4].
(Cf. the proof of Lemma 2.2.)

In order to prove Lemma 1.5, we will prepare a lemma.

NOTATION. Put U = {u\u φ Omod/?}. For any u e U, let i(u)

be the least integer / which satisfies (QH*)2UP1+1 φθ.

LEMMA 2.1. For any u e U, put m = up1^ . Under the assump-

tions of Lemma 1.5, for any /, we can choose a basis {x\, . . . , xυ}

for ® 0 < κ / + i ( β ^ * ) 2 m / 7 ' + 1 s o a s t0 satiφ the following conditions.

(i) X\, . . . , xυ are primitive.
(ϋ) // degP(fc, m(i))Xi < 2mpM + 1 (degx/ = 2m(i) + 1), then

P(k, m(i))xi = exj, where ε = 1 or 0, degx/ = 2m(i)pk + 1 and

Xj = 0 if (Q7/*)2m(/)/+l = 0 .

(iii) For any i and j {iφ j ) , if

and

then
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Proof. All basis elements Xj can be replaced by primitive elements
modulo decomposables, by the Samelson-Leray theorem and associa-
tivity of homology. Let us prove this lemma by induction on dimen-
sions. Suppose that Lemma 2.1 holds up to an integer /, that is, we
can choose a basis

M={P(ti9 i

for 0 o < κ / + i ( β ^ * ) 2 m / ? ' + 1 s o t h a t χi *s primitive, where degx, =
2mp1^ + 1 and s(i) is the lesser of / + 1 - /(/) and the integer t
satisfying

P{t + 1, mpι^)Xi = 0 and P{t, m/?/(/))x; φ 0.

We can see that basis elements of (QH*)2mp+ + 1 can be uniquely
expressed as P(l + 1 — l(j), mpι^)Xj. Let S be a subset

of ((?#*) W + 2 + i which is obtained from the basis

Choose a maximal subset S' consisting of linearly independent ele-
ments of S. The subset S' is written as

If there exists an integer j e J - {j\, . . . , JN} such that

pmpM . j P ( / + 1 _ /Q ) ? m p / ϋ ) ) ^ . ^ 0,

then, from the maximality of S', we have that

pmpM P(l+l-IU),mp!U))χj

\<i<N

where the coefficients A/ are not all zero. Choose an element x,
of maximal degree from the elements x, (1 < / < N) such that

λiφQ. Put yjt = xJt + Σo<i<N,itt ^(/(Λ) - Iψ, OT^)^ , where
*/o = Xjr, λ0 = 1 and λj = λίjλt. By replacing x, with ^ and
P(fc, mpι^t))Xjt with P(fc, mpι^)yjt for all it < / + 1 - /(;/), we

see that pm?ι+ι P(/ + 1 - / (^) , mpιW)yJt = 0. The subset of # *
obtained from A/ by this replacement is a basis for H* and satisfies
the conditions (i), (ii) and (iii) up to the integer /.
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If the argument started from the unique expression of the base

of (QH*)2mp + 1 continues infinitely, then we obtain infinitely many

bases P(l + 1 - l(j),mpι^)Xj of (QH*)2mp+l+l such that pmp+x

P{1 + 1 - l(j), mpι^)Xj = 0, which is a contradiction. Finally, by re-

peating the argument, we can obtain a basis {P(l +1 —l{j), mpι^)Xj}

for (QH*)2mp+ι+ι such that all non-zero elements

pmpl+x . pπ + 1 — /(/) mpι^)x

are linearly independent. From such elements, we can obtain a basis
for Θ o < κ / + 2 ( β # * ) 2 m j / + 1 which satisfies the conditions (i), (ii) and
(iii). (Note that all basis elements Xj for QH* are primitive.) Sim-
ilarly, we can choose a basis for 0 o < κ i ( β ^ * ) 2 m p + 1 s o a s t 0 satisfy
(i), (ii) and (iii). This completes the proof of Lemma 2.1. D

Proof of Lemma 1.5. The vector spaces

+ 1 and
0<t

do not intersect for any k, r and u, u' G U (u Φ ur). Therefore
Lemma 1.5 follows from Lemma 2.1. D

Proof of Proposition 1.6 (1) and (2). Let {Er, rfr} be the Eilenberg-
Moore spectral sequence (with K^-coefficients) of the path-loop fibra-
tion £IX^PX-+X. Put Γ = H*(X;KP).

(1) In the case where p = 09 since Γ = Λ(x2m(i)+i, -. - ,

we see that E2 = Torf*(K0, Ko) = K0[5~1x2m(i)+i ? ? s '
Since the total degree of each algebra generator in E%* is even, this
spectral sequence collapses at the ^-t^rm. Hence, by [12; Example
11 (page 25)], we have (1).

(2) By the same argument as in the proof of (1), we can conclude
that £** = E£ = E** = Γ[^- 1 x 2 m ( 1 ) + 1 , . . . , s-ιx2m{s)+i]. Therefore,
a subset S = {yp[/](J"1^2m(ί)+i)}/>o,i<ί<j o f H*(ΩX;KP) is a p-
simple system of generators. In order to apply [10; Theorem 2.4], we
must verify that

(2.1)

and

(2.2) VPlf](s-lX2m(i)+i)P Φ Np(S) for any i (1 < i < s)
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(see [10; Notation 2.2]). If there exists some integer i such that

yp[f\(s~lχ2m{ϊ)+\) £ N(S) > then we have an equation

(2.3) Y^λjϋή+W = 7p[f](s'lX2m(i)+l)9

j

where otj e S and w represented by S does not have a term

Comparing the degree of the elements in the equation, we see that
/7^+ 1 -2m(j) = jp^deg5~1X2m(/)+i = p^-2m(i) when the filtration de-
gree of aj is p[f]. Suppose that m(j) < m(i). Then / ' + 1 > / and
so /? < pf'+ι~f = j£& < ^ . But this contradicts the assumption

jj$γl < /?. For a similar reason, the case m(j) > m{i) does not occur.
Hence we have that m(j) = m(i). Thus each α7 in the equation (2.3)
is written as yP[f-\]{s~ιX2m(t )+i) > where m(ίy ) = m(/). The element
o^ is in a smaller filter than the filter including yP[f](s~ιX2m{i)+ι) -
From the equation (2.3), we have that

(2.4) yP\f}(s~lχ2m(i)+i) -u> =

Let / be the least of the filtration degrees of the terms in the left-hand
side of (2.4). Consider the equation (2.4) in Eι

0'*. The right-hand
side of (2.4) is zero and the left-hand side is non-zero. Finally, we
obtain (2.1). In a similar manner, we have (2.2). From the above
argument, we see that h(γP[f](s~ιX2m(i)+\)) = p for any / (see [10;
Theorem 2.4]). Hence we have (2) by applying [10; Theorem 2.4]. D

In order to prove Proposition 1.6 (3) by using [10; Theorem 2.4], we
must obtain a good p-simple system of generators for H*(ΩX %/p).
First, applying the same argument as in the proof of (2), we can
conclude that Eξ* = E£ = E*2* £ Γ [ ^ 1 x 2 m ( 1 ) + 1 , . . . , s'ιx2m{s)+ι]9

where {Er, dr} is the Eilenberg-Moore spectral sequence (with Z/p-
coefficients) of the path loop fibration SIX <-+ PX —• X. There-
fore, we can choose a subset S = {γp[f](s~1x2m(i)^ι)}f>o,ι<i<s of
H*(ΩX Z/p) as a p-simple system of generators for H*(ΩX Z/p).
The following lemma guarantees that we can choose a good /7-simple
system of generators.

LEMMA 2.2. A p-simple system of generators

$ = {yp[f](s~lχ2m(i)+l)}f>0,\<i<s
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for H*(ΩX;Z/p) which satisfies the following conditions (2.5), (2.6)
and (2.7) can be organized from the system S.

(2.5) yp{f](s-χχ2m{ί)pr+xγ = yP[f](s-ιχ2m(i)pr+ι+i) f°rany ' e J a n d

0 < r < k(i) - 2. (About the integer k(i) and the set J of integers,
see the remarks following Lemma 1.5.)

(2.6) ^ [ / ](^1X2m(/)+l) ΪN(S).

(2.7) γp[f](s-ιx2m{i)p^+ι)
p φ N*(S) for any ieJ.

Proof of Proposition 1.6 (3). Let AG be a subset

ofS. By Lemma 2.2, we see that the conditions of [10; Theorem 2.4]
are satisfied and that h(γpy^(s~ιX2m(ί)+i)) = p[k(i)]. Thus we have
(3) by virtue of [10; Theorem 2.4]. D

Lemma 2.2 can be proved by virtue of the following lemma.

LEMMA 2.3. In the module F-PWH*(ΩX; Z/p), if k(i) = 1, then

YP[f](s~ιX2m(i)+\)p = wo andifk(i) > 1, then yP[f]{s-xx2m{i)pt^)p =

yp[f](s~lχ2m(i)P

t+ι+0 + wt f°r any 0 < t < k{i) - 2, where wn e

^ l 1 . (See Figure 1.)

Proof. By [15], we know that the module Ef* is an j/(/?)-module
and that the isomorphisms E£* = E™ and E™ = E2* are morphisms
of j/(/?)-modules, where srf(p) is the Steenrod algebra. Let us con-
s i d e r pEMφίf]γP[f)(s~ιX2m(i)+ι) i n E £ f o r a n y ieJ. B y i d e n t i f y i n g
the Torjp*(Z/p, Z/p) which is obtained from the Koszul resolution
and that which is obtained from the bar resolution, we can regard
yP[f](s~xXim{ι)+\) as

[χ2m{ϊ)+\\x2m{ϊ)+\\ ' ' ' \x2m(ϊ)+\\

I P[f] 1

(See [19; Proposition 1.1] and [11; Proposition 1.2].) Therefore
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pm(i)-p\f+2)
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7m(0 /?[/+!]

om(i)-p\f]

, ΓVJ

 X2m(i)+0

FIGURE 1

In the above last expression, the second summations are zero from
the instability axiom of the Steenrod operation. From (1.1),

{ *2m(i)p+l if £ ( 0 > 1

inH*(X;Z/p).

0 ifk(i) = l

Note that there is an integer j such that m(i)p = m(j) if k(i) > 1.
Hence we obtain that

, - l v ^_f yplΦ~XX2m{i)p+ύ ^ k{ί) > 1 ,

if k(i) = 1,PEM

Therefore, we see that

_ /

10
if ^(0 > 1 .
if k(i) = I,

in EQPWΊ'* , where p ! is the ordinary Steenrod operation. This fact
allows us to conclude that

yP[f](s xim

in F-PV]H*(ΩX;Z/P) , where w0 e F-^1 + I ^*(ΩΛΓ; Z/p). Using
the same argument as above, it follows that the latter half of Lemma
2.3 holds.

Proof of Lemma 2.2. Put
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for 1 < r < k(i) - 1, and put 7P\fP"lχ2m(ΐ)+\) = yP[f](s~l*2m(i)+i) -
From Lemma 2.3, it follows that (2.5) holds.

Let S be the subset of H*(ΩX; %/p) which is obtained from S
by replacing yp\f}(s-ιx2m{j)p>+ι) w i t h yP[f](s~lχ2m(i)P

r+i) i n S for

any i e J. Let us prove (2.6). If fp[f](s~lx2m(i)^\) e N(S) for some
/ G / , then we have following:

(2.8) Vp[f](s~lX2m(i)+l) = Σίljyp[fU)](S~lχ2mU)+i)P + W

in H*(ΩX\ Z/p), where μ7- ^ 0 and w represented by S does not
have a term λγp[f](s-ιx2m{i)+ι) (A φ 0).

First let us consider the case where / satisfies (1.2). Choose an
integer j in the right-hand side of the equality (2.8) such that j e J.
By comparing the degrees of the elements in the equality (2.8), we
have that 2m(i) n(f) = p 2m(j) p[f{j)]. From (1.2), we can
conclude that m{i) — m(j). Hence

( 2 9 ) yP[fU)](s~lχ2mU)+i) e ^ ^ [ / - 1 ] i / * ( Ω X Zp)

Choose an integer y so that j φ J. Then there exist some integers
t e J and n e N such that X2mt/)+i = p(n> m(0)^2m(0+i Since
VplfU)](s~lχ2mU)+i) = VpifU)l(s~lχ2m(t)+i¥ln]> from ( 2 8)? we see that
2/w(ί) [/(y)] ρ[n + 1] = 2m(/) •/?[/]. From the condition (1.2), we
have that m(i) = m(t) and / > / - n - 1 = f(j). Thus we can
conclude that

( 2 . 1 0 ) p\fU)]U) P[f{j)]

= P(n9 m(t))γp[f_n_ι](s-ιx2m{t)+ι)

From (2.9) and (2.10), we see that the equality (2.8) causes a contra-
diction to the module structure of EQ* . Thus we have (2.6).

Next let us consider the case that / satisfies the condition (1.3). As-
sume that there exists an element yp[f(j)](s~ιX2mU)+i) which satisfies
fU) > f i n (2.8). Applying the same argument as above, we see that
there exist integers t e J and n e N such that yP[f(j)](s~ιX2m(j)+i)
= yP[fϋ)\(s~lχ2m(t)+ι)pln] If n + 1< k{t), then

Therefore, by using the usual argument of the filtration, we see that
(2.8) causes a contradiction. Hence n + 1 > k(t). From the argument
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of the total degree in (2.8), we obtain that p[f] 2m(i) = p[f(j)]
p[n + 1] 2m(t) and so p[f] m(i) = p[f(j) + n + 1] m(t). But
this equality contradicts the condition(1.3) because f(j) > f and
n + 1 > k(t). Hence we conclude that f(j) < f for any j in (2.8).
Suppose that f(j) = / for some j . From the condition (1.3) and the
fact that m{i) = p[n + 1] m{t), where / and t G / , it follows that

; Zip)

if n + 1 = fc(ί) and that

if n + 1 < k(t). From (2.8), we have an equality:

Vplf](s~lχ2m(i)+l) = ΣλuyP[f](s-XX2m{u)+i) + W in E

where γp[f](s-ιx2m{i)+ι) φ fP[f](sjlx2m(u)+i) and λu φ 0. But this
equality contradicts the fact that S is a ^-simple system of generators
for EQ* . Finally, f(j) < f for any j , which is a contradiction. We
have (2.6).

Let us verify (2.7). If there exists an integer / such that

yP[f](s~lX2rn(i)p[k(i)-l]+\)P € Np(S) ,

then we have the following:

(2.11) γp[f](s-lX2m{i)p[k{iyl]+l)
P = ΣλjyP[fU)](s~Xχ2m(j)+l) + ™'

j

in H*(ΩX; Z/p), where wr expressed by S does not include terms
λyp[fU)](S~lχ2m(j)+\) (λ f 0) .

Suppose that there exists an integer j in (2.11) such that j e J.
By applying the same argument as the proof of (2.6), we see that the
equality (2.11) causes a contradiction. Hence it follows that j φ J
for any j in (2.11). For any j , there exist integers tj e / and Πj
such that

From (2.11), we have the following equality:

(2.12) γPίf](s-ιx2m{i)+i)Plk{i)] = Y,λj%mjφ-γxlm{tj)^γ^ + w'.
j

We can suppose that the element

yP[f](s~lχ2rn(i)P[k(i)-l]+l)P {=
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has the least degree of elements 7py{j)](s~lχ2mU)+ι)Plk^ which be-

long to NP(S). Hence

yp[f]{s~XX2m{i)Λ-\) Φ 0 and Vp\fU)](s~lχ2m(tj)+l) Φ 0

in ®u<p[f+km2m{i)(QH*(ΩX',Z/p)r (cf. the proof of [10; Propo-
sition 2.5]). When the condition (1.2) is satisfied, it follows that the
equality (2.3) induces a contradiction (compare the degrees of the el-
ements in the left-hand side of (2.12) with those of the right-hand
side). If the condition (1.3) is satisfied, then k(ϊ) > k{tj) for any j .
Therefore, by regarding H*(ΩX Z/p) as an algebra which is a tensor
product of monogenic algebras, we see that the equality (2.12) induces
an equality contradicting the algebra structure of H*(ΩX; Z/p) (cf.
the proof of [10; Proposition 2.5] and [13; 7.11 Theorem (Borel)]).
Finally, we have (2.7). D

Proof of Theorem 1.7. By using the result in [14] concerning the
Steenrod operation in H*(G; Z/p) and Proposition 1.6 (3), we can
have this theorem. D

Proof of Theorem 1.9. (1) As is known,

J Γ ( S p i n ( 2 / i + 1) Z/p) £ A(e3 9e7,...9 e 4 n _ x )

a n d

k fm{i)\
P ^2m{ι)+\ — I ^ )e2m{i)+2k{p-\)+\

if there exists the algebra generator e2m{j)+2k(p-\)+\ > a n d £
0 if indecomposable elements do not exist on the degree 2m(i) +
2k(p - 1) + 1. Therefore the set {m{i)\i e J} is equal to M(T, p)
and the number k(i) is equal to t(m, n). By virtue of Proposition
1.6 (3), we have (1).

(2) Since Spin(2π - 1) x S2n~ι ~p Spin(2n), it follows that

ΩSpin(2n - 1) x ΩS 2 *" 1 - p ΩSpin(2n).

Hence we obtain (2) from (1). (In this case, since the condition (1.3)
is satisfied, (2) can be proved by applying Proposition 1.6 (3) without
using (1).)

(3) and (4). If p φ 2, then (2.13) holds in

/ Γ ( S U ( n ) Z/p) = A(e3 ,e5,..., e2n-ύ

a n d
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H*(Sp{n) Z/p) = Λ(e3, e7,..., e4n-ι).

If p = 2, then Sq2Je2i-i = ('^t+ij-x in H*{SΌ{n) Z/2), where
e2t-\ = 0 if ί > n. By applying Proposition 1.6 (3), we can obtain
(3) and (4).

(5) By considering the degrees of the subalgebra generators of
H*(ΩX Z/2), we see that P(k, m)x2m+ι - 0 for any m and k > 0.
Therefore, / = {1, 2 , . . . , n} , m{i) = 2i-l and k{i) = 1 in Propo-
sition 1.6 (3). We have (5) by Proposition 1.6 (3). •

The method used to prove Theorems 1.1, 1.2, 1.3, 1.7, 1.9 and
[10; Theorem 2.4] is indeed algebraic, that is, properties of G as Lie
groups are not used. Therefore we can have Theorem 0.2.

Proposition 1.10 can be deduced from the results of [19].

Proof of Proposition 1.10. By virtue of [19; Theorem P2], it follows
that

(2.14) E*0*(H*(Ω(G/U); Z/p)) = Ίor*Γ*(Z/p, H*(U; Z/p))

= H*(U; Z/p)//i* ® Torf*w .(Z/p, Z/p),

as Hopf algebras (see [19; Proposition 1.5]), where Γ = H*(G; Z/p),

[H*(U;Z/p)//i*®ToT*j{v(Z/p, Z/p)]11'1

= 0 [(H*(U;Z/p)//nm ®Tor*^r(Z/p,Z/p)].
m+n=t

Moreover, from the proof of [19; Theorem P2], we see that the fil-
tration {F~nH*(Ω(G/U);Z/p)} is given from the Eilenberg-Moore

spectral sequence {Er, dr} of a fibration Ω(G/U) ^ U -^ G, and
that the isomorphism (2.14) is as follows:

E*0*(H*(Ω(G/U) Z/p)) = E™ ^E2^ Torf*(Z//>, H*{U Z/p)).

Therefore, we can conclude that

(2.15) the isomorphism (2.14) is a morphism of j/(/?)-modules.

Since //*([/ Z/p)///* is a Hopf algebra, by the Hopf-Borel theorem
([13; 7.11 Theorem]), it follows that H*(U; Z/p)///* is isomorphic
to

as an algebra, where y; and wz are appropriate algebra generators.
Since Γ\\/* = H*(G;Z/p)\\i* = Λ(x 2 m ( 1 ) + 1 , . . . , x 2 m ( 5 ) + 1 ) , we

obtain that

Toip; v .(Z/p, Z/p) = Γ[5- 1 x 2 m ( 1 ) + 1 , . . . , s-ιx2m{s)+ι].
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Let us express the element in Efi* and its representative element with
the same notation. Let S be a subset

U {

of H*(Ω(G/U);Z/p), where degγp[f](s-ιx2m{i)+ι) = p[f] 2m(i).
Then S is a /7-simple system of generators for H*(Ω(G/U); Z/p).
From (2.15), by using the same argument as the proof of Proposition
1.6 (3), we can have this proposition. D

Proof of Theorem 1.11. Let i: SU(/i) -> SU(ra + /i) be the inclu-
sion map. We know that i*(x2i-\) = Xu-i if 1 < i < n and that
i*(x2i-\) = 0 if n < i < m + n, where /* is the morphism of al-
gebras from /f*(SU(m + /ι) Z/p) = Λ(x3, x 5 , . . . , x2m+2n-\) into
/7*(SU(n) Z/p) = Λ(x3, x 5 , . . . , x2n-ι) > a n d the xz are appropriate
generators of each algebra. Hence we can conclude that

and that

H*(Sϋ(m + n) Z/p)\\i* =

By applying Proposition 1.10, we can obtain Theorem 1.11 (1). Sim-
ilarly, we have Theorem 1.11 (2) and (3). D

Proof of Theorem 1.12. Let /: Sρ(ra) x Sp(/i) -> Sp(m + ή) be the
inclusion map and Bi: 2?Sp(m) x BSp(n) —• 5Sp(m + n) the map
which is induced from /. We know that Bi*(qj) = Σ/+fc=ϊί/ ' ^ ?
where 5z* is the morphism of algebras from

H*(B S p ( m + n) Z / p ) = Z / p f ^ , q 2 , . . . , Qm+n]

into

ft-, q[, and ^^ are appropriate algebra generators of each algebra,
and deg#/ = deg^ = deg# 7 = 4i. Therefore, we see that i*(x^-\) =
*4;_i + x'li-\ if 1 ^ i < n > i*(x*i-\) = x'4i_ι if n + 1 < / < m, and
/*C*4i-i) = 0 if m + 1 < /, where /* is the morphism of algebras
from i*: H*(Sp(mn) Z/p) = Λ(x3 ,xΊ,...9 x 4 m + 4 r t_i) into

/r(Sp(m)xSp(π);Z/p)

— iV^Λβ , Λ7 , . . . , A 4 m - 1 , Λ3 , Λy , . . . , A 4 w _ l y / ,
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and the algebra generators Xi, x\ and x" transgress to #; q\ and q"
respectively. Hence we can conclude that

77*(Sp(m) x Sp(/i) Z/p)//i* and H*(Sρ(m + n) Z/p)\\i*

are isomorphic to

9Xη9 ... , ^ 4 n _ i ) a n d

respectively. We have Theorem 1.12 by virtue of Proposition
1.10. D

Proof of Theorem 1.13. Let p be an odd prime. As is known,

H*(SO(m + ή)l SO(w) Z/p)

, e2n+5 , • , e2m+2n-3) ^ n is odd and m is even,

2n-5 , em+n-\>

if n and m are odd,

3) ® Z/p[xn]/(x%)

if w is even and m is odd,

if « and m are even,

and p^^mίo+i = (ΐV2m(0+2/c(P-i)+i 5 where p^^mίo+i = ° if inde-
composable elements do not exist on the degree 2m(i) + 2k(p—l) + l.

Consider the Eilenberg-Moore spectral sequence {Er, dr} of the
fibration

Ω(SO(m + m)l SO(/ι)) ^ SO(/i)/ SO(/ι - 1) -> SO(m + «)/ SO(/ι - 1).

We have that

A2 = lor Γ (ϋ/jP, /i (o , Lip))

and
£r** => //*(Ω(SO(m + π)/ SO(π)) Z/p),

where Γ = H*(SO(rn + n)/ SO(n - 1) Z/p).
Let n be odd and m be even. Then we see that i*{xn-.\) = y r t_i,

where /* is the morphism of algebras from

+ n)/SO(n-l);

into
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induced from the inclusion map /. Therefore, by computing the
Koszul complex, it follows that

E%* = Γ[S~le2(n-l)+3 , S~le2(n-1)+Ί > > S~1e2m^2n-3] -

Hence E%* = E£ = Eζ*. By applying [10; Theorem 2.4], we obtain
the desired result in the case where n is odd and m is even.

Let n and m be odd. By using the same argument as the above,
we see that

Eζ* = Γ[s-le2{n-l)+3 , S-le2(n-\)+Ί > - . , ^"1^2m+2«-5 , ^"^m+fi-ll

Let S be the p-simple system of generators determined from the di-
vided power algebra E£*. Put It + 1 = m + n - 1. Then 2pί + 1 >
2 ( m + n - 3 ) + 1 . Using this fact and the usual argument of the filtration
degrees and the total degrees, we see that yp\j \(s~ιe/

m+n_ι)
p $. NP(S).

Furthermore, using the Steenrod operation in the Eilenberg-Moore
spectral sequence, we see that YP[f](s~ιe/

m+n_ι) φ N(S). Hence we
have our result in the case where n and m are odd.

Let n be even and m odd. We can obtain that

where bideg.y"1^ = ( - 1 , /) and bidegxw_i = (0, Λ — 1).
Let {.Er, dr} denote the mod p Eilenberg-Moore spectral sequence

of the path loop fibration

Ω(SO(m + n)l SO(n)) ^ P(SO(m + /i)/ SO(n)) -> SO(m + n)/ SO(n).

We see that this spectral sequence collapses at the ^ - t e r m by applying
[6; DHA Lemma]. Therefore iί*(Ω(SO(m + n)/SO(n)); Z/p) can
be determined as a vector space. By comparing each dimension of
7f*(Ω(SO(m + n)/SO(n));Z/p) and the total complex 0 # [ * , we
conclude that £"2* = -E'̂  = £"o* ^ s u s u a l ? w e c a n have an appropriate
^-simple system of generators for i/*(SO(m + ή)j SO(n) Z/p). By
[10; Theorem 2.4], we get our result in the case where n is even and
m is odd. In a similar manner, we can also get it in the case where n
and m are even. D

In general, it is not easy to determine the algebra structure of

/Γ(Ω(SO(m + n)l SO(n)) Z/p)

from the associated bigraded algebra Έ™ which is obtained from the
Eilenberg-Moore spectral sequence {Er, dr} in the above proof. For
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example consider {Er, dr} in the case where p = 3, m = 5n-4 and
n is an even integer greater than 3. Then we see that

, . , S - l e 2 m + 2 n - 5 > ^ " ^ l

as an algebra, where

bidegs"" 1^-= ( - 1 , i),

" 1 ^ ^ . ! = ( - 1 , m + n - 1) = ( - 1 , 6n - 5),

Since τ(x%) — \xn\Xn\ in E™ , it follows that

in E^2>*. ριxn is decomposable for dimensional reasons. Therefore,
if ρ*xn φ 0,then n+2/(3-l) > 2«+3+2n+7 and so n+4i > 4^+10.
Hence n+2j(3 — l) < 4n +10, because i+j — n — 1. We can conclude
that ρjxn = 0. Finally, [ p 1 ' ^ ^ ^ ] = 0 for any / and j such that
/ + j = n - l . We have that τ{xlΫ = pn~ιτ{xl) e F " 1 / / 6 " " 6 .
The element τ(x 2 ) 3 may be equal to s~xe'n+m_x, because s~ιen+m-\

belongs to T~ H6n~~6 . It is difficult to show whether τ(x%)3 is equal
to s~ιe'm+n_ι or not even if we use the argument of the filtration and
the Steenrod operation in the Eilenberg-Moore spectral sequence.

Proof of Theorem 1.14. As is known, H*(SO(m + n)/ SO(n) Z/2) =
A(xn , xn+\, . . . , xm+n-\) and

(2.16) S q J ' x i = ( - ) Xi+j ? w h e r e x t = 0 if t > m + n .

Therefore,

JT (SO(m + i)/ SO(/ι) Z/2) =

where / = L U Lf. Consider the Eilenberg-Moore spectral sequence
{£V, dγ) of the path loop fibration on SO(m + w)/ SO(n). Then we
have that

£2** = Torf*(Z/2, Z/2) (Γ = ίί*(SO(m + n)/ SO(n) Z/2))
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and E?* =• #*(Ω(SO(m + n)/SO(/i)); Z/2), where
( - 1 , j) and bidegw; = (-2, j-2[Sj]). By applying [6; DHA Lemma],
we see that this spectral sequence collapses at the l?2-term: £** =
g** ^ E%*. Let S be the simple system of generators obtained from
Eζ*. If j e L! and sj = 1, then γ2[f](s~ιXj) $ N(S). In fact,
suppose that 72[f](s~ιXj) £ N{S) \ w e s e e that there exists an integer
ieJ such that ( ; - 1) = 2[/] (/ 2[ ί ]-2) , where f> 1 and t> 1.
But the left-hand side of the equality is odd and the right-hand side is
even, which is a contradiction. Next let us verify that ?2[f](s~lχj)2 £
N2(S) if j e L1 and sj = I. Suppose that γ2[f](s-ιXj)2 e N2(S).
From [10; Lemma 3.1], we have the following equality:

SqWW-Vγ^s-ixj) = γ2[f](s-ιXj)2 = λy2[f]{S-
χ xt) + w

in EQ2^9*, where λ Φ 0 and w expressed by S does not have the
term μY2y](s~ιXi) (μ φ 0). Therefore

- 2 L Π -

and the left-hand side is equal to

For any term [SqιWχj\ \Sq'(2Wχj], provided that there exists
some integer i(t) such that i(t) > j , there exists an integer i(t')
such that i{t') < j - 1. Since j is even, from (2.16), we obtain
that [Sq'Wxjl - lSqWUxj] = 0. Similarly, we see that the term

j] [s z e τ o if j(t) < ; f0Γ any i(ί). Hence

which is a contradiction. Thus we conclude that γ2[f](s~ίXj)2 £
N2(S). Using the above fact and [10; Lemma 3.1], we have Theorem
1.14. (Note that (m + n- 2)/2 + l e i if and only if m + n - 2 =
0 mod 4 and n<m.) D

Proof of Theorem 1.15. Let {Er, dr} denote the Eilenberg-Moore
spectral sequence of the path loop fibration

Ω(U(m + n)/U(m) x U(n)) -+ P(U(m + Λ ) / U ( Λ ) )

^ U ( m + n ) / U ( m ) x U ( n ) .
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Note that this spectral sequence has a Hopf algebra structure. We
know that

/Γ(U(m + n)/U(m) x U ( n ) ; Z/p) ^Z/p[cu . . . , cn]/(pΪ9... , pn)

as an algebra, where p\, ... , pn is a regular sequence, pi is decom-
posable for any /, degcz = 2/, deg/?/ = 2m + 2/ and m > n (cf.
[11]). By virtue of [19; Proposition 1.1], we obtain that

E? = Tor? (Z/p, Z/p) = K{s-ιcx, . . . , ί ^ c ) ® T[τPι, . . . , τpπ]

as an algebra, where bidegs" 1^ = (-1,2/) and bidegτpj =
(-2, 2m + 2j). Since the free algebra generators with less total degree
than totdegs" 1 ^ + 1 have column degree - 1 , by applying [6; DHA
Lemma], it follows that those images by the differential dr are zero
for any r > 2. By applying [10; Theorem 2.4], we have Theorem
1.15. D

In order to prove Theorem 1.16, we will calculate a Koszul complex
in the concrete.

Proof of Theorem 1.16. As is known,

//*(SU(9)/Z/3 Z/2) = A(e3 9e$9...9 elΊ),

(2.17) 5 ^ 2 1 - 1 = (* ~. X\IMJ-I , where e2t-ι = 0 if ί > 9,

and

(2.18)

H*(ES; Z/2)

= Z/2[X3 , X5 , X9 , Xi5]/(X3

16 ' X ! » A >

^ 2 x 3 = χ5 9 0 A S ^ ^ = xg, S

Sq*xi5 = x 2 3 , ^^ 4^23 = ^27 and

Let us show that

(2 19) i ( x ) l
(2.19) » W | 0 i f / = 23, 27 or 29,
where /: SU(9)/Z/3 ̂ ^ £8 is the inclusion map.

First, we have that i*(x$) = 3̂ since 7*: i?3(SU(7)) —• H${E%) is an
isomorphism, where j : SU(7) -> £g is a composition of the inclusion
maps /: SU(9)/Z/3-^£ 8 and k: SU(7) -> SU(9)/Z/3.



388 KATSUHIKO KURIBAYASHI

Using the Steenrod operation, we have that i*(xs) = £5, i*(x9) = ̂ 9
and i*(x\η) = en. Let us show that i*{x\s) = ^15. Since {β\s, e$
e5 eη) is a basis of i/15(SU(9)/Z/3 Z/2), we can write as follows:
/*(x15) = λeis+Keyeyβη. Therefore, applying the Steenrod operation,
we have that

Sq2i*(xis) = Sq2(λel5 + λ'e3 e5 eΊ)

and so

elΊ = λe\Ί +λ'e3 e5e9.

We see that λ = 1 and A' = 0. Hence we obtain that

(2.20)

From (2.17), (2.18) and (2.20), we conclude that i*(jcf ) = 0 if / = 23,
27 or 29. Thus we have (2.19).

Next let us consider the Eilenberg-Moore spectral sequence {Er, dr}
of the fibration Ω(E8/(SU(9)/Z/3)) -+ SU(9)/Z/3 -^ Es . By using
the Koszul resolution, we can obtain the explicit form of the

Torf*(Z/2, /Γ(SU(9)/Z/3 Z/2)) =

where Γ =//*(£: 8 ; Z/2),

s~ιx5,

, S~XXχη ,

1 ^ = (-1 ,7) , bideg^i = (-2, 48), bidegw2 = (-2, 40),
= (-2, 36), bideg^4 = (-2, 60), bidegβ; = (0, i) and

1JC|) = ^ if ι = 3, 5 ,9 , 15 or 17,

and δ{a) = 0 for any other algebra generator α. (The differential
δ is determined from (2.19), see Figure 2.) Computing the above
complex, we obtain that

, W4]
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y2(s~ιχ29)

y2(s~ιχ2Ί)

y2(s-[χ23)

s~ιχ, 23

e-l r

S Xyj

-2 -1

FIGURE 2

-60

τ 3 0

-13

i \

s~ιx5®e5

-2 -1

FIGURE 3

T60

•30

(see Figure 3). Applying the same argument as the proof of Theorem
1.15, we see that

dr(ά) = 0 for r > 2 and any algebra generator a in E™.

Hence Eξ* = E™ = £**. Put

The usual argument of the filtration of /ί*(Ω(£r

8/(SU(9)/Z/3)) Z/2)
allows us to conclude that ef = 0 and {s~ιXi®ei)2 = 0. Furthermore,
h(a) = 2 for any a G AG because there is no pair of non-negative
integers (/, /') which satisfies
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22 2
f
 = 26 2

f
', 28 2

f>
, 46 2^ , 38 2

f>
, 34 2^ , 58

58 1? ,26

2 8 •

46

38

34

(see [10

• 2f = 28 2-

• 2 / = 46 • 2-

• 2f = 38 2-

• 2f = 34 2-

•2f = 58 2-

i; Theorem :

^ , 46 2f

r , 38 2^

^',34-2/'

^ 5 8 - 2 ^

2.4]).
We have Theorem 1.16 by

,38

,34

,58

[10;

. ?/ 4̂ . ?/

. jf 58 2-̂

•2f>,

Theorem 2.4].
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