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THE INDEX OF TRANSVERSALLY ELLIPTIC
OPERATORS FOR LOCALLY FREE ACTIONS

JEFFREY FOX AND PETER HASKELL

Let a connected unimodular Lie group G act smoothly and locally
freely on a closed manifold X. Assume that the isotropy groups of
the action are torsion-free. Let K be the maximal compact subgroup
of G. Let T be a (j-invariant first order differential operator on X
that is elliptic in directions transverse to the G-orbits. Using Kas-
parov products over C* G, we prove index formulas equating indices of
elliptic operators on K\X with linear combinations of multiplicities
of ^-representations in kernel(Γ) - kernel(Γ*).

Introduction. Let a connected unimodular Lie group G act smooth-
ly on a closed manifold X. Let T be a (/-invariant first order dif-
ferential operator on X that is elliptic in directions transverse to the
G-orbits. Kernel(Γ) and kernel(Γ*) need not be finite-dimensional,
but they are direct sums of irreducible (/-representations, each occur-
ring with finite multiplicity. (We work with assumptions, described in
§2, that guarantee that we have Hubert space structures and unitary
(/-representations as needed.) The following is then an interesting in-
dex problem. For each irreducible (/-representation π , calculate the
difference:

multiplicity of π in ker(Γ)- multiplicity of π in ker(Γ*) .

M. Atiyah and I. Singer studied the index theory of invariant op-
erators elliptic in directions transverse to the orbits of a compact Lie
group action [Atl]. They phrased the index problem as the computa-
tion of a distribution on G. Let α + , respectively a~ , be the represen-
tation of G on ker(Γ), respectively ker(Γ*). The index distribution
is then the functional on C°°(G) defined for / e C°°(G) by

M. Vergne has now given a formula for this distribution in a neigh-
borhood of the identity [Ve]. The foundations of this approach to the
index problem extend to noncompact G [Sin] [NeZi].

In this paper we focus on the direct calculation of the difference
of multiplicities when G acts locally freely. For a locally free action
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the stabilizer of any point is discrete. Because we also assume that
the stablilizers are torsion-free, nothing interesting is lost by restrict-
ing attention to noncompact G. In §2 we discuss several classes of
examples of the situation we study.

Our approach to the multiplicity problem is the following. In §2
we create from the transversally elliptic operator T two Kasparov
(C*G, C)-bimodules. One bimodule involves the domain and range
Hubert spaces of T and the operator T. The other involves just the
kernels of T and Γ*. The final theorem of the section establishes
that the bimodules represent the same class in KK(C*G, C). In this
introduction we denote this class by

[T]eKK(C*G,C).

The next step is motivated by the idea that certain representations of
G define classes in KK(C, C*G) that can be represented by Kasparov
(C, C*G)-modules constructed from Dirac operators on K\G. Here
K is a maximal compact subgroup of G. The bimodules constructed
from Dirac operators are discussed more fully in § I.e. Different Dirac
operators arise by twisting a given Dirac operator by homogeneous
vector bundles defined by ΛΓ-representations V. In this introduction
we denote the resulting classes in K theory by

[Dv]eKK(C, C*G).

For a given irreducible (/-representation π, let mτ{π) denote the
solution to the original index problem

mτ{π) = mult .(π, ker(Γ)) - mult .(π, ker(Γ*)).

Suppose [Dy] is related to π as in the preceding paragraph. We
are interested in the relationship between the Kasparov product

[Dv]®c*G[T]eKK(C,C) = Z

and mτ{n). We discuss this relationship in some detail. It is an
equality in some cases. Moreover, our approach provides a way to
calculate the above Kasparov product. Our reasoning applies to any
Dirac operator Dv on K\G.

In §3 we use the (C*G, C)-bimodule defined by the domain and
range Hubert spaces of T and the operator T, to calculate [Dγ]®c*G

[T]. Theorem 3.18 states that this product equals the class in
KK(C, C) defined by an explicitly described elliptic operator on the
compact manifold K\X. In this introduction let us denote this elliptic
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operator by P(DV , T). Using the natural isomorphism KK(C, C) =
Z, we see that

[Dv] ®C*G [T] = index(P(Dy, T)).

The Atiyah-Singer index theorem calculates the value of this index.
In §4 we calculate the same Kasparov product. This time we use the

(C*G, C)-bimodule defined by kernel(Γ) and kernel(Γ*). Now the
result is an example of a basically algebraic construction that may be
called the index of the graded CCR representation ker(Γ) © ker(Γ*)
with respect to the elliptic operator Dv . In this introduction we de-
note this quantity by

Index(ker(Γ) © ker(Γ*) Dv).

We begin §5 by re-emphasizing in Theorem 5.1 that the Kasparov
products of the two preceding sections are equal, i.e.

index{P(Dv, T)) = index(ker(Γ) © ker(Γ*) Dv).

We then investigate the implications of this equality. We show that

index(ker(Γ) © ker(Γ*) Dv) = J ^ Index(β © 0 Dv). mτ(β).

βed

For a given Dy and T, there are finitely many nonzero terms in the
above summation over the unitary dual of G. However, in order for

indcx(P{Dv, T)) = ] Γ Index(β Θ 0 Dv) mτ(β)

βed

to be a useful multiplicity formula, we need explicit information about
the coefficients Index(/? Θ 0 Dy).

In §6 we discuss the calculation of these coefficients. If G is ame-
nable, each discrete series representation π defines a class in
KK(C, C*G), and each such class can also be represented by a Dirac
operator, which we denote here by Dy^ . Then

1 if β = π,
Index(/? Θ θ ; £V(π))r

and our index formula becomes

index(P(ZV(π), T)) = mτ(τt).

The same phenomenon occurs for many other discrete series repre-
sentations, including all integrable discrete series representations of
linear semisimple G.
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At the other extreme, if π is an irreducible unitary principal
or complementary series representation of a semisimple G, then
Index(π © 0 Dy) = 0 regardless of which Dirac operator is used.
Our approach never provides information about mτ{n) for such π.
The vanishing of these coefficients is a consequence of Proposition
6.9, which states roughly that if a representation π can be connected
to infinity by a path of CCR representations in the space of all repre-
sentations, then π defines the zero class in KK(C*G, C).

In many cases the calculation of Index(/? Θ 0; Dv) can be done
using purely representation-theoretic methods. Nonetheless K the-
ory, in particular Proposition 6.9, provides a useful way to organize
and extend these methods. In §6 we illustrate this idea by calculating
Index(/?Θθ; Dγ) for some irreducible representations β of SU(/i, 1)
that occur in the decomposition at the endpoint of a unitary comple-
mentary series of representations. For such β our methods provide
some information about mτ{β). In general our methods are con-
strained by topological properties of the unitary dual of G.

Finally in §7 we depart from the main thrust of the paper, but
not substantially from its spirit or techniques, to prove a multiplicity
formula for discrete series representations in quasi-regular representa-
tions of amenable, locally compact, second countable, connected topo-
logical groups. This result generalizes results appearing in [MoWo] and
[R2].

REMARK. Our index-theoretic multiplicity formula generalizes the
compact case of a formula [M] for the index of a Dirac operator on
a locally symmetric space. We plan to prove a generalization of the
noncompact case in another paper. In fact our paper is written with
the point of view that the index-theoretic multiplicities we calculate
constitute information that is essentially algebraic in nature. Perhaps
the clearest way to restate this vague intuition is that the numbers we
compute are invariants of the class in KK{C*G, C) defined by the
transversally elliptic operator. Our index theorem is the statement
that Kasparov products over C*G of Dirac operators with different
cycles representing this class lead naturally to different interpretations
of these invariants. This point of view puts our work in the same
setting as index theorems on (noncompact) locally symmetric spaces.
With this in mind, we present in §3 a direct, largely self-contained
calculation of the Kasparov product over C*G of a Dirac operator
and a transversally elliptic operator. However, it is worth noting that
finer analytic information about the transversally elliptic operator is
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contained in the class it represents in KK(C*(G, C{X)), C), [C]. In
the compact case that we consider here, one can show that the re-
sult of §3 is equivalent to the calculation of a Kasparov product over
C*(G, C(X)) that is a special case of results of [HiSk]. (The possible
absence of l£-orientability can be handled by standard techniques.)

REMARK. Because it is undesirable to assume that the domain and
range Hubert spaces for T, or even kernel(Γ) and kernel(Γ*), are
weakly contained in the regular representation of G, we must work
with C*G not C*G. This suggests a need for a better understanding
of Dirac induction to the K theory of the full group C* algebra.

REMARK. TO handle situations where K\G fails to have a G-
invariant spin structure, one may pass to a double cover G1 of G.
Then one needs to allow a constant central torsion factor in the iso-
tropy groups of the G'-action on X. The reasoning in this paper
extends to this case. In general, we expect that the results of this
paper extend to cases where the isotropy groups of (7's action on X
have nonconstant torsion. However, this extension will require the
use of index theory on an orbifold K\X.

1. Background.

l.a. KK theory and Kasparov products. We recall the definition
of KK theory and a method for calculating Kasparov products. G.
Kasparov [K4] developed KK theory and its product. A. Connes and
G. Skandalis [CSk], [Sk] developed the connection approach to Kas-
parov products. A detailed exposition of KK theory and its product
appears in [Bl].

DEFINITION 1.1. For C* algebras A and B, the set of Kasparov
{A, l?)-bimodules, %{A, B), is the set of triples (E, F, φ) where:

1. E = E° Θ Eι is a countably generated Z/2Z-graded Hubert
5-module;

2. φ is a homomorphism φ: A-+ &(E) the algebra of adjointable
operators on E (we often omit φ from the notation, especially when

3. F is a degree-one element of &{E) satisfying for each a e A:

(a) φ(a)(F2 - /) 6 Jf{E), the algebra of compact operators on E
(b) [φ(a), F] e 3Γ{E)
(c) φ{a){F-F*)eX{E).

DEFINITION 1.2. KK(A, B) equals &(A, B), the set of (co)cycles
for {A, B), module the equivalence relation generated by homotopy.
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Tensor product of modules. Suppose (E\, FΪ9φ) e ^(A, B) and
(E2, F2, σ) G ί?(2?, D). Let is = £Ί Θ^ E2 be the graded tensor
product. The inner product on E is given by the formula

(1.3) (xι ® x2, y\ ® >^2)^ = (*2, σ ( ( * i , yi)^)CV2))£2 •

For x eEi there is an operator Qx e <2?{E2, E) defined by Qx(y) =
x®y. Its adjoint Q* satisfies Q*(z ®y) = σ((x, z)^)(j;).

DEFINITION 1.4. Use the notation of the preceding paragraph. An
operator F e ^{E) is called an /^-connection for E\ if for every
x eE\, with x of pure degree,

1. QxoF2-(-
2. F2oQϊ-(-

DEFINITION 1.5. Use the notation of the preceding paragraph. As-
sume A is separable. Let φ' be the map A —• <S*{E) arising naturally
from φ. (E, F, φr) is called a Kasparov product of (E\, Fγ, φ) and
(E2, F 2 , σ) if:

1. F is an i^-connection for Eγ
2. (E,F9φr)e?(A,D) 9

3. for each α e A φ'{ά)[Fx ® /, F]^(α)* > 0 mod^(E).

NOTATION 1.6. If ( £ , .F, <//) satisfies the conditions of Definition
1.5, w e w r i t e (E 9 F 9 φ') = (Ex 9FΪ9φ) ®B (E2,F2, σ).

T H E O R E M 1.7 [Sk]. ([(E{, ^ , 0) ] , [(E2, F 2 , <τ)]) ~> [ ( ^ , ^ , σ)

w a well-defined map KK(A,B) x KK{B,D) ->
KK(A,D). We often denote the element of KK{A, D) by [(EΪ9 Fu φ)]
®B[{El9Fl9σ)\.

l.b. Completely continuous representations.

LEMMA 1.8. Let φ be a representation of a C* algebra A in £?{H)
for some Hilbert space H. Assume that φ(a) e X{H) for each aeA.
Then

( 0 θ

Proof Check the conditions in the definition of %(A, C).

REMARK 1.9. Let π be a continuous unitary representation of a
locally compact group G on a Hilbert space H. For each f eLι(G)
there is an operator σπ(f)e &(H) defined by

*(/)= ί f(gMg)dg.
JG
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The map σπ: L
ι(G) —• J?(H) extends to a continuous homomor-

phism σπ: C*G —• <2f{H). The image σπ(C*G) is contained in the
norm closure of σπ(Lι(G)).

LEMMA 1.10. In the setting of the preceding remark, assume σπ(a) e
JP(H) for every a e C*G. Then

jj] , σ π θ
If σπ factors through C*Gf the above data define an element of

Proof. This lemma is a special case of Lemma 1.8.

I.e. Dirac induction. Let G be a connected Lie group with maxi-
mal compact subgroup K. Assume that the action of K on Te(K\G)
is spin. (If not satisfied by G, this assumption is satisfied by a double
cover of G, which can be used in the arguments of this paper. Alter-
natively there is a version of Dirac induction that does not require the
spin assumption [Kl].) Assume that the dimension of K\G is even.
(There is also a version of Dirac induction for dim(K\G) odd.)

Let V be a representation of K, and let Dγ be the Dirac operator
on K\G twisted by the bundle V x% G. Let S be the fiber at the
identity coset of the spin bundle for K\G. Then Dy is defined on
smooth compactly supported sections of (S® V) x# G. Let E$®v be
the completion of this set of sections in the norm associated with the
C*G-valued inner product defined on these sections in [K2]. One can
define an operator Dvo(l+D^)-1/2 e^f{Es<s>v) [K2]. This operator
has degree one with respect to the grading inherited from the usual
grading on S.

LEMMA 1.11 [K2]. (ESQV, &V ° (1 +D2

V)-1'2) e

DEFINITION 1.12. The map R(K) -> KK(C, C*(?) defined by

V-+[(Es*v,Dvo(l+l%)-1'2)]

is called Dirac induction.

REMARK 1.13. Using a QG-valued inner product and proceeding
as above, one can define a map R(K) —> KK{C, C*G) that is also
called Dirac induction. If p: C*G —* C*G is the natural map arising
from restriction to the regular representation and if /?*: KK(C, C*G)
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-• KK(C, C*G) is the associated map on K theory, then /?* o (C*G
version of Dirac induction) equals the C*G version of Dirac induc-
tion.

REMARK 1.14. It is often convenient to view sections of (S® V) x#
G -> K\G as S® F-valued functions on G, f\G^S®V, satisfying
the A'-invariance property f(kg) = f(g) k~x. From this point of
view, the C*(?-valued inner product and right C*(7-action on Es® γ
arise by completion in the C*G-norm of the following. For f\ and
fι smooth compactly support K- invariant (S Θ F)-valued functions
on G and for / e Q°(G),

(A,fiKg)= f(Λ(sg-ι),f2(s))s®vds= f{fi(s)9f2(sg))s*vds,
JG JG

(fι-f)(g)= ί fι(gs-ι)f(s)ds.
JG

The element of I?(C, C*G) that is implicit in Remark 1.13 can be
viewed in an analogous way.

NOTATION 1.15. We denote the set of smooth, compactly supported,
AΓ-invariant, (S ® F)-valued functions on G by

REMARK 1.16. Give g, the Lie algebra of G, a metric that is in-
variant under the adjoint action of K. Let Q = t Θ p, where t is
the Lie algebra of K and p is the orthogonal complement of t. Let
{y\ 5 9 yn) be an orthonormal basis for p. Let cl(Y/) be the linear
map on S ® V defined by Clifford multiplication by 7Z on S and
the identity on V. For / e CC°°(G, S ® V)κ, the identification of
Remark 1.14 identifies (Dv(f))(g) with

d

i=\ ΐ=0

l.d. Functional calculus. We recall a technique that can be used
in computing Kasparov products in situations where it is not obvious
how to apply the standard calculus of pseudodifferential operators.
This technique is used to construct Kasparov bimodules in [BaJ] and
to compute Kasparov products in [FHRa]. The observations behind
the technique are that the Riemann integral (1/π) /0°° λ~χl2{x+λ)~ι dλ
equals x~χl2 and that convergence is uniform in x > 1. By uniform
convergence we mean that for any δ > 0 there exist ε, N and m
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such that for any x > 1 any Riemann sum R of mesh length < m

for (l/π)ff λ-V2(x + λ)-ιdλ, 0 < ε' < e < N < Nf, satisfies
\R-χ-W\<δ.

Let H be a Hubert space. Let P be a self-adjoint operator on H.
Then

/ΌO

(1.17) ( l + P 2 ) - 1 / 2 /

in the sense of the norm limit of functional calculus expressions arising
from Riemann sums for approximating proper integrals for

po

/

Jo
/
o

2. The K homology class of a transversally elliptic operator. In this
section we discuss transversally elliptic pseudodifferential operators
and the classes they represent in Kasparov's operator ^-theory. We
assume that G is a connected unimodular Lie group acting smoothly
on a closed manifold X. We assume that the action of G is locally
free (discrete isotropy groups) with torsion-free stabilizers. T is a
first-order G-invariant transversally elliptic (Definition 2.3) differen-
tial operator mapping sections of a G-vector bundle over X sections
of a G-vector bundle over X. We assume that the vector bundles have
G-invariant Hermitian structures, that X has a G-invariant measure
defined on a σ-algebra containing the Borel sets, and that the sets of
smooth sections imbed in the Hubert spaces of L2 sections defined
using the measures and the Hermitian structures. G acts by unitary
transformations on the Hubert spaces. Let T also denote the L2 clo-
sure of the T defined on smooth sections. The Hubert space adjoint
of T is denoted Γ*. The main purpose of this section is to exhibit
two elements of &(C*G, C) which are determined by T and which
represent the same class in KK(C*G, C).

DEFINITION 2.1. In the situation described above, assume Γ G J ,

the Lie algebra of G. Let Ϋ be the vector field on X defined by

) - f(x)]/t.)

Let π: T*X —• X be the natural projection from the cotangent bundle.
Define T£X to be

{weT*X:w(Ϋ\π{w)) = 0

REMARK 2.2. T£X is a closed G-invariant subset of T*X. X c
*X.
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DEFINITION 2.3. A G-invariant pseudodifferential operator on X
is said to be transversally elliptic if its principal symbol is invertible
on T*X-X.

The preceding definitions are used for arbitrary smooth G actions,
but we restrict our attention to actions in which the stabilizers are dis-
crete and torsion-free. When G is compact, this restriction limits us
to free actions. When G is not compact, there are many more interest-
ing examples. We discuss a few, complete with G-invariant first-order
transversally elliptic operator T mentioned in the first paragraph.

REMARK 2.4. Let Γ be a discrete torsion-free cocompact subgroup
of G. Let X = G/Γ. Use Haar measure do define L2{X). Let T be
the zero operator from L2(X) to the zero Hubert space.

EXAMPLE 2.5. For G, Γ, and X as above, let W be a finite-
dimensional unitary representation of Γ. Use Haar measure and a
Γ-invariant metric on W to define L2 sections of the bundle G x
mτW —• G/Γ. Let T be the zero operator from L2 sections of this
bundle to the zero Hubert space.

EXAMPLE 2.6. For G and Γ as above, let M be a closed Riemann-
ian manifold on which Γ acts by isometries. Let X = Gx^M. Sup-
pose that WQ and W\ are Γ-vector bundles over M with Γ-invariant
metrics and that V is a first-order Γ-invariant elliptic differential op-
erator from sections of WQ to sections of W\. G xγ WQ , respectively
G Xr W\, is a vector bundle over X. We can identify sections σ of
GxyWi with Γ-invariant functions fσ defined on G and taking val-
ues in the set of sections of W\. (We call a function fσ Γ-invariant
if for all g e G and γ e Γ fσ(gγ) = 7~\fσ{g).) Using the identifi-
cation we can define a transversally elliptic operator T from sections
of G xp WQ to sections of G xp W\ by

This identification also allows us to use Haar measure on G and the
natural inner product on sections of WQ , respectively W\, to define
the Hubert space of I? sections of G XYWQ ^ G xγ M, respectively
GxτWx-+GxτM.

REMARK 2.7. Compare the foliation by G-orbits in this and suc-
ceeding examples to the Kronecker foliation of the torus.

REMARK 2.8. Later in this section we will show how to use the data
G, X, and T to define two elements of &(C*G, C). We will show
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that these two elements represent the same class in KK(C*G, C) (see
Theorem 2.29). In this remark we state these results in the context of
Examples 2.5 and 2.6.

The data of Example 2.6 define an element

Here the action of C*G on the Hubert space is the one associated to
the unitary representation of G on the Hubert space by Remark 1.9.
The Γ-action in Example 2.6 respects the decomposition of {L2 sec-
tion of WQ -» M} into eigenspaces of T*V and the decomposition
of {L2 sections of W\ —• M} into eigenspaces of T'Tf*. Let ^o b e

the O-eigenspace of V*V, viewed as a Γ-representation. Let ^o be
the O-eigenspace of T'V*, viewed as a Γ-representation. G, Γ, and
^o or % are data of the type described in Example 2.5, and they
define elements

and (L2{G XΓ%) θθ, [J

of ^(C*G, C). The C*G action arises as above. The content of
Theorem 2.29, as applied to these examples, is that the cycle (2.8i)
and the difference of the cycles appearing in (2.8ii) represent the same
class in KK{C*G,C).

EXAMPLE 2.9. Consider the product of our Lie group G with an-
other unimodular connected Lie group G\. Let H\ be a compact
subgroup of G\. Let V be a G\ -invariant first-order elliptic differ-
ential operator between sections of Hermitian G\ -vector bundles over
H\\G\. For instance if Hγ is a compact Cartan subgroup in G\, V
could be a Dolbeault operator. If H\ is a maximal compact subgroup
of a noncompact G\, and if H\\G\ has a G\-invariant spin structure,
then V could be a Dirac operator.

Let Γ be a discrete, cocompact, torsion-free subgroup of G x G\.
Let X = (G x (Hχ\Gι))/Γ, with the natural left G-action. Tensoring
V with the identity operator on functions on G, we define a dif-
ferential operator on G x (H\\G\) that is invariant under the right
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G x G\ -action. The descent of this operator to X is the operator
we call T. The Hermitian G\-bundles on (Hχ\G\) define Hermitian
G x G\-bundles over G x (H\\G\), which descend to define Hermi-
tian bundles over X. Haar measure on G x G\ determines a right
G x G\-invariant measure on G x {H\\G\), which descends to define
a measure on X. The Hermitian structure on the bundles and the
measure on X provide what is needed to define the Hubert spaces of
our construction.

The foliation of X by G-orbits is most interesting when Γ is an
irreducible lattice in G x Gλ [Z, §2.2]. Let SO(2, 1), respectively
SO(3), be the subgroup of SL(3, R) leaving invariant the form x2 +
y2- z2, respectively x2 + y2 + z2. The construction called restriction
of scalars provides an irreducible lattice isomorphic to SO(2, 1)Z[V^]
in SO(2, 1) x SO(3) [Z, §2.2, ex. 5.2.12, §6.1]. Because SO(3) is
compact, this lattice is cocompact [BH-C]. There is a sublattice Γ of
finite index that is torsion-free [B]. In the notation of our example, we
can take G = SO(2, 1) and G\ = SO(3). An analogous construction,
involving restriction of scalars and using the form x2 - \fϊy2 - \/3z2,
provides an example in which both G and G\ are noncompact.

We now turn to a general discussion of the G, X, and T described
in the first paragraph of this section. We let F o and F! denote the
G-vector bundles over X mentioned in that paragraph.

NOTATION 2.10. We use F o and Fi to define a Z/2-graded complex
vector bundle F = F Q Θ F I over X. L2(F) is the graded Hubert space
of sections of this bundle. ZΓ = (£ τ*) is a degree-one unbounded
operator on L2(F).

DEFINITION 2.11. Give g, the Lie algebra of G, a metric that
is invariant with respect to the adjoint action of K. Here K is a
maximal compact subgroup of G. Denote by t the Lie algebra of K,
and by p the orthogonal complement of i in Q . Let {X\, . . . , X^} be
an orthogonal basis for 6, and let {Y\, . . . , Yn} be an orthonormal
basis for p. Denote by Δ the element of the universal enveloping
algebra defined by Σ l i Xf + Σ"=i Y} -

LEMMA 2.12. If π is a unitary representation of G on a Hilbert
space H, then the restriction of π(l - Δ) to the differentiable vectors
of π defines an essentially self adjoint operator on H.

Proof. This lemma is a theorem of [NSt]. One can also consult [W,
Thm. 4.4.4.3].
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REMARK 2.13. We will without further comment use π(l - Δ) to
denote the closure of the restriction of π(l - Δ) to the differentiable
vectors of π.

LEMMA 2.14. If π is a unitary representation of G, then π(l - Δ)
is a positive operator.

Proof. See [W].

LEMMA 2.15. Let π be a unitary representation of G on a Hubert
space H.

(a) For each f e Q°(G) 3/ ' and f" such that σπ(f) = σπ(f) o
(π(l -Δ))" 1 and σπ(f) = (π(l-A))-ισπ(f»).

(b) In fact σπ(f)e3?(H) VfeC*G (i.e. π is a completely contin-
uous representation) if and only if π( 1 —Δ) has a completely continuous
inverse.

Proof See [W, vol. 1, pp. 255, 304]. (We take adjoints to get (a) in
the first form.) The full strength of (b) is due to [NSt].

NOTATION 2.16. Denote by p the representation of G on L2(¥),

LEMMA 2.17. />( 1 — Δ) + £7~2 defines a second-order elliptic operator
on X. (With respect to the grading on C°°(F), this operator has degree
zero.)

Proof. Recall that T is transversally elliptic and that p(\ - Δ ) is
elliptic along the (j-orbits. The full ellipticity of p(\ - Δ) + ^ 2 is
a consequence of calculations with principal symbols and of the non-
negativity of ρ(\ - Δ) and of

LEMMA 2.18. View ρ(\ - Δ) + ̂ 2 as an unbounded operator on
L2(F) with domain C°°(F), the smooth sections of F. Then p(l-A)
+ ZΓ1 is symmetric.

Proof. Recall that π(X)* is an extension of π{-X) for X e g [W].
Calculate using Stokes' theorem on the closed manifold X.

LEMMA 2.19. (a) ρ(l - A) + <T2, with domain C°°(F), is essentially
self-adjoint on L2(F) (we use the same notation ρ(\ - Δ) + ZΓ2 to
denote its closure).

(b) p(\ — Δ) +^2 has compact inverse;



54 JEFFREY FOX AND PETER HASKELL

(c) L2(¥) = ΘχHχ (Hilbert space direct sum) where:

(i) Hλ is the eigenspace for ρ(\-A)+^2 associated to eigenvalue

λ;
(ii) each Hχ is a finite-dimensional subspace of C°°(F)

(iii) each λ e [1, oo], and WV {λ : λ < N} is finite.

Proof By Lemmas 2.17 and 2.18, (a) follows from [T, p. 54]. The
rest of the lemma is a consequence of Rellich's lemma, elliptic regu-
larity, and the nature of compact self-adjoint operators, as well as the
observation that p(-A) and ZΓ2 are non-negative

LEMMA 2.20. There exists an orthonormal basis of L2(F) consisting
of eigenvalues of ZΓ2 that are contained in C°°(F).

Proof. On C°°(F) F2 commutes with p{\ -A) + ^ 2 . Thus
maps each Hχ to itself. ΣΓ2 is symmetric on C°°(F). Thus each Hχ
has an orthonormal basis of eigenvalues for

LEMMA 2.21. £Γ2 is essentially self-adjoint on C°°(F).

Proof. Each eigenvector described in Lemma 2.20 is an analytic
vector for ZΓ2. Apply Nelson's analytic vector theorem [ReSi].

LEMMA 2.22. Each Hχ has an orthonormal basis of vectors that
are eigenvectors for both ρ{\ - Δ) and ZΓ2. Consequently each Hχ
decomposes as ®μjVHμ^ where for each μ and v

HμίU = {he L 2 ( F ) : />(1 - Δ)Λ = μh and^h = vh}.

Proof. On C°°(F) p{\ - Δ ) is symmetric and p(l -A) commutes
with p{\ - A) + F2 and with

COROLLARY 2.23. The spectra of ρ{\ - A) and of ZΓ2 are pure
point.

Proof. This follows from Lemmas 2.19 and 2.22.

PROPOSITION 2.24. Let <^o be the eigenspace for ^ associated to
an arbitrary eigenvalue v0 of !J~2. Then the restriction of p(l-A) to
HVQ has compact inverse.

Proof. Recall that p(-A) and ZΓ2 are non-negative. Fix ι/0 ^ 0 =
@μHμίUo where the Hμ^o are those described in Lemma 2.22.
Fix μ 0 .
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Dimension I φ ^,i/ 0 I < dimension I φ H

The latter dimension is finite by Lemma 2.19, where the Hχ are de-
fined.

We record at this point a lemma on symmetric transversally ellip-
tic first order differential operators. We will not pursue this subject
further in this paper.

LEMMA 2.25. Let G, X, and T be as in the first paragraph of this
section except that we assume T maps sections of an ungraded vector
bundle F to sections of F and that T is symmetric on C°°(F). Then
T is essentially self-adjoint on C°°(F) and the spectrum of T is pure
point

Proof, We did not use the grading on the Hubert space in our anal-
ysis of p(\ -Δ) + T2. Thus the same analysis applies to the operator
p{\ - Δ) + T2 arising from the symmetric operator T of this lemma.
Because T commutes with p(l-A) + T2 on C°°(F) and because T is
symmetric on C°°(F), T restricts to define a symmetric operator on
each of the finite-dimensional Hχ. Thus L2(F) has an orthonormal
basis of smooth eigenvectors for T. Nelson's analytic vector theorem
implies that T is essentially self-adjoint.

We now return to the non-trivially graded case where T: L2(FQ) —>
L2(¥ι). We use the notation of 2.10, 2.16, and 1.9.

THEOREM 2.26. (L 2(F), F o (1 + 3r2)-ιl2, σp) e &(C*G, C).

Proof. We verify explicitly Conditions 3.a, 3.b, and 3.c of Definition
1.1.

3.a. ( ^ o (1 + ̂ 2)~χl2)2 - I = -(1 + e ^ 2 ) " 1 . Because Cc°°((?)
is norm dense in C*G, it suffices to prove that σp(a) o (1 + <9

r2)~ι

is compact for a e Q°(G). Choose an arbitrary a e CC°°(G). By
Lemma 2.19. (b) σp(a) o (/?(1 -Δ) + 1 +<9r2)~ι is compact. We finish
the proof by showing that

σp(a) o (1 + 1 ^ 2 ) " 1 - ^ ( α ) o (p(l - Δ)

is compact.
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σp(a) o (1 + ̂ 2)-1 - σp{a) o (p(l - Δ) + 1 +

= σp(a)[(l + ^ 2 ) " 1 - (Ml - Δ ) + 1

= σp(a) o (1 +^2yι(p(l -Δ) + 1 + 3r2 - (1 +3r2))

= σp(a) o (1 + y 2 ) " 1 o p{\ - Δ) o (p(l - Δ) + 1 +

Lemma 2.15.(a) shows that there is an a1 e C™{G) for which the
above equals σp(a') o (1 + y 2 ) " 1 o (/>(1 - Δ) + 1 + t 9

r 2 ) ~ 1 , which is
compact by Lemma 2.19.(b).

3.b. Because F commutes with the action of G, this commutator
is always zero.

3.c. 9Ό (1 + t$r2)-i/2 i s self-adjoint.

REMARK 2.27. A more general version of Theorem 2.26 appears in
[C]. However, there is some value in recording the calculations that
are special to our setting.

THEOREM 2.28. Let %?§ be the O-eigenspace for 5Γ1. ^ inherits a
grading from L2(F) and an action σp of C*G from L2(F). Then

Proof. Because the operator is the zero operator, we focus on prop-
erty 3.a of Definition 1.1. Proposition 2.24 and Lemma 2.15.(b) show
that the restriction of σp to %§ is completely continuous.

THEOREM 2.29. The cycles in the two preceding theorems represent
the same class in KK(C*G, C). he.

Proof. L2(F) = J%Q® Φ i ^ o ^ where v runs over the nonzero

eigenvalues of £Γ2. As in the proofs of the preceding theorems, we

can show that ( 0 ^ o ^ > ^ ° C1 + ̂ 2 ) " 1 / 2 , oP) e %(C*G, C).
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F o (1 + y 2 ) " 1 / 2 is block diagonal with respect to the decom-
position of 0 ^ 0 ^ i n t 0 eigenspaces of £Γ2. On each %?v, ZΓ o
(\+3r2)-χl2 is of the form

0 u
uv (

where uv is the unitary operator y Ό i / ' 1 / 2 , If for each v Φ 0, we
replace 3"o (1 + t 9

r 2 )- 1 /2 by

then over 0 < t < 1,

defines a homotopy between ( θ ^ o ^ > ^ ° (1 + ^ 2 ) - 1 / 2 , σp) and a
degenerate element of t?(C*G, C).

3. Kasparov product of a Dirac operator and a transversally ellip-
tic operator. Let[{Es®v, Dv o (1 + D^)" 1/2)] G ,OΓ(C, C*G) be a
K theory class defined by Dirac induction as described in §1. Let
[{L2{¥) ,^ o {\ ^ 3r2)-ιl1, σp)]e KK{C*G, C) be the K homology
class defined by a transversally elliptic operator as described in Theo-
rem 2.26. In this section we exhibit an elliptic operator on K\X that
represents the class in KK(C, C) defined by the Kasparov product
[(ESβv,Dv o (1 + Z 4 ) - 1 / 2 ) ] ®C;G t(£ 2 (F), ^O (1 + ^ 2 ) - 1 / 2 ? σp)].
We use the notation appearing in the discussion of Dirac induction
i n § l . X , G, T, F, J7~, and p are as in §2. For simplicity we
frequently write W for S ® F .

DEFINITION 3.1. Let W denote the product bundle FT x X -+ X.
The action of K defined by k - (w , x) = (w - k~ι, kx) gives W the
structure of a Hermitian A^-vector bundle over X. The grading on
W defines a grading on W.

DEFINITION 3.2. Let W®F denote the bundle over X whose fiber
at x , (W ® F)x , equals W ® F x . W ® F receives a grading as the
graded tensor product of W and F. The tensor product action gives
W ® F the structure of a Hermitian ^-vector bundle over X.

Recall that C°°(F) refers to the smooth sections of F . Recall also
that the set of smooth compactly supported sections of W x# G —•
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K\G can be identified with the set of smooth compactly supported
ΛΓ-invariant W-valued functions on G, C£°(G, W)κ.

DEFINITION 3.3. Define a map

Q: CC°°(G
 κ

by

= [ f(g)®(p(g)ζ)(χ)dg.
JG

LEMMA 3.4. For each k eK and for any f,ξ, and x as above

i.e. the image of Q lies in the set of K-invariant elements of
C°°(WΘF), C *

Proof. k.[Q(f®ζ)(k-ιx)] = k.[fGf(g)®g-ξ(g-ιk-ιx)dg].
Setting u = kg, we see that the above equals

ίk

We now use the AΓ-invariance property of / and then bring the
action of k inside the integral to set the above equal to

fc. \ίf(u)-k®k-ιu.ξ(u-ιx)du\ = ί f(u)®u.ξ(u-ιx)du.

PROPOSITION 3.5. Ew ®σG L2(F) = L2(W Θ F ) * .

Proof. The isomorphism arises from the extension to completions
of Q. Using approximations to delta functions, one can check that
the range of Q contains a dense subset of L2(W ® F ) ^ . Note that
L 2 (W®F)* is a closed subset of L 2 (W®F). To complete the proof it
suffices to check that for fΪ9 f2e CC°°(G, W)κ and ξx, ξ2 e C°°(F) 9

(β(/i ® ξi), Q(fi ® fe))L2(W0F) equals (/i ® ξ\, fi ® <f2>^® c .^ ( F ) .
The former inner product equals

(ίfι(g)®(p(g)ξi)(x)dgjf2(h)®(p(h)ξ2)(x)dh) dx.
\JG JG I (WΘF)
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The latter inner product equals

/2>iv)(6>)>L2(F) = / (ξi(y), [σP((fu f2)Ew){ξi)]{y))Έydy
J x

A(y), I </i, fi)Ew{s){p{s) &)(y))F dsdy
J G

= f(ξi(y), ί f(Λ(ts-ι),f2(t))w(p(s)-ζ2)(y))dtdsdy.
Jx JG JG

Rewriting the inner product on (W ® F)x as the product of inner
products on factors, replacing (p(g)ζi(x), p(h)ξ2(x))vx by
(ξ\(x), p(g~ι)p(h)ξ2(x))γ , and changing variables, we see that these
inner products are equal.

REMARK 3.6. The isotropy groups for G's action on X are torsion-
free. Therefore, K acts freely on X, and K\X is a closed smooth
manifold. Let

q:X->K\X

be the quotient map. Using the given measure on X, we assign a mea-
sure to K\X so that | | / \\Li(K\X\ = \\f ° qll^m ^\(W ® ̂ ) "^ ^ \ ^
is a vector bundle with Hermitian structure inherited from that on
W (8) F . It follows that if we extend q to a quotient map W ® F -»
*Λ(W ® F), then we can identify L2(W ® F)^ with L2(K\(W ® F))
by

i?: L 2(W® F ) x = L 2 (^\(W® F)),
— ¥

R(σ)(q(x)) = q(σ(x)).

DEFINITION 3.7. Let Y e Q. Recall that there is a linear map
cl(Γ): S ® V —• 5 ® F given by the tensor product of Clifford mul-
tiplication by Y on S and the identity on V. Recall also that
(W ® F)JC = W Θ F x . Define a vector bundle map

by

DEFINITION 3.8. Let Y e g. Define a differential operator d{Y)
on C°°(W<g>F) by

[d(Y)η](x) = c(Y) ^~ exp(tY)η(exp(tY)-ιx).
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DEFINITION 3.9. Let {Y\, ... , Yn} be an orthogonal basis for p,
as in Remark 1.16. Define a differential operator Qiv on C ° ° ( W Θ F )

by

Use the same notation &_v to denote the closure, as an operator on
L2(W ® F), of the original 3_v .

REMARK 3.10. !2LV commutes with the action of K. Let 3fγ
denote the restriction of 3iv to L 2 (W®F)^. Define an operator
3V on L2(K\(W®F)) by

PROPOSITION 3.11. If feC™(G, W)κ and ξ e C°°(F), then

&v(Qtf®ξ)) = Q(Dv(f)®ξ).

Proof. The change of variable u = exp(tYi)~ιg shows that

LG

G
= / f(u)®exp(tYi)u-ξ(u~ιexp(tYi)~ιx)du.

JG

It follows that

du)

REMARK 3.12. Because L2(W ® F) s PF <g> L2(F), the transversally
elliptic operator J7" on L2(F) can be used to define a transversally
elliptic operator =21^ on L2(W® F) by ^ ^ ( ^ ®O = {-\)dww ®
ZF{ξ), for w an element of W having pure degree. Because SΓ is
ΛΓ-invariant, !7_w defines an operator !T% on L ^ W I S I F ) ^ and an
operator ^w on L2(K\(W®F)) as in Remark 3.10.

PROPOSITION 3.13. IffeC™{G, W)κ and ξ e C°°(F), then
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Proof. Compare Remark 1.9 and Definition 3.3. Recall that &~ is
assumed to commute with the action of G on C°°(F).

DEFINITION 3.14. Define an operator &w on L2{K\(W<8>F)) by

PROPOSITION 3.15. For / E C C ° ° ( G 5 W)K and ζ e C°°(F)

&w oRo Q{f®ζ) = Ro Qo {Dv ® 1 + 1 ® ^ ) ( / ® ξ).

{Recall that notation ® refers to graded tensor products.)

Proof. See Propositions 3.11 and 3.13.

PROPOSITION 3.16. £PW is a degree-one first-order elliptic differen-
tial operator on K\X. £PW = <Pfr. {Recall that we use the same
notation for an operator and its closure.)

Proof. Because Dγ and &* are degree-one first-order differential
operators, &w is also. To prove ellipticity observe that the cotangent
space at a point y in K\X is identified by q* with T^{X)X for any
x e q~ι{y). T%(X)X can be written p* φ T£(X)X . The pullback to
T*{K\X)y of ^ \ ( W Θ F ) y can be identified with W 8 F * .

The principal symbol of the lower left corner of Dy, at any point
η\ e p*, defines a linear map aΆχ from the even part of W to the odd
part of W. The principal symbol of the lower left corner of ^ , at
any point η e T^{X)X, defines a linear map βη from the even part
of F x to the odd part of ¥x .

Suppose η = {ηu r\i) e p* Θ TQ{X)X = T£(X)X. Using the iden-
tification given in the first paragraph of this proof, one can calculate
that the principal symbol of the lower left corner of &w, at η, is the
linear map from the even part of W ® F* to the odd part of W ® ¥x

given by the sharp product of aηι with βη . The principal symbol of
the upper right corner of &w is the adjoint of the principal symbol of
the lower left corner. Because Dγ and &~ are (/-invariant, we have
described the symbol of &w explicitly, in spite of our use of various
identifications.

The map aΆχ is invertible for Y\\ e p* - {0}. Also, βη is invertible

for η G TQ{X)X - {0}. It follows from the properties of the sharp
product that the principal symbol of &w is invertible off the zero
section of T*{K\X), i.e. that &>w is elliptic.
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The self-adjointness of ̂ V follows from the formal self-adjointness
of 3γ and ̂ w on the compact manifold K\X.

COROLLARY 3.17. (L2(K\(W®F)), &wo{\+&>fc)-χl2) e &(C, C).

Proof. Because K\X is compact, this result is a consequence of
Proposition 3.16.

THEOREM 3.18. [(ES®V,DV o (1 + D2

v)-χl2)] ®C*G [(L2(F), P o
1 / 2 , σ,)] = [(L2(K\(W ^ /

Proof. Corollary 3.17 establishes property 2 of Definition 1.5. The
positivity and connection properties required of a Kasparov product
are established in Propositions 3.27 and 3.28, the proofs of which
require several lemmas.

LEMMA 3.19. Suppose feC°°(G, W)κ is such that (1 + D\)f e
Q°°(G, W)κ. Then feEw. Assume ξ e C°°(F). Then

Proof. Because 1 + 3ίy is a closed operator, this lemma is a conse-
quence of Remark 3.10, Proposition 3.11 and the proof of Theorem
2 of [K2].

LEMMA 3.20. The identification of Hubert spaces Ew ®C*G

and L2(K\(W®F)) given by Proposition 3.5 and Remark 3.6 identifies
(\+D2

v)-ιl2®\ with (1+&2)-1'2.

Proof. Because the operators in question are bounded, it suffices to
show that for / <g> ξ e CC°°(G, W)κ <g> C°°(F),

Ro Q{{\ +D2

v)

Formula (1.17) permits us to reduce the problem to a comparison of
RoQ((l+D2

v)-ιf®ξ) with (l+&$)-ι{RoQ(f®ξ)). By Lemma
3.19 these are equal.

LEMMA 3.21. Under the identification of modules mentioned in
Lemma 3.20,
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Proof. By Lemma 3.20 the bounded operators (1 + D\)~χl2Dv ® 1
and {\+3f$)-χl29fv agree on Q°(G, W)K®C°°{Έ).

LEMMA 3.22. There is an orthonormal basis for L2(K\(W <g> F))
that consists of smooth eigenvectors for ^^. The eίgenspace associ-
ated to each eigenvalue of £Pψ is a finite-dimensional subspace of
C ° ° ( A : \ ( W ® F ) ) .

Proof, ^w is a self-adjoint second-order elliptic differential oper-
ator on the closed manifold K\X.

NOTATION 3.23. Let Ua denote the eigenspace for S0^ associated
with eigenvalue a. Let U denote the algebraic direct sum

Note that U is dense in L2(K\{W ® F)).

LEMMA 3.24. On C°°(A*\(W® F)), &>%, commutes with QJV and
J~w Also 3V3^ = -9w9ίv.

Proof. The proof is a computation using the definition of 9$_v,
Definition 3.9, and the G-invariance of ZΓ.

LEMMA 3.25. For each a, 2$γ and ^w we symmetric operators
mapping Ua to Ua. As maps from U to U, 2#γ and ^w cire sym-
metric operators.

Proof. Because 28γ and ZΓψ are symmetric on C°°(ϋΓ\(W® F)),
this lemma follows from Lemma 3.24.

LEMMA 3.26. The operators 9ίv, S?w, (1 + 3f*)-1/2 and
(1 + ^ ) ~ 1 / 2 commute with ^ and (1 + ^ ) ~ 1 / 2 as maps from
Ua to Ua and from U to U. Also ^w commutes with 2Jy and

1/2 as maps from Ua to Ua and from U to U.

Proof. By the finite-dimensional spectral theorem, this lemma is a
consequence of Lemma 3.25.

PROPOSITION 3.27. [Dv(\ + D2

v)-χl2 ® 1, &w{\ + ^ ) " 1 / 2 ] > 0
modulo compact operators. This establishes property 3 of Definition
1.5 for the Kasparov product of Theorem 3.18.
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Proof. Recall that square brackets denote graded commutators,
which are the same as ordinary commutators unless both operators
have degree one.

It suffices to establish non-negativity of this bounded operator on
the dense subset U. The following formal manipulations of operators
are justified by the preceding lemmas when the operators are applied
to elements of U.

[Dv(l + Dl)-

= [Dv{\

= [2v(l

We analyze the terms after the last equals sign.
By Lemma 3.26 &w\9fv{\ +@2)-χl2, (1 +&&)-ιl2\ = 0.

= [(1

By Lemmas 3.24 and 3.26, each term after the last equals sign is zero.
Similarly

[2V{\ +2$)~ll2, 2V\{\ +&>&Γιl2

= (1 +2$)-ι'2[2v,2v]{l

+ [2V, (1

That ({\+2$)-χl222$(\+&>fy)-V2ui u)>0 for each u € U follows
from Lemma 3.26 and the finite dimensional spectral theorem.

PROPOSITION 3.28. For f e Ew, Let Qf denote the map L2(F)->
Ew®σGL2(¥) = L2(K\(W®F)) defined by Qf{ξ) = f®ξ. Then for
f G C°°(G, W)κ of pure degree,
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is compact. Because the ideal of compact operators is norm-closed and
because the adjoint of a compact operator is compact, this result estab-
lishes that the connection condition for the Kasparov product of Theo-
rem 3.18 is satisfied.

Proof. Because OΓ commutes with the action of G,

3fv{\ f / /

\Q^v, (lH-^5^)"1/2] is compact because it is pseudodifferential of neg-
ative order on a compact manifold. The same is true of
(1 + ^ ) - 1 / 2 , and 3fvQf is bounded by Lemma 2.15(a).

Using (1.17) and the observations that ^ is closed and all compo-
sitions are bounded, we write

°°
0

2 i Q\\/i ι £2>2 , n - l jx ((1 + ̂  + λ) - (1 + 5% + λ))(l + &>%, + λ)-ιQfdλ
1 \ Z OO

- ) / λ-ι/2$w(l +&£ + λ)-ι3f£(l +&>& +λ)-ιQfdλ
71 / Jo
1 \ Z O

- ) /

πj Jo

( 1 \ /ΌO

After the last equals sign, the first term is compact because
( l + ^ ^ + Λ ) " 1 is compact and, by Lemma2.15(a), 2γQf is bounded;
the second term is compact because the commutator is pseudodiffer-
ential of negative order.

4. The index of a CCR representation with respect to an elliptic
operator. Let [{Es®v, Dv{\ + D2

v)-χl2)} e KK{C,C*G) be a Jί
theory class defined by Dirac induction as described in §1. Let
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, ( J J ) , σp)] e KK(C*G, C) be the K homology class defined
by the kernel of a transversally elliptic operator and of its adjoint as
in Theorem 2.28. In this section we relate the Kasparov product

eKK(C,C)

to an algebraic construction that may be called the index of HQ with
respect to Dγ. Among the papers in which such a construction has
played a role are [M], [P], [S], [VZu], and [Wil]. We follow the ex-
position of [M], except for some left/right conventions. The only
property of (Ho, σp) required in this section is that (HQ , σp) be a
CCR representation. We state our theorem in that generality.

NOTATION 4.1. Let % denote the universal enveloping algebra of
the complexification of Q . We view the elements of % as right- in-
variant differential operators on G.

NOTATION 4.2. Let W+ and W~ be finite-dimensional right uni-
tary ΛΓ-representations. Hom(W+, W~) becomes a left ^-represen-
tation by

(k - A)(w) = A{wk) -k'1.

The restriction of Kάg to K defines a left AΓ-representation on %.
The tensor product of these two representations defines a representa-
tion of K on 2T <g> Hom(JF+, W~). We denote by

, W~))κ

the set of A^-invariant elements of ^ ® Hom( W + , W~).

REMARK 4.3 [M]. The sets of smooth sections of the homogeneous
bundles W± xκ G can be identified with (C°°(G) <g> W±)κ =
C°°(G, W*)*. (Recall Notation 1.15.) The set of right-invariant
differential operators from C°°(G, W+)κ to C°°(G, W~)κ corre-
sponds to ( ^ ® Hom(ίΓ +

? W ))κ via the convention of Notation
4.1.

DEFINITION 4.4. An element of (W ® Hom(ίΓ + , W))κ is called
elliptic if the corresponding right-invariant differential operator is el-
liptic.

REMARK 4.5 [M]. The map on gc given by X -> -X = X* extends
to a conjugate linear antiautomorphism of %, which we denote u —•
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u*. For D = Σ ui ® Λi Ξ ( ^ <8> Hom(fΓ+, W"))κ the formal adjoint
D* is given by

DEFINITION 4.6. Let £> = Σ κ, Θ Λf e {& ® Hom( W+, FT"))*.
Let π be a unitary representation of G on the Hubert space H(π).

Let H°°(π) denote the set of smooth vectors for this representation.
(See [W].)

Define
π(D): H°°(π) ® W+ -> Jf°°(π) ® W

by

Define

Z)π: (//°°(π) ® W+)κ -+ (//°°(π) ® ^ ~ ) ^

to be the restriction of π(D) to the sets of AΓ-invariants.

NOTATION 4.7. When the notation for the original operator already
contains a subscript, e.g., Dv, the notations for the operator of Defi-
nition 4.6 and its restriction to AΓ-invariants will be π(Dv) and Dyπ

respectively.

PROPOSITION 4.8 [M], Assume that D is elliptic. Then the kernel of
Dπ is the orthogonal complement in (H(π) ® W+)κ of image((Z>*)π).
Consider Dπ: (H(π) ® W+)κ -> (H(π) ® FF")^ as an unbounded
operator between Hilbert spaces.

COROLLARY 4.9 [M]. If D is elliptic, then the closure of (D*)π co-
incides with the Hilbert space adjoint of Qίπ. Consequently, we use the
notation D* without ambiguity.

REMARK 4.10. We describe a graded version of the preceding con-
struction. Let W = W+ θ W~ grade W. Assign a grading to
φ ® Yίom{W, W))κ by using the natural grading on Hom(ff, W).
Let D be an odd degree element of ( ^ ® Hom{W, W))* . Thus D
consists of

Z>+ e (!%®Yiom(W+, W ) ) * and / ) " G {%®Hom{W~, ίΓ + ) )^ .

Assume 7/ is a graded Hilbert space, 7/ = //even Θ #odd > o n which
G acts by a unitary representation π that respects the grading.
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is given by the matrix

REMARK 4.11. Using the domain space and range space of Dπ as
the even and odd parts of (H°°(π) <g> W)κ, respectively, we can define
a degree one operator

3fκ: (H°°(π) ® W)κ -f (H°°(π) ® W)κ

by

3 -
, 0

By Corollary 4.9 i^π is essentially self-adjoint on (ΛΓ(π) ®

REMARK 4.12. The Dirac operator Dv on C°°(G, S® V)κ corre-
sponds to ΣY&Ai e (^®Hom(S<g)F, 5(8)K))^. Here {7/} isabasis
for p, orthonormal with respect to a ^-invariant inner product, and
Ai is the tensor product of Clifford multiplication by Yj on S with the
identity operator on F . ΰ " : C°°(G, S~ ® F ) ^ -> C ^ ί G , 5 + ® F ) ^
is the formula adjoint of Z>+: CC°°(G, S + ® F ) ^ -^ Q°°(G, S~ (8) F ) ^ .
We will use the notation Dv for both the differential operator and for
its realization in ( ^ ® Homί^ ® F , S ® V))κ, and we will treat the
notation Dp and Z>̂  in the same way.

PROPOSITION 4.13. Let %f§ be the kernel of the square ZΓ1 of the
transversally elliptic operator of §2. Let p denote the representation
of G on β%. Give β% the grading inherited from L2(F). More
generally let (β%, p) be a Z/2-graded CCR representation of G on
a Hubert space. Let Dv be the realization of a Dirac operator in
(& ® Hom(W, W))κ. {Recall the notation W = S®V.) Then fol-
lowing Remark 4.11 to define an operator &v,p> we get a Kasparov
bimodule

W)κ, 3fV9P o (1 + 3f$9P)-ιl2) e g(C, C).

Proof. By Remark 4.11, we need only show that

Let Δ G %κ be as in Definition 2.11. Because W is finite-dimensional
and p is CCR, Lemma 2.15 implies that it suffices to show that range

)~ι) is contained in domain (/?(1-Δ)Θ 1). Thus it suffices
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to show that (p(l - Δ) ® 1)(1 + 2fy p)~x is bounded. We proceed by
showing that (1 + 3Sγ )(p(l — A) <g> l)~ι is bounded away from zero.
We accomplish this with the help of a definition and two lemmas.
Definition 4.14 and Lemma 4.15 are from [S], although our context
is not exactly the same as that of [S].

DEFINITION 4.14. Let π be a unitary representation of G. For
ΣZi®Ai+l®Be(&® Uom(W, W), with Z/ e g, the associated
Σn(Zi) ® Aj + 1 ® B is called a first-order operator.

LEMMA 4.15. Let π be a unitary representation of G and let Δ
be as in Definition 2.11. Let P be a first-order operator. Then P o

1/2 is bounded.

Proof. It suffices to show that there is a constant c such that for
v®w eH°°(π)<S>W \\P(l-π(Δ))~ι/2(υ®w)\\2 < \\v<g>w\\2 . Replacing
v by (1 - π(Δ))1/2^, we can change this inequality to \\P(ξ<8>w)\\2 <
c||(l-π(Δ))1/2(^(g)t ί;||2 = c ( ( 1 _ π ( Δ ) ) ^ ^ | | ^ | | 2 f Because W is finite-
dimensional, we may assume P is of the form Σi π(Zi) ® Λ > where
there is an upper bound on {||Λ||} and where {Zz} is a basis for g
of the kind discussed in Definition 2.11.

\\P(ξ ®w)\\2

< c\\w\\2 Σ \\π{Zi)ζ\\2 =

i

<c\\w\\2((l-π(A))ζ,ξ).

LEMMA 4.16. In the setting of Proposition 4.13, 3fγ9P = -p(A) ®
l+A, where A is a first-order operator.

Proof. This is a consequence of the usual computation of the square
of the Dirac operator and the observation that the restriction to K-
invariants of p{Σ%}) > where {X/} is a basis for t, equals 1 ®i? for
some BeHom{W, W).



70 JEFFREY FOX AND PETER HASKELL

We now finish the proof of Proposition 4.13.

(1 + 3f$9p) o (p(\ - Δ) ® I ) " 1 = (p(\ - Δ) <g> 1 + A)(p(\ - Δ) <g> I ) " 1

+ A(p(l -A)®l)

The first term after the last equals is the identity, and Lemma 4.15
and the compactness of (p(\ -Δ) ® 1)~1 / 2 imply that the second term
has norm strictly less than one on the complement of some finite-
dimensional subspace.

PROPOSITION 4.17. Let π be a unitary representation of G on the
Hubert space H, and let σπ be the associated representation of C*G.
Let W be a finite-dimensional unitary right K-representation, and let
Ew be the Hubert C*G-module that is the completion of the set of
smooth compactly supported sections of W XK G —• K\G. (Ew is as
described in the discussion ofDirac induction in §1.) Then

Proof. Define a map Q\W ® CC°°(G) ®H -+w®H by

Q(w®f®ξ) = w® σπ(f)(ξ) = w® I f(g)π{g)ξdg.
JG

Using an approximate identity for C*G, one can show that Q has
dense range. An explicit calculation shows that the restriction of Q
to {W ® C°°{G))K ® H has image in (W ® H)κ. To show that this
restriction has image dense in (IV ® H)κ, one uses the preceding
density result, the observation that any a e (W®H)K equals its own
ΛT-average5 and a calculation that the A^-average of Q(β ® γ) equals
β((^-average of β)®γ). Here β®γe(W® C°°(G)) ® H, and the
^-average of an element refers to the integral over all k e K of the
images of the element under the action of k.

We finish the proof of this proposition by showing that the restric-
tion of Q intertwines the inner products. Suppose X) wj <g> f} e
(W®C™(G))K and ξι eH and similarly for Σwj®fJ and ξ2.

( Σ W ® Λ1 ® 0 β ( Σ ̂ 2« Λ2 ® ̂

n/, ^ ^ ^ ( σ ^ ^ K 1 , σπ(f2)ξ2)H

/ , ̂ ^ ( ί 1 , σπ{fl*fj)ξ2)H.
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κ2
i

h

THEOREM 4.18. Let \{EW,DV o (1 + ^ ) ~ 1 / 2 ) ] e AΆXC, C*G)
theory class defined by Dirac induction as in §1.

be the K-homology class of Theorem 2.28. More generally let
[(^δ, ( J J ) , σ,)] be the class in KK(C*G, C) defined by a graded
CCR representation. Let

w)κ, ^K,^ o (l + $1 ,,Γ1 / 2)] e Λ:Λ:(C, C)

described in Proposition 4.13.

Proof. Propositions 4.13 and 4.17 imply that we need check only
properties 1 and 3 of Definition 1.5. Property 1 follows from the
observations that W is finite-dimensional and p is a CCR repre-
sentation. Property 3 follows from the observation that Dγ o
( l + Z ) ^ ) - ι / 2 Θ l = ^ F ^ o ( l + ^ 2 ^-1/2^ if w e replace C°°(F) in

the proof of Lemma 3.21 by ^ {p), the smooth vectors in HQ(P) ,
then the reasoning used to prove Lemma 3.21 provides a proof of the
above observation.

COROLLARY 4.19. Let f denote the natural map f: C*G —• QG
defined by restriction to the regular representation. Let /* denote the
map induced by f', /*: KK(C, C*G) -* KK(C, Q G ) . Suppose there
is a map σr

p: QG -• <5^(^o) ŵcΛ ίAαί σp = σr

p o f. Then

^ 9P KK(C, C).

Proof. Define [/] eKK(C*G, QG) by
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Here Mf(φ) = multiplication by f(φ). Kasparov product by [/] on
the right realizes /*. Under our assumption on σp, [(^g, (g jj), σ^)]

= [/] ®c σ [(#o> (o o ) ' σ p l ' a n c i t h e r e s u l t follows from Theorem
4.18 by associativity of the Kasparov product.

5. Index formula for multiplicities. Theorems 2.29, 3.18, and 4.18
imply an equality in KK(C, C) that we shall call an index theorem.
We state some corollaries that describe implications of this equality.
In particular we use KK(C, C) = Z to interpret the index theorem as
a numerical equation.

THEOREM 5.1. Use the notation of Theorems 3.18 and 4.18. In par-
ticular, we choose V and W = S®V. Then in KK(C, C)

[(L2(K\(W ®F)),^o(l

Proof. By Theorems 3.18 and 4.18 both of these elements are Kas-
parov products of a fixed element in KK(C, C*G) with elements in
KK(C*G, C). By Theorem 2.29 the elements in KK(C*G, C) are
equal.

COROLLARY 5.2. For a degree one operator such as c^V or &v,p>
use the superscript + to denote that part of the operator mapping even
elements to odd elements. {In the notation of Remark 4.10, Qίy =
DVtP.) Then in Z

index(^) = i

Proof. Use the standard isomorphism KK(C, C) = Z.

NOTATION 5.3. Let {H(β): β e B} denote the set of distinct ir-
reducible (/-representations that occur with nonzero multiplicity in
%o(p). For each β eB let H(β) denote the direct sum of all copies
of H(β) that occur in β%(p). (Because 3%(p) is CCR, each H(β)
occurs finitely many times.) Give each H(β) the grading inherited
from "

COROLLARY 5.4. With notation as above,

β ) .
βeB
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(By Proposition 4.13 the right-hand side includes only finitely many
nonzero terms.)

Proof. All constructions decompose with respect to the decomposi-
tion of ^o(ρ) into subrepresentations.

NOTATION 5.5. For β e B let meven(β), respectively moάd(β),
denote the multiplicity of H(β) in the even part, respectively the odd
part, of

COROLLARY 5.6. With notation as above,

Index(^+) = £ ( m e v e n ( £ ) index(Z)+ β) + moάά p ^
βeB

Proof. Recall the construction of D^ * in Remarks 4.10 and 4.11.

NOTATION 5.7. For βeB let m(β) = m e v e n (β) - modά(β).

COROLLARY 5.8. With notation as above,

I n d e x ( ^ ) = ] Γ m{β) index(D+ β).
βeB

Proof. Because Dy is the adjoint of Z>£, Corollary 4.9 implies that
indcx(Dy n) = -index(Z)^ n).

REMARK 5.9. The analysis of the right-hand side of the formula in
Theorem 5.1 remains true for any graded CCR representation

REMARK 5.10. By Corollary 4.19, if the CCR representation
is weakly contained in the regular representation, then the right-hand
side of the formula in Theorem 5.1 can arise as a Kasparov product
over Q G .

6 Calculation of coefficients. Because the left side of the formula
in Corollary 5.8 is the index of an elliptic operator on a compact man-
ifold, we like to think that Corollary 5.8 provides a way to calculate
multiplicities of representations in kernel(Γ)-kernel(Γ*). (Here T is
the invariant transversally elliptic operator of §2.) Information about
the coefficients, index(Z>£ «), appearing in Corollary 5.8 is needed to
justify this point of view. In this section we discuss the calculation
of these coefficients. Parts of the discussion lie purely in representa-
tion theory, but other parts involve K theory. At the least K theory
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provides a point of view that vastly increases the accessibility of these
coefficients; at best it may provide truly new insights.

The following summarizes the results of this section. For β in a
broad class of discrete series representations, the methods of this paper
determine m(β). For β among the other discrete series representa-
tions and "nearby" representations, Corollary 5.8 equates the index of
an elliptic operator with a linear combination of m(such β), at least
for special G. Thus the methods of this paper may give some infor-
mation about the presence of such β in kernel(Γ) and kernel(Γ*).
Finally the methods of this paper will never direct the presence of rep-
resentations from the complementary or irreducible principal series.
The dependence of K groups of C*G on the topology of G's unitary
dual provides the fundamental limitation on our techniques.

REMARK 6.1. The relationship between the tensor product and the
functor Hom identifies (H(π) ® W)κ with a space of AΓ-intertwining
linear maps.

REMARK 6.2. (See [W].) When K is a large compact subgroup of
G, the domain and range spaces (H(β) ® W±)κ of every D^ β are
finite-dimensional. Thus the coefficient index(Z)£ n) equals the dif-
ference of these dimensions. In principle these coefficients can be cal-
culated from a thorough understanding of the ΛMypes of irreducible
representations H(β). If a connected semisimple G has finite center,
then its maximal compact subgroup K is large.

REMARK 6.3. Let G be connected and semisimple with finite center.
Assume that rank G equals rank K so that G has discrete series
representations.

There is a correspondence between the set of discrete series repre-
sentations of G and a subset of the set of irreducible representations
of K [AtS]. Under our conventions this correspondence arises from
the right action of G on the kernel of Z>£. We refer to this corre-
spondence in the following may: Z>£ realizes the discrete series πy.

REMARK 6.4. In [Wil] and [Wi2] F. Williams discusses a class of
discrete series satisfying a certain positivity condition. All integrable
discrete series lie in this class. It seems plausible that this class is
exactly the set of discrete series that are isolated in the unitary dual
of G.

The following theorem of F. Williams arises form the point of view
discussed in Remark 6.2. Our side and sign conventions differ slightly
from those of Williams.
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THEOREM 6.5 [Wil]. Suppose G is a linear connected semisimple
Lie group. Suppose rank(ΛΓ) = rankG. Suppose nγ is a discrete series
representation for G that lies in the class of Remark 6.4. Then if β is
an irreducible unitary G-representation,

index(Z>+ β) =

COROLLARY 6.6. The methods of our paper calculate m{πγ) for dis-
crete series πγ in the class of Remark 6.4. Under the assumptions of
the preceding theorem, with W = V ®S, Corollary 5.8 reads

I n d e x ( ^ ) = m(πv).

Proof. Apply Theorem 6.5 to calculate coefficients in Corollary 5.8.

The following "lemma" summarizes our application of K theory to
the calculation of coefficients other than those discussed above. This
"lemma" is offered not as something requiring a difficult proof but
rather as a description of the framework in which we work.

LEMMA 6.7. Let G be a connected unimodular Lie group. Let H(π)
be a CCR representation of G. Let H(π) = φ ; //(πy) be the decom-
position of H{π) into a direct sum of irreducible representations. As-
sume [(H(π)®0, (°0°0),σπ)] = 0eKK(C*G,C), Then for any Dirac
operator Dv on K\G, ΣjΛndεx(D+ π ) = 0.

Proof. This lemma is a consequence of Theorem 4.18 and Remark
5.9 and of the linearity of the Kasparov product.

Proposition 6.9 and its applications show that there exist interesting
CCR representations that define the zero class in KK(C*G, C). We
have been informed that the idea behind this proposition appears as
Corollary 3.1.14 of A. Valette's thesis [Va], where attention is focused
on paths in the reduced dual of a semisimple Lie group G.

REMARK 6.8 [D2 3.9.8]. Let G be a second countable, locally com-
pact group. Let H be an infinite-dimensional separable Hubert space.
Let Y be the quotient of Rep(C*G, H) by the equivalence relation
generated by intertwining partial isometries (which identify essential
subspaces). The unitary dual G of G can be identified with a sub-
space of Y.
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PROPOSITION 6.9. Use the notation of the preceding remark. Let
γ: [0, oo) —• Y be a continuous map such that:

1. for each t G [0, oo) the nondegenerate representation associated
to γ(t) is CCR\

2. there exists a compact subset C of [0, oo) for which t $ C
implies γ{t) G G ;

3. as ί—•oo, γ(t) —> oo m G.
Γλέvi [ ( i / θ O , (S§),y(O))] equals zero in KK(C*G,C).

Proof ((ffθO) ® C([0, oo]), ( J J ) , γ(ή) e &(C*G, C([0, oo])).
(Compare Lemma 1.8.) Here, by assumptions 2 and 3 and by [Fe],
we may extend γ so that 7(00) is the zero representation. Then zero
representation defines the zero class in KK(C*G, C).

REMARK 6.10. The preceding proposition implies that any irre-
ducible unitary representation of a connected, nilpotent Lie group G
represents the zero class in KK{C*G, C). The same is true for an ir-
reducible principal series or irreducible unitary complementary series
representation of a noncompact, connected, semisimple Lie group G
with finite center. In what follows we discuss more involved appli-
cations of this proposition. These are offered as examples, not as a
complete discussion of the applications of this proposition.

REMARK 6.11. Let G = SU(n, 1). Let P be a minimal parabolic
subgroup of G.JP = MAN with M = U(n - 1) and A = {exp(tH) :
t e R}. If σ G M is an irreducible representation ofMonVσ and
v G C, let a ®v be the representation of MAN on Vσ defined by

(σ ® v){M exp(ίtf) n) = c{m)evt.

The principal series representation π(σ, v) of G is defined by

n(σ, v) = indp(σ <g> v).

If v is imaginary, then π(σ, v) is a unitary principal series rep-
resentation of G. If v is imaginary and nonzero, π(σ, v) is irre-
ducible. Whether π(σ, 0) is irreducible depends on σ.

When π(σ, 0) is irreducible, complementary series representations
exist. In particular there is a maximal interval [0, λσ] c R, λσ > 0,
such that z/ G [0, Λ ]̂ implies that π(σ, 1/) is infinitesimally equiv-
alent to a unitary representation which is also irreducible for v G
[0,λσ). The unitary representation associated to v = λσ is a fi-
nite direct sum of irreducible unitary representations. In our case,
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G = SU(n, 1), the decomposition at v = λσ is described in [Kr] or
[Ze]. In general, there is a Vogan calculus [V] for such decompositions.

LEMMA 6.12. Use the notation of Remark 6.11. In particular choose
a σ G M for which π(σ, 0) is irreducible. Let Y be as in Remark
6.8. Let y: [0, oo) —> Y be defined in a natural affine manner subject
to the following conditions:

1. y(0) = the unitary representation associated to v — λσ

2. As t moves from 0 to 1, γ(t) moves from the unitary represen-
tation associated to v — λσ to the unitary representation associated to
i/ = 0;

3. As t moves from 1 to oo, γ(t) equals π(σ, i(t - 1)).
Then γ satisfies the conditions of Proposition 6.9, and the unitary

representation associated with v = λσ defines the zero class in
KK(C*G,C).

Proof. The continuity of γ follows from direct calculations and a
result of [Fe], which is also discussed in [D2]. That iv -> /oo corre-
sponds to going to infinity in G is a result of [L].

REMARK 6.13. The kind of calculations needed above are done
explicitly for the deSitter group in [BoMa].

REMARK 6.14. Again let G = SU(fl, 1). The following table of
representations with trivial infinitesimal character is taken from [Ze].

,3/ \α2,«-l <*2,/ι / \«2,«

35«-1 /

(
<*Λ-1,1

 an-l,2 \ / α/t-1,2

Each α, j<; is an irreducible unitary G-representation. If i+j =
otjj belongs to the discrete series. Each set of parentheses corresponds
to some a G M. The direct sum of representations occurring within a
given set of parentheses is the decomposition associated with (σ, v —
λσ) in Remark 6.11.
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LEMMA 6.15. Let 0 α, 9 j correspond to one of the sets of parentheses
in the preceding table. Let Dy be a Dirac operator on K\G. Then

ι , J

Proof. By Remark 6.14, Lemma 6.12 applies.

LEMMA 6.16. Let G be a noncompact, connected semisimple Lie
group with finite center. Let D^ realize a discrete series representation
πr of G. Let πs be a discrete series representation of G. Then

0 ιfπrφπs.

Proof. The reduction to C*G used in Corollary 4.19 applies here.
Much information about the class in KK(C, C*G) determined by
Dv can be deduced from the behavior of Dy on L2 sections of
the bundle W xκG -* K\G. The Hubert QG-module defining the
class in K theory arises as the C*G-noπn completion of the set of
smooth compactly supported sections of this bundle, (^-invariant op-
erators can be regarded as fields of operators of G's reduced dual,
from which we observe that an operator on the Hubert C*G-module
defines an operator on the Hubert space of L? sections. Each discrete
series representation π contributes a summand of compact operators
Xn to C*G. Combining the relationship between operators on the
Hubert module and operators on the Hubert space with the realiza-
tion theorem of [AtS], we see that the image of ZV's class in K§{3£π)
is zero if Dy does not realize π and equals the class of a rank one
projection if Dy realizes π. (Here image is with respect to the map
induced on K theory by the natural projection of C*G onto a direct
summand 3£π .) An explicit description of these KK cycles appears
in [FH3].

PROPOSITION 6.17. Let G = SU(n, 1). Let D^ realize a discrete
series representation of G. Let α/ j be a representation appearing in
the table of Remark 6.14. Then the preceding information determines

Proof. Lemma 6.15 determines a system of linear equations whose
terms are either index(D£ a ), i+j < n+2, or constants determined
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by Lemma 6.16. Isolating the constants, we get a system of equations
with invertible coefficient matrix.

REMARK 6.18. In the long run the ideas of this section should be
roughly as effective in calculating the values of index(Z>£ n) when
the group G is an arbitrary connected unimodular Lie group having
discrete series representations as they are when G is semisimple. At
this time, however, the general case is less well understood than the
semisimple case. In what follows we indicate how the ideas in this
section should generalize.

REMARK 6.19. We outline some aspects of the theory of connected
unimodular Lie groups having discrete series representations. These
results are due to N. Anh, in whose papers [Al], [A2] can be found
a careful version of the following discussion. Anh defines something
called an //-group, which is roughly a unimodular solvable Lie group
that has square integrable representations and whose representation
theory behaves like that of nilpotent Lie groups with square integrable
representations.

Suppose G is a unimodular connected Lie group that has square
integrable (i.e. discrete series) representations. Then G is the semidi-
rect product of an /f-group H, with compact center Z that is central
in G, and a connected reductive Lie group S having compact center.

The center of G is of the form Z C, where C is central in S.
Let π be an irreducible discrete series representation of a group G,

where G is as in the preceding paragraph. Then there exists a discrete
series representation (τ, H(τ)) of H, an extension τ to a representa-
tion (τ, H(τ)) of G, and an irreducible discrete series representation
(cr, H{σ)) of S such that π can be realized on the Hubert space
H(σ) <g> H(τ) by

π(s, h) = σ(s) ®τ(sh).

REMARK 6.20. For the groups of Remark 6.19, the problem of real-
izing discrete series representations by using elliptic operators appears
not to have been solved in general. Under certain assumptions, whose
details we omit, J. Rosenberg [Rl] has used harmonic induction (Dol-
beault operators) to solve this realization problem. By §6 of [FH1] the
class in KK(C, C*G) represented by such a Dolbeault operator can
also be represented by a Dirac operator.
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PROPOSITION 6.21. Suppose that G is of the type discussed in Re-
mark 6.19:

Suppose further that the reductive factor S is either compact or locally
isomorphic to the product of a compact group and a finite number of
groups locally isomorphic to SO(2Λ, 1) or SU(w, 1). Let πv be a
discrete series representation of G that is isolated in the full unitary
dual of G. (If G is amenable all discrete series representations are
isolated [Gr].) Then

(a) Associated to πy is a direct summand of compact operators in
C*G. The class in KK(C9 C*G) defined by a rank one projection in
this summand can also be represented by the class of a Dirac operator
Dγ.

(b) For any irreducible CCR representation β

index(Z)+ β) = { Y v 'V v^} \θ ifβφπy.

Proof, (a) A discrete series representation is CCR [D2, 14.4.3]. By
[Kl], [K3], and [JK] Dirac induction is an isomorphism.

(b) Compute the Kasparov product by using the rank one projection
to represent the class in KK(C, C*G).

REMARK 6.22. We extend the argument involving paths of SU(«, 1 )-
representations to this setting. Assume G fits in the following se-
quence:

Here N is a Heisenberg group with compact center, and we assume
that the action of S factors through the symplectic group. The real-
ization theorem discussed in Remark 6.20 holds in this case [Rl].

REMARK 6.23. Let τ be a discrete series representation of N. Then
there is an extension of τ to a representation τ of G (or perhaps of
G1, where Gr is a double cover of G formed by using a double cover
S' of S). (See, e.g., [Al], [A2].) For each representation σ of S
(or Sf), the representation π(s, n) = σ(s) ® τ(sn) is irreducible and
CCR. Write π = φτ{σ).

T H E O R E M 6.24 [Dl]. The map φτ:S -> Prim(G), or S' -+ Prim(G ;),

is a homeomorphism from S, or S1, to an open and closed subset of
Prim(G), or Prim(<y).
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REMARK 6.25. The table of Remark 6.14 is the same for a double
cover of SU(n, 1) as it is for SU(n, 1).

PROPOSITION 6.26. Suppose that for G as in Remark 6.22, S =
S U ( Λ , 1). Let τ be a discrete series representation of G, let σ be
a discrete series representation of S, and let Dγ be the Dirac op-
erator realizing φτ(σ). (As always we may have to pass to Gr and
S'.) Then for the representation atj of Remark 6.14, we can compute

Proof. Theorem 6.24 provides us with a system of equations just
like that used for SU(n, 1). The realization theorem implies that the
values at discrete series (i + j = n + 2) are just as before.

7. Multiplicity formula for certain quasi-regular representations. The
Kasparov product of §3, applied in the single orbit case, is an impor-
tant step in the proof of a rather general formula for the multiplicity of
a discrete series representation in a quasi-regular representation. The
formula does not involve explicitly the index of an elliptic operator;
but because its short proof places it so clearly in the realm of index-
theoretic multiplicity formulas, we include it here. The formula has
been established previously in the following special cases: G a sim-
ply connected nilpotent Lie group [MoWo] and G a simply connected
exponential solvable Lie group [R2].

THEOREM 7.1. Let G be an amenable, locally compact, second count-
able, connected group with discrete series representations. Let Γ be a
discrete, torsion-free, cocompact subgroup of G. Let π be a discrete
series representation of G with formal degree d(π). Let m(π) be the
multiplicity of π in L 2(G/Γ). Then

m(π)=vol(G/Γ)-d(π).

Here vol(G/Γ) is defined using Haar measure, and d(π) is defined as
formal dimension in [D2, 14.3.4].

Proof. Because G/Γ is compact, the quasi-regular representation λ
is CCR. Thus

(7.2) (z , 2 (G/Γ)θ0,

Because G is connected, standard structure theory says that there
is a compact normal subgroup Ko such that K0\G is a Lie group.
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Thus, for K the maximal compact subgroup, it makes sense to talk
about Dirac induction involving a Dirac operator on K\G. (As usual
one may need to use a double cover of KQ\G .)

Because G is amenable its reduced dual equals its full dual. The
discrete series representation π, which is CCR [D2, 14.4.3], defines a
primitive ideal that is both open [Gr] and closed in the primitive ideal
space and that has a unique preimage in the dual of G [D2, 4.1.10].
Thus π contributes a direct summand of compact operators to C*G.
Let eπ denote a rank one projection in this summand and [eπ] the
associated class in KK(C, C*G).

Representing [eπ] by an element of I?(C, C*G) whose Hubert
C*(j-module is the compact operators on the Hubert space associ-
ated to π (or, when necessary, a countable direct sum of such), one
can compute that

(7.3) [eπ]®c*G [(L2(G/Γ), ( 2 j j) , < * ) ] = m ( Λ ) .

(Here we identify KK(C, C) with Z in the standard way.) Such a
calculation is done explicitly in [FH3]. _

Because G is amenable, there is a twisted Dirac operator D on
K\G whose class [D] e KK(C9 C*G) arising from Dirac induction
satisfies

(7.4)

By the calculation of §3

(7.5) [D] ®σG [(L2(G/Γ), ( ° o ) ' σ A ) ] = i n d e x ( Z ) ) '

where D is the descent of D to K\G/Γ. By [At2]

(7.6) index(Z)) = tracep(^π).

It follows from (7.3), (7.4), and (7.6) that

(7.7) m(π) = traceΓ(eπ).

As mentioned in [AtS]

(7.8) tracer(^) = vol(G/Γ) t r a c e d ) .

Here trace^ refers to the extension to K theory of the natural trace
on C G. This trace satisfies, for fe L\G) ΠL2(G), t race^/*/) =

^ ( ( ? ) . By [D2, 14.4.2] and the observation that e*eπ = eπ,

(7.9) tmceG(eπ) =



TRANSVERSALLY ELLIPTIC OPERATORS 83

Thus (7.7), (7.8), and (7.9) imply

(7.10) m(π) = vol(G/Γ). d(π).

PROPOSITION 7.11. Let G be a connected K-amenable Lie group
with discrete cocompact torsion-free subgroup Γ. Let π be a discrete
series representation of G that is isolated in the full unitary dual of G.
Then with notation as in Theorem 7.1,

m{π)=vol(G/Γ)-d(π).

Proof. By Anh's characterization of connected unimodular Lie
groups with a discrete series, discussed in Remark 6.19, G is the
semidirect product of an amenable Lie group with a semisimple Lie
group. By [JVa] the semisimple Lie group is AΓ-amenable. It fol-
lows from [JVa], [JK], and [K3] that Dirac induction is an isomor-
phism. Thus there are representatives [D] and [eπ] of the same class
in KK(C, C*G). We then proceed as in the proof of Theorem 7.1.
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