UNIT INDICES OF SOME IMAGINARY COMPOSITE QUADRATIC FIELDS

Mikihito Hirabayashi

Let K be an imaginary abelian number field of type (2, 2, 2, 2) not containing the 8th cyclotomic field. Using the fundamental units of real quadratic subfields of K, we give a necessary and sufficient condition for the unit index Q_K of K to be equal to 2.

1. Introduction and results. Let K be an imaginary abelian number field and K_0 the maximal real subfield of K. Let E and E_0 be the groups of units of K and K_0 , respectively, and let W be the group of roots of unity in K. Then we call the group index

$$Q_K = [E : WE_0]$$

the unit index of K.

Using the character group of K, H. Hasse [2] gave sufficient conditions for Q_K to be equal to 1 or 2, by which we can determine Q_K for some types of fields K. However by his method we cannot always determine Q_K for arbitrary K, even if K is an imaginary composite quadratic field. (We call a field K a composite quadratic field if K is a composite of quadratic fields.) K. Yoshino and the author [3, 4] gave criteria to determine Q_K of K with Galois group $Gal(K/\mathbb{Q})$ of type (2, 2) and (2, 2, 2).

In this paper we extend our previous results [3, 4] to the case that K has Galois group $Gal(K/\mathbb{Q})$ of type (2, 2, 2, 2) and does not contain the 8th cyclotomic field, and then, we give a necessary and sufficient condition for the unit index Q_K to be equal to 2.

NOTATION. N, Z, Q: the sets of natural numbers, rational integers and rational numbers, respectively,

=: the equality except rational quadratic factors,

 d_0 , d_1 , d_2 , ..., d_7 : square-free positive integers such that $d_4 = d_2d_3$, $d_5 = d_3d_1$, $d_6 = d_1d_2$, $d_7 = d_1d_2d_3$ and $d_0 \neq d_i$ (i = 1, 2, ..., 7),

1, 2, ..., $\overline{7}$), $K = \mathbf{Q}(\sqrt{-d_0}, \sqrt{d_1}, \sqrt{d_2}, \sqrt{d_3})$: an imaginary composite quadratic field of degree 16,

 $K_0 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_2}, \sqrt{d_3}),$ E_0^+ : the group of totally positive units of K_0 ,

 \overline{E}_0 : the group of units η of E_0^+ such that $K_0(\sqrt{\eta})$ is a composite quadratic field,

$$K_{1} = \mathbf{Q}(\sqrt{d_{2}}, \sqrt{d_{3}}), \qquad K_{2} = \mathbf{Q}(\sqrt{d_{3}}, \sqrt{d_{1}}),$$

$$K_{3} = \mathbf{Q}(\sqrt{d_{1}}, \sqrt{d_{2}}), \qquad K_{4} = \mathbf{Q}(\sqrt{d_{1}}, \sqrt{d_{2}}d_{3}),$$

$$K_{5} = \mathbf{Q}(\sqrt{d_{2}}, \sqrt{d_{3}}d_{1}), \qquad K_{6} = \mathbf{Q}(\sqrt{d_{3}}, \sqrt{d_{1}}d_{2}),$$

$$K_{7} = \mathbf{Q}(\sqrt{d_{2}}d_{3}, \sqrt{d_{3}}d_{1}),$$

$$k_{i} = \mathbf{Q}(\sqrt{d_{i}}) \ (i = 1, 2, ..., 7),$$

$$\langle \sigma_{i} \rangle = \operatorname{Gal}(K_{0}/K_{i}) \ (i = 1, 2, ..., 7),$$

N(x), Sp(x): the absolute norm and the absolute trace of x, respectively,

$$A = A(e_1, e_2, e_3) = \begin{cases} 2d_1^{e_1} d_2^{e_2} d_3^{e_3} & \text{if } d_0 = 1, \\ d_0 d_1^{e_1} d_2^{e_2} d_3^{e_3} & \text{otherwise,} \end{cases}$$

 ε_i : the fundamental unit of $\mathbf{Q}(\sqrt{d_i})$, $\varepsilon_i > 1$ (i = 1, 2, ..., 7).

When $N(\varepsilon_i) = +1$, we denote by Δ_i , Δ_i^* the square-free parts of $\operatorname{Sp}(\varepsilon_i+1)$, $\operatorname{Sp}(\varepsilon_i-1)$, respectively, and by m_i , n_i the natural numbers such that $\operatorname{Sp}(\varepsilon_i + 1) = \Delta_i m_i^2$, $\operatorname{Sp}(\varepsilon_i - 1) = \Delta_i^* n_i^2$. Then we have

(1)
$$\sqrt{\varepsilon_i} = \frac{1}{2} (m_i \sqrt{\Delta_i} + n_i \sqrt{\Delta_i^*}).$$

When $d_i d_j = d_k$ with $N(\varepsilon_i) = N(\varepsilon_j) = N(\varepsilon_k) = -1$, we denote by $\Delta_{ij} = \Delta_{ji}$ the square-free integer such that

$$\Delta_{ij} = \operatorname{Sp}_{\mathbf{Q}(\sqrt{d_i}, \sqrt{d_j})/\mathbf{Q}}(\varepsilon_i \varepsilon_j \varepsilon_k - \varepsilon_i - \varepsilon_j - \varepsilon_k).$$

(We take (i, j) = (1, 2), (1, 3), (1, 4), (2, 3), (2, 5), (3, 6) and (4, 5).)

When $d_i d_j d_k = d_l$ with $N(\varepsilon_i) = N(\varepsilon_j) = N(\varepsilon_k) = N(\varepsilon_l) = -1$ and when $\mathbf{Q}(\sqrt{d_i}, \sqrt{d_j}, \sqrt{d_k}) = K_0$, we denote by Δ_{ijk} the square-free integer such that

$$\Delta_{ijk} = \operatorname{Sp}_{K_0/\mathbf{Q}} \left(\varepsilon_i \varepsilon_j \varepsilon_k \varepsilon_l + 1 - \sum_{\alpha < \beta} \varepsilon_\alpha \varepsilon_\beta \right)$$

where α , β run through i, j, k and l.

For a totally positive unit η of K_0 let

(2)
$$\xi^*(\eta) = \eta + \eta^{\sigma_1} + 2(-1)^{s_1} \sqrt{\eta \eta^{\sigma_1}}$$
,

(3)
$$\theta^*(\eta) = \xi^*(\eta) + \xi^*(\eta)^{\sigma_2} + 2(-1)^{s_2} \sqrt{\xi^*(\eta)\xi^*(\eta)^{\sigma_2}}$$

(4)
$$d^*(\eta) = \theta^*(\eta) + \theta^*(\eta)^{\sigma_3} + 2(-1)^{s_3} \sqrt{\theta^*(\eta)\theta^*(\eta)^{\sigma_3}}$$
 ($s_i = 0 \text{ or } 1$)

under the condition that

(5)
$$\sqrt{\eta\eta^{\sigma_1}} \in K_1$$
, $\sqrt{\xi^*(\eta)\xi^*(\eta)^{\sigma_2}} \in k_3$ and $\sqrt{\theta^*(\eta)\theta^*(\eta)^{\sigma_3}} \in \mathbf{Q}$.

We remark that for a totally positive unit η of K_0 this condition (5) is satisfied if and only if η is contained in \overline{E}_0 . This remark can be proved by Lemmas 4 and 5 (cf. proof of Theorem 4).

Throughout this paper we assume that K does not contain the 8th cyclotomic field $\mathbb{Q}(\sqrt{-1}, \sqrt{2})$. Our result is the following

MAIN THEOREM. Under the above notation and assumption we have that $Q_K = 2$ if and only if

$$\prod_{i} \Delta_{i}^{a_{i}} \cdot \prod_{i,j} \Delta_{ij}^{b_{ij}} \cdot \prod_{i,j,k} \Delta_{ijk}^{c_{ijk}} \cdot d^{*}(\eta_{0})^{f} = A(e_{1}, e_{2}, e_{3})$$

for some a_i , b_{ij} , c_{ijk} , f, $e_i = 0$, 1 and $\eta_0 \in \overline{E}_0$ represented in the form

$$\eta_0 = \sqrt{\prod_{N(\varepsilon_i)=+1} \varepsilon_i^{u_i}} \cdot \prod_{N(\varepsilon_i)=-1} \varepsilon_i^{v_i},$$

where u_i , $v_i = 0$ or 1. The number of i's for which $u_i = 1$ is neither 1 nor 2.

More precisely we have the following Theorems 1-6.

Theorem 1. In the case that $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_7) = -1$, we have

$$Q_K = 2 \Leftrightarrow \Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3} \Delta_{123}^{c} = A(e_1, e_2, e_3)$$

for some b_i , c, $e_i = 0$, 1. Especially, if $\sqrt{\Delta_{ij}}$ is contained in $\mathbf{Q}(\sqrt{d_i}, \sqrt{d_j})$ for every (i, j), then $Q_K = 1$.

THEOREM 2. In the case that $N(\varepsilon_1)=N(\varepsilon_2)=\cdots=N(\varepsilon_6)=-1$ and $N(\varepsilon_7)=+1$, we have

$$Q_K = 2 \Leftrightarrow \Delta_7^a \Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3} = A(e_1, e_2, e_3)$$

for some $a, b_i, e_i = 0, 1$.

THEOREM 3. In the case that $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_5) = -1$ and $N(\varepsilon_6) = N(\varepsilon_7) = +1$, we have

$$Q_K = 2 \Leftrightarrow \Delta_6^{a_6} \Delta_7^{a_7} \Delta_{23}^{b_2} \Delta_{31}^{b_3} = A(e_1, e_2, e_3)$$

for some $a_i, b_i, e_i = 0, 1$.

Theorem 4. (1) In the case that $N(\varepsilon_1) = \cdots = N(\varepsilon_4) = -1$ and $N(\varepsilon_5) = N(\varepsilon_6) = N(\varepsilon_7) = +1$, we have

$$Q_K = 2 \Leftrightarrow \Delta_5^{a_5} \Delta_6^{a_6} \Delta_7^{a_7} \Delta_{23}^b d^*(\eta_0)^f = A(e_1, e_2, e_3)$$

for some a_i , b, f, $e_i = 0$, 1 and $\eta_0 \in \overline{E}_0$ such that

$$\eta_0 = \sqrt{\varepsilon_5 \varepsilon_6 \varepsilon_7} \prod_{i=1}^4 \varepsilon_i^{v_i} \qquad (v_i = 0 \text{ or } 1).$$

(2) In the case that $N(\varepsilon_1)=N(\varepsilon_2)=N(\varepsilon_3)=N(\varepsilon_7)=-1$ and $N(\varepsilon_4)=N(\varepsilon_5)=N(\varepsilon_6)=+1$, we have

$$Q_K = 2 \Leftrightarrow \Delta_4^{a_4} \Delta_5^{a_5} \Delta_6^{a_6} \Delta_{123}^c = A(e_1, e_2, e_3)$$

for some $a_i, c, e_i = 0, 1$.

THEOREM 5. (1) In the case that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = -1$ and $N(\varepsilon_4) = N(\varepsilon_5) = N(\varepsilon_6) = N(\varepsilon_7) = +1$, we have

$$Q_K = 2 \Leftrightarrow \prod_{i=4}^{7} \Delta_i^{a_i} \cdot d^*(\eta_0)^f = A(e_1, e_2, e_3)$$

for some a_i , f, $e_i = 0$, 1 and $\eta_0 \in \overline{E}_0$ such that

$$\frac{\eta_0}{\prod_{i=1}^3 \varepsilon_i^{v_i}} = \sqrt{\varepsilon_4 \varepsilon_5 \varepsilon_7}, \ \sqrt{\varepsilon_5 \varepsilon_6 \varepsilon_7} \ or \ \sqrt{\varepsilon_6 \varepsilon_4 \varepsilon_7} \qquad (v_i = 0 \ or \ 1).$$

(2) In the case that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_6) = -1$ and the others $N(\varepsilon_i) = +1$, we have

$$Q_K = 2 \Leftrightarrow \prod_{N(\varepsilon_i)=+1} \Delta_i^{a_i} \cdot \Delta_{12}^b \cdot d^*(\eta_0)^f = A(e_1, e_2, e_3)$$

for some a_i , b, f, $e_i = 0$, 1 and $\eta_0 \in \overline{E}_0$ such that

$$\frac{\eta_0}{\prod_{N(\varepsilon_i)=-1} \varepsilon_i^{v_i}} = \sqrt{\varepsilon_3 \varepsilon_4 \varepsilon_5 \varepsilon_7}, \sqrt{\varepsilon_3 \varepsilon_4 \varepsilon_5}, \sqrt{\varepsilon_3 \varepsilon_4 \varepsilon_7},$$

$$\sqrt{\varepsilon_3 \varepsilon_5 \varepsilon_7} \text{ or } \sqrt{\varepsilon_4 \varepsilon_5 \varepsilon_7} \qquad (v_i = 0 \text{ or } 1).$$

Theorem 6. In the case that $N(\varepsilon_3)=N(\varepsilon_4)=\cdots=N(\varepsilon_7)=+1$, we have

$$Q_K = 2 \Leftrightarrow \prod_{N(e_i)=+1} \Delta_i^{a_i} \cdot d^*(\eta_0)^f = A(e_1, e_2, e_3)$$

for some a_i , f, $e_i = 0$, 1 and $\eta_0 \in \overline{E}_0$ such that

$$\frac{\eta_0}{\sqrt{\prod_{N(\varepsilon_i)=+1} \varepsilon_i^{u_i}}} = \varepsilon_1^{v_1} \varepsilon_2^{v_2}, \, \varepsilon_1^{v_1} \text{ or } 1 \qquad (u_i, \, v_i = 0 \text{ or } 1)$$

according as $N(\varepsilon_1) = N(\varepsilon_2) = -1$; $N(\varepsilon_1) = -1$ and $N(\varepsilon_2) = +1$; or $N(\varepsilon_1) = N(\varepsilon_2) = +1$. The number of i's for which $u_i = 1$ is neither 1 nor 2.

REMARK 1. In Main Theorem η_0 is not represented in the form

$$\eta_0 = \sqrt{\varepsilon_i \varepsilon_j \varepsilon_k} \cdot \prod_{N(\varepsilon_l) = -1} \varepsilon_l^{v_l}$$

where $N(\varepsilon_i) = N(\varepsilon_j) = N(\varepsilon_k) = +1$ and $d_i d_j = d_k$ (cf. proof of Case (2) of Theorem 4).

REMARK 2. For some $\eta_0 \in \overline{E}_0$ we can actually calculate the rational integers $d^*(\eta_0)$ defined by (4). For example, we can obtain the following: Suppose that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = +1$ and that $\eta_0 = \sqrt{\varepsilon_1 \varepsilon_2 \varepsilon_3}$ is totally positive. Then $\eta_0 \in \overline{E}_0$ if and only if

(6)
$$\Delta_1 = d_2 d_3, \quad \Delta_2 = d_3 d_1, \quad \Delta_3 = d_1 d_2.$$

If this condition (6) is satisfied, we have

$$d^*(\eta_0) = m_1 m_2 m_3 \sqrt{\Delta_1 \Delta_2 \Delta_3}$$

+ $2\Delta_1^* \{ (-1)^{s_1} n_2 n_3 + (-1)^{s_2} n_3 n_1 + (-1)^{s_3} n_1 n_2 \}$
- $8(-1)^{s_1 + s_2 + s_3}$ ($s_i = 0$ or 1)

where Δ_i , Δ_i^* , m_i , n_i and s_i are as in the notation.

2. Properties of \overline{E}_0 and lemmas on (2, 2)-extensions. In this section we give a proposition and some lemmas which will be used in the proofs of theorems.

Let $\langle x\,,\,y\,,\,\ldots\rangle$ be a group generated by $x\,,\,y\,,\,\ldots$. Let E_0^* be the subgroup of E_0 generated by the units of $\mathbb{Q}(\sqrt{d_i})$ for $i=1,\,2,\,\ldots,\,7$. Let $(E_0^*)^+$ be the subgroup of E_0 generated by totally positive units of E_0^* , i.e., $(E_0^*)^+ = E_0^* \cap E_0^+$.

Proposition 1. (1) If
$$N(\varepsilon_1) = \cdots = N(\varepsilon_7) = -1$$
, then $(E_0^*)^+ = \langle \varepsilon_2 \varepsilon_3 \varepsilon_4, \varepsilon_3 \varepsilon_1 \varepsilon_5, \varepsilon_1 \varepsilon_2 \varepsilon_6, \varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7 \rangle E_0^{*2}$.

(2) If
$$N(\varepsilon_1) = \cdots = N(\varepsilon_6) = -1$$
 and $N(\varepsilon_7) = +1$, then $(E_0^*)^+ = \langle \varepsilon_2 \varepsilon_3 \varepsilon_4, \varepsilon_3 \varepsilon_1 \varepsilon_5, \varepsilon_1 \varepsilon_2 \varepsilon_6, \varepsilon_7 \rangle E_0^{*2}$.

(3) If
$$N(\varepsilon_1) = \cdots = N(\varepsilon_5) = -1$$
 and $N(\varepsilon_6) = N(\varepsilon_7) = +1$, then
$$(E_0^*)^+ = \langle \varepsilon_2 \varepsilon_3 \varepsilon_4, \varepsilon_3 \varepsilon_1 \varepsilon_5, \varepsilon_6, \varepsilon_7 \rangle E_0^{*2}.$$

(4₁) If $N(\varepsilon_1) = \cdots = N(\varepsilon_4) = -1$ and $N(\varepsilon_5) = N(\varepsilon_6) = N(\varepsilon_7) = +1$, then

$$(E_0^*)^+ = \langle \varepsilon_2 \varepsilon_3 \varepsilon_4, \varepsilon_5, \varepsilon_6, \varepsilon_7 \rangle E_0^{*2}.$$

(4₂) If $N(\varepsilon_1)=N(\varepsilon_2)=N(\varepsilon_3)=N(\varepsilon_7)=-1$ and $N(\varepsilon_4)=N(\varepsilon_5)=N(\varepsilon_6)=+1$, then

$$(E_0^*)^+ = \langle \varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7, \varepsilon_4, \varepsilon_5, \varepsilon_6 \rangle E_0^{*2}.$$

(5₁) If $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = -1$ and $N(\varepsilon_4) = \cdots = N(\varepsilon_7) = +1$, then

$$(E_0^*)^+ = \langle \varepsilon_4, \varepsilon_5, \varepsilon_6, \varepsilon_7 \rangle E_0^{*2}.$$

(5₂) If $N(\varepsilon_1)=N(\varepsilon_2)=N(\varepsilon_6)=-1$ and the others $N(\varepsilon_i)=+1$, then

$$(E_0^*)^+ = \langle \varepsilon_1 \varepsilon_2 \varepsilon_6, \varepsilon_3, \varepsilon_4, \varepsilon_5, \varepsilon_7 \rangle E_0^{*2}.$$

(6) If
$$N(\varepsilon_1) = N(\varepsilon_2) = -1$$
 and $N(\varepsilon_3) = \cdots = N(\varepsilon_7) = +1$, then
$$(E_0^*)^+ = \langle \varepsilon_3, \varepsilon_4, \varepsilon_5, \varepsilon_6, \varepsilon_7 \rangle E_0^{*2}.$$

(7) If
$$N(\varepsilon_1) = -1$$
 and $N(\varepsilon_2) = \cdots = N(\varepsilon_7) = +1$, then $(E_0^*)^+ = \langle \varepsilon_2, \varepsilon_3, \ldots, \varepsilon_7 \rangle E_0^{*2}$.

(8) If
$$N(\varepsilon_1) = \cdots = N(\varepsilon_7) + 1$$
, then
$$(E_0^*)^+ = \langle \varepsilon_1, \varepsilon_2, \dots, \varepsilon_7 \rangle E_0^{*2}.$$

Proof. We only prove the case (1), because the other cases are proved in the same way.

For an element $\alpha \neq 0$ of K we define $s(\alpha) = 0$ or 1 by $(-1)^{s(\alpha)} = \alpha/|\alpha|$.

For $\eta \in (E_0^*)^+$, putting $\eta = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7}$ $(x_i \in \mathbb{Z})$, we have a system of simultaneous linear equations

$$\begin{cases} s(\varepsilon_1)x_1 + s(\varepsilon_2)x_2 + \dots + s(\varepsilon_7)x_7 \equiv 0 \\ s(\varepsilon_1^{\sigma_1})x_1 + s(\varepsilon_2^{\sigma_1})x_2 + \dots + s(\varepsilon_7^{\sigma_1})x_7 \equiv 0 \\ \dots & (\text{mod } 2) \\ s(\varepsilon_1^{\sigma_7})x_1 + s(\varepsilon_2^{\sigma_7})x_2 + \dots + s(\varepsilon_7^{\sigma_7})x_7 \equiv 0. \end{cases}$$

By Gauss-Jordan elimination (see, for example, H. Anton, *Elementary Linear Algebra*, John Wiley & Sons (1973), pp. 18–20) we see that this system has the following four linearly independent solutions:

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \\ x_7 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix}.$$

To these solutions correspond units $\varepsilon_2\varepsilon_3\varepsilon_4$, $\varepsilon_3\varepsilon_1\varepsilon_5$, $\varepsilon_1\varepsilon_2\varepsilon_6$, $\varepsilon_1\varepsilon_2\varepsilon_3\varepsilon_7$ respectively. Thus we have

$$(E_0^*)^+ = \langle \varepsilon_2 \varepsilon_3 \varepsilon_4, \, \varepsilon_3 \varepsilon_1 \varepsilon_5, \, \varepsilon_1 \varepsilon_2 \varepsilon_6, \, \varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7 \rangle E_0^{*2}. \qquad \Box$$

In general, let K/k be a (2, 2)-extension with Galois group $Gal(K/k) = \langle \sigma, \tau \rangle$. Then, as used by H. Wada [6], we have

$$\alpha^2 = \frac{\alpha^{1+\sigma} \alpha^{1+\tau}}{(\alpha^{\sigma})^{1+\sigma\tau}}$$

for $\alpha \in K$, $\alpha \neq 0$. By this simple formula we see that $E_0^4 \subseteq E_0^*$. Moreover, we have $\overline{E}_0^2 \subseteq E_0^*$ by the following

LEMMA 1. Let $\eta \in \overline{E}_0$ and put $\eta^4 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7}$ $(x_i \in \mathbf{Z})$. Then, every x_i is even.

Proof. Since $K_0(\sqrt{\eta}) = K_0(\sqrt{d})$ for some $d \in \mathbb{N}$, we can put $\eta = d\alpha_0^2$ ($\alpha_0 \in K_0$). Taking the norm N_{K_0/k_i} of $\varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7} = d^4 \alpha_0^8$, we have $\varepsilon_i^{4x_i} = d^{16} N_{K_0/k_i}(\alpha_0)^8$. This implies that x_i is even.

LEMMA 2. Let $\eta \in \overline{E}_0$ and put

(7)
$$\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7} \qquad (x_i \in \mathbf{Z}).$$

Then, all x_i are even or at least three x_i 's are odd.

Proof. For the simplicity we denote by N_i the norm N_{K_0/K_i} for each i.

First, for example, we assume that $x_1 \equiv 1$, $x_i \equiv 0 \pmod{2}$ (i = 2, 3, ..., 7). Taking the norm N_3 of the equation (7), we have $N_3(\eta) = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \varepsilon_6^{x_6} \in K_3$. On the other hand, putting $\eta = d\alpha_0^2$ $(d \in \mathbb{N}, 1)$

 $\alpha_0 \in K_0$), we have $N_3(\eta) = d^2N_3(\alpha_0)^2$. Therefore, $\sqrt{\varepsilon_1}$ is contained in $K_3 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_2})$. In the same way, taking the norm N_2 of (7), we see that $\sqrt{\varepsilon_1}$ is contained in $K_2 = \mathbf{Q}(\sqrt{d_3}, \sqrt{d_1})$. Thus $\sqrt{\varepsilon_1}$ is contained in $K_2 \cap K_3 = \mathbf{Q}(\sqrt{d_1})$, which is impossible.

Secondly, for example, we assume that $x_1 \equiv x_2 \equiv 1$, $x_i \equiv 0 \pmod{2}$ (i = 3, 4, ..., 7). Taking the norms N_2 , N_4 of (7), we see that $\sqrt{\varepsilon_1}$ is contained in $\mathbb{Q}(\sqrt{d_1})$, which is also impossible.

Thus there is no case that exactly one or two of x_i are odd. \Box

LEMMA 3. Let $\eta \in \overline{E}_0$ and put

(8)
$$\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7} \qquad (x_i \in \mathbf{Z}).$$

- (1) If there exists an even x_i , then $N(\varepsilon_i) = +1$ for each odd x_i .
- (2) If there exists "i" for which $x_i \equiv 0 \pmod{2}$ or $N(\varepsilon_i) = +1$, then x_i is even when $N(\varepsilon_i) = -1$.
- (3) If $x_1 \equiv x_2 \equiv \cdots \equiv x_7 \equiv 1 \pmod{2}$, then $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_7)$.

Proof. (1) Suppose that $x_1 \equiv 1$, $x_2 \equiv 0 \pmod{2}$. Taking the norm N_3 of (8), we have $N_3(\eta) = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \varepsilon_6^{x_6}$. Again, taking the norms N_1 , N_2 of this equation, we have by $\eta \gg 0$ that

$$N_1(N_3(\eta)) = N(\varepsilon_1)^{x_1} \varepsilon_2^{2x_2} N(\varepsilon_6)^{x_6} > 0,$$

$$N_2(N_3(\eta)) = \varepsilon_1^{2x_1} N(\varepsilon_2)^{x_2} N(\varepsilon_6)^{x_6} > 0.$$

Hence $N(\varepsilon_6)^{x_6} = +1$ and then $N(\varepsilon_1) = +1$.

(2) We suppose that $x_1 \equiv 0 \pmod 2$ or $N(\varepsilon_1) = +1$ and that $N(\varepsilon_2) = -1$.

Taking the norm N_3 of (8), we have $N_3(\eta) = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \varepsilon_6^{x_6}$. Again, taking the norm N_6 of this equation, we have

$$N_6(N_3(\eta)) = N(\varepsilon_1)^{x_1} N(\varepsilon_2)^{x_2} \varepsilon_6^{2x_6} > 0,$$

and so $x_2 \equiv 0 \pmod{2}$.

(3) Taking the norm N_1 of (8), we have $N_1(\eta) = \varepsilon_2^{X_2} \varepsilon_3^{X_3} \varepsilon_4^{X_4}$. Moreover, taking the norms N_2 , N_3 of this equation, we have

$$N_2(N_1(\eta)) = N(\varepsilon_2)^{x_2} \varepsilon_3^{2x_3} N(\varepsilon_4)^{x_4} > 0,$$

$$N_3(N_1(\eta)) = \varepsilon_2^{2x_2} N(\varepsilon_3)^{x_3} N(\varepsilon_4)^{x_4} > 0.$$

Then $N(\varepsilon_2) = N(\varepsilon_3) = N(\varepsilon_4)$.

In the same way, taking the norms N_2 , N_3 , N_6 of (8), we obtain $N(\varepsilon_3) = N(\varepsilon_1) = N(\varepsilon_5)$, $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_6)$, $N(\varepsilon_3) = N(\varepsilon_6) = N(\varepsilon_7)$.

For a field k we denote by "= in k" the equality except a square of a number of k.

LEMMA 4 (F. Halter-Koch [1, Satz 1]). Let K_1 be a field with $\overline{\operatorname{char}}(K_1) \neq 2$. Let K_0 be a quadratic extension of K_1 and $K_0(\sqrt{\eta_0})$ ($\eta_0 \in K_0$) a biquadratic (quartic) extension of K_1 . Then $K_0(\sqrt{\eta_0})/K_1$ is bicyclic if and only if $N_{K_0/K_1}(\eta_0) = 1$ in K_1 .

By this Lemma 4 we can easily obtain

LEMMA 5. Let K_1 be an algebraic number field and K_0 a quadratic extension of K_1 . Let $K_0(\sqrt{\eta_0})$ ($\eta_0 \in K_0$, $\eta_0 \notin K_1$) be a biquadratic bicyclic extension of K_1 with $Gal(K_0(\sqrt{\eta_0})/K_1) = \langle \sigma, \tau \rangle$ and $Gal(K_0(\sqrt{\eta_0})/K_0) = \langle \tau \rangle$. Let F be the intermediate field of $K_0(\sqrt{\eta_0})/K_1$ fixed by σ . Then we have

$$F = K_1(\sqrt{\eta_0} + \sqrt{\eta_0}^{\sigma}).$$

3. Proof of theorems. For the proof of Main Theorem, it is enough to prove Theorems 1-6, because the cases of Proposition 1 cover all the possible cases of the combination of $N(\varepsilon_i) = \pm 1$.

Let K' be the quadratic extension of K generated by a primitive 2^{n+1} th root of unity, $2^n ||\#W|$, and let K'_0 be the maximal real subfield of K'.

When
$$d_i d_j = d_k$$
 and $N(\varepsilon_i) = N(\varepsilon_j) = N(\varepsilon_k) = -1$, let

$$\eta_{ij} = \varepsilon_i \varepsilon_j \varepsilon_k, \quad \xi_{ij} = \varepsilon_i \varepsilon_j \varepsilon_k - \varepsilon_i - \varepsilon_j - \varepsilon_k.$$

Then it follows from T. Kubota [5, §5] that

(9)
$$\eta_{ij} \operatorname{Sp}(\xi_{ij}) = \xi_{ij}^2.$$

For the multi-quadratic field $K_0 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_2}, \sqrt{d_3})$, we can prove:

Lemma 6. Suppose that $N(\varepsilon_1)=N(\varepsilon_2)=N(\varepsilon_3)=N(\varepsilon_7)=-1$. Let

$$\eta = \eta_{123} = \varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7 \,,$$

$$\xi = \xi_{123} = \eta + 1 - (\varepsilon_1 \varepsilon_2 + \varepsilon_2 \varepsilon_3 + \varepsilon_3 \varepsilon_1 + \varepsilon_1 \varepsilon_7 + \varepsilon_2 \varepsilon_7 + \varepsilon_3 \varepsilon_7).$$

Then we have

(10)
$$\eta \operatorname{Sp}(\xi) = \xi^2.$$

Proof. Since

$$\xi^{\sigma_1} = \varepsilon_1' \varepsilon_2 \varepsilon_3 \varepsilon_7' + 1 - \varepsilon_1' \varepsilon_2 - \varepsilon_2 \varepsilon_3 - \varepsilon_3 \varepsilon_1' - \varepsilon_1' \varepsilon_7' - \varepsilon_2 \varepsilon_7' - \varepsilon_3 \varepsilon_7',$$

it holds that $\varepsilon_1 \varepsilon_7 \xi^{\sigma_1} = -\xi$, where ε' is the conjugate of ε with respect to **Q**. In the same way we have

$$\varepsilon_2 \varepsilon_7 \xi^{\sigma_2} = \varepsilon_3 \varepsilon_7 \xi^{\sigma_3} = \varepsilon_2 \varepsilon_3 \xi^{\sigma_4} = \varepsilon_3 \varepsilon_1 \xi^{\sigma_5} = \varepsilon_1 \varepsilon_2 \xi^{\sigma_6} = -\xi,
\varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7 \xi^{\sigma_7} = \xi.$$

Therefore

$$\begin{aligned} \mathrm{Sp}_{K_0/\mathbf{Q}}(\xi) &= \xi + \xi^{\sigma_1} + \dots + \xi^{\sigma_7} \\ &= \xi \left(1 - \sum_{i < j} \frac{1}{\varepsilon_i \varepsilon_j} + \frac{1}{\varepsilon_1 \varepsilon_2 \varepsilon_3 \varepsilon_7} \right) \end{aligned}$$

where i, j run through 1, 2, 3 and 7. Thus we have $\eta \operatorname{Sp}_{K_0/\mathbb{Q}}(\xi) = \xi^2$.

LEMMA 7. Suppose that $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_7) = -1$ and that $\sqrt{\Delta_{ij}} \notin \mathbf{Q}(\sqrt{d_i}, \sqrt{d_j})$ for some (i, j). Then we have $\overline{E}_0 = (E_0^*)^+ E_0^2$.

Proof. Let $\eta \in \overline{E}_0$. By Lemma 1 we have

(11)
$$\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7} \qquad (x_i \in \mathbf{Z}).$$

Assume that every x_i is odd. Taking the norm N_1 of (11), we have by Lemma 4 that $\varepsilon_2^{x_2} \varepsilon_3^{x_3} \varepsilon_4^{x_4} = 1$ in K_1 , because $K_0(\sqrt{\eta})/K_1$ is a (2, 2)-extension or $\sqrt{\eta}$ is contained in K_0 . Therefore $\sqrt{\varepsilon_2 \varepsilon_3 \varepsilon_4} \in K_1$, and then by (9) we have $\sqrt{\Delta_{23}} \in K_1 = \mathbf{Q}(\sqrt{d_2}, \sqrt{d_3})$. Similarly, taking the norms N_2 , N_3 , N_4 , N_5 , N_6 and N_7 of (11), we have $\sqrt{\Delta_{ij}} \in \mathbf{Q}(\sqrt{d_i}, \sqrt{d_j})$ for every (i, j). This contradicts the assumption. Hence there is an even integer among x_i 's, and it follows from (2) of Lemma 3 that every x_i is even. Therefore, $\eta \in (E_0^*)^+ E_0^2$. Thus we have $\overline{E}_0 \subseteq (E_0^*)^+ E_0^2$.

The inverse inclusion $(E_0^*)^+E_0^2\subseteq \overline{E}_0$ is shown by the equations

(12)
$$\sqrt{\eta}\sqrt{\mathrm{Sp}(\xi)} = \xi$$

for $(\eta, \xi) = (\eta_{ij}, \xi_{ij})$ and (η_{ijk}, ξ_{ijk}) , since $(E_0^*)^+ E_0^2 / E_0^2$ is represented by $\eta_{12}, \eta_{23}, \eta_{31}$ and η_{123} .

Proof of Theorem 1. First we assume that $\sqrt{\Delta_{ij}} \notin \mathbb{Q}(\sqrt{d_i}, \sqrt{d_j})$ for some (i, j).

Suppose that $Q_K=2$. Then there exists a unit $\eta\in\overline{E}_0$ such that $K_0(\sqrt{\eta})=K_0'$ (Hasse [2, Satz 15]). By Lemma 7 we have $\eta=\varepsilon_1^{a_1}\varepsilon_2^{a_2}\cdots\varepsilon_7^{a_7}\varepsilon_0^2$ $(a_i\in\mathbf{Z},\ \varepsilon_0\in E_0)$ such that $\varepsilon_1^{a_1}\varepsilon_2^{a_2}\cdots\varepsilon_7^{a_7}$ is totally positive, and by (1) of Proposition 1 $\eta=\eta_{12}^{b_1}\eta_{23}^{b_2}\eta_{31}^{b_3}\eta_{123}^{c_2}\varepsilon^2$ $(b_i,c\in\mathbf{Z},\ \varepsilon\in E_0)$. Therefore it follows from (12) that

$$K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_{12}^{b_1}\Delta_{23}^{b_2}\Delta_{31}^{b_3}\Delta_{123}^{c}}).$$

Since $K_0' = K_0(\sqrt{2})$ or $K_0(\sqrt{d_0})$ according as $d_0 = 1$ or not, we have $K_0' = K_0(\sqrt{A'})$ for some $A' = A(e_1', e_2', e_3')$. Therefore

$$K_0(\sqrt{\Delta_{12}^{b_1}\Delta_{23}^{b_2}\Delta_{31}^{b_3}\Delta_{123}^c}) = K_0(\sqrt{A'}).$$

Thus we have

(13)
$$\Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3} \Delta_{123}^{c} = A(e_1, e_2, e_3)$$

for some $e_i = 0$, 1. Because, if $K_0(\sqrt{m}) = K_0(\sqrt{A'})$ for a rational integer m and $A' = A(e'_1, e'_2, e'_3)$, then $\mathbf{Q}(\sqrt{m/A'})$ is equal to \mathbf{Q} or $\mathbf{Q}(\sqrt{m/A'})$ is a quadratic subfield of K_0 , and so

$$m = A' d_1^{e_1''} d_2^{e_2''} d_3^{e_3''} r^2$$

for some e_1'' , e_2'' , $e_3''=0$, 1 and some $r\in \mathbb{Q}$. Therefore, putting $e_i\equiv e_i'+e_i''\pmod 2$ (i=1,2,3), we have

$$m = A(e_1, e_2, e_3).$$

Conversely, if this equation (13) holds, then the square root of $\eta:=\eta_{12}^{b_1}\eta_{23}^{b_2}\eta_{31}^{b_3}\eta_{123}^c$ generates K_0' over K_0 , i.e., $K_0(\sqrt{\eta})=K_0'$. Thus, by H. Hasse [2, Satz 15] we have $Q_K=2$.

Secondly, we assume that $\sqrt{\Delta_{ij}} \in \mathbb{Q}(\sqrt{d_i}, \sqrt{d_j})$ for every (i, j). Then it does not hold that

$$\Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3} \Delta_{123}^{c} = A(e_1, e_2, e_3)$$

for any b_i , c, $e_i = 0$, 1.

In fact, by the assumption and by $\eta_{123} = \eta_{12}\eta_{36}\varepsilon_6^{-2}$ we have $K_0(\sqrt{\Delta_{ij}}) = K_0$ for every (i,j) and $K_0(\sqrt{\Delta_{123}}) = K_0(\sqrt{\Delta_{12}\Delta_{36}}) = K_0$. Consequently, we have

$$\Delta_{12}^{b_1}\Delta_{23}^{b_2}\Delta_{31}^{b_3}\Delta_{123}^{c} = d_1^{\alpha_1} d_2^{\alpha_2} d_3^{\alpha_3} \neq A(e_1, e_2, e_3),$$

where $\alpha_i = 0$ or 1.

In this case we can show that $Q_K = 1$ as follows:

Assume that $Q_K=2$. Then there is a unit $\eta\in\overline{E}_0$ such that $K_0(\sqrt{\eta})=K_0'$. By Lemma 1 we have $\eta^2=\varepsilon_1^{x_1}\varepsilon_2^{x_2}\cdots\varepsilon_7^{x_7}$ $(x_i\in\mathbf{Z})$. It follows from (2) of Lemma 3 that all x_i are even or odd.

If all x_i are even, then $\eta \in (E_0^*)^+$ and we have $\eta = \eta_{12}^{b_1} \eta_{23}^{b_2} \eta_{31}^{b_3} \eta_{123}^c \varepsilon_0^2$ for some b_i , $c \in \mathbf{Z}$ and $\varepsilon_0 \in E_0^*$. Since $\eta_{123} = \eta_{12} \eta_{36} \varepsilon_6^{-2}$, we obtain by the assumption that $\sqrt{\eta} \in K_0$, which contradicts that $K_0(\sqrt{\eta})$ is a quadratic extension over K_0 . Therefore, all x_i are odd. Then $\eta = \sqrt{\varepsilon_1 \varepsilon_1 \cdots \varepsilon_7} \prod_{i=1}^7 \varepsilon_i^{y_i}$ for some $y_i \in \mathbf{Z}$. Since $\varepsilon_1 \varepsilon_2 \ldots \varepsilon_7 = \eta_{13} \eta_{23} \eta_{36} \varepsilon_3^{-2}$, we have

$$\eta = \sqrt{\eta_{13}}\sqrt{\eta_{23}}\sqrt{\eta_{36}}\varepsilon_3^{-1}\prod_{i=1}^7\varepsilon_i^{\gamma_i}.$$

By (9) we have $\sqrt{\eta_{13}}r_{13}\sqrt{\Delta_{13}}=\xi_{13}$ for some $r_{13}\in \mathbb{N}$. And by the assumption we have $\Delta_{13}=d_1^{a_1}d_3^{a_3}$ for some a_1 , $a_3=0$, 1. Hence $\varepsilon_1^{a_1}\varepsilon_3^{a_3}\sqrt{\Delta_{13}}$ is totally positive. Moreover, from $\xi_{13}^{\sigma_1}<0$, $\xi_{13}^{\sigma_2}>0$, $\xi_{13}^{\sigma_3}<0$ it follows that $\varepsilon_1\varepsilon_3\xi_{13}$ is totally positive. Therefore

$$arepsilon_1 arepsilon_3 arepsilon_1^{a_1} arepsilon_3^{a_3} \sqrt{\eta_{13}} = rac{1}{r_{13}} \cdot rac{arepsilon_1^{a_1} arepsilon_3^{a_3}}{\sqrt{\Delta_{13}}} \cdot arepsilon_1 arepsilon_3 oldsymbol{x}_{13}$$

is totally positive, and then this unit is square in $K_2 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_3})$ (M. Hirabayashi and K. Yoshino [4, Proposition 2, IV]). So we can put

$$\varepsilon_1 \varepsilon_3 \varepsilon_1^{a_1} \varepsilon_3^{a_3} \sqrt{\eta_{13}} = \varepsilon_{13}^2$$

where ε_{13} is a unit of K_2 . In the same way we obtain

$$\varepsilon_2 \varepsilon_3 \varepsilon_2^{b_2} \varepsilon_3^{b_3} \sqrt{\eta_{23}} = \varepsilon_{23}^2$$
, $\varepsilon_3 \varepsilon_6 \varepsilon_3^{c_3} \varepsilon_6^{c_6} \sqrt{\eta_{36}} = \varepsilon_{36}^2$ $(b_i, c_i = 0, 1)$

where ε_{23} and ε_{36} are units of K_1 and K_6 , respectively. Therefore we have

$$\eta = \varepsilon_{13}^2 \varepsilon_{23}^2 \varepsilon_{36}^2 \prod_{i=1}^7 \varepsilon_i^{z_i} \qquad (z_i \in \mathbf{Z}).$$

Since $\prod_{i=1}^{7} \varepsilon_{i}^{z_{i}}$ is totally positive, we have, as before,

$$\prod_{i=1}^{7} \varepsilon_{i}^{z_{i}} = \eta_{12}^{\alpha_{1}} \eta_{23}^{\alpha_{2}} \eta_{31}^{\alpha_{3}} (\eta_{12} \eta_{36})^{\alpha_{4}} \varepsilon_{0}^{2}$$

for some $\alpha_i \in \mathbb{Z}$ and $\varepsilon_0 \in E_0^*$. By the assumption each η_{ij} is square in $\mathbb{Q}(\sqrt{d_i}, \sqrt{d_i})$ and so is η in K_0 , which is also contradiction.

LEMMA 8. If exactly one or two of $N(\varepsilon_i)$ (i = 1, 2, ..., 7) are +1, then we have $\overline{E}_0 = (E_0^*)^+ E_0^2$.

Proof. It is enough to prove the following two Cases (1) and (2).

Case (1):
$$N(\varepsilon_1) = \cdots = N(\varepsilon_5) = -1$$
 and $N(\varepsilon_6) = N(\varepsilon_7) = +1$

Case (1): $N(\varepsilon_1) = \cdots = N(\varepsilon_5) = -1$ and $N(\varepsilon_6) = N(\varepsilon_7) = +1$. Let $\eta \in \overline{E}_0$ and let $\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7}$ $(x_i \in \mathbf{Z})$. By (2) of Lemma 3 we see that x_1, x_2, \dots, x_5 are even. Then it follows from Lemma 4 that

$$\eta \eta^{\sigma_4} = \varepsilon_1^{x_1} \varepsilon_4^{x_4} \varepsilon_7^{x_7} = 1 \quad \text{in } K_4,$$

$$\eta \eta^{\sigma_5} = \varepsilon_2^{x_2} \varepsilon_5^{x_5} \varepsilon_7^{x_7} = 1 \quad \text{in } K_5.$$

Now, we assume that x_7 is odd. Then $\varepsilon_7 = 1$ in $K_4 = \mathbb{Q}(\sqrt{d_1}, \sqrt{d_4})$ and in $K_5 = \mathbf{Q}(\sqrt{d_2}, \sqrt{d_5})$. Therefore, $\Delta_7 = d_1^{e_1} d_4^{e_4}, \Delta_7 = d_2^{e_2} d_5^{e_5}$ for some e_1 , e_2 , e_4 , $e_5 = 0$, 1. These equations lead that $\Delta_7 =$ $(d_1 d_2 d_3)^{e_1} = d_7^{e_1}$, which is impossible (Kubota [5, Hilfssatz 9]). Thus x_7 is even. Similarly, by the equations

$$\eta \eta^{\sigma_3} = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \varepsilon_6^{x_6} = 1 \quad \text{in } K_3,$$

$$\eta \eta^{\sigma_6} = \varepsilon_3^{x_3} \varepsilon_6^{x_6} \varepsilon_7^{x_7} = 1 \quad \text{in } K_6,$$

we see that x_6 is even. Therefore all x_i are even and so $\eta \in E_0^*$. Thus $\overline{E}_0 \subseteq (E_0^*)^+ E_0^2$.

The inverse inclusion $(E_0^*)^+ E_0^2 \subseteq \overline{E}_0$ is shown by the equations (1) and (12).

Case (2): $N(\varepsilon_1) = N(\varepsilon_2) = \cdots = N(\varepsilon_6) = -1$ and $N(\varepsilon_7) = +1$. Let $\eta \in \overline{E}_0$ and let $\eta^2 = \varepsilon_1^{x_1} \varepsilon_2^{x_2} \cdots \varepsilon_7^{x_7}$ $(x_i \in \mathbf{Z})$. Then, by (2) of Lemma 3 we see that x_1, x_2, \ldots, x_6 are even. In the same way as in the proof of Case (1) we can show that x_7 is even and that $\overline{E}_0 = (E_0^*)^+ E_0^2$.

Proof of Theorems 2 and 3. We only prove Theorem 2, because we prove Theorem 3 in a similar way.

Suppose that $Q_K=2$. Then there exists a unit $\eta\in \overline{E}_0$ such that $K_0(\sqrt{\eta})=K_0'=K_0(\sqrt{A})$ where $A=A(e_1\,,\,e_2\,,\,e_3)$. By Lemma 8 and (2) of Proposition 1 we can put $\eta=\varepsilon_7^a\eta_{12}^{b_1}\eta_{23}^{b_2}\eta_{31}^{b_3}\varepsilon^2$ $(a\,,\,b_i\in {\bf Z}\,,\,\,\varepsilon\in E_0)$ and we have

$$K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_7^a \Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3}}).$$

Consequently,

(14)
$$\Delta_7^a \Delta_{12}^{b_1} \Delta_{23}^{b_2} \Delta_{31}^{b_3} = A(e_1, e_2, e_3).$$

Conversely, if this equation (14) holds, then a square root of $\eta := \varepsilon_7^a \eta_{12}^{b_1} \eta_{23}^{b_2} \eta_{31}^{b_3}$ generates K_0' over K_0 , i.e., $K_0' = K_0(\sqrt{\eta})$. Therefore we have $Q_K = 2$.

Proof of Theorem 4.

Case (1): $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = N(\varepsilon_4) = -1$ and $N(\varepsilon_5) = N(\varepsilon_6) = N(\varepsilon_7) = +1$.

Suppose that $Q_K=2$. Then there is a unit $\eta\in \overline{E}_0$ such that $K_0(\sqrt{\eta})=K_0'$. By Lemma 1 and (4_1) of Proposition 1 we have

$$\eta^2 = \eta_{23}^{x_2} \varepsilon_5^{x_5} \varepsilon_6^{x_6} \varepsilon_7^{x_7} \prod_{i=1}^7 \varepsilon_i^{2y_i}$$

where x_i , $y_i \in \mathbb{Z}$. From (2) of Lemma 3 it follows that $x_2 \equiv 0 \pmod{2}$. Hence by Lemma 2 we see that $x_5 \equiv x_6 \equiv x_7 \pmod{2}$.

In the case that $x_5 \equiv x_6 \equiv x_7 \equiv 0 \pmod{2}$, we have

$$\eta = \varepsilon_5^{a_5} \varepsilon_6^{a_6} \varepsilon_7^{a_7} \eta_{23}^b \varepsilon_0^2$$

for some a_i , b = 0, 1 and $\varepsilon_0 \in E_0^*$. Therefore,

$$K'_0 = K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_5^{a_5}\Delta_6^{a_6}\Delta_7^{a_7}\Delta_{23}^b})$$

and then

(15)
$$\Delta_5^{a_5} \Delta_6^{a_6} \Delta_7^{a_7} \Delta_{23}^b = A(e_1, e_2, e_3)$$

for some $e_i = 0, 1$.

In the case that $x_5 \equiv x_6 \equiv x_7 \equiv 1 \pmod{2}$, let

$$\eta_0 := \sqrt{\varepsilon_5 \varepsilon_6 \varepsilon_7} \prod_{i=1}^4 \varepsilon_i^{v_i} \quad (v_i = 0 \text{ or } 1)$$

and let η_0 be totally positive. Then we have $\eta = \varepsilon_5^{a_5} \varepsilon_6^{a_6} \varepsilon_7^{a_7} \eta_{23}^b \eta_0 \varepsilon_0^2$ where a_i , b = 0, 1 and $\varepsilon_0 \in E_0^*$. Since ε_5 , ε_6 , ε_7 , η_{23} , $\eta \in \overline{E}_0$, we see $\eta_0 \in \overline{E}_0$. Then it follows from Lemma 5 that

$$K_0(\sqrt{\eta_0}) = K_0(\sqrt{\xi^*(\eta_0)}) = K_0(\sqrt{\theta^*(\eta_0)}) = K_0(\sqrt{d^*(\eta_0)})$$

where $\xi^*(\eta_0)$, $\theta^*(\eta_0)$ and $d^*(\eta_0)$ is defined by (2), (3) and (4), respectively. Here we take $s_i=0$ or 1 (i=1,2,3) in accordance with

$$\xi^*(\eta_0) = (\sqrt{\eta_0} + \sqrt{\eta_0} \,^{\sigma_1})^2 \,, \quad \theta^*(\eta_0) = (\sqrt{\xi^*(\eta_0)} + \sqrt{\xi^*(\eta_0)} \,^{\sigma_2})^2 \,,$$
$$d^*(\eta_0) = (\sqrt{\theta^*(\eta_0)} + \sqrt{\theta^*(\eta_0)} \,^{\sigma_3})^2 \,,$$

respectively. Therefore

$$K_0' = K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_5^{a_5}\Delta_6^{a_6}\Delta_7^{a_7}\Delta_{23}^{b}d^*(\eta_0)})$$

and then we have

(16)
$$\Delta_5^{a_5} \Delta_6^{a_6} \Delta_7^{a_7} \Delta_{23}^b d^*(\eta_0) = A(e_1, e_2, e_3)$$

for some $e_i = 0, 1$.

Conversely, if the equation (15) or (16) holds, the square root of $\eta:=\varepsilon_5^{a_5}\varepsilon_6^{a_6}\varepsilon_7^{a_7}\eta_{23}^b$ or $\varepsilon_5^{a_5}\varepsilon_6^{a_6}\varepsilon_7^{a_7}\eta_{23}^b\eta_0$ generates K_0' over K_0 , respectively, i.e., $K_0'=K_0(\sqrt{\eta})$. Then we have $Q_K=2$.

Case (2):
$$N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = N(\varepsilon_7) = -1$$
 and $N(\varepsilon_4) = N(\varepsilon_5) = N(\varepsilon_6) = +1$.

Suppose that $Q_K = 2$. Then by Lemma 1 and (4_2) of Proposition 1 we have

(17)
$$\eta^2 = \varepsilon_4^{x_4} \varepsilon_5^{x_5} \varepsilon_6^{x_6} \eta_{123}^z \prod_{i=1}^7 \varepsilon_i^{2y_i}$$

where x_i , y_i , $z \in \mathbb{Z}$. Then it follows from (2) of Lemma 3 that $z \equiv 0 \pmod{2}$, and from Lemma 2 that $x_4 \equiv x_5 \equiv x_6 \pmod{2}$.

If $x_4 \equiv x_5 \equiv x_6 \equiv 0 \pmod 2$, then $\eta \in (E_0^*)^+$. By (4_2) of Proposition 1 we have $\eta = \varepsilon_4^{a_4} \varepsilon_5^{a_5} \varepsilon_6^{a_6} \eta_{123}^c \varepsilon_0^2$ for some a_i , c = 0, 1 and $\varepsilon_0 \in E_0^*$. Therefore,

(18)
$$K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_4^{a_4} \Delta_5^{b_5} \Delta_6^{b_6} \Delta_{123}^c}).$$

If $x_4 \equiv x_5 \equiv x_6 \equiv 1 \pmod{2}$, taking norms N_1 and N_4 of the equation (17), we have by Lemma 4 that

$$\eta^{1+\sigma_1} = \varepsilon_4^{x_4} \varepsilon_2^{2y_2} \varepsilon_3^{2y_3} \varepsilon_4^{2y_4} = 1 \quad \text{in } K_1,$$

$$\eta^{1+\sigma_4} = \varepsilon_4^{x_4} \varepsilon_1^{2y_1} \varepsilon_7^{2y_7} \varepsilon_4^{2y_4} = 1 \quad \text{in } K_4.$$

Then $\sqrt{\Delta_4}$ is contained in $K_1 \cap K_4 = \mathbb{Q}(\sqrt{d_2 d_3})$, and then $\Delta_4 = 1$ or $d_2 d_3$, which is impossible (T. Kubota [5, Hilfssatz 9]).

Thus, if $Q_K = 2$ we have the equation (18) and hence

(19)
$$\Delta_4^{a_4} \Delta_5^{a_5} \Delta_6^{a_6} \Delta_{123}^c = A(e_1, e_2, e_3)$$

for some $e_i = 0$, 1.

Conversely, when the equation (19) holds, we can show, as before, that $Q_K = 2$.

Proof of Theorem 5. (1) Suppose that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_3) = -1$ and that $N(\varepsilon_4) = \cdots = N(\varepsilon_7) = +1$. By Lemma 1 and (5_1) of Proposition 1 we have

(20)
$$\eta^2 = \varepsilon_4^{x_4} \varepsilon_5^{x_5} \varepsilon_6^{x_6} \varepsilon_7^{x_7} \prod_{i=1}^7 \varepsilon_i^{2y_i}$$

for any $\eta \in \overline{E}_0$ where $x_i, y_i \in \mathbb{Z}$. Then by Lemma 2 we have the following three cases:

- (i) $x_4 \equiv x_5 \equiv x_6 \equiv x_7 \equiv 0 \pmod{2}$;
- (ii) Among x_4 , x_5 , x_6 and x_7 , exactly one x_i is even;
- (iii) $x_4 \equiv x_5 \equiv x_6 \equiv x_7 \equiv 1 \pmod{2}$.

Case (i). We have $\eta \in (E_0^*)^+$ and we may put $\eta = \varepsilon_4^{a_4} \varepsilon_5^{a_5} \varepsilon_6^{a_6} \varepsilon_7^{a_7}$ $(a_i \in \mathbb{Z})$. Then we obtain, as before,

$$K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_4^{a_4}\Delta_5^{a_5}\Delta_6^{a_6}\Delta_7^{a_7}}).$$

Case (ii). We first consider the case that $x_4 \equiv x_5 \equiv x_6 \equiv 1$, $x_7 \equiv 0 \pmod{2}$. Taking norms N_1 and N_4 of (20), we have

$$\eta^{1+\sigma_1} = \varepsilon_4^{x_4} \varepsilon_2^{2y_2} \varepsilon_3^{2y_3} = 1 \quad \text{in } K_1 = \mathbf{Q}(\sqrt{d_2}, \sqrt{d_3}),$$

$$\eta^{1+\sigma_4} = \varepsilon_4^{x_4} \varepsilon_1^{2y_1} \varepsilon_7^{2y_7} = 1 \quad \text{in } K_4 = \mathbf{Q}(\sqrt{d_1}, \sqrt{d_4}).$$

Then, as before, $\sqrt{\Delta_4}$ is contained in $\mathbb{Q}(\sqrt{d_4})$, which is impossible. Next we consider the other cases, for example, $x_4 \equiv x_5 \equiv x_7 \equiv 1$, $x_6 \equiv 0 \pmod{2}$. Let

$$\eta_0 := \sqrt{\varepsilon_4 \varepsilon_5 \varepsilon_7} \prod_{i=1}^3 \varepsilon_i^{v_i} \qquad (v_i = 0 \text{ or } 1)$$

and let η_0 be totally positive. Then we can prove the assertion in the same way as in the proof of Case (1) of Theorem 4.

Case (iii). As before, taking norms N_1 , N_2 , N_3 and N_7 of (20), we obtain

$$\Delta_4 = d_2 \text{ or } d_3; \quad \Delta_5 = d_3 \text{ or } d_1; \quad \Delta_6 = d_1 \text{ or } d_2;$$

 $\Delta_4 \Delta_5 \Delta_6 = d_2 d_3, d_3 d_1 \text{ or } d_1 d_2,$

which is impossible.

(2) Suppose that $N(\varepsilon_1) = N(\varepsilon_2) = N(\varepsilon_6) = -1$ and the others $N(\varepsilon_i) = +1$. We have by (5₂) of Proposition 1

$$\eta^2 = \varepsilon_3^{x_3} \varepsilon_4^{x_4} \varepsilon_5^{x_5} \varepsilon_7^{x_7} \eta_{12}^{x_1} \prod_{i=1}^7 \varepsilon_i^{2y_i}$$

for any $\eta \in \overline{E}_0$ where x_i , $y_i \in \mathbf{Z}$. By (2) of Lemma 3 we have $x_1 \equiv 0 \pmod{2}$. Therefore we obtain, as before, the following cases:

- (i) $x_3 \equiv x_4 \equiv x_5 \equiv x_7 \equiv 0 \pmod{2}$;
- (ii) Among x_3 , x_4 , x_5 and x_7 , exactly one x_i is even;
- (iii) $x_3 \equiv x_4 \equiv x_5 \equiv x_7 \equiv 1 \pmod{2}$.

By the same argument in (1) of this proof we can prove the assertion for each case.

Proof of Theorem 6. In the following we only consider the first case: $N(\varepsilon_1) = N(\varepsilon_2) = -1$, since the other cases are proved in the same way.

Let

$$\eta_0 := \sqrt{\prod_{N(\varepsilon_i)=+1} \varepsilon_i^{u_i}} \cdot \prod_{N(\varepsilon_i)=-1} \varepsilon_i^{v_i} \quad (u_i, v_i = 0 \text{ or } 1)$$

and let η_0 be totally positive.

For any $\eta \in \overline{E}_0$ we may put $\eta = \varepsilon_3^{a_3} \cdots \varepsilon_7^{a_7} \cdot \eta_0^f$ where a_i , f = 0 or 1. Then we have, as before,

$$K_0(\sqrt{\eta}) = K_0(\sqrt{\Delta_3^{a_3} \cdots \Delta_7^{a_7} d^*(\eta_0)^f}).$$

Thus we obtain that $Q_K = 2$ if and only if

$$\Delta_3^{a_3}\cdots\Delta_7^{a_7}d^*(\eta_0)^f=A(e_1,e_2,e_3),$$

as desired.

REFERENCES

- [1] F. Halter-Koch, Arithmetische Theorie der Normalkörper von 2-Potenzgrad mit Diedergruppe, J. Number Theory, 3 (1971), 412-443.
- [2] H. Hasse, Über die Klassenzahl abelscher Zahlkörper, Academie Verlag, Berlin, 1952 (reproduction: Springer Verlag, (1985)).
- [3] M. Hirabayashi and K. Yoshino, Remarks on unit indices of imaginary abelian number fields II, Manuscripta Math., 64 (1989), 235-251.
- [4] _____, Unit indices of imaginary abelian number fields of type (2, 2, 2), J. Number Theory, 34 (1990), 346-361.
- [5] T. Kubota, Über den Bizyklischen Biquadratischen Zahlkörper, Nagoya Math. J., 10 (1956), 65-85.
- [6] H. Wada, On the class number and the unit group of certain algebraic number fields, J. Fac. Sci. Univ. Tokyo, 13 (1966), 201-209.

Received July 30, 1991.

Kanazawa Institute of Technology Ishikawa 921, Japan