CORRECTION TO
 "TRACE RINGS FOR VERBALLY PRIME ALGEBRAS"

Allan Berele
Volume 150 (1991), 23-29

In [1] and [2] we incorrectly state a theorem of Razmyslov from [3]. We quoted Razmyslov as saying:

For all k and $l, M_{k, l}$ satisfies a trace identity of the form

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}, a\right)=c\left(x_{1}, \ldots, x_{n}\right) \operatorname{tr}(a) \tag{*}
\end{equation*}
$$

where $p\left(x_{1}, \ldots, x_{n}, a\right)$ and $c\left(x_{1}, \ldots, x_{n}\right)$ are central polynomials.
This statement is true if $k \neq l$ and false if $k=l$. We will indicate why this is true and what effect it has on the results of [1] and [2]. It turns out that [1] needs only a very minor comment, but that [2] requires a modification to the main theorem and a longer proof in the case of $k=l$.

First, here is a correct version of Razmyslov's theorem:
For all k and $l, M_{k, l}$ satisfies a trace identity of the form

$$
\begin{equation*}
p\left(x_{1}, \ldots, x_{n}, a\right)=\operatorname{tr}\left(c^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right) \operatorname{tr}(a) \tag{**}
\end{equation*}
$$

where $p\left(x_{1}, \ldots, x_{n}, a\right)$ is a central polynomial and $c^{\prime}\left(x_{1}, \ldots, x_{n}\right)$ does not involve any traces.

If $k \neq l$, then the trace of the identity matrix equals $k-l$ which is not zero. So, if we set $a=I$ in ($* *$) we get

$$
\operatorname{tr}\left(c^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right)=(k-l)^{-1} p\left(x_{1}, \ldots, x_{n}, I\right)
$$

Hence, in this case $\operatorname{tr}\left(c^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right)$ equals a central polynomial modulo the identities for $M_{k, l}$, and so (*) is true in this case. To see that $(*)$ is false if $k \neq l$ it is useful to have the following lemma.

Lemma 1. Let $f\left(x_{1}, \ldots, x_{n}\right)$ be a pure trace identity for $M_{k, k}$ and write $f\left(x_{1}, \ldots, x_{n}\right)=f_{0}\left(x_{1}, \ldots, x_{n}\right)+f_{1}\left(x_{1}, \ldots, x_{n}\right)$, where each monomial in f_{0} involves an even number of traces and each monomial in f_{1} involves an odd number of traces. Then $f_{0}\left(x_{1}, \ldots, x_{n}\right)$ and $f_{1}\left(x_{1}, \ldots, x_{n}\right)$ are each trace identities for $M_{k, k}$.

Proof. We define an automorphism on $M_{k, k}$. Let $\left(\begin{array}{cc}A & B \\ C & D\end{array}\right)$ be an element of $M_{k, k}$, where A, B, C and D are $k \times k$ blocks, and
define $\left(\begin{array}{cc}A & B \\ C & B\end{array}\right)^{*}$ to be the matrix $\left(\begin{array}{cc}D & C \\ B & A\end{array}\right)$. Then $-^{*}$ is an automorphism and $\operatorname{tr}\left(x^{*}\right)=-\operatorname{tr}(x)$ for any matrix x. Hence $M_{k, k}$ satisfies the trace identity $f\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=f_{0}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)+f_{1}\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)=$ $f_{0}\left(x_{1}, \ldots, x_{n}\right)-f_{1}\left(x_{1}, \ldots, x_{n}\right)$. The lemma follows.

Corollary. $M_{k, k}$ does not satisfy (*).
Proof. Multiply (*) by a new variable x_{n+1} and take trace. The left-hand side becomes a product of two traces which is not an identity, and the right-hand side becomes a product of three traces, contradicting Lemma 1.

To fix up the proof in [1] in the case $k=l$ all that is required is this simple remark: Let x_{1}, \ldots, x_{n} and y_{1}, \ldots, y_{n} be $2 n$ variables. Then $M_{k, k}$ satisfies the identity

$$
\begin{align*}
& \operatorname{tr}\left(c^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right) \operatorname{tr}\left(c^{\prime}\left(y_{1}, \ldots, y_{n}\right)\right) \tag{1}\\
& \quad=p\left(x_{1}, \ldots, x_{n}, c^{\prime}\left(y_{1}, \ldots, y_{n}\right)\right) .
\end{align*}
$$

Hence,

$$
c\left(x_{1}, \ldots, x_{n}\right) c\left(y_{1}, \ldots, y_{n}\right)=\operatorname{tr}\left(c^{\prime}\left(x_{1}, \ldots, x_{n}\right)\right) \operatorname{tr}\left(c^{\prime}\left(y_{1}, \ldots, y_{n}\right)\right)
$$

is a central polynomial for $M_{k, l}$ even if $k=l$. This is all that [1] requires. (We will now resume using the shorthand notation from [2] and we will write $p(x, a), c(x), c^{\prime}(x), p(y, a)$, etc.)

Definition. Let R be any ring and let J^{2} be the ideal of R generated by all evaluations of $p\left(x_{1}, \ldots, x_{n}, c^{\prime}\left(y_{1}, \ldots, y_{n}\right)\right)$ on R.

We remark for future reference this easy consequence of (1): $M_{k, k}$ satisfies the identity

$$
\begin{equation*}
p\left(x, c^{\prime}(y)\right)=p\left(y, c^{\prime}(x)\right) \tag{2}
\end{equation*}
$$

Hence we may denote it as $c(x) c(y)$ to emphasize its symmetric nature.

Here is the main result:
Theorem 3. Assume that R is p.i. equivalent to some $M_{k, k}$ and that the annihilator of J^{2} is (0). Then there is an embedding of R into a $\mathbf{Z} / 2 \mathbf{Z}$-graded ring with trace $\bar{R}=R_{0}+R_{1}$, such that $R \subset$ $R_{0}, \operatorname{tr}\left(R_{0}\right) \subset R_{1}$ and $\operatorname{tr}\left(R_{1}\right)=(0)$; such that \bar{R} is generated by R and $\operatorname{tr}(R)$; and such that
(a) the trace on \bar{R} is a non-degenerate,
(b) there is a faithful R-submodule of R_{1}, J such that for all homogeneous r in \bar{R} there exists an integer n such that $J^{n} r \subset R$, and
(c) \bar{R} satisfies the same trace identities as $M_{k, k}$.

Proof. The construction of \bar{R} will be in two parts, first R_{0} and then R_{1}. Much of the construction will be very similar to [2] and so we will omit a number of details.

For any $a, b \in R$ we construct an R-map $t(a, b): J^{2} \rightarrow R$ via $t(a, b)(c(x) c(y) r)=p(x, a) p(y, b) r$. The reader should think of $t(a, b)$ as $\operatorname{tr}(a) \operatorname{tr}(b)$. The proof that $t(a, b)$ is well-defined is similar to the corresponding proof in [2]. We note that $t(a, b)$ is symmetric, bilinear and vanishes if either argument is a commutator. Here are a few of its other properties:
(3) if $\sum_{i} r_{i} t\left(a_{i}, b_{i}\right)=0$, then for all $s, \quad \sum_{i} r_{i} s t\left(a_{i}, b_{i}\right)=0$,

$$
\begin{gather*}
t(a, b) t(c, d)=t(c, b) t(a, d) \tag{4}\\
t(t(a, b), c)=0 \tag{5}
\end{gather*}
$$

Finally, as in [2], R_{0} can be constructed as the subring of $\underset{\rightleftarrows}{\lim } \operatorname{hom}_{R}\left(\left(J^{2}\right)^{n}, R\right)$ generated by R and all $t(a, b)$. Note that t extends to a map from $R_{0} \times R_{0}$ to its center.

To define R_{1} we start with the free R_{0}-module on the symbols $\operatorname{tr}(a), a \in R$ and then mod out by the relation (\&)

$$
\text { if } \sum_{i} \alpha_{i} t\left(a_{i}, b\right)=0 \quad \text { for all } b \in R \quad \text { then } \sum_{i} \alpha_{i} \operatorname{tr}\left(a_{i}\right)=0
$$

where the α_{i} are in R_{0} and the a_{i} are in R.
This relation has a number of implications for tr. Regarded as a map from R_{0} to R_{1} it is linear over the center of R_{0} and it vanishes on commutators. Equations (3)-(5) all have counterparts for tr:

$$
\begin{gather*}
\text { if } \sum_{i} \alpha_{i} \operatorname{tr}\left(a_{i}\right)=0 \text { then for all } s, \quad \sum_{i} \alpha_{i} s \operatorname{tr}\left(a_{i}\right)=0, \\
t(a, b) \operatorname{tr}(c)=t(c, b) \operatorname{tr}(a) \\
\operatorname{tr}(t(a, b))=0
\end{gather*}
$$

It follows from (3^{\prime}) that we may define a bimodule structure on R_{1} via $\left(\sum_{i} \alpha_{i} \operatorname{tr}\left(a_{i}\right)\right) s=\sum_{i} \alpha_{i} s \operatorname{tr}\left(a_{i}\right)$. Then we define a bilinear pairing $R_{1} \times R_{1} \rightarrow R_{0}$ via $(\alpha \operatorname{tr}(a))(\beta \operatorname{tr}(b))=\alpha \beta t(a, b)$. Using (\&) it is straightforward to show that this pairing is well-defined. Finally, we
construct a multiplicative structure on $\bar{R}=R_{0}+R_{1}$ via

$$
\begin{aligned}
& \left(a+\sum_{i} b_{i} \operatorname{tr}\left(c_{i}\right)\right)\left(d+\sum_{j} e_{j} \operatorname{tr}\left(f_{j}\right)\right) \\
& \quad=\left(a d+\sum_{i, j} b_{i} e_{j} t\left(c_{i}, f_{j}\right)\right)+\left(\sum_{j} a e_{j} \operatorname{tr}\left(f_{j}\right)+\sum_{i} b_{i} d \operatorname{tr}\left(c_{i}\right)\right)
\end{aligned}
$$

That it is associative follows from (4'). We now prove that \bar{R} has the properties (a), (b) and (c) that we claimed in the statement of the theorem.

It is useful at this point to prove that \bar{R} satisfies the identity ($* *$), namely

$$
\begin{equation*}
p(x, a)=\operatorname{tr}\left(c^{\prime}(x)\right) \operatorname{tr}(a) . \tag{**}
\end{equation*}
$$

In order to prove this it suffices to take x and a in R. Consider $\operatorname{tr}\left(c^{\prime}(x)\right) \operatorname{tr}(a)=t\left(c^{\prime}(x), a\right)$ as a map from J^{2} to R. This map takes $c(y) c(z)$ to

$$
\begin{array}{ll}
p\left(y, c^{\prime}(x)\right) p(z, a)= & (\text { by }(2)) \\
p\left(x, c^{\prime}(y)\right) p(z, a)= & (\text { by }(2) \text { of }[2]) \\
p(x, a) p\left(z, c^{\prime}(y)\right)= &
\end{array}
$$

$p(x, a)$ times $c(y) c(z)$. This proves (**).
Let $J=R \operatorname{tr}\left(c^{\prime}\left(R^{n}\right)\right) \subset R_{1}$. Note that the square of J equals the ideal of R we denoted J^{2} by (**), and so $\operatorname{ann}(J)=(0)$. Continuing the proof of (b), let $r \in R_{0}$. It follows from the construction of R_{0} that $\left(J^{2}\right)^{n} r=J^{2 n} r$ is contained in R, for some n. And, if $r \in R_{1}$ then we may assume without loss of generality that $r=\alpha \operatorname{tr}(a)$ for some $\alpha \in R_{0}, a \in R$. But then, $J^{2 n} \alpha \subset R$ for some n as above, and $J \operatorname{tr}(\alpha) \subset R$ by $(* *)$. Hence $J^{2 n+1} r \subset R$.

The proof of (c) follows from (b) as in [2]. Let $f(x)=f\left(x_{1}, \ldots, x_{m}\right)$ be a trace polynomial in which either term has an even number of traces or each term has an odd number of traces. Then it follows from (b) that $M_{k, k}$ and R satisfy an identity of the form $j(y) f(x)=$ $g(x, y)$, where x and y are disjoint sets of variables and $g(x, y)$ doesn't involve any traces. Since $M_{k, k}$ is verbally prime, $f(x)$ is a trace identity for $M_{k, k}$ if and only if $g(x, y)$ is a p.i. for $M_{k, k}$. Moreover, since \bar{R} is a central extension of R, they satisfy the same p.i.'s. Hence, if $f(x)$ is a trace identity for \bar{R} then $p(x, y)$ will be an identity for R and so for $M_{k, k}$, and so $f(x)$ will also be an identity
for $M_{k, k}$. Conversely, if $f(x)$ is a trace identity for $M_{k, k}$, then it follows that $j(y) f(x)$ is a trace identity for \bar{R}. But this implies that the evaluations of $f(x)$ would annihilate some power of J and so $f(x)$ is forced to be an identity.

The proof of (a) is also similar to the corresponding proof in [2] and we omit it.

References

[1] A. Berele, Azumaya-like properties of verbally prime algebras, J. Algebra, 133 (1990), 272-276.
[2] _, Trace rings for verbally prime algebras, Pacific J. Math., 150 (1991), 23-29.
[3] Yu. P. Razmyslov, Trace identities and central polynomials in the matrix superalgebra $M_{k, l}$, Math USSR-Sb., 56 (1987), 187-206.

Received November 1, 1993. Based on work supported by NSF grant DMS 9303230 for which we are very grateful.

DePaul University
Chicago, IL 60614

