UNIT INDICES OF SOME IMAGINARY COMPOSITE QUADRATIC FIELDS

Mikihito Hirabayashi

Abstract

Let K be an imaginary abelian number field of type (2,2,2,2) not containing the 8th cyclotomic field. Using the fundamental units of real quadratic subfields of K, we give a necessary and sufficient condition for the unit index Q_{K} of K to be equal to 2 .

1. Introduction and results. Let K be an imaginary abelian number field and K_{0} the maximal real subfield of K. Let E and E_{0} be the groups of units of K and K_{0}, respectively, and let W be the group of roots of unity in K. Then we call the group index

$$
Q_{K}=\left[E: W E_{0}\right]
$$

the unit index of K.
Using the character group of K, H. Hasse [2] gave sufficient conditions for Q_{K} to be equal to 1 or 2 , by which we can determine Q_{K} for some types of fields K. However by his method we cannot always determine Q_{K} for arbitrary K, even if K is an imaginary composite quadratic field. (We call a field K a composite quadratic field if K is a composite of quadratic fields.) K . Yoshino and the author [3, 4] gave criteria to determine Q_{K} of K with Galois group $\operatorname{Gal}(K / \mathbf{Q})$ of type $(2,2)$ and $(2,2,2)$.

In this paper we extend our previous results $[3,4]$ to the case that K has Galois group $\operatorname{Gal}(K / \mathbf{Q})$ of type $(2,2,2,2)$ and does not contain the 8th cyclotomic field, and then, we give a necessary and sufficient condition for the unit index Q_{K} to be equal to 2 .

Notation. $\mathbf{N}, \mathbf{Z}, \mathbf{Q}$: the sets of natural numbers, rational integers and rational numbers, respectively,
$=$: the equality except rational quadratic factors,
$d_{0}, d_{1}, d_{2}, \ldots, d_{7}$: square-free positive integers such that $d_{4} \overline{\overline{2}}$ $d_{2} d_{3}, d_{5} \underset{2}{=} d_{3} d_{1}, d_{6} \underset{2}{=} d_{1} d_{2}, d_{7} \underset{2}{=} d_{1} d_{2} d_{3}$ and $d_{0} \neq d_{i}(i=$ $1,2, \ldots, 7)$,
$K=\mathbf{Q}\left(\sqrt{-d_{0}}, \sqrt{d_{1}}, \sqrt{d_{2}}, \sqrt{d_{3}}\right)$: an imaginary composite quadratic field of degree 16 ,
$K_{0}=\mathbf{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \sqrt{d_{3}}\right)$,
E_{0}^{+}: the group of totally positive units of K_{0},
$\overline{E_{0}}$: the group of units η of E_{0}^{+}such that $K_{0}(\sqrt{\eta})$ is a composite quadratic field,

$$
\begin{aligned}
& K_{1}=\mathbf{Q}\left(\sqrt{d_{2}}, \sqrt{d_{3}}\right), \quad K_{2}=\mathbf{Q}\left(\sqrt{d_{3}}, \sqrt{d_{1}}\right) \\
& K_{3}=\mathbf{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right), \quad K_{4}=\mathbf{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2} d_{3}}\right) \\
& K_{5}=\mathbf{Q}\left(\sqrt{d_{2}}, \sqrt{d_{3} d_{1}}\right), \quad K_{6}=\mathbf{Q}\left(\sqrt{d_{3}}, \sqrt{d_{1} d_{2}}\right) \\
& K_{7}=\mathbf{Q}\left(\sqrt{d_{2} d_{3}}, \sqrt{d_{3} d_{1}}\right), \\
& k_{i}=\mathbf{Q}\left(\sqrt{d_{i}}\right)(i=1,2, \ldots, 7), \\
& \left\langle\sigma_{i}\right\rangle=\operatorname{Gal}\left(K_{0} / K_{i}\right)(i=1,2, \ldots, 7),
\end{aligned}
$$

$N(x), \operatorname{Sp}(x)$: the absolute norm and the absolute trace of x, respectively,

$$
A=A\left(e_{1}, e_{2}, e_{3}\right)= \begin{cases}2 d_{1}^{e_{1}} d_{2}^{e_{2}} d_{3}^{e_{3}} & \text { if } d_{0}=1 \\ d_{0} d_{1}^{e_{1}} d_{2}^{e_{2}} d_{3}^{e_{3}} & \text { otherwise }\end{cases}
$$

ε_{i} : the fundamental unit of $\mathbf{Q}\left(\sqrt{d_{i}}\right), \varepsilon_{i}>1(i=1,2, \ldots, 7)$.
When $N\left(\varepsilon_{i}\right)=+1$, we denote by $\Delta_{i}, \Delta_{i}^{*}$ the square-free parts of $\mathrm{Sp}\left(\varepsilon_{i}+1\right), \mathrm{Sp}\left(\varepsilon_{i}-1\right)$, respectively, and by m_{i}, n_{i} the natural numbers such that $\operatorname{Sp}\left(\varepsilon_{i}+1\right)=\Delta_{i} m_{i}^{2}, \operatorname{Sp}\left(\varepsilon_{i}-1\right)=\Delta_{i}^{*} n_{i}^{2}$. Then we have

$$
\begin{equation*}
\sqrt{\varepsilon_{i}}=\frac{1}{2}\left(m_{i} \sqrt{\Delta_{i}}+n_{i} \sqrt{\Delta_{i}^{*}}\right) \tag{1}
\end{equation*}
$$

When $d_{i} d_{j} \underset{2}{ } d_{k}$ with $N\left(\varepsilon_{i}\right)=N\left(\varepsilon_{j}\right)=N\left(\varepsilon_{k}\right)=-1$, we denote by $\Delta_{i j}=\Delta_{j i}$ the square-free integer such that

$$
\Delta_{i j}=\operatorname{Sp}_{\mathbf{Q}\left(\sqrt{d_{i}}, \sqrt{d_{j}}\right) / \mathbf{Q}}\left(\varepsilon_{i} \varepsilon_{j} \varepsilon_{k}-\varepsilon_{i}-\varepsilon_{j}-\varepsilon_{k}\right)
$$

(We take $(i, j)=(1,2),(1,3),(1,4),(2,3),(2,5),(3,6)$ and $(4,5)$.)

When $d_{i} d_{j} d_{k}=d_{l}$ with $N\left(\varepsilon_{i}\right)=N\left(\varepsilon_{j}\right)=N\left(\varepsilon_{k}\right)=N\left(\varepsilon_{l}\right)=-1$ and when $\mathbf{Q}\left(\sqrt{d_{i}}, \sqrt{d_{j}}, \sqrt{d_{k}}\right)=K_{0}$, we denote by $\Delta_{i j k}$ the square-free integer such that

$$
\Delta_{i j k}=\operatorname{Sp}_{K_{0} / \mathbf{Q}}\left(\varepsilon_{i} \varepsilon_{j} \varepsilon_{k} \varepsilon_{l}+1-\sum_{\alpha<\beta} \varepsilon_{\alpha} \varepsilon_{\beta}\right)
$$

where α, β run through i, j, k and l.

For a totally positive unit η of K_{0} let
(2) $\xi^{*}(\eta)=\eta+\eta^{\sigma_{1}}+2(-1)^{s_{1}} \sqrt{\eta \eta^{\sigma_{1}}}$,
(3) $\theta^{*}(\eta)=\xi^{*}(\eta)+\xi^{*}(\eta)^{\sigma_{2}}+2(-1)^{s_{2}} \sqrt{\xi^{*}(\eta) \xi^{*}(\eta)^{\sigma_{2}}}$,
(4) $d^{*}(\eta)=\theta^{*}(\eta)+\theta^{*}(\eta)^{\sigma_{3}}+2(-1)^{s_{3}} \sqrt{\theta^{*}(\eta) \theta^{*}(\eta)^{\sigma_{3}}} \quad\left(s_{i}=0\right.$ or 1$)$
under the condition that
(5) $\sqrt{\eta \eta^{\sigma_{1}}} \in K_{1}, \quad \sqrt{\xi^{*}(\eta) \xi^{*}(\eta)^{\sigma_{2}}} \in k_{3} \quad$ and $\quad \sqrt{\theta^{*}(\eta) \theta^{*}(\eta)^{\sigma_{3}}} \in \mathbf{Q}$.

We remark that for a totally positive unit η of K_{0} this condition (5) is satisfied if and only if η is contained in \bar{E}_{0}. This remark can be proved by Lemmas 4 and 5 (cf. proof of Theorem 4).

Throughout this paper we assume that K does not contain the 8th cyclotomic field $\mathbf{Q}(\sqrt{-1}, \sqrt{2})$. Our result is the following

Main Theorem. Under the above notation and assumption we have that $Q_{K}=2$ if and only if

$$
\prod_{i} \Delta_{i}^{a_{i}} \cdot \prod_{i, j} \Delta_{i j}^{b_{i j}} \cdot \prod_{i, j, k} \Delta_{i j k}^{c_{i j k}} \cdot d^{*}\left(\eta_{0}\right)^{f}=A\left(e_{1}, e_{2}, e_{3}\right)
$$

for some $a_{i}, b_{i j}, c_{i j k}, f, e_{i}=0,1$ and $\eta_{0} \in \bar{E}_{0}$ represented in the form

$$
\eta_{0}=\sqrt{\prod_{N\left(\varepsilon_{i}\right)=+1} \varepsilon_{i}^{u_{i}}} \cdot \prod_{N\left(\varepsilon_{i}\right)=-1} \varepsilon_{i}^{v_{i}}
$$

where $u_{i}, v_{i}=0$ or 1 . The number of i 's for which $u_{i}=1$ is neither 1 nor 2.

More precisely we have the following Theorems 1-6.
Theorem 1. In the case that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=\cdots=N\left(\varepsilon_{7}\right)=-1$, we have

$$
Q_{K}=2 \Leftrightarrow \Delta_{12}^{b_{1}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}} \Delta_{123}^{c}=A\left(e_{1}, e_{2}, e_{3}\right)
$$

for some $b_{i}, c, e_{i}=0,1$. Especially, if $\sqrt{\Delta_{i j}}$ is contained in $\mathbf{Q}\left(\sqrt{d_{i}}, \sqrt{d_{j}}\right)$ for every (i, j), then $Q_{K}=1$.

Theorem 2. In the case that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=\cdots=N\left(\varepsilon_{6}\right)=-1$ and $N\left(\varepsilon_{7}\right)=+1$, we have

$$
Q_{K}=2 \Leftrightarrow \Delta_{7}^{a} \Delta_{12}^{b_{1}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}}=A\left(e_{1}, e_{2}, e_{3}\right)
$$

for some $a, b_{i}, e_{i}=0,1$.

Theorem 3. In the case that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=\cdots=N\left(\varepsilon_{5}\right)=-1$ and $N\left(\varepsilon_{6}\right)=N\left(\varepsilon_{7}\right)=+1$, we have

$$
Q_{K}=2 \Leftrightarrow \Delta_{6}^{a_{6}} \Delta_{7}^{a_{7}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}}=A\left(e_{1}, e_{2}, e_{3}\right)
$$

for some $a_{i}, b_{i}, e_{i}=0,1$.
Theorem 4. (1) In the case that $N\left(\varepsilon_{1}\right)=\cdots=N\left(\varepsilon_{4}\right)=-1$ and $N\left(\varepsilon_{5}\right)=N\left(\varepsilon_{6}\right)=N\left(\varepsilon_{7}\right)=+1$, we have

$$
Q_{K}=2 \Leftrightarrow \Delta_{5}^{a_{5}} \Delta_{6}^{a_{6}} \Delta_{7}^{a_{7}} \Delta_{23}^{b} d^{*}\left(\eta_{0}\right)^{f} \underset{2}{=} A\left(e_{1}, e_{2}, e_{3}\right)
$$

for some $a_{i}, b, f, e_{i}=0,1$ and $\eta_{0} \in \bar{E}_{0}$ such that

$$
\eta_{0}=\sqrt{\varepsilon_{5} \varepsilon_{6} \varepsilon_{7}} \prod_{i=1}^{4} \varepsilon_{i}^{v_{i}} \quad\left(v_{i}=0 \text { or } 1\right)
$$

(2) In the case that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{3}\right)=N\left(\varepsilon_{7}\right)=-1$ and $N\left(\varepsilon_{4}\right)=N\left(\varepsilon_{5}\right)=N\left(\varepsilon_{6}\right)=+1$, we have

$$
Q_{K}=2 \Leftrightarrow \Delta_{4}^{a_{4}} \Delta_{5}^{a_{5}} \Delta_{6}^{a_{6}} \Delta_{123}^{c}=A\left(e_{1}, e_{2}, e_{3}\right)
$$

for some $a_{i}, c, e_{i}=0,1$.
Theorem 5. (1) In the case that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{3}\right)=-1$ and $N\left(\varepsilon_{4}\right)=N\left(\varepsilon_{5}\right)=N\left(\varepsilon_{6}\right)=N\left(\varepsilon_{7}\right)=+1$, we have

$$
Q_{K}=2 \Leftrightarrow \prod_{i=4}^{7} \Delta_{i}^{a_{i}} \cdot d^{*}\left(\eta_{0}\right)^{f} \frac{}{2} A\left(e_{1}, e_{2}, e_{3}\right)
$$

for some $a_{i}, f, e_{i}=0,1$ and $\eta_{0} \in \bar{E}_{0}$ such that

$$
\frac{\eta_{0}}{\prod_{i=1}^{3} \varepsilon_{i}^{v_{i}}}=\sqrt{\varepsilon_{4} \varepsilon_{5} \varepsilon_{7}}, \sqrt{\varepsilon_{5} \varepsilon_{6} \varepsilon_{7}} \text { or } \sqrt{\varepsilon_{6} \varepsilon_{4} \varepsilon_{7}} \quad\left(v_{i}=0 \text { or } 1\right) .
$$

(2) In the case that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{6}\right)=-1$ and the others $N\left(\varepsilon_{i}\right)=+1$, we have

$$
Q_{K}=2 \Leftrightarrow \prod_{N\left(e_{i}\right)=+1} \Delta_{i}^{a_{i}} \cdot \Delta_{12}^{b} \cdot d^{*}\left(\eta_{0}\right)^{f}=A\left(e_{1}, e_{2}, e_{3}\right)
$$

for some $a_{i}, b, f, e_{i}=0,1$ and $\eta_{0} \in \bar{E}_{0}$ such that

$$
\begin{aligned}
\frac{\eta_{0}}{\prod_{N\left(\varepsilon_{i}\right)=-1} \varepsilon_{i}^{v_{i}}}= & \sqrt{\varepsilon_{3} \varepsilon_{4} \varepsilon_{5} \varepsilon_{7}}, \sqrt{\varepsilon_{3} \varepsilon_{4} \varepsilon_{5}}, \sqrt{\varepsilon_{3} \varepsilon_{4} \varepsilon_{7}}, \\
& \sqrt{\varepsilon_{3} \varepsilon_{5} \varepsilon_{7}} \text { or } \sqrt{\varepsilon_{4} \varepsilon_{5} \varepsilon_{7}} \quad\left(v_{i}=0 \text { or } 1\right) .
\end{aligned}
$$

Theorem 6. In the case that $N\left(\varepsilon_{3}\right)=N\left(\varepsilon_{4}\right)=\cdots=N\left(\varepsilon_{7}\right)=+1$, we have

$$
Q_{K}=2 \Leftrightarrow \prod_{N\left(\varepsilon_{i}\right)=+1} \Delta_{i}^{a_{i}} \cdot d^{*}\left(\eta_{0}\right)^{f}=A\left(e_{1}, e_{2}, e_{3}\right)
$$

for some $a_{i}, f, e_{i}=0,1$ and $\eta_{0} \in \bar{E}_{0}$ such that

$$
\frac{\eta_{0}}{\sqrt{\prod_{N\left(\varepsilon_{i}\right)=+1} \varepsilon_{i}^{u_{i}}}}=\varepsilon_{1}^{v_{1}} \varepsilon_{2}^{v_{2}}, \varepsilon_{1}^{v_{1}} \text { or } 1 \quad\left(u_{i}, v_{i}=0 \text { or } 1\right)
$$

according as $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=-1 ; N\left(\varepsilon_{1}\right)=-1$ and $N\left(\varepsilon_{2}\right)=+1$; or $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=+1$. The number of i 's for which $u_{i}=1$ is neither 1 nor 2.

Remark 1. In Main Theorem η_{0} is not represented in the form

$$
\eta_{0}=\sqrt{\varepsilon_{i} \varepsilon_{j} \varepsilon_{k}} \cdot \prod_{N\left(\varepsilon_{l}\right)=-1} \varepsilon_{l}^{v_{l}}
$$

where $N\left(\varepsilon_{i}\right)=N\left(\varepsilon_{j}\right)=N\left(\varepsilon_{k}\right)=+1$ and $d_{i} d_{j}=d_{k}$ (cf. proof of Case (2) of Theorem 4).

Remark 2. For some $\eta_{0} \in \bar{E}_{0}$ we can actually calculate the rational integers $d^{*}\left(\eta_{0}\right)$ defined by (4). For example, we can obtain the following: Suppose that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{3}\right)=+1$ and that $\eta_{0}=\sqrt{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3}}$ is totally positive. Then $\eta_{0} \in \bar{E}_{0}$ if and only if

$$
\begin{equation*}
\Delta_{1}=d_{2} d_{3}, \quad \Delta_{2}=\frac{1}{2} d_{3} d_{1}, \quad \Delta_{3}=d_{2} d_{2} \tag{6}
\end{equation*}
$$

If this condition (6) is satisfied, we have

$$
\begin{aligned}
d^{*}\left(\eta_{0}\right)= & m_{1} m_{2} m_{3} \sqrt{\Delta_{1} \Delta_{2} \Delta_{3}} \\
& +2 \Delta_{1}^{*}\left\{(-1)^{s_{1}} n_{2} n_{3}+(-1)^{s_{2}} n_{3} n_{1}+(-1)^{s_{3}} n_{1} n_{2}\right\} \\
& -8(-1)^{s_{1}+s_{2}+s_{3}} \quad\left(s_{i}=0 \text { or } 1\right)
\end{aligned}
$$

where $\Delta_{i}, \Delta_{i}^{*}, m_{i}, n_{i}$ and s_{i} are as in the notation.
2. Properties of \bar{E}_{0} and lemmas on $(2,2)$-extensions. In this section we give a proposition and some lemmas which will be used in the proofs of theorems.

Let $\langle x, y, \ldots\rangle$ be a group generated by x, y, \ldots. Let E_{0}^{*} be the subgroup of E_{0} generated by the units of $\mathbf{Q}\left(\sqrt{d_{i}}\right)$ for $i=1,2, \ldots, 7$. Let $\left(E_{0}^{*}\right)^{+}$be the subgroup of E_{0} generated by totally positive units of E_{0}^{*}, i.e., $\left(E_{0}^{*}\right)^{+}=E_{0}^{*} \cap E_{0}^{+}$.

Proposition 1. (1) If $N\left(\varepsilon_{1}\right)=\cdots=N\left(\varepsilon_{7}\right)=-1$, then

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{2} \varepsilon_{3} \varepsilon_{4}, \varepsilon_{3} \varepsilon_{1} \varepsilon_{5}, \varepsilon_{1} \varepsilon_{2} \varepsilon_{6}, \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{7}\right\rangle E_{0}^{* 2}
$$

(2) If $N\left(\varepsilon_{1}\right)=\cdots=N\left(\varepsilon_{6}\right)=-1$ and $N\left(\varepsilon_{7}\right)=+1$, then

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{2} \varepsilon_{3} \varepsilon_{4}, \varepsilon_{3} \varepsilon_{1} \varepsilon_{5}, \varepsilon_{1} \varepsilon_{2} \varepsilon_{6}, \varepsilon_{7}\right\rangle E_{0}^{* 2}
$$

(3) If $N\left(\varepsilon_{1}\right)=\cdots=N\left(\varepsilon_{5}\right)=-1$ and $N\left(\varepsilon_{6}\right)=N\left(\varepsilon_{7}\right)=+1$, then

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{2} \varepsilon_{3} \varepsilon_{4}, \varepsilon_{3} \varepsilon_{1} \varepsilon_{5}, \varepsilon_{6}, \varepsilon_{7}\right\rangle E_{0}^{* 2}
$$

(41) If $N\left(\varepsilon_{1}\right)=\cdots=N\left(\varepsilon_{4}\right)=-1$ and $N\left(\varepsilon_{5}\right)=N\left(\varepsilon_{6}\right)=N\left(\varepsilon_{7}\right)=$ +1 , then

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{2} \varepsilon_{3} \varepsilon_{4}, \varepsilon_{5}, \varepsilon_{6}, \varepsilon_{7}\right\rangle E_{0}^{* 2}
$$

$\left(4_{2}\right)$ If $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{3}\right)=N\left(\varepsilon_{7}\right)=-1$ and $N\left(\varepsilon_{4}\right)=$ $N\left(\varepsilon_{5}\right)=N\left(\varepsilon_{6}\right)=+1$, then

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{7}, \varepsilon_{4}, \varepsilon_{5}, \varepsilon_{6}\right\rangle E_{0}^{* 2}
$$

$\left(5_{1}\right)$ If $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{3}\right)=-1$ and $N\left(\varepsilon_{4}\right)=\cdots=N\left(\varepsilon_{7}\right)=$ +1 , then

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{4}, \varepsilon_{5}, \varepsilon_{6}, \varepsilon_{7}\right\rangle E_{0}^{* 2}
$$

$\left(5_{2}\right)$ If $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{6}\right)=-1$ and the others $N\left(\varepsilon_{i}\right)=+1$, then

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{1} \varepsilon_{2} \varepsilon_{6}, \varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}, \varepsilon_{7}\right\rangle E_{0}^{* 2}
$$

(6) If $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=-1$ and $N\left(\varepsilon_{3}\right)=\cdots=N\left(\varepsilon_{7}\right)=+1$, then

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{3}, \varepsilon_{4}, \varepsilon_{5}, \varepsilon_{6}, \varepsilon_{7}\right\rangle E_{0}^{* 2}
$$

(7) If $N\left(\varepsilon_{1}\right)=-1$ and $N\left(\varepsilon_{2}\right)=\cdots=N\left(\varepsilon_{7}\right)=+1$, then

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{2}, \varepsilon_{3}, \ldots, \varepsilon_{7}\right\rangle E_{0}^{* 2}
$$

(8) If $N\left(\varepsilon_{1}\right)=\cdots=N\left(\varepsilon_{7}\right)+1$,then

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{7}\right\rangle E_{0}^{* 2}
$$

Proof. We only prove the case (1), because the other cases are proved in the same way.

For an element $\alpha \neq 0$ of K we define $s(\alpha)=0$ or 1 by $(-1)^{s(\alpha)}=$ $\alpha /|\alpha|$.

For $\eta \in\left(E_{0}^{*}\right)^{+}$, putting $\eta=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{7}^{x_{7}}\left(x_{i} \in \mathbf{Z}\right)$, we have a system of simultaneous linear equations

$$
\left\{\begin{array}{l}
s\left(\varepsilon_{1}\right) x_{1}+s\left(\varepsilon_{2}\right) x_{2}+\cdots+s\left(\varepsilon_{7}\right) x_{7} \equiv 0 \\
s\left(\varepsilon_{1}^{\sigma_{1}}\right) x_{1}+s\left(\varepsilon_{2}^{\sigma_{1}}\right) x_{2}+\cdots+s\left(\varepsilon_{7}^{\sigma_{1}}\right) x_{7} \equiv 0 \\
\cdots \\
s\left(\varepsilon_{1}^{\sigma_{7}}\right) x_{1}+s\left(\varepsilon_{2}^{\sigma_{7}}\right) x_{2}+\cdots+s\left(\varepsilon_{7}^{\sigma_{7}}\right) x_{7} \equiv 0
\end{array}\right.
$$

By Gauss-Jordan elimination (see, for example, H. Anton, Elementary Linear Algebra, John Wiley \& Sons (1973), pp. 18-20) we see that this system has the following four linearly independent solutions:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right)=\left(\begin{array}{l}
0 \\
1 \\
1 \\
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
1 \\
0 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0 \\
0 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0 \\
0 \\
1
\end{array}\right) .
$$

To these solutions correspond units $\varepsilon_{2} \varepsilon_{3} \varepsilon_{4}, \varepsilon_{3} \varepsilon_{1} \varepsilon_{5}, \varepsilon_{1} \varepsilon_{2} \varepsilon_{6}, \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{7}$ respectively. Thus we have

$$
\left(E_{0}^{*}\right)^{+}=\left\langle\varepsilon_{2} \varepsilon_{3} \varepsilon_{4}, \varepsilon_{3} \varepsilon_{1} \varepsilon_{5}, \varepsilon_{1} \varepsilon_{2} \varepsilon_{6}, \varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{7}\right\rangle E_{0}^{* 2}
$$

In general, let K / k be a $(2,2)$-extension with Galois group $\operatorname{Gal}(K / k)=\langle\sigma, \tau\rangle$. Then, as used by H. Wada [6], we have

$$
\alpha^{2}=\frac{\alpha^{1+\sigma} \alpha^{1+\tau}}{\left(\alpha^{\sigma}\right)^{1+\sigma \tau}}
$$

for $\alpha \in K, \alpha \neq 0$. By this simple formula we see that $E_{0}^{4} \subseteq E_{0}^{*}$. Moreover, we have $\bar{E}_{0}^{2} \subseteq E_{0}^{*}$ by the following

Lemma 1. Let $\eta \in \bar{E}_{0}$ and put $\eta^{4}=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{7}^{x_{7}}\left(x_{i} \in \mathbf{Z}\right)$. Then, every x_{i} is even.

Proof. Since $K_{0}(\sqrt{\eta})=K_{0}(\sqrt{d})$ for some $d \in \mathbf{N}$, we can put $\eta=$ $d \alpha_{0}^{2}\left(\alpha_{0} \in K_{0}\right)$. Taking the norm $N_{K_{0} / k_{i}}$ of $\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{7}^{x_{7}}=d^{4} \alpha_{0}^{8}$, we have $\varepsilon_{i}^{4 x_{i}}=d^{16} N_{K_{0} / k_{t}}\left(\alpha_{0}\right)^{8}$. This implies that x_{i} is even.

Lemma 2. Let $\eta \in \bar{E}_{0}$ and put

$$
\begin{equation*}
\eta^{2}=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{7}^{x_{7}} \quad\left(x_{i} \in \mathbf{Z}\right) . \tag{7}
\end{equation*}
$$

Then, all x_{i} are even or at least three x_{i} 's are odd.
Proof. For the simplicity we denote by N_{i} the norm $N_{K_{0} / K_{i}}$ for each i.

First, for example, we assume that $x_{1} \equiv 1, x_{i} \equiv 0(\bmod 2)(i=$ $2,3, \ldots, 7$). Taking the norm N_{3} of the equation (7), we have $N_{3}(\eta)=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \varepsilon_{6}^{x_{6}} \in K_{3}$. On the other hand, putting $\eta=d \alpha_{0}^{2}(d \in \mathbf{N}$,
$\alpha_{0} \in K_{0}$), we have $N_{3}(\eta)=d^{2} N_{3}\left(\alpha_{0}\right)^{2}$. Therefore, $\sqrt{\varepsilon_{1}}$ is contained in $K_{3}=\mathbf{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}\right)$. In the same way, taking the norm N_{2} of (7), we see that $\sqrt{\varepsilon_{1}}$ is contained in $K_{2}=\mathbf{Q}\left(\sqrt{d_{3}}, \sqrt{d_{1}}\right)$. Thus $\sqrt{\varepsilon_{1}}$ is contained in $K_{2} \cap K_{3}=\mathbf{Q}\left(\sqrt{d_{1}}\right)$, which is impossible.

Secondly, for example, we assume that $x_{1} \equiv x_{2} \equiv 1, x_{i} \equiv 0(\bmod 2)$ $(i=3,4, \ldots, 7)$. Taking the norms N_{2}, N_{4} of (7), we see that $\sqrt{\varepsilon_{1}}$ is contained in $\mathbf{Q}\left(\sqrt{d_{1}}\right)$, which is also impossible.

Thus there is no case that exactly one or two of x_{i} are odd.
Lemma 3. Let $\eta \in \bar{E}_{0}$ and put

$$
\begin{equation*}
\eta^{2}=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{7}^{x_{7}} \quad\left(x_{i} \in \mathbf{Z}\right) \tag{8}
\end{equation*}
$$

(1) If there exists an even x_{i}, then $N\left(\varepsilon_{j}\right)=+1$ for each odd x_{j}.
(2) If there exists "i" for which $x_{i} \equiv 0(\bmod 2)$ or $N\left(\varepsilon_{i}\right)=+1$, then x_{j} is even when $N\left(\varepsilon_{j}\right)=-1$.
(3) If $x_{1} \equiv x_{2} \equiv \cdots \equiv x_{7} \equiv 1(\bmod 2)$, then $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=\cdots=$ $N\left(\varepsilon_{7}\right)$.

Proof. (1) Suppose that $x_{1} \equiv 1, x_{2} \equiv 0(\bmod 2)$. Taking the norm N_{3} of (8), we have $N_{3}(\eta)=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \varepsilon_{6}^{x_{6}}$. Again, taking the norms N_{1}, N_{2} of this equation, we have by $\eta \gg 0$ that

$$
\begin{aligned}
& N_{1}\left(N_{3}(\eta)\right)=N\left(\varepsilon_{1}\right)^{x_{1}} \varepsilon_{2}^{2 x_{2}} N\left(\varepsilon_{6}\right)^{x_{6}}>0 \\
& N_{2}\left(N_{3}(\eta)\right)=\varepsilon_{1}^{2 x_{1}} N\left(\varepsilon_{2}\right)^{x_{2}} N\left(\varepsilon_{6}\right)^{x_{6}}>0
\end{aligned}
$$

Hence $N\left(\varepsilon_{6}\right)^{x_{6}}=+1$ and then $N\left(\varepsilon_{1}\right)=+1$.
(2) We suppose that $x_{1} \equiv 0(\bmod 2)$ or $N\left(\varepsilon_{1}\right)=+1$ and that $N\left(\varepsilon_{2}\right)=-1$.

Taking the norm N_{3} of (8), we have $N_{3}(\eta)=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \varepsilon_{6}^{x_{6}}$. Again, taking the norm N_{6} of this equation, we have

$$
N_{6}\left(N_{3}(\eta)\right)=N\left(\varepsilon_{1}\right)^{x_{1}} N\left(\varepsilon_{2}\right)^{x_{2}} \varepsilon_{6}^{2 x_{6}}>0
$$

and so $x_{2} \equiv 0(\bmod 2)$.
(3) Taking the norm N_{1} of (8), we have $N_{1}(\eta)=\varepsilon_{2}^{x_{2}} \varepsilon_{3}^{x_{3}} \varepsilon_{4}^{x_{4}}$. Moreover, taking the norms N_{2}, N_{3} of this equation, we have

$$
\begin{aligned}
& N_{2}\left(N_{1}(\eta)\right)=N\left(\varepsilon_{2}\right)^{x_{2}} \varepsilon_{3}^{2 x_{3}} N\left(\varepsilon_{4}\right)^{x_{4}}>0 \\
& N_{3}\left(N_{1}(\eta)\right)=\varepsilon_{2}^{2 x_{2}} N\left(\varepsilon_{3}\right)^{x_{3}} N\left(\varepsilon_{4}\right)^{x_{4}}>0
\end{aligned}
$$

Then $N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{3}\right)=N\left(\varepsilon_{4}\right)$.

In the same way, taking the norms N_{2}, N_{3}, N_{6} of (8), we obtain $N\left(\varepsilon_{3}\right)=N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{5}\right), N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{6}\right), N\left(\varepsilon_{3}\right)=N\left(\varepsilon_{6}\right)=$ $N\left(\varepsilon_{7}\right)$.

For a field k we denote by " $\frac{=}{2}$ in k " the equality except a square of a number of k.

Lemma 4 (F. Halter-Koch [1, Satz 1]). Let K_{1} be a field with $\overline{\operatorname{char}}\left(K_{1}\right) \neq 2$. Let K_{0} be a quadratic extension of K_{1} and $K_{0}\left(\sqrt{\eta_{0}}\right)\left(\eta_{0} \in K_{0}\right)$ a biquadratic (quartic) extension of K_{1}. Then $K_{0}\left(\sqrt{\eta_{0}}\right) / K_{1}$ is bicyclic if and only if $N_{K_{0} / K_{1}}\left(\eta_{0}\right)=1$ in K_{1}.

By this Lemma 4 we can easily obtain
Lemma 5. Let K_{1} be an algebraic number field and K_{0} a quadratic extension of K_{1}. Let $K_{0}\left(\sqrt{\eta_{0}}\right)\left(\eta_{0} \in K_{0}, \eta_{0} \notin K_{1}\right)$ be a biquadratic bicyclic extension of K_{1} with $\operatorname{Gal}\left(K_{0}\left(\sqrt{\eta_{0}}\right) / K_{1}\right)=\langle\sigma, \tau\rangle$ and $\operatorname{Gal}\left(K_{0}\left(\sqrt{\eta_{0}}\right) / K_{0}\right)=\langle\tau\rangle$. Let F be the intermediate field of $K_{0}\left(\sqrt{\eta_{0}}\right) / K_{1}$ fixed by σ. Then we have

$$
F=K_{1}\left(\sqrt{\eta_{0}}+\sqrt{\eta_{0}}{ }^{\sigma}\right) .
$$

3. Proof of theorems. For the proof of Main Theorem, it is enough to prove Theorems 1-6, because the cases of Proposition 1 cover all the possible cases of the combination of $N\left(\varepsilon_{i}\right)= \pm 1$.

Let K^{\prime} be the quadratic extension of K generated by a primitive 2^{n+1} th root of unity, $2^{n} \| \# W$, and let K_{0}^{\prime} be the maximal real subfield of K^{\prime}.

When $d_{i} d_{j}{ }_{2}^{2} d_{k}$ and $N\left(\varepsilon_{i}\right)=N\left(\varepsilon_{j}\right)=N\left(\varepsilon_{k}\right)=-1$, let

$$
\eta_{i j}=\varepsilon_{i} \varepsilon_{j} \varepsilon_{k}, \quad \xi_{i j}=\varepsilon_{i} \varepsilon_{j} \varepsilon_{k}-\varepsilon_{i}-\varepsilon_{j}-\varepsilon_{k}
$$

Then it follows from T. Kubota $[5, \S 5]$ that

$$
\begin{equation*}
\eta_{i j} \operatorname{Sp}\left(\xi_{i j}\right)=\xi_{i j}^{2} \tag{9}
\end{equation*}
$$

For the multi-quadratic field $K_{0}=\mathbf{Q}\left(\sqrt{d_{1}}, \sqrt{d_{2}}, \sqrt{d_{3}}\right)$, we can prove:
Lemma 6. Suppose that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{3}\right)=N\left(\varepsilon_{7}\right)=-1$. Let

$$
\begin{aligned}
& \eta=\eta_{123}=\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{7}, \\
& \xi=\xi_{123}=\eta+1-\left(\varepsilon_{1} \varepsilon_{2}+\varepsilon_{2} \varepsilon_{3}+\varepsilon_{3} \varepsilon_{1}+\varepsilon_{1} \varepsilon_{7}+\varepsilon_{2} \varepsilon_{7}+\varepsilon_{3} \varepsilon_{7}\right) .
\end{aligned}
$$

Then we have

$$
\begin{equation*}
\eta \operatorname{Sp}(\xi)=\xi^{2} \tag{10}
\end{equation*}
$$

Proof. Since

$$
\xi^{\sigma_{1}}=\varepsilon_{1}^{\prime} \varepsilon_{2} \varepsilon_{3} \varepsilon_{7}^{\prime}+1-\varepsilon_{1}^{\prime} \varepsilon_{2}-\varepsilon_{2} \varepsilon_{3}-\varepsilon_{3} \varepsilon_{1}^{\prime}-\varepsilon_{1}^{\prime} \varepsilon_{7}^{\prime}-\varepsilon_{2} \varepsilon_{7}^{\prime}-\varepsilon_{3} \varepsilon_{7}^{\prime}
$$

it holds that $\varepsilon_{1} \varepsilon_{7} \xi^{\sigma_{1}}=-\xi$, where ε^{\prime} is the conjugate of ε with respect to \mathbf{Q}. In the same way we have

$$
\begin{gathered}
\varepsilon_{2} \varepsilon_{7} \xi^{\sigma_{2}}=\varepsilon_{3} \varepsilon_{7} \xi^{\sigma_{3}}=\varepsilon_{2} \varepsilon_{3} \xi^{\sigma_{4}}=\varepsilon_{3} \varepsilon_{1} \xi^{\sigma_{5}}=\varepsilon_{1} \varepsilon_{2} \xi^{\sigma_{6}}=-\xi \\
\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{7} \xi^{\sigma_{7}}=\xi
\end{gathered}
$$

Therefore

$$
\begin{aligned}
\mathrm{Sp}_{K_{0} / \mathbf{Q}}(\xi) & =\xi+\xi^{\sigma_{1}}+\cdots+\xi^{\sigma_{7}} \\
& =\xi\left(1-\sum_{i<j} \frac{1}{\varepsilon_{i} \varepsilon_{j}}+\frac{1}{\varepsilon_{1} \varepsilon_{2} \varepsilon_{3} \varepsilon_{7}}\right)
\end{aligned}
$$

where i, j run through $1,2,3$ and 7 . Thus we have $\eta \operatorname{Sp}_{K_{0} / \mathbf{Q}}(\xi)=$ ξ^{2} 。

Lemma 7. Suppose that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=\cdots=N\left(\varepsilon_{7}\right)=-1$ and that $\sqrt{\Delta_{i j}} \notin \mathbf{Q}\left(\sqrt{d_{i}}, \sqrt{d_{j}}\right)$ for some (i, j). Then we have $\bar{E}_{0}=$ $\left(E_{0}^{*}\right)^{+} E_{0}^{2}$.

Proof. Let $\eta \in \bar{E}_{0}$. By Lemma 1 we have

$$
\begin{equation*}
\eta^{2}=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{7}^{x_{7}} \quad\left(x_{i} \in \mathbf{Z}\right) \tag{11}
\end{equation*}
$$

Assume that every x_{i} is odd. Taking the norm N_{1} of (11), we have by Lemma 4 that $\varepsilon_{2}^{x_{2}} \varepsilon_{3}^{x_{3}} \varepsilon_{4}^{x_{4}}=1$ in K_{1}, because $K_{0}(\sqrt{\eta}) / K_{1}$ is a $(2,2)$-extension or $\sqrt{\eta}$ is contained in K_{0}. Therefore $\sqrt{\varepsilon_{2} \varepsilon_{3} \varepsilon_{4}} \in$ K_{1}, and then by (9) we have $\sqrt{\Delta_{23}} \in K_{1}=\mathbf{Q}\left(\sqrt{d_{2}}, \sqrt{d_{3}}\right)$. Similarly, taking the norms $N_{2}, N_{3}, N_{4}, N_{5}, N_{6}$ and N_{7} of (11), we have $\sqrt{\Delta_{i j}} \in \mathbf{Q}\left(\sqrt{d_{i}}, \sqrt{d_{j}}\right)$ for every (i, j). This contradicts the assumption. Hence there is an even integer among x_{i} 's, and it follows from (2) of Lemma 3 that every x_{i} is even. Therefore, $\eta \in\left(E_{0}^{*}\right)^{+} E_{0}^{2}$. Thus we have $\bar{E}_{0} \subseteq\left(E_{0}^{*}\right)^{+} E_{0}^{2}$.

The inverse inclusion $\left(E_{0}^{*}\right)^{+} E_{0}^{2} \subseteq \bar{E}_{0}$ is shown by the equations

$$
\begin{equation*}
\sqrt{\eta} \sqrt{\operatorname{Sp}(\xi)}=\xi \tag{12}
\end{equation*}
$$

for $(\eta, \xi)=\left(\eta_{i j}, \xi_{i j}\right)$ and $\left(\eta_{i j k}, \xi_{i j k}\right)$, since $\left(E_{0}^{*}\right)^{+} E_{0}^{2} / E_{0}^{2}$ is represented by $\eta_{12}, \eta_{23}, \eta_{31}$ and η_{123}.

Proof of Theorem 1. First we assume that $\sqrt{\Delta_{i j}} \notin \mathbf{Q}\left(\sqrt{d_{i}}, \sqrt{d_{j}}\right)$ for some (i, j).

Suppose that $Q_{K}=2$. Then there exists a unit $\eta \in \bar{E}_{0}$ such that $K_{0}(\sqrt{\eta})=K_{0}^{\prime}$ (Hasse [2, Satz 15]). By Lemma 7 we have $\eta=\varepsilon_{1}^{a_{1}} \varepsilon_{2}^{a_{2}} \cdots \varepsilon_{7}^{a_{7}} \varepsilon_{0}^{2}\left(a_{i} \in \mathbf{Z}, \varepsilon_{0} \in E_{0}\right)$ such that $\varepsilon_{1}^{a_{1}} \varepsilon_{2}^{a_{2}} \cdots \varepsilon_{7}^{a_{7}}$ is totally positive, and by (1) of Proposition $1 \eta=\eta_{12}^{b_{1}} \eta_{23}^{b_{2}} \eta_{31}^{b_{3}} \eta_{123}^{c} \varepsilon^{2}$ ($b_{i}, c \in$ $\mathbf{Z}, \varepsilon \in E_{0}$). Therefore it follows from (12) that

$$
K_{0}(\sqrt{\eta})=K_{0}\left(\sqrt{\Delta_{12}^{b_{1}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}} \Delta_{123}^{c}}\right)
$$

Since $K_{0}^{\prime}=K_{0}(\sqrt{2})$ or $K_{0}\left(\sqrt{d_{0}}\right)$ according as $d_{0}=1$ or not, we have $K_{0}^{\prime}=K_{0}\left(\sqrt{A^{\prime}}\right)$ for some $A^{\prime}=A\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$. Therefore

$$
K_{0}\left(\sqrt{\Delta_{12}^{b_{1}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}} \Delta_{123}^{c}}\right)=K_{0}\left(\sqrt{A^{\prime}}\right) .
$$

Thus we have

$$
\begin{equation*}
\Delta_{12}^{b_{1}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}} \Delta_{123}^{c}=A\left(e_{1}, e_{2}, e_{3}\right) \tag{13}
\end{equation*}
$$

for some $e_{i}=0,1$. Because, if $K_{0}(\sqrt{m})=K_{0}\left(\sqrt{A^{\prime}}\right)$ for a rational integer m and $A^{\prime}=A\left(e_{1}^{\prime}, e_{2}^{\prime}, e_{3}^{\prime}\right)$, then $\mathbf{Q}\left(\sqrt{m / A^{\prime}}\right)$ is equal to \mathbf{Q} or $\mathbf{Q}\left(\sqrt{m / A^{\prime}}\right)$ is a quadratic subfield of K_{0}, and so

$$
m=A^{\prime} d_{1}^{e_{1}^{\prime \prime}} d_{2}^{e^{\prime \prime}} d_{3}^{e_{3}^{\prime_{3}^{\prime}}} r^{2}
$$

for some $e_{1}^{\prime \prime}, e_{2}^{\prime \prime}, e_{3}^{\prime \prime}=0,1$ and some $r \in \mathbf{Q}$. Therefore, putting $e_{i} \equiv e_{i}^{\prime}+e_{i}^{\prime \prime}(\bmod 2)(i=1,2,3)$, we have

$$
m=A\left(e_{1}, e_{2}, e_{3}\right)
$$

Conversely, if this equation (13) holds, then the square root of $\eta:=$ $\eta_{12}^{b_{1}} \eta_{23}^{b_{2}} \eta_{31}^{b_{3}} \eta_{123}^{c}$ generates K_{0}^{\prime} over K_{0}, i.e., $K_{0}(\sqrt{\eta})=K_{0}^{\prime}$. Thus, by H. Hasse [2, Satz 15] we have $Q_{K}=2$.

Secondly, we assume that $\sqrt{\Delta_{i j}} \in \mathbf{Q}\left(\sqrt{d_{i}}, \sqrt{d_{j}}\right)$ for every (i, j). Then it does not hold that

$$
\Delta_{12}^{b_{1}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}} \Delta_{123}^{c}=A\left(e_{1}, e_{2}, e_{3}\right)
$$

for any $b_{i}, c, e_{i}=0,1$.

In fact, by the assumption and by $\eta_{123}=\eta_{12} \eta_{36} \varepsilon_{6}^{-2}$ we have $K_{0}\left(\sqrt{\Delta_{i j}}\right)=K_{0}$ for every (i, j) and $K_{0}\left(\sqrt{\Delta_{123}}\right)=K_{0}\left(\sqrt{\Delta_{12} \Delta_{36}}\right)=$ K_{0}. Consequently, we have

$$
\Delta_{12}^{b_{1}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}} \Delta_{123}^{c}=d_{1}^{\alpha_{1}} d_{2}^{\alpha_{2}} d_{3}^{\alpha_{3}} \neq A\left(e_{1}, e_{2}, e_{3}\right)
$$

where $\alpha_{i}=0$ or 1 .
In this case we can show that $Q_{K}=1$ as follows:
Assume that $Q_{K}=2$. Then there is a unit $\eta \in \bar{E}_{0}$ such that $K_{0}(\sqrt{\eta})=K_{0}^{\prime}$. By Lemma 1 we have $\eta^{2}=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{7}^{x_{7}}\left(x_{i} \in \mathbf{Z}\right)$. It follows from (2) of Lemma 3 that all x_{i} are even or odd.

If all x_{i} are even, then $\eta \in\left(E_{0}^{*}\right)^{+}$and we have $\eta=\eta_{12}^{b_{1}} \eta_{23}^{b_{2}} \eta_{31}^{b_{3}} \eta_{123}^{c} \varepsilon_{0}^{2}$ for some $b_{i}, c \in \mathbf{Z}$ and $\varepsilon_{0} \in E_{0}^{*}$. Since $\eta_{123}=\eta_{12} \eta_{36} \varepsilon_{6}^{-2}$, we obtain by the assumption that $\sqrt{\eta} \in K_{0}$, which contradicts that $K_{0}(\sqrt{\eta})$ is a quadratic extension over K_{0}. Therefore, all x_{i} are odd. Then $\eta=$ $\sqrt{\varepsilon_{1} \varepsilon_{1} \cdots \varepsilon_{7}} \prod_{i=1}^{7} \varepsilon_{i}^{y_{i}}$ for some $y_{i} \in \mathbf{Z}$. Since $\varepsilon_{1} \varepsilon_{2} \ldots \varepsilon_{7}=\eta_{13} \eta_{23} \eta_{36} \varepsilon_{3}^{-2}$, we have

$$
\eta=\sqrt{\eta_{13}} \sqrt{\eta_{23}} \sqrt{\eta_{36}} \varepsilon_{3}^{-1} \prod_{i=1}^{7} \varepsilon_{i}^{y_{i}}
$$

By (9) we have $\sqrt{\eta_{13}} r_{13} \sqrt{\Delta_{13}}=\xi_{13}$ for some $r_{13} \in \mathbf{N}$. And by the assumption we have $\Delta_{13}=d_{1}^{a_{1}} d_{3}^{a_{3}}$ for some $a_{1}, a_{3}=0,1$. Hence $\varepsilon_{1}^{a_{1}} \varepsilon_{3}^{a_{3}} \sqrt{\Delta_{13}}$ is totally positive. Moreover, from $\xi_{13}^{\sigma_{1}}<0, \xi_{13}^{\sigma_{2}}>0$, $\xi_{13}^{\sigma_{3}}<0$ it follows that $\varepsilon_{1} \varepsilon_{3} \xi_{13}$ is totally positive. Therefore

$$
\varepsilon_{1} \varepsilon_{3} \varepsilon_{1}^{a_{1}} \varepsilon_{3}^{a_{3}} \sqrt{\eta_{13}}=\frac{1}{r_{13}} \cdot \frac{\varepsilon_{1}^{a_{1}} \varepsilon_{3}^{a_{3}}}{\sqrt{\Delta_{13}}} \cdot \varepsilon_{1} \varepsilon_{3} \xi_{13}
$$

is totally positive, and then this unit is square in $K_{2}=\mathbf{Q}\left(\sqrt{d_{1}}, \sqrt{d_{3}}\right)$ (M. Hirabayashi and K. Yoshino [4, Proposition 2, IV]). So we can put

$$
\varepsilon_{1} \varepsilon_{3} \varepsilon_{1}^{a_{1}} \varepsilon_{3}^{a_{3}} \sqrt{\eta_{13}}=\varepsilon_{13}^{2}
$$

where ε_{13} is a unit of K_{2}. In the same way we obtain

$$
\varepsilon_{2} \varepsilon_{3} \varepsilon_{2}^{b_{2}} \varepsilon_{3}^{b_{3}} \sqrt{\eta_{23}}=\varepsilon_{23}^{2}, \quad \varepsilon_{3} \varepsilon_{6} \varepsilon_{3}^{c_{3}} \varepsilon_{6}^{c_{6}} \sqrt{\eta_{36}}=\varepsilon_{36}^{2} \quad\left(b_{i}, c_{j}=0,1\right)
$$

where ε_{23} and ε_{36} are units of K_{1} and K_{6}, respectively. Therefore we have

$$
\eta=\varepsilon_{13}^{2} \varepsilon_{23}^{2} \varepsilon_{36}^{2} \prod_{i=1}^{7} \varepsilon_{i}^{z_{i}} \quad\left(z_{i} \in \mathbf{Z}\right)
$$

Since $\prod_{i=1}^{7} \varepsilon_{i}^{z_{i}}$ is totally positive, we have, as before,

$$
\prod_{i=1}^{7} \varepsilon_{i}^{z_{i}}=\eta_{12}^{\alpha_{1}} \eta_{23}^{\alpha_{2}} \eta_{31}^{\alpha_{3}}\left(\eta_{12} \eta_{36}\right)^{\alpha_{4}} \varepsilon_{0}^{2}
$$

for some $\alpha_{i} \in \mathbf{Z}$ and $\varepsilon_{0} \in E_{0}^{*}$. By the assumption each $\eta_{i j}$ is square in $\mathbf{Q}\left(\sqrt{d_{i}}, \sqrt{d_{j}}\right)$ and so is η in K_{0}, which is also contradiction.

Lemma 8. If exactly one or two of $N\left(\varepsilon_{i}\right)(i=1,2, \ldots, 7)$ are +1 , then we have $\bar{E}_{0}=\left(E_{0}^{*}\right)^{+} E_{0}^{2}$.

Proof. It is enough to prove the following two Cases (1) and (2).
Case (1): $N\left(\varepsilon_{1}\right)=\cdots=N\left(\varepsilon_{5}\right)=-1$ and $N\left(\varepsilon_{6}\right)=N\left(\varepsilon_{7}\right)=+1$.
Let $\eta \in \bar{E}_{0}$ and let $\eta^{2}=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{7}^{x_{7}}\left(x_{i} \in \mathbf{Z}\right)$. By (2) of Lemma 3 we see that $x_{1}, x_{2}, \ldots, x_{5}$ are even. Then it follows from Lemma 4 that

$$
\begin{array}{ll}
\eta \eta^{\sigma_{4}}=\varepsilon_{1}^{x_{1}} \varepsilon_{4}^{x_{4}} \varepsilon_{7}^{x_{7}}=1 & \text { in } K_{4} \\
\eta \eta^{\sigma_{5}}=\varepsilon_{2}^{x_{2}} \varepsilon_{5}^{x_{5}} \varepsilon_{7}^{x_{7}}=1 & \text { in } K_{5}
\end{array}
$$

Now, we assume that x_{7} is odd. Then $\varepsilon_{7}=1$ in $K_{4}=\mathbf{Q}\left(\sqrt{d_{1}}, \sqrt{d_{4}}\right)$ and in $K_{5}=\mathbf{Q}\left(\sqrt{d_{2}}, \sqrt{d_{5}}\right)$. Therefore, $\Delta_{7}=d_{1}^{e_{1}} d_{4}^{e_{4}}, \Delta_{7} \overline{2} d_{2}^{e_{2}} d_{5}^{e_{5}}$ for some $e_{1}, e_{2}, e_{4}, e_{5}=0,1$. These equations lead that $\Delta_{7} \overline{\overline{2}}$ $\left(d_{1} d_{2} d_{3}\right)^{e_{1}}=d_{7}^{e_{1}}$, which is impossible (Kubota [5, Hilfssatz 9]). Thus x_{7} is even. Similarly, by the equations

$$
\begin{array}{ll}
\eta \eta^{\sigma_{3}}=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \varepsilon_{6}^{x_{6}}=1 \quad \text { in } K_{3}, \\
\eta \eta^{\sigma_{6}}=\varepsilon_{3}^{x_{3}} \varepsilon_{6}^{x_{6}} \varepsilon_{7}^{x_{7}}=1 \quad \text { in } K_{6},
\end{array}
$$

we see that x_{6} is even. Therefore all x_{i} are even and so $\eta \in E_{0}^{*}$. Thus $\bar{E}_{0} \subseteq\left(E_{0}^{*}\right)^{+} E_{0}^{2}$.

The inverse inclusion $\left(E_{0}^{*}\right)^{+} E_{0}^{2} \subseteq \bar{E}_{0}$ is shown by the equations (1) and (12).

Case (2): $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=\cdots=N\left(\varepsilon_{6}\right)=-1$ and $N\left(\varepsilon_{7}\right)=+1$.
Let $\eta \in \bar{E}_{0}$ and let $\eta^{2}=\varepsilon_{1}^{x_{1}} \varepsilon_{2}^{x_{2}} \cdots \varepsilon_{7}^{x_{7}}\left(x_{i} \in \mathbf{Z}\right)$. Then, by (2) of Lemma 3 we see that $x_{1}, x_{2}, \ldots, x_{6}$ are even. In the same way as in the proof of Case (1) we can show that x_{7} is even and that $\bar{E}_{0}=\left(E_{0}^{*}\right)^{+} E_{0}^{2}$.

Proof of Theorems 2 and 3. We only prove Theorem 2, because we prove Theorem 3 in a similar way.

Suppose that $Q_{K}=2$. Then there exists a unit $\eta \in \bar{E}_{0}$ such that $K_{0}(\sqrt{\eta})=K_{0}^{\prime}=K_{0}(\sqrt{A})$ where $A=A\left(e_{1}, e_{2}, e_{3}\right)$. By Lemma 8 and (2) of Proposition 1 we can put $\eta=\varepsilon_{7}^{a} \eta_{12}^{b_{1}} \eta_{23}^{b_{2}} \eta_{31}^{b_{3}} \varepsilon^{2}\left(a, b_{i} \in \mathbf{Z}, \varepsilon \in E_{0}\right)$ and we have

$$
K_{0}(\sqrt{\eta})=K_{0}\left(\sqrt{\Delta_{7}^{a} \Delta_{12}^{b_{1}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}}}\right) .
$$

Consequently,

$$
\begin{equation*}
\Delta_{7}^{a} \Delta_{12}^{b_{1}} \Delta_{23}^{b_{2}} \Delta_{31}^{b_{3}}=A\left(e_{1}, e_{2}, e_{3}\right) . \tag{14}
\end{equation*}
$$

Conversely, if this equation (14) holds, then a square root of $\eta:=$ $\varepsilon_{7}^{a} \eta_{12}^{b_{1}} \eta_{23}^{b_{2}} \eta_{31}^{b_{3}}$ generates K_{0}^{\prime} over K_{0}, i.e., $K_{0}^{\prime}=K_{0}(\sqrt{\eta})$. Therefore we have $Q_{K}=2$.

Proof of Theorem 4.

Case (1): $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{3}\right)=N\left(\varepsilon_{4}\right)=-1$ and $N\left(\varepsilon_{5}\right)=$ $N\left(\varepsilon_{6}\right)=N\left(\varepsilon_{7}\right)=+1$.

Suppose that $Q_{K}=2$. Then there is a unit $\eta \in \bar{E}_{0}$ such that $K_{0}(\sqrt{\eta})=K_{0}^{\prime}$. By Lemma 1 and (4) of Proposition 1 we have

$$
\eta^{2}=\eta_{23}^{x_{2}} \varepsilon_{5}^{x_{5}} \varepsilon_{6}^{x_{6}} \varepsilon_{7}^{x_{7}} \prod_{i=1}^{7} \varepsilon_{i}^{2 y_{i}}
$$

where $x_{i}, y_{i} \in \mathbf{Z}$. From (2) of Lemma 3 it follows that $x_{2} \equiv 0$ $(\bmod 2)$. Hence by Lemma 2 we see that $x_{5} \equiv x_{6} \equiv x_{7}(\bmod 2)$.
In the case that $x_{5} \equiv x_{6} \equiv x_{7} \equiv 0(\bmod 2)$, we have

$$
\eta=\varepsilon_{5}^{a_{5}} \varepsilon_{6}^{a_{6}{ }_{6}} \varepsilon_{7}^{a_{7}} \eta_{23}^{b} \varepsilon_{0}^{2}
$$

for some $a_{i}, b=0,1$ and $\varepsilon_{0} \in E_{0}^{*}$. Therefore,

$$
K_{0}^{\prime}=K_{0}(\sqrt{\eta})=K_{0}\left(\sqrt{\Delta_{5}^{a_{5}} \Delta_{6}^{a_{6}} \Delta_{7}^{a_{7}} \Delta_{23}^{b}}\right)
$$

and then

$$
\begin{equation*}
\Delta_{5}^{a_{5}} \Delta_{6}^{a_{6}} \Delta_{7}^{a_{7}} \Delta_{23}^{b}=A\left(e_{1}, e_{2}, e_{3}\right) \tag{15}
\end{equation*}
$$

for some $e_{i}=0,1$.
In the case that $x_{5} \equiv x_{6} \equiv x_{7} \equiv 1(\bmod 2)$, let

$$
\eta_{0}:=\sqrt{\varepsilon_{5} \varepsilon_{6} \varepsilon_{7}} \prod_{i=1}^{4} \varepsilon_{i}^{v_{i}} \quad\left(v_{i}=0 \text { or } 1\right)
$$

and let η_{0} be totally positive. Then we have $\eta=\varepsilon_{5}^{a_{5}} \varepsilon_{6}^{a_{6}} \varepsilon_{7}^{a_{7}} \eta_{23}^{b} \eta_{0} \varepsilon_{0}^{2}$ where $a_{i}, b=0,1$ and $\varepsilon_{0} \in E_{0}^{*}$. Since $\varepsilon_{5}, \varepsilon_{6}, \varepsilon_{7}, \eta_{23}, \eta \in \bar{E}_{0}$, we see $\eta_{0} \in \bar{E}_{0}$. Then it follows from Lemma 5 that

$$
K_{0}\left(\sqrt{\eta_{0}}\right)=K_{0}\left(\sqrt{\xi^{*}\left(\eta_{0}\right)}\right)=K_{0}\left(\sqrt{\theta^{*}\left(\eta_{0}\right)}\right)=K_{0}\left(\sqrt{d^{*}\left(\eta_{0}\right)}\right)
$$

where $\xi^{*}\left(\eta_{0}\right), \theta^{*}\left(\eta_{0}\right)$ and $d^{*}\left(\eta_{0}\right)$ is defined by (2), (3) and (4), respectively. Here we take $s_{i}=0$ or $1(i=1,2,3)$ in accordance with

$$
\begin{aligned}
& \xi^{*}\left(\eta_{0}\right)=\left(\sqrt{\eta_{0}}+\sqrt{\eta_{0}} \sigma_{1}\right)^{2}, \quad \theta^{*}\left(\eta_{0}\right)=\left(\sqrt{\xi^{*}\left(\eta_{0}\right)}+\sqrt{\xi^{*}\left(\eta_{0}\right)^{\sigma_{2}}}\right)^{2} \\
& d^{*}\left(\eta_{0}\right)=\left(\sqrt{\theta^{*}\left(\eta_{0}\right)}+\sqrt{\theta^{*}\left(\eta_{0}\right)^{\sigma_{3}}}\right)^{2},
\end{aligned}
$$

respectively. Therefore

$$
K_{0}^{\prime}=K_{0}(\sqrt{\eta})=K_{0}\left(\sqrt{\Delta_{5}^{a_{5}} \Delta_{6}^{a_{6}} \Delta_{7}^{a_{7}} \Delta_{23}^{b} d^{*}\left(\eta_{0}\right)}\right)
$$

and then we have

$$
\begin{equation*}
\Delta_{5}^{a_{5}} \Delta_{6}^{a_{6}} \Delta_{7}^{a_{7}} \Delta_{23}^{b} d^{*}\left(\eta_{0}\right)=A\left(e_{1}, e_{2}, e_{3}\right) \tag{16}
\end{equation*}
$$

for some $e_{i}=0,1$.
Conversely, if the equation (15) or (16) holds, the square root of $\eta:=\varepsilon_{5}^{a_{5}} \varepsilon_{6}^{a_{6}} \varepsilon_{7}^{a_{7}} \eta_{23}^{b}$ or $\varepsilon_{5}^{a_{5}} \varepsilon_{6}^{a_{6}} \varepsilon_{7}^{a_{7}} \eta_{23}^{b} \eta_{0}$ generates K_{0}^{\prime} over K_{0}, respectively, i.e., $K_{0}^{\prime}=K_{0}(\sqrt{\eta})$. Then we have $Q_{K}=2$.

Case (2): $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{3}\right)=N\left(\varepsilon_{7}\right)=-1$ and $N\left(\varepsilon_{4}\right)=$ $N\left(\varepsilon_{5}\right)=N\left(\varepsilon_{6}\right)=+1$.

Suppose that $Q_{K}=2$. Then by Lemma 1 and (4_{2}) of Proposition 1 we have

$$
\begin{equation*}
\eta^{2}=\varepsilon_{4}^{x_{4}} \varepsilon_{5}^{x_{5}} \varepsilon_{6}^{x_{6}} \eta_{123}^{z} \prod_{i=1}^{7} \varepsilon_{i}^{2 y_{i}} \tag{17}
\end{equation*}
$$

where $x_{i}, y_{i}, z \in \mathbf{Z}$. Then it follows from (2) of Lemma 3 that $z \equiv 0$ $(\bmod 2)$, and from Lemma 2 that $x_{4} \equiv x_{5} \equiv x_{6}(\bmod 2)$.
If $x_{4} \equiv x_{5} \equiv x_{6} \equiv 0(\bmod 2)$, then $\eta \in\left(E_{0}^{*}\right)^{+} . \operatorname{By}\left(4_{2}\right)$ of Proposition 1 we have $\eta=\varepsilon_{4}^{a_{4}} \varepsilon_{5}^{a_{5}} \varepsilon_{6}^{a_{6}} \eta_{122}^{c} \varepsilon_{0}^{2}$ for some $a_{i}, c=0,1$ and $\varepsilon_{0} \in E_{0}^{*}$. Therefore,

$$
\begin{equation*}
K_{0}(\sqrt{\eta})=K_{0}\left(\sqrt{\Delta_{4}^{a_{4}} \Delta_{5}^{b_{5}} \Delta_{6}^{b_{6}} \Delta_{123}^{c}}\right) . \tag{18}
\end{equation*}
$$

If $x_{4} \equiv x_{5} \equiv x_{6} \equiv 1(\bmod 2)$, taking norms N_{1} and N_{4} of the equation (17), we have by Lemma 4 that

$$
\begin{array}{ll}
\eta^{1+\sigma_{1}}=\varepsilon_{4}^{x_{4}} \varepsilon_{2}^{2 y_{2}} \varepsilon_{3}^{2 y_{3}} \varepsilon_{4}^{2 y_{4}}=1 & \text { in } K_{1} \\
\eta^{1+\sigma_{4}}=\varepsilon_{4}^{x_{4}} \varepsilon_{1}^{2 y_{1}} \varepsilon_{7}^{2 y_{7}} \varepsilon_{4}^{2 y_{4}}=1 & \text { in } K_{4} .
\end{array}
$$

Then $\sqrt{\Delta_{4}}$ is contained in $K_{1} \cap K_{4}=\mathbf{Q}\left(\sqrt{d_{2} d_{3}}\right)$, and then $\Delta_{4}=1$ or $d_{2} d_{3}$, which is impossible (T. Kubota [5, Hilfssatz 9]).

Thus, if $Q_{K}=2$ we have the equation (18) and hence

$$
\begin{equation*}
\Delta_{4}^{a_{4}} \Delta_{5}^{a_{5}} \Delta_{6}^{a_{6}} \Delta_{123}^{c}=A\left(e_{1}, e_{2}, e_{3}\right) \tag{19}
\end{equation*}
$$

for some $e_{i}=0,1$.
Conversely, when the equation (19) holds, we can show, as before, that $Q_{K}=2$.

Proof of Theorem 5. (1) Suppose that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{3}\right)=-1$ and that $N\left(\varepsilon_{4}\right)=\cdots=N\left(\varepsilon_{7}\right)=+1$. By Lemma 1 and $\left(5_{1}\right)$ of Proposition 1 we have

$$
\begin{equation*}
\eta^{2}=\varepsilon_{4}^{x_{4}} \varepsilon_{5}^{x_{5}} \varepsilon_{6}^{x_{6}} \varepsilon_{7}^{x_{7}} \prod_{i=1}^{7} \varepsilon_{i}^{2 y_{i}} \tag{20}
\end{equation*}
$$

for any $\eta \in \bar{E}_{0}$ where $x_{i}, y_{i} \in \mathbf{Z}$. Then by Lemma 2 we have the following three cases:
(i) $x_{4} \equiv x_{5} \equiv x_{6} \equiv x_{7} \equiv 0(\bmod 2)$;
(ii) Among x_{4}, x_{5}, x_{6} and x_{7}, exactly one x_{i} is even;
(iii) $x_{4} \equiv x_{5} \equiv x_{6} \equiv x_{7} \equiv 1(\bmod 2)$.

Case (i). We have $\eta \in\left(E_{0}^{*}\right)^{+}$and we may put $\eta=\varepsilon_{4}^{a_{4}} \varepsilon_{5}^{a_{5}} \varepsilon_{6}^{a_{6}} \varepsilon_{7}^{a_{7}}\left(a_{i} \in\right.$ $\mathbf{Z})$. Then we obtain, as before,

$$
K_{0}(\sqrt{\eta})=K_{0}\left(\sqrt{\Delta_{4}^{a_{4}} \Delta_{5}^{a_{5}} \Delta_{6}^{a_{6}} \Delta_{7}^{a_{7}}}\right)
$$

Case (ii). We first consider the case that $x_{4} \equiv x_{5} \equiv x_{6} \equiv 1, x_{7} \equiv 0$ (mod 2). Taking norms N_{1} and N_{4} of (20), we have

$$
\begin{array}{ll}
\eta^{1+\sigma_{1}}=\varepsilon_{4}^{x_{4}} \varepsilon_{2}^{2 y_{2}} \varepsilon_{3}^{2 y_{3}}=1 & \text { in } K_{1}=\mathbf{Q}\left(\sqrt{d_{2}}, \sqrt{d_{3}}\right) \\
\eta^{1+\sigma_{4}}=\varepsilon_{4}^{x_{4}} \varepsilon_{1}^{2 y_{1}} \varepsilon_{7}^{2 y_{7}}=1 & \text { in } K_{4}=\mathbf{Q}\left(\sqrt{d_{1}}, \sqrt{d_{4}}\right)
\end{array}
$$

Then, as before, $\sqrt{\Delta_{4}}$ is contained in $\mathbf{Q}\left(\sqrt{d_{4}}\right)$, which is impossible.
Next we consider the other cases, for example, $x_{4} \equiv x_{5} \equiv x_{7} \equiv$ $1, x_{6} \equiv 0(\bmod 2)$. Let

$$
\eta_{0}:=\sqrt{\varepsilon_{4} \varepsilon_{5} \varepsilon_{7}} \prod_{i=1}^{3} \varepsilon_{i}^{v_{i}} \quad\left(v_{i}=0 \text { or } 1\right)
$$

and let η_{0} be totally positive. Then we can prove the assertion in the same way as in the proof of Case (1) of Theorem 4.

Case (iii). As before, taking norms N_{1}, N_{2}, N_{3} and N_{7} of (20), we obtain

$$
\begin{gathered}
\Delta_{4}=d_{2} \text { or } d_{3} ; \quad \Delta_{5}=d_{3} \text { or } d_{1} ; \quad \Delta_{6}=d_{1} \text { or } d_{2} \\
\Delta_{4} \Delta_{5} \Delta_{6}=d_{2} d_{3}, d_{3} d_{1} \text { or } d_{1} d_{2}
\end{gathered}
$$

which is impossible.
(2) Suppose that $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=N\left(\varepsilon_{6}\right)=-1$ and the others $N\left(\varepsilon_{i}\right)=+1$. We have by $\left(5_{2}\right)$ of Proposition 1

$$
\eta^{2}=\varepsilon_{3}^{x_{3}} \varepsilon_{4}^{x_{4}} \varepsilon_{5}^{x_{5}} \varepsilon_{7}^{x_{7}} \eta_{12}^{x_{1}} \prod_{i=1}^{7} \varepsilon_{i}^{2 y_{i}}
$$

for any $\eta \in \bar{E}_{0}$ where $x_{i}, y_{i} \in \mathbf{Z}$. By (2) of Lemma 3 we have $x_{1} \equiv 0$ $(\bmod 2)$. Therefore we obtain, as before, the following cases:
(i) $x_{3} \equiv x_{4} \equiv x_{5} \equiv x_{7} \equiv 0(\bmod 2)$;
(ii) Among x_{3}, x_{4}, x_{5} and x_{7}, exactly one x_{i} is even;
(iii) $x_{3} \equiv x_{4} \equiv x_{5} \equiv x_{7} \equiv 1(\bmod 2)$.

By the same argument in (1) of this proof we can prove the assertion for each case.

Proof of Theorem 6. In the following we only consider the first case: $N\left(\varepsilon_{1}\right)=N\left(\varepsilon_{2}\right)=-1$, since the other cases are proved in the same way.

Let

$$
\eta_{0}:=\sqrt{\prod_{N\left(\varepsilon_{i}\right)=+1} \varepsilon_{i}^{u_{i}}} \cdot \prod_{N\left(\varepsilon_{i}\right)=-1} \varepsilon_{i}^{v_{i}} \quad\left(u_{i}, v_{i}=0 \text { or } 1\right)
$$

and let η_{0} be totally positive.
For any $\eta \in \bar{E}_{0}$ we may put $\eta=\varepsilon_{3}^{a_{3}} \cdots \varepsilon_{7}^{a_{7}} \cdot \eta_{0}^{f}$ where $a_{i}, f=0$ or 1. Then we have, as before,

$$
K_{0}(\sqrt{\eta})=K_{0}\left(\sqrt{\Delta_{3}^{a_{3}} \cdots \Delta_{7}^{a_{7}} d^{*}\left(\eta_{0}\right)^{f}}\right)
$$

Thus we obtain that $Q_{K}=2$ if and only if

$$
\Delta_{3}^{a_{3}} \cdots \Delta_{7}^{a_{7}} d^{*}\left(\eta_{0}\right)^{f}=A\left(e_{1}, e_{2}, e_{3}\right)
$$

as desired.

References

[1] F. Halter-Koch, Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory, 3 (1971), 412-443.
[2] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Academie Verlag, Berlin, 1952 (reproduction: Springer Verlag, (1985)).
[3] M. Hirabayashi and K. Yoshino, Remarks on unit indices of imaginary abelian number fields II, Manuscripta Math., 64 (1989), 235-251.
[4] __, Unit indices of imaginary abelian number fields of type (2, 2, 2), J. Number Theory, 34 (1990), 346-361.
[5] T. Kubota, Über den Bizyklischen Biquadratischen Zahlkörper, Nagoya Math. J., 10 (1956), 65-85.
[6] H. Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo, 13 (1966), 201-209.

Received July 30, 1991.
Kanazawa Institute of Technology
Ishikawa 921, Japan

