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TENT SPACES OVER GENERAL APPROACH REGIONS
AND POINTWISE ESTIMATES

MARΪA J. CARRO AND JAVIER SORIA

We consider the study of the tent spaces over general (possibly tan-
gential) approach regions and their atomic decomposition. As a con-
sequence, we obtain some pointwise estimates for a class of operators,
using the duality properties of a certain type of Carleson measures.
In particular, we can get the boundedness of a family of bilinear oper-
ators defined on the product of Lq and some space of measures, into
a Lipschitz space; we give yet another proof of the pointwise bounded-
ness for the Fourier transform of distributions in Hp and we improve
and generalize the Fejer-Riesz inequality for harmonic extensions of
Hp functions.

Several authors have studied the boundedness of maximal oper-
ators defined by means of general subsets. For example, in [8], a
Hardy-Littlewood type operator is associated with a collection of sub-
sets Ωx c R+4*1, x € Rn . The natural way to define the balls for
these sets is to take the subset of Ωx at level t, that is, the set of
points z G Rn so that (z, t) e Ωx. Our idea is to also replace the
cone Γ(JC) = {(y, t) e R++1 : \x - y\ < t} in the definition of the tent
spaces (see [2]), by a more general family of subsets of R" + 1 . As an
application, we look at a family of integral operators (e.g. the Fourier
transform) as the action of continuous linear forms, and using the
duality established between certain spaces, we obtain pointwise esti-
mates that will allow us to give another proof of well-known bounds
for the Fourier transform of Hp functions (see [4], [12]). We can
also improve the Fejer-Riesz inequality for harmonic extensions (see
[5]) and we find a generalization considering Hardy spaces defined in
terms of arbitrary kernels (see [14]). Our main tool will be given by
the properties that the tent spaces satisfy (see [2], [1], [10]), and in
particular their relation with a class of Carleson measures, for which
we find a suitable atomic decomposition. We begin by giving some
basic definitions.

DEFINITION 1. Let Ω = {ΩX}X€R» be a collection of measurable
subsets, where Ωx c R+4"1. For a measurable function / in R++1 we

217
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define the maximal function of / with respect to Ω as

)= sup \f(y,t)\.

We will always assume that Ω is chosen so that Afi(f) is a measur-
able function. We also define

with

REMARK 2. It is clear that if Ωx = T(x) then 7^ is precisely the
tent space Γ& of [2]. If Ωx = {(x, t) : t > 0} then Afi(f) is the
radial maximal function of / .

DEFINITION 3. Suppose Ω = {Ωx}XGRn is as above and F is any
subset of R n . We define the tent over F, with respect to Ω, as

s=κr l\ u Ω*
We also set Ω*(ί) = {y e Rn : (y, t) e Ωx}.

For a measure μ in R"+1 we say that μ is an (Ω, ^)-Carleson

measure (β > 1) and write μ e V^ if

Q

where the supremum is taken over all cubes 2 c R n .

REMARK 4. If Ωx — Γ(x) then F& = F, the usual tent over F . If

we choose Ωx = {(x, t) : t > 0} then F Ω = i 7 x R + and it is denoted
by C ( F ) .

LEMMA 5. Suppose F c R n and Ω — {Ωx}xGR« are as above. Then

(i) ^ Q f - )(x) < χF{x) for all x e Rn.

(ii) ^ Q ( / ^ )(X) = XF(X) if and only if ΩxΓ\FςιΦ 0 /?r all x eF.

(iii) //* Ω / Ή symmetric family (that is, if x e Ωy(ί) ίΛen y €
we Λave that

In particular if Ωx = x + Ω, for a fixed Ω c R"+ 1, the symmetric
condition holds if and only if Ω(t) = -Ω(t), for all t > 0.
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Proof, (i) Observe that

otherwise.

Suppose x <£ F. Then if (y, ί) e Ω* we have that χ&(y,t) = 0
Ω

(by (1)), and this shows (i).
(ii) A%(χfJ(x) = χF(x) if and only if for all x e F, ΛffQ^X*)

= 1 if and only if there exists (y, ί) G Ω x such that (j;, ί) G F Ω if
and only if Ωx Π FQ Φjd.

(iii) That (y, ί) G ifo means that y ^ ΩJC(0 > for all x ^ i 7, which,
by symmetry, is equivalent to saying that for all x φ F, x φ Ωy(ί)
that is, Ωy{t) cF. D

A simple example of a symmetric family of sets of the form x + Ω
can be found in the comments previous to Lemma 11. Another
example, for a general family of sets {Ω x}, is given by defining
ΩΛ(ί) = ( - / ! , - n + 1), if n G Z, and Ω x (0 = (-n - 1, -n + 1),
if n < x < n + 1.

DEFINITION 6. We say that a measurable function a: R"+1 -> C is

an (Ω, /?)-atom if there exists a cube β c R D such that supp a c QQ,

and Hfllloo^ier1^.
We now give the proof of the atomic decomposition for the tent

space T^. We restrict ourselves to the case n = 1, but a similar
proof also works in any other dimension. A related result is given in
[6].

THEOREM 7. If Ω = { Ω X } X G R is a symmetric family of sets (as in
Lemma 5-(iii)), such that Ωx(t) is an interval for all (x,t)eJQ,
then, for 0 < p < 1, feT^ if and only if

(2) /

where cij is an (Q.,p)-atom and Σ ; \λjψ < oo. Moreover,

XlP'

J

where the infimum is taken over all sequences satisfying (2).

Proof. We first show the easy part, for which we will not make use
of the extra hypotheses on Ω. The only thing to observe is that || \\TP
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is always a p-norm, for 0 < p < 1 and hence, if / = £ / ^jaj >then
11/llτS < Έj \λj\p\MP

n But, by (i) of the previous lemma:

lkfr>= I (A%{aj){x)Y dx

< ί\\aj\\Po0(A^(χ^)(x)γdx<\\aj\\ξ0 [χQ(x)dx<l,

and hence, ||/fΓ, < £,- |A,f.

For the converse we need the following observation: if / G T^
and A > 0 then {x e R: Afi(f)(x) > λ} is an open set. In fact,
if Afi(f)(x) > A, then there exists a point (z, t) G Ωx so that
\f(z, t)\ > A. By hypotheses, we conclude that x e Ωz(ί) and there
exists an ε > 0 such that if |x - y| < ε then y G Ωz(ί). Again, by
symmetry, (z, ί) € Ωy and so -4Q(/)CV) > A if |JC - y| < ε. Set now

= {xeR: Afi(f)(x) > 2k}, and write Mk = U ^ z ^ > w h e r e {f

is an open interval and 1^ nrt = 0 if 7 ^ / . Since / G Γ ^ , 7̂  is
bounded for all j , k eZ. Set

fr- Σ to)'

where λjik = 2/:+1|/j:|1/^ . It is clear that suppα,^ C /^ Ω and

7 , A : A: Ω

and so it remains to show that / = Σj9kλj,k<*j,k a n d II^^IU <

\ή\-χlp. Let (Xyήeίf^ and suppose |/(JC, ί)| > 2^+1. Let 3; G

Ω x(ί). Then (x,t)e Ωy and hence y G A/^+1. Therefore Ωx(t) c
and there exists a unique / G Z so that Ω^(ί) C 7^+1. Since
C 7^ then 7f+1 c 7}. But if ή+ι c 7f and / ^ /' then

ft} Π 7 ^ ^ 0 . In fact, if (z, 5) G 7 ^ n 7 ^ then Ω Z (J) c
1 Π 7^+1, which is a contradiction. Thus,

- Σ

Therefore, for all (x, ί) G 7^ Ω ,

|flifik(jc, 01 < 2
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Finally, if (JC, ί) € R^ and 2ι < |/(JC, ί)| < 2/+1 then Ωx(t) c M/.
Let K G Z be the greatest integer satisfying Ωx(ί) c Afc (it is clear
that we can find such a number since AQ(/)(X) < oo, a.e. X G R ) .

Let s G Z so that Ωjc(ί) c If. We want to show that if

/ c/

then Σ,j,kSj,k(x> t) = I. If Ωx(t) C /f then A: < JRΓ . Suppose that

fc < K and (JC, ί) G 7 ^ Ω , then /f c /r^
+1 c /f for some r e Z

and hence gjfk(x> 0 = 0. If (JC, ί) G If Ω then clearly / = s and

We observe that in the previous proof, we obtained the atomic de-
composition for all 0 < p < oo. An immediate application of this
theorem is given by the following duality result. We first recall that
for the case when Ωx is the cone Γ(JC) , it was proved in [2] and [1]
that the space of Carleson measures of order \jp (0 < p < 1) could
be identified as the dual of the tent space T^ (see Theorem 16). For
the general case we are considering, we restrict our study only to the
inclusion needed in order to obtain the estimates we mention below.

THEOREM 8. Suppose Ω is a family of sets satisfying the hypotheses
of the previous theorem and 0 < p < 1. Then, for all f G 7Q and

I f{x,t)dμ(x,t)

JR2,

That is, v£

Ω yςi

Proof. Let / e Γ£ and μ e V^p, and write / = Σjλj<*j» a s i n

Theorem 7. Then,

f(x, t) dμ(x, ί) /

A W*j\\oo\μ\{ίΓa) Z Σ M \Ij\-l/pMr»\Ij\l/p

J J

D
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REMARK 9. (i) In the proof of the previous theorem, if p = 1, we
can give a direct argument without using the atomic decomposition. In
fact, if / € 7^ and if we consider the set Fλ = {yeR: Afi(f)(y) >
λ}, then

In fact, if \f(x, t)\ > λ, Ag(f)(z) < λ, implies that (x, t)
and, hence,

Ω z ) =

Ωz

As we saw before, Fλ is an open set and hence Fλ = (J. Ij - Moreover,

by symmetry, F^ c \Jj 1} &, and hence, for μ e V^ , we have

f(x, t) dμ(x, t)

/•oo

< / \μ\{{{χ, t) G R2

+ : \f(x, 01 > A}) rfλ (by (3))

/»CXD . . POO

< / \μ\(F&)dλ<y2 / N(^/,Ω)'
JO , JO

dλ

(ii) If Ω satisfies that for every compact K c R+ , the set {x eR:
Ω x Π K φ 0} has finite measure, then using the ideas of [2], it is easy
to show that in fact equality holds; namely V^p = (7^)*. We do not
know what happens in the general case.

As was proved in [4] the non-tangential maximal function and the
radial maximal function of Poisson integrals of functions (distribu-
tions) in the Hardy space Hp(Rn) have an equivalent ZA"norm",
p > 0. This leads us to consider how this result could be extended for
all functions in the tent spaces T^ relative to both cones Γ(x) and
lines {(x, t) : t > 0}. From the point of view of the dual spaces we
see that the latter is a much bigger space than the former. We give the
details in what follows.

EXAMPLE 10. If Ωx = {(x,t):t> 0} then OQ = C(O) = O x R+ .
Let us denote V£ά = Vfi , where Ω x is the vertical line above x.
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First suppose that 0 < a < 1, / e Lι^ι~a\Rn) and σ is a positive
finite measure in R+ . Then

In fact, if O c Rn then

dμ(x, ί) [ \f(x, 01

<\\σ ^ -AO\

An example of a measure that is in VQ but not in V^ά is the Dirac
mass at the point (XQ, to) e R+ + 1 . This follows by considering a
collection of cubes converging to XQ .

However, for the case a > 1 we get that

To show this fix a cube β c R " and N € Z + . Decompose Q in
2 " ^ subcubes β, such that (2/ Π β , = 0 , 1 ^ 7 , β = (J/ Gi a n d

IGίl = l(2|/2π J V . Now, if // e K^d we have

\μ\(C(Q)) < \μ\

1=1

Hence μ = 0.
Our first application of the duality result, deals with pointwise es-

timates for the Fourier transform of functions satisfying an TP-type
condition. Consider an increasing function ψ: R+ —• R + , ψ a Cι

change of variables. Define the sets Ωx = {(y, t) e R .̂̂. |JC —
ψ(t)}. It is clear that Ωx satisfies the hypotheses of Theorem 7. Ob-
serve that

(4) = {(y, 0 >

We say that a function / belongs to //£ if PI(f)(x 9t) = Pt* f(x)
belongs to the space T^, where P is the Poisson kernel in R.

LEMMA 11. Let ψ and Ω be as before, and suppose 0 < p < 1.
Consider the function φ{t) = ψι/p-2(t)ψ'(t). Then, if g e L°° and
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dμiy, t) = g{y)φ{t)dy dt, we have that μ e V^p and

Proof. Let I = (a,b). Then, by (4):

\μ\(Ia)< / / \g(y)\φ(ήdtdy

Ja Jθ
r(a+b)/2 Γψ \y-a)

/ / ψι'p-2(ήψ'(t)dtdy
Ja Jθ

rψ-\b-y)

l(a+b)/2.
Ψι'p-2(t)ψ'(t)dtdy) .

But,

Jo
and hence,

IAKS) <
Ma+b)/2

J((a+b)/2

<Cp\\g\Ub-a)1". Π

PROPOSITION 12. Suppose ψ, Ω, φ and 0 < p < 1 are as in the
previous lemma. Then, for f e

αo
— 1

Proof. Fix 0 < ε < 1 and set φε{t) — ̂ (ί)/(e,i/e)(0 If w e define

dμε(y, t) — e~ixyφε{t)dydt, by Lemma 11, we have that ||μ£||Fi//> <

Cp . Now, if / e i7& then P ^ / G Γ ^ and by Theorem 8,

fPt*f(y)dμe(y,t)
JR2

<CP\\f\\m.

But,

R2 / '
Jε

dt.
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EXAMPLE 13. (i) If ψ(t) = t in the previous result, we get the
classical estimate for the Fourier transform of functions in Hp :

\f{x)\<Cp\x\ι'p-1.

We will give more details about this result in Corollary 20.
(ii) If for example ψ(t) = eι — 1, so that Ω x is a domain con-

taining the cone Γ(x), then φ(t) = (et - \)ιlp~2et, and the integral
J™e~2πMtφ(t)dt converges if and only if \x\ > (l-p)/(2πp). Hence,
f{x) = 0 if |JC| < (1 - p)/{2πp) and f e H&. Therefore, since
fr(x) = f{rx) e i/£, if / e H&, one finds that fix) = 0, for all
x e R, and so H^ = 0.

(iii) The above calculations show that, in fact, a necessary condition
for //£ to be nontrivial is that the Laplace transform of φ ,

= /
Jo

e~xtφit)dt < oo,
o

for all x / 0 , which, for example, happens if for all s > 0, there
exists a constant Cs > 0 such that ψit) < Cse

st, for all t > 0.
We give now a characterization of the class of Carleson measures

in terms of the boundedness of the mean operator. Some related
questions can be found in [7] and [9]. Given a symmetric family
Ω such that Ω^(ί) is an open interval and for all intervals / c R
there exists (x, t) e R^ with Ω^(ί) = / (these conditions hold if, for
example, Ω is given by a function ψ as in Lemma 11), we define the
following mean operator:

ί
Ωχ(ή

We extend the notion of Carleson measure to consider the case of
weights simply by saying that the pair (μ, u) e Vg if

(5) \μ\(ίa)<C{u{I))\

where u is a positive and locally integrable function in R and u{I) =
Jj u(x) dx. Thus, in our previous notation, μ e V£ means that
(μ, 1) G Vfi. Recall that Ap denotes the class of Muckenhoupfs
weights (see [5]).

THEOREM 14. ( i ) / / α > l , p > 0 and TΩ: LP(R, u)->Lap(Rl, dμ)
is a bounded operator, then (μ, u) e Vβ, and \\μ\\ < \\Tςι\\ap, where

is the best constant in (5).
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(ii) IfuEAp,p>l and {μ,u)eVg, a > 1, then TΩ: U>(R, u)
-> LaP(Rl, dμ) is a bounded operator, and \\TQ\\ < C\\μ\\1^^.

(iii) Fix 1 < p < oo. Then, μ G V£ if and only if TΩ: L"(R) -*•
Zj*p(jQ} dμ) is a bounded operator.

(iv) Let <5(*o,g denote the Dirac delta at (x0, ί0) G R .̂. ΓΛen ίΛ̂
operator TΩ: Z/(R, «) -»• I^(R+, <5(xo,g) ^ bounded, for all (x0, t0)
G R2 , αnrf ||ΓQ|| < Cp(u(ΩXo(to)))-ι/P, \fand only ifueAp.

Proof, (i) Evaluate TΩf, if / = χι, to get

and hence,

/ ( ^ < \\TQ\\ Wxi

(ii) As we saw in Remark 9, if Fι = {y e R : Afi(TΩf)(y) > t},
then

If M denotes the Hardy-Littlewood maximal function, it is clear that
by symmetry, Afif(y) < Mf(y), and hence,

μ({(x, s) e Ri : TΩf(x, ί) > ί}) < ^

<\\μ\\(u(Ft)r<\\μ\\(u({Mf>t})r.

Using now that LP{μ) <zLP>ap{u), the classical Lorentz space,

αoo \ l/(αp)

r /̂ uv ?̂ 51; E κ + . i β / μ , S) > i)) atαcx) \ l/(ap)

tap-\u{{Mf>t}))adt\

(iii) It is a trivial consequence of (i) and (ii).
(iv) We first observe that for all u G L,1^,(δ,u)eVg, and

(u(ΩXϋ(to)))~a. Hence, if ueAp,we get the boundedness of TΩ, by
(ii). Conversely, if / G LP(u),

= io-TTlϊ / u-\x)f{x)u{x)dx
|Ω^(ίo)| Jεi^Q

<C(u(ΩXo(to))rι/p\\f\\L>(u)
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Taking the supremum when | |/ | |^(W) < 1,

i //• V/p' ίr Y1/p

) ( )
trp+ί(x)dx) <( u(x)dx

Hence,

( \ / \ p~x

1 / u(x\dx\ ί — — — / * u~p +ι(xλdx\ <CIO It \\ \ u\X)ax \ \\r\ (t \\ \ u {ΛJUΛ i ^ ^ ,
I^V'oJI Jnxo(to) J \ I "Λ: O (/OJI Jaxo(to) J

and by the hypotheses on Ω, this implies ueAp. D
We consider now the usual case when Ωx is a cone, to obtain some

results in the classical theory of Hardy spaces.
DEFINITION 15. Suppose σ is a Borel measure in R+ . We say that

σ is a measure of order β, with β > 0, if there exists a constant
C > 0 such that

(6) f d\σ\<CtP, f o r a l l ί > 0 .
./o

In this case, we write σ e M& and also ||̂ ||M/f = inf{C: C satisfies

(6)}.

The following result corresponds to Theorem 8.

THEOREM 16 (see [2], [1]). For 0 < p < 1, the pairing (/, dμ) ->
/Rn+i /( c, ί) afμ(;c, ί), with feTgc and μ e Vιlp, realizes the duality

ofTg; with Vχlp.

For our next result, we need to introduce a densely defined bilinear
functional. We will restrict the action of this operator, when consid-
ering distributions in the Hardy space Hp(Rn), to the dense subspace
<9$ of those functions in the class S? with mean zero.

DEFINITION 17. Fix 1 < q < oo. Suppose F : R n x R n - > C is a
measurable function such that if we set Fz(x) = F(z ,x), z, x e Rn

then Fz e Lq(Rn). Let a > 0. For g e ^ δ , set

RF(g)(x,z)= f g(y)F(z,y

We define, for σ e Ma,

TF(g, σ)(z) = Γ(RF(g)( , z) *
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where P(x) = cn{\ + |x|2)"(w+1)/2 is the Poisson kernel in Rn, and

EXAMPLE 18. Suppose q = oo and F(z, x) = e~ixz. Then
= 1 and if g G ^o we have that

RF(g)(x,z) = I
JRn

Hence,

(RF(g){.9z)*Pt)(0)= ί
JTΓ

If 0 < p < 1 and we consider the measure dσ{t) = tn^lP~^~ι dt,
then we have that a e M" ' 1 ^" 1 ' , since

n

and so,

Therefore,

TF(g, σ){z) = Γ g(z)Pt{z)tn^lP-^-χ dt
Jo

/ΌO

= Cng(z) e^πtWjnil/p-D-l ft

Jo

and the integral is finite since n(l/p - 1) > 0.

THEOREM 19. Suppose 1 < q < oo, a > n/q and \/p = a/n+l/q',
0 < p < 1.

\TF{g, σ){z)\ < cΛ||

for all σeMa and geS^.

Proof. The proof is a consequence of the nontangential maximal
characterization of Hp(Rn) (see [4]): ||g||^(R ) « \\PI(g)\\Tp , where
PI(g)(x, ί) = (P/ * ̂ )(x). To estimate this quantity we use Theorem
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16, (TPO)* W

TF(g, σ)(z) = j H (J^Pt(u)RF(g)(u, z)dι?) dσ{t)

= ί g(y) ( I Pt{u)F{z ,y + u) du) dy dσ{t)
./R"+1 \JRΛ /

= / g(y) (I Pt(v- y)F(z ,v)dυ) dy dσ(t)
«/R'+ 1 \JRa )

PI(g)(υ,t)F(z,υ)dvdσ(t).

For a fixed z, consider the measure

dμ(v, t) = F2(υ) dυ dσ{t).

Then, we claim that μ € Vχlp and \\μ\\VMP < IMIΛHI-^ILL*
 T n u s »

\TF(g, σ)(z)\ < I \PI(g)(υ,t)\d\μ\(v,t)
J R +

< \\PI(g)\\τ>Jμ\\vu,<cn\\σ\\M4Fz\\L4g\\H,.

To prove the claim, it suffices to show that if / e Lq(Rn), 1 < q <
oo, σ e Ma, with β = l/q' + a/n > 1 and we set dμ(x, t) =
f(x)dxdσ(t), then μ e W and ||μ||κ, < ||σ||MHI/llL' Now, for a
cube QcR",

\μ\{Q) < ̂ fQ\f{x)\dx^j Π ' G I d\σ\(tή

< \\f\y\Q\ι/9'\W\\M"\Q\a/n =

and so, \\μ\\Vβ < \\f\\L4<r\\Ma • °

COROLLARY 20. // 0 < p < 1 and g e ^o(Rn), then

\g{z)\<cn,p\An{xlp-λ)\\g\\H',

for all z€R n .

Proof. It suffices to consider the case 0 < p < 1 and z Φ 0. We
recall that by Example 18 we have

TF(g, σ){z) = cng(z) Γ
Jo

-\)-\ d t m
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But,
/»OO

/ e-2πt\z\tn(\lp-\)-\ d t

JO
/•oo

—̂ v ^ I Z j I t U CIW ^— v^n i

Hence, by the theorem,

that is,

which gives the result. D

REMARK 21. Corollary 20 was first proved in [4], using a differ-
ent approach. Later in [12], it was also proved using the atomic
characterization of Hp. We want to give yet another simple proof
using now the duality of the Hp spaces. In [3] it is shown that
(HP(W)Y = B^ι/P~ιh°°, 0 < p < 1, where the norm on this Besov
space coincides with the Lipschitz norm of order n (1 /p -1) (see [11])
namely,

II ni m n

1 1 / 1 - , , . . = sup
sup ]hln(ί/p_ί} ,

ΛeR"\{0}

where, k e N, k > n(\/p - 1) and

r=0

is the Λ th order difference operator. Now, we have the following

LEMMA 22. Fix y e Rn and a > 0. Then

Proof. Let k e N, k > a and suppose y e Rn\{0}. Then, for
heRn

r=0

k

r=0

){-\)re~iryh = e~iyx(l -e~ίyh)k.
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Hence,

Thus,

X6R»

heR'\{0}
A6R-\{0}

< Ck\y\a sup
- C O S W ) f c / 2

< Q sup - cosuγk-^2\y\a

since k > a. Conversely, we want to show that for any y € Rn\{0},
there exists an h € Rn\{0} such that \y\ - \h\~ι and 1 - cos{yh) =
1 - cos(l) > 0. In fact, if h = y/\y\2 then trivially |y| = \h\~ι and
y h = 1. Hence

D

Thus, by the duality between HP and j& ( 1 / l ' - 1 ) ' 0 0 , 0 < p < 1, and
using this lemma, we find that if g € S%

/ . 8 { x ) ί1*001 =

As a curiosity, and from the proof of Corollary 20, we see that

One can also get very easily that, for s > 0, l < # < o o w e have for
the Besov space Bs^q, \\e~iy * |L*,« « |y | 5 . Hence (see [13]), since

and

\* _

0<p<l9

0 <s <n(\/p-\),

0 < s < n(l/p - 1),
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where q' = ooifO<q<l, and F£'g is a Triebel-Lizorkin space
(see [13]), then, by a similar argument as above, we obtain

0<p<l, 0<q<oo, 0 <s < n(l/p - 1),

and

0 < / ? < l , 0 < # < o o , 0<s < n(l/p- 1).

The following result gives the regularity of a harmonic extension in
the x-variable, when integrated against an Ma measure on t.

COROLLARY 23. Suppose 1 < q < oo, a > n/q and l/p = a/n +
l/q'. For a function / G i 9 ( R n ) and σeMa define

K(f9σ)(y)= / (Pt*f)(y)dσ(t).
Jo

(i) // 0 < p < 1

K:

\\K(f, σ)||ASi,,-,,.co < Crt||

(ii) Ifp = l, then

K: Lg(Rn) x Ma -+ BMO,

Proof. We will only show (i), because the proof of (ii) follows sim-

ilarly. Since (7P(Rn))* = B^ι/p-ιh°° , then to show that K(f, σ) e
( l / l )

I/,g(y)K(f,σ)(y)dy <Cn\\σ\\A

for all g e 5%. Set F{z, x) = f(x), for all z € Rn . Then,

= / giy) Γ(Pt*Fz)(y)dσ(ί)dy
Jv Jo

/ u ) ( ) ( ) / 00
R- JV JO

= TF(g,σ)(z),
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for all z e R n . Hence, by Theorem 19,

g(y)K(f,σ)(y)dy <Cn\\σ\\M«\\f\\L4g\\H>

We now give another application of our duality techniques to es-
timate harmonic extensions to R++1 of functions in HP. The next
theorem gives, as a particular case, a generalization to higher dimen-
sions of the Fejer-Riesz inequality (see [5] Theorems 1-4.5 and IΠ-7.57,
for the case p = 1), and shows that it can also be proved in all cases
0 < p < 1. Moreover, in the previous theorems, the authors work
with the atomic characterization of Hι and some extra conditions on
the kernel are required, that will not be needed in our proof. This
inequality gives the behaviour in the vertical ^direction for the ex-
tension φt * f(x), relative to a kernel φ, with / e <9$, instead of
the well-known growth on the x-direction for the harmonic extension
u = PI(f); namely,

sup/ \u{x,t)\*dx<C\\f\\p

HP.

The proof is based in finding the right pairing for an appropriate Car-
leson measure.

THEOREM 24. If 0 < p < 1, F e Γ£ and σ e Mnlp, then

sup Γ\F{x,t)\d\σ\{t)<\\σ\\^,\\F\y .
xeRn Jo

Proof. Fix x e Rn and set dμ(y, t) = δx(y)dσ(t), where δx is
the Dirac mass in Rn at the point x. Then μ e Vχlp and \\μ\\vιιP <
\\σ\\Mnip. In fact, since p < 1, then if Q is a cube in Rn we have that

\μ\(Q) < (J*χ(y)) UQl) U
Therefore, since (Γ&)* = Vχlp, we get that

\F(y,t)\d\μ\(y,t)

D

ΓJo

For the next result we introduce the following notation (see [14]):
i f / € ^ o , 0 <p < 1 and we choose φ € Lι nL°°, JR.φ(x)dx Φ 0
then we say that f<=H$ if \\f\\Hp = \\φt * f\\τp < c».
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COROLLARY 25. Let φ be as above, 0 < p < 1.

(i) (Fejer-Riesz inequality, if φ is the Poisson kernel) If feH$,
then

poo

sup / \{ft*f){x)\i*lp-χdt<Cn9P\\f\\Ή'-
jc€Rn Jθ φ

(ii) With more generality, if p <q < 1, then for f eHft we have

sup / \{φt*f){x)\^qnlp-λdt<CnM\\qH>.
x€Rn ->0 "

Proof, (i) Consider the function F(x, t) = (φt * f)(x) and the
measure dσ(t) = tnlp~l dt. Then F eT^ and σ e Mnlp. Hence, by
the previous theorem,

sup
xeRn

/ \{9t*f)(x)\ft>-ιdt
Jo

Γ\F(x, t)\d\σ\(t) < Cn,p\\f\\H>
JO

 9
= sup

JO

(ii) Let p < q < 1 and consider now the function

F(x,t) = \(φt*f)(x)\«.

Then F e Tξiq with \\F\\r,t = \\f\\L. Also, if we set dσ{t) =
oo φ

t<wlp-\ dt then σ € M ^ and hence, since p/q < 1,

sup / |(̂ r * Z ) ^ ) ! ^ ^ ^ - 1 ^ < Crt,p||^Ί|rw, = Cn,p | |/1||,,. D
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