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3-VALENT GRAPHS AND THE KAUFFMAN BRACKET

G. MASBAUM AND P. VOGEL

We explicitly determine the tetrahedron coefficient for the one-
variable Kauffman bracket, using only Wenzl's recursion formula
for the Jones idempotents (or augmentation idempotents) of the
Temperley-Lieb algebra.

1. Statement of the main result. In this paper, we consider unori-
ented knot or tangle diagrams in the plane, up to regular isotopy.
Furthermore, we impose the Kauffman relations [Kal]

4-1

u ( ) =-(A'+Λ-')

(the first relation refers to three diagrams identical except where shown,
and in the second relation, D represents any knot or tangle diagram).
Coefficients will always be in Q(A), the field generated by the inde-
terminate A over the rational numbers. With these relations, (n, n)-
tangles (i.e. tangles in the square with n boundary points on the upper
edge and n on the lower edge) generate a finite-dimensional associa-
tive algebra Tn over Q(A), called the Temperley-Lieb algebra on n
strings (see [Lil] for more details on what follows). Multiplication in
Tn is induced by placing one diagram above another, and the iden-
tity element ln is given by the identity (n, n)-tangle. Up to isotopy,
there is a finite number of (n, ή)-tangles without crossings and with-
out closed loops; they form the standard basis of the algebra Tn . Let
6" Tn —• Q(A) denote the associated augmentation homomorphism,
i.e. ε(ln) = 1, and ε is zero on the other basis elements. The algebra
Tn (with coefficients in Q(A)) is semisimple, and in particular there
is an augmentation idempotent fn eTn with the property

fnx = xfn = e(x)fn
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for all x £ Tn , and f2 = fn.
1 These idempotents were first discovered

by Jones [Jl]. Up to normalisation, they are equal to the "magic
weaving elements" of [Ka2]. There is a recursion formula for these
idempotents due to Wenzl [We], which we will now state graphically.

We make the convention that writing n beneath a component of a
knot or tangle diagram means that this component has to be replaced
by n parallel ones (n may be zero).2 We will often say that this
component is colored by n (a color is just a non-negative integer).
For graphical reasons, we make the further convention that we may
omit indicating the color if it can easily be deduced from the rest of
the diagram. Let us denote the augmentation idempotent fn e Tn by
a little box. Then WenzΓs formula can be stated graphically as follows:

n-\

[n]

Here, we use the notation [n] = (A2n - A-2n)/(A2 - A~2). For
a proof of this formula, see [We] or [Lil]. (Notice that in the last
diagram of the formula above, we did not indicate the color of the
line joining the two boxes. As explained above, this does not mean
that the color is one, but that the color must be calculated form the rest
of the diagram. Here clearly the color is n - 2, because the little boxes
represent elements of the Temperely-Lieb algebra on n — 1 strings.)

Following Kauίfman [Ka2], we define a 3-valent vertex as follows.
A triple (α, b, c) of colors is called admissible if a + b + c is even
and \a-b\<c<a + b (triangle inequality). Given an admissible
triple, we define a 3-valent vertex by

_ An)xlxv [Lil, Li2], our fn is denoted fn_γ =

This convention is consistent with [Lil, Li2], but not with the graphical conventions of
[BHMV1].
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The numbers / = (b + c-a)/2, j = (a + c-b)/2, k = (a + b-c)/2
of internal lines of the 3-valent vertex will be called its internal colors.
Notice that a triple (α, b, c) is admissible if and only if one can find
corresponding internal colors.

The goal of this paper is to give an explicit determination of the
following three coefficients, using only WenzΓs formula for the aug-
mentation idempotents fn.

trihedron coefficient:

= (a,b,c)

tetrahedron coefficient

B

IA B E\
\D C F/

(Of course, the trihedron coefficient is a special case of the tetrahe-
dron coefficient, e.g. (ll°c) = (a, b,c).)

half-twist coefficient:

= δ(c; a, b)

REMARKS. (1) The names trihedron and tetrahedron coefficient are
motivated by the fact that one may imagine the corresponding graphs
as a regular trihedron or tetrahedron drawn on a sphere.
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(2) Knowing the tetrahedron coefficient is equivalent to knowing
the (more popular) recoupling coefficients or 6-7-symbols (see §2).

(3) Reversing the sign of the crossing in the half-twist coefficient
replaces δ(c \a,b) by its conjugate δ(c a,b), where the conjugation
on Q(A) is defined by A = A~ι.

Recall [n] = (A2n - A-2n)/(A2 - A~2). This notation is motivated
by the fact that [n]\A=x = n. Notice [0] = 0. We also define [n]\ =
[1] '[n] for n> 1, and [0]! = 1.

THEOREM 1 (Trihedron coefficient). Let (a, b, c) be admissible and
let /, j , k be the internal colors of a 3-valent vertex (a, b, c). Then

(a b c)-( πt

THEOREM 2 (Tetrahedron coefficient). Let A, B,C, D,E, F be
colors such that the triples (A,B,E), {B,D,F), [E, D, C) and
(A,C,F) are admissible. Set Σ = A + B + C + D + E + F and

bι = (Σ-A-D)/2,

b2 = (Σ-E-F)/2,

b3 = (Σ-B-C)/2.

Then

A B E\_ Π t i Π)=i fa -ajV. (ax a2 a3 a4

D C F/ [A]\[B]\[C]\[D]\[E]\[F]\ \ bx b2 b3

where

a2 a3 aΛ ^ (-1)CEC+1]!
b\ b2 b3 J )<7<minf* Π/=i V>i - C]! Π^=i K - #/]!

(Notice that the α7 correspond to the four vertices of the tetrahe-
dron, whereas the bj correspond to the three pairs of opposite edges.
Moreover, it is easy to verify that the 12 numbers b( - aj are the
internal colors of the four 3-valent vertices.)

THEOREM 3 (Half-twist coefficient). Let (a,b, c) be admissible and
let i = (b + c - ά)/2, j = (a + c- b)/2, k = (a + b- c)/2 be the
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interval colors of a 3-valent vertex (a, b, c). Then

δ{c\ a,b) = (-\)kAij-k^J+k+2\

REMARKS. (1) Similar (but not identical) formulas were deduced
by Reshetikhin and Kirillov [KR] from the representation theory of
the quantum group UgS\2 . 3 They are in fact #-analogues of formulas
that have been used by physicists for a long time in the quantum
theory of angular momentum (see for example [BL]). Piunikhin [P]
has worked out the precise relationship between Kauffman's definition
of a 3-valent vertex, which is the one we use here (up to normalisation),
and the definition coming form the representation theory of UgS\2
(we will state his formula in an appendix to §2). Using the result
of [KR], he thus obtains a formula for the tetrahedron coefficient.
Nevertheless, it seems fair to say that the approach we take here is
a much simpler way to get our formulas, because the representation
theory approach involves much more complicated calculations than
our approach through the Kauffman bracket.

(2) The results of this paper are used in [BHMV3], where it is shown
how the invariants θp of [BHMV1, BHMV2] lead to an elementary
construction of a "Topological Quantum Field Theory".

The remainder of this paper is organized as follows. In §2, we will
show how the knowledge of the three coefficients above allows one to
evaluate any colored link diagram or any colored 3-valent graph. (This
is a fact well known to specialists.) The bulk of this paper is §3, where
we will give the proof of Theorems 1-3.

The authors wish to acknowledge helpful conversations with O.
Viro, who pointed out a great simplification in our original proof of
Theorem 3. The proof of Theorem 3 given here is due to him.

2. Evaluating colored link diagrams and colored 3-valent graphs.
This section presents a graphical calculus which allows one to evalu-
ate any colored link diagram or any colored 3-valent graph, using the
coefficient determined in Theorems 1-3.

We first need to recall some concepts. Let &t be the Q(^4)-module
generated by link diagrams in an annulus, modulo regular isotopy and
the Kauffman relations.4 Given a ^-component link diagram L, and

In order to make contact with #-formulas and 17_S12 , the correct substitution seems to be

A = -q~1^4 . Note that the Kauffman bracket is related to Jones' original F-polynomial [J2]
through a similar substitution (see [Kal]).

4 & was called s/ in [Li2]. It is also the same as the Jones-Kauffman module of a solid
torus as defined in [BHMV1], because of the usual correspondence between planar link diagrams
up to regular isotopy, and banded links in 3-space.
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b\, . . . , bk G 38, let (b\, ... 9 b^)L denote the Kauffman bracket of
the linear combination of link diagrams obtained from L by replacing
the v'th component by bj. Notice that ( , . . . , )L is a fc-linear form
on 38.5 There is a "trace map" Tn —• 38 given by mapping a tangle
in the square to the diagram in the annulus obtained by identifying
the upper and lower edges of the square. The image of an element
x eTn under this map is called the closure of x, and will be denoted
by Jc. Set

en = fne3B.
It turns out that the en (n > 0) form a basis of 38, and hence the
meta-bracket of L is determined by the values

( e i χ 9 . . . 9 e i k ) L .

We call this the colored bracket polynomial of L. This is up to nor-
malisation the same as the colored Jones polynomial appearing in the
construction of 3-manifold invariants in [RT] and [KM]6 (see also
[MS]).

The goal of this section is to evaluate fa , . . . , e^L - With our
graphical conventions, this is the value of the diagram obtained form
L by writing ij beneath the jth component, and inserting one little
box into each component. Such a diagram will be called a colored
link diagram. (We may place the little box wherever we want on the
component. Also, we may insert several boxes since a box represents
an idempotent.) Let C denote the diagram of a circle, and set

(This was denoted by (ek) in [BHMVl], and is equal to (-l)*[fc+l] =
(-l)k(A2k+2 -A-2k~2)/(A2 -A~2).) Gluing two annuli together so as
to get a third endows 38 with a multiplication for which eo = 1 and
exe\ = et+i + e^\ [BHMVl]. It follows easily that in 38, one has the
equation

k

(the sum being over all k such that the triple (/, j , k) is admissible).
5This λ>linear form was first considered in [Li2]. We call it the meta-bracket of L [BHMVl].
6See also a remark in the proof of Prop. 2.2 in [BHMV2].
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This implies the following graphical equation in Ti+J :

367

We now show how to use this and the coefficients determined in
Theorems 1-3 to evaluate colored link diagrams. (The rangle of sum-
mation is not indicated explicitly in the formulas below. It is de-
termined precisely by the requirement that the colors meeting at a
3-valent vertex should form an admissible triple.) First of all, we can
get rid of crossings using the above formula and the half-twist coeffi-
cient, as follows:

i V j

k

i

Thus we are left with a colored 3-valent graph. Notice that an edge
colored with zero may just as well be removed, since fo is represented
by the empty (0, 0)-tangle. Since

(*) <*> o

any diangular face (that is a face with precisely two vertices) of a graph
can be eliminated. Similarly, any triangular face can be simplified
using the tetrahedron coefficient as follows:

A B E
D C F

C
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More generally, any triangle, square, pentagon, etc. can be reduced
to a diangular face (which can then be eliminated by formula (*)
above) using

b\ϊ c
b ί]

c d j]

where {a

c

 b

d

 ιΛ is the recoupling coefficient or 6-j;-symbol defined by

i b c

a b i\ {i)\j d a

)\c d jj (i,a,d)(i9b9c)

(see [Ka2] for a graphical proof of this formula). We now are left
with a connected graph each of whose faces has at most one vertex.
As explained above, we may assume no edge is colored by zero. Then
if the graph has a vertex, the value is zero, because for k > 1 one has

as follows immediately from the fact that fa is the augmentation
idempotent. If however the graph has no vertex, then it is simply a
disjoint union of circles colored by k\ 's, and its value is the product
of the (ki) 's. (By the very definition of the Kauίfman bracket, the
value of a disjoint union of diagrams is equal to the product of the
values of the individual components.)

This completes the evaluation of colored link diagrams.

REMARK. The reader will find two more useful graphical identities
in the proof of Theorem 3.

REMARK. In this paper, we have made the convention that writing
n beneath a component of a knot or tangle diagram just means that
this component has to be replaced by n parallel ones. It is sometimes
useful to make the additional convention that writing n beneath a
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component also includes insertion of the idempotent fn . For example,
this would be convenient when using the graphical calculus to evaluate
the colored bracket polynomial of a link diagram. Indeed, in this
context it is sufficient to consider only diagrams where each component
contains an fn , and it would then no longer be necessary to draw the
little boxes explicitly. However, for the purpose of this paper, which
is to give an elementary proof of Theorems 1-3, it is useful not to
make this additional convention.

Appendix. Comparison with the representation theoretical approach.
Here is the relationship of our graphical calculus with the one of [KR]
(see [P] for more details). Let Vn denote the quantum deformation
of the standard irreducible representation of SI2 of spin n/2 (i.e.
of dimension n + 1). The 3-valent vertices of [KR] represent certain
intertwining homomorphisms Kc

ab:Va®Vb->Vc, K%b: Vc-*Va®Vh

as follows:

As explained in [P], the trivalent vertex as defined in §1 may also
be interpreted as an intertwiner, and there are coefficients φ*b, φc

ab

such that

Piunikhin has shown that

(see formula 4.12 of [P]) . 7 ' 8

Actually, formula 4.12 of [P] contains a certain 6-7-symbol which can however be evaluated.
8 The meaning of the square root is not specified in [P].
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REMARK. In view of formula (*) above, the equation

is equivalent to

(assuming (a, b, c) is an admissible triple).

3. Proof of Theorems 1-3. The properties of the fn that we will
need are WenzΓs recursion formula (see §1) and the fact that they are
augmentation idempotents, which implies the following two equations:

n-2

(i) = 0, (ϋ)

(Recall that writing n beneath a component of a tangle diagram
means that this component has to be replaced by n parallel ones.)

LEMMA 1.

[ft+ 2]

Proof, Let us denote by gn the element of Tn represented by the
diagram on the L.H.S. Using (ii), one sees that gn = λfn for some
constant λ. The closure ^ G £% of gn satisfies
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(these notations are defined in §2). Hence

, (en+ι)c [n + 2]

(en)c [n + l]

as asserted.

LEMMA 2. For j > 1 :

371

W
/ - I

U+j-U

k+l

Proof. The proof is by induction on j . For 7 = 1, this follows
from (ii). For j > 2, we apply WenzΓs formula on the L.H.S. to the
box representing fi+j-i. The first term of that formula yields zero by
(i): hence we get

U+j-2]

Using (ii), we can draw this as follows:

U+j-2]

Applying the induction hypothesis to the upper part, we get
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[ i + y - l ] [ i+y-2]

Using (ii) again, the lemma follows.

REMARK. Lemma 2 remains valid for / = 0 if we make the con-
vention that a diagram is zero if it has a negative number of strings
somewhere.

LEMMA 3. [n + r][m + r] = [n][m] + [n + m + r][r].

Proof, This can be verified by a direct calculation. Alternatively, it
also follows easily from the equation

(the sum being over all k such that the triple (i, j 9 k) is admissible)
(see §2). Details are left to the reader.

Proof of Theorem 1. It is convenient to set

( a , b , c) = [ i , j , k]

where the /, j , k are the internal colors of a 3-valent vertex (a, b, c).
We have
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The proof is by induction on j . If j = 0, then clearly

373

and the theorem is true in this case. If j > 1, we apply WenzΓs
formula to get

V+j]

We can simplify this, using Lemmas 1 and 2. Thus we get the
following recursion formula:

[j +

[i]2

Applying the induction hypothesis to the R.H.S., we get after simpli-
fying

[i + JV U + k]\[i + k]\
But [/ + j]\j + k+l]-[i][k+l] = [j][i + j
3, whence the result.

LEMMA 4. For y > 1

because of Lemma
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Proof. WenzΓs recursion formula applied to the box representing
fx+y yields

[x + y]

The first diagram on the R.H.S. can be simplified using Lemma
1. The second diagram can be simplified using Lemma 2 twice, as
indicated below:

Hence

The result now follows from Lemma 3.

Proof of Theorem 2. We start by reformulating Theorem 2 as follows.
Notice that the numbers aj and ftz defined in Theorem 2 satisfy
Σdj = Σbi = Σ and max(α/) < min(Z?z). Conversely, it is not
hard to see that whenever a\, ^2 > ̂ 3 ? ̂ 4 ? ^i ? ̂ 2 > ̂ 3 a r e nonnegative
integers satisfying these two conditions, then they uniquely determine
A9 B, C etc. such that there is a well-defined tetrahedron coefficient.
With this in mind, we define

#3 0

whenever

A BE) if max(α ) < min(^)

D c Fl
0 if max(α7 ) > min(6/)

i (and 0/ > 0, ft/ > 0) .
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Theorem 2 can now be stated as follows:

375

a4] _ fax

where the R.H.S. is defined by

ax a2

b\ b2

a2 a3 a
b2 b3

a i a2 #3 #4

To obtain a recursion formula for [ ι

 b

 2

 h

 3

 b

 4 ] , it is convenient
to introduce some more notation. Let /, j , k denote the internal
colors of the vertex labeled a\, and similarly α, β, γ those of a2,
and x,y,z those of a$, as in the following figure:

Assume that j > 1 and β > 1. Applying WenzΓs formula to the
edge labeled B = i + j = a + β,we obtain the above

[I+7-1]
[i+7Ί

Observe that if y = 0, then the first term is zero, and if / = 0 or
a = 0, then the second term is zero (cf. the remark following Lemma
2). We apply Lemmas 4 and 2 and obtain the above



376 G. MASBAUM AND P. VOGEL

k+l

For this recursion formula to be valid it is sufficient to suppose
that j > 1 and β > 1, but we may allow some of the other seven
numbers /, k, a, γ, x, y, z to be zero. (We make the convention
that a diagram is zero if it has a negative number of strings somewhere.
This is consistent with the convention that

d\ CL2

b\ b2

a4 = 0

if max(Λ/) > min(Z>/), because the 12 numbers bi — aj are the internal
colors of the four vertices of the tetrahedron.) If j = 0 or β =
0, however, the R.H.S. is zero whereas the L.H.S. may be non-zero.
But if we multiply both sides of the recursion formula by [j][β] =
[b\ - d^\[bι - a^], the result will be true without restriction. After
rewriting things in terms of the aj and the b\, we thus obtain:

- 1 a2 - 1 <
bx-\ b2-\

We now set out to prove

i a2

b\ b2

a i

If max(θy) > min(bi), this is true by definition.
Next, we consider the case where max(α7) = min(6/). Then (at

least) one of the 12 numbers b\ - aj is zero, and without loss of gen-
erality, we may suppose y = b^ - a$ = 0. We proceed by induction
on min(7 , β) = min(&i - <z4, b2 - a*). If this is zero, then the tetra-
hedron coefficient reduces to a trihedron coefficient, and the result
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follows easily from Theorem 1. Now suppose min(y, β) > 1. The

first term on the R.H.S. of our recursion formula being zero, we have

a i a2

b\ b2

-a2 + 1] \aι - 1 a2 - 1 a3 a4

[b\ - a4][b2 -a4] [ bx - 1 b2 - 1 b3

It is easy to verify that the same relation holds for ( *') in place of

[ϊ.ϊ ] (tke s u m reduces to the term for ζ = b3 = a4). This yields the
induction step. Thus we have shown Theorem 2 in the case max(α7) =

To prove the theorem in the general case, we wish to simplify the

recursion formula obtained above. At this point, it is useful to look

at symmetries. Observe that the coefficient ( \ \ \ 4 ) has symmetry

J?4 x J?3 that is, it is unchanged under any permutation of the <zz

or the b(. We claim the same is true for the coefficient [ \ \ \ 4 ] .

Indeed, it follows from the recursion formula above that [ \ \ \ 4 ]
is unchanged under the permutation a\ <-» a2, and also under the per-
mutation b\ <-> b2 . But recall that the recursion formula was obtained
after choosing a face of the tetrahedron (the face whose vertices are
labeled a\, a2, a3) and an edge on the face (the edge joining a\ and
a2). It is easy to see that the recursion formulas we can get from mak-
ing the other choices imply that the coefficient [ \ \ \ 4 ] indeed has
symmetry S?4 x S% .

Hence we can exchange the roles of a2 and a3 in the recursion
formula above. Subtracting the old recursion formula from the new
one, we obtain

0 = ([α3 4- l][αi +a2- b3] - [a2 + \}[ax +a3- b3])

\ - 1 a2 - 1 a3 - 1 α
bx-\ b2-\ 6 3 - I

However, applying Lemma 3 with n = a2- a3, m = a\-b3-\,



378 G. MASBAUM AND P. VOGEL

r — α 3 + 1, we find

[03 + llfol + ^2 ~ *3] - [̂ 2 + I p l + 03 ~

Hence, the equation above has [63 - a\ + 1] (which is equal to
—[01 — ̂ 3 — 1]) a s a common factor. If δ 3 Φ a\ - 1, we may di-
vide by this common factor, and obtain

This is the "simpler" recursion formula we sought. Using Lemma
3 as above, it is not hard to verify that the same formula is true with
ObW"*) in place of [ % V V 4 ] . We leave this to the reader. (It
is true "term by term", that is, even before summing over ζ.) Notice
that it follows that our formula remains true if 63 = a\ — 1, because
in that case we know already that ( '") = [ "' ] for the three terms
appearing in that formula.

Setting

I
a\ 0

2
 03 04] Γ01 02 03 04] _ (CL\ a

2
 03 a

61 b
2
 b

3
 j ~ [ b

x
 b

2
 b

3
 \ V b

x
 b

2
 b

3

we thus obtain after a slight change of variables the following final
formula:

( 1 02 - 1 03 04

01 02 03 04

*• h b,

We now conclude the proof of Theorem 2 as follows. We must show

I ι

b

 2

b

 3

b

 4 } = 0. We use double induction on Σ = Σ aj: = Σ bi and

on d = min(6z ) - max(α/). For Σ = 0 there is nothing to show, and
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if d = 0, then we know already the result. If Σ > 1 and d > 1,
we look at our final formula. By the hypothesis of the induction on
Σ, the L.H.S. is zero. Since { \ \ \ 4 } is unchanged under any
permutation of the a.j, we may assume that max(α/) = a?> hence by
the hypothesis of the induction on d, the second term of the R.H.S.
is zero. Hence

a i #3 #4

But we assumed d > 1 hence [63 - a^] is non-zero, and the result
follows.

This completes the proof of Theorem 2.

Proof of Theorem 3. We reproduce here an argument of O. Viro [V].
One has the following two equations:

= A~ik

where μ, = {-\)ιAι + 2 / . Indeed, the first equation is an immediate
consequence of the equation tβi = μzez of [BHMV1] (see also [Lil,
Li2]), and the second equation follows from applying the KaufFman
relations to the ik crossings of the diagram, together with the fact
that the box represents the augmentation idempotent f^+i. Hence
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b

whence

δ(c;a,b) = μ-ιAij~ik-kj = ^

as asserted.

REMARK. One has

δ(c;a,by =
2_

This follows immediately from Theorem 3.
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