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ORIENTED ORBIFOLD COBORDISM

K. S. DRUSCHEL

A complete set of invariants (generalized Pontrjagin numbers) for
rational oriented orbifold cobordism is determined. Using these num-
bers we prove that for any odd dimensional oriented orbifold Q there
is a nonzero multiple of Q which bounds another orbifold and that,
unlike the manifold case, this need not be true for 4k+2 dimensional
orbifolds. In addition we construct generators for the rational orbifold
cobordism ring and show that it is a free commutative ring on these.

Introduction. This paper establishes a foundation for oriented orb-
ifold cobordism in a manner analogous to Thom's results for oriented
manifolds. Thom's main theorem states that some multiple of an ori-
ented compact manifold bounds another such manifold if and only if
its Pontrjagin numbers are zero. Orbifolds are like manifolds, except
that they locally look like Rn/G for G a finite group. For each H a
finite subgroup of SO(n) we define H characteristic numbers of the
compact oriented orbifold Q which account for its H singular set
and are its Pontrjagin numbers when H is trivial. Our main theorem
is that some multiple of Q bounds another compact oriented orbifold
if and only if all its H characteristic numbers are zero for all finite
subgroups H of SO(π).

Thom's corollary that every manifold with dimension not divisible
by four rationally bounds does not translate exactly in the orbifold
case. There is no reason to expect it to as the H singular set of even
an odd dimensional orbifold may have nonzero Pontrjagin numbers.
However, a careful consideration of orientations and the twisted co-
homology of the classifying space of the centralizer of H, CO^(H),
shows that any odd dimensional orbifold rationally bounds another
orbifold W with the same set of local groups. The result for (4Λ; + 2)-
dimensional orbifolds is not as neat. We can isolate a certain class
of finite subgroups of SO(4/c + 2), which includes all finite abelian
subgroups, such that any (4k + 2)-dimensional orbifold with all local
groups in this class rationally bounds. This set does not include all
finite subgroups as we construct a seventy-dimensional orbifold with
nonzero characteristic numbers which therefore does not rationally
bound.
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The article begins with a preliminary section on orbifolds, orbi-
bundles, orientations, and orbifold cobordism. The second section is
devoted to defining the H characteristic numbers and proving that
they rationally determine orbifold cobordism. The proof adopts the
local techniques of Lee and Wasserman [8]. We follow this with an
analysis of these numbers and the cohomology from which they arise,
yielding the odd and (4k + 2)-dimensional results. Using the work
of the previous two sections, in the fourth section we construct orb-
ifolds which form bases for the rational orbifold cobordism groups
and show that Ω*j0Γb ® Q is a free commutative algebra over Ω* ® Q
with generators a certain subset of these orbifolds.

This article stems from my dissertation, which was directed by Pro-
fessor Michael Davis, to whom I am very grateful for his help and
suggestions. I would also like to thank Professor Walter Neumann for
his suggestion concerning the (4k + 2)-dimensional counterexample.

1. Preliminaries.

DEFINITION 1.1. Let X be a topological space.

(i) An orbifold chart on X is a four-tuple (U, G, U, π) with U
an open subset of X, 17 an open subset of R", G a finite group
of diffeomorphisms acting effectively on 17, and π: 17 —• U an open
map onto U such that π = h%u where πjj is the natural orbit map
and h is a homeomorphism from U/G to U.

(ii) Two charts (t/, , Gt, 17/, π{), / = 1, 2, on X are compatible
if for every x e U\ Π U2 there is an open set U c U\ with a lift x
of x contained in U and a diffeomorphism / : U —• U2, called an
overlap map, such that π^f = %\.

(iii) An orbifold atlas % on X is a collection {(Ua, Ga,Ua, π α )} α G Λ

of compatible charts on X such that [}aeK Ua = X.

DEFINITION 1.2. A smooth orbifold Q is a Hausdorίf space \Q\,
called the underlying space, together with a maximal orbifold atlas %
on | β | .

DEFINITION 1.3. An orbifold with boundary W is defined by allow-
ing V to be an open subset of Hn = {(x\, . . . , xn) e Rn: xn > 0}
in the above definition. The orbifold boundary of W, denoted d0 W,
has underlying space \d0W\ = {w e \W\: w e π(d(UΓ\Hn)) for some
chart of W} and the obvious orbifold structure.

An orbifold diffeomorphism is defined by a homeomorphism f:\Q\
—• |<2Ί such that (17, G, £/, π) is in the maximal atlas for Q if and
only if (f(U), G, U, fπ) is a chart in the maximal atlas of Q.
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DEFINITION 1.4. Let x e \Q\ and (U, G9V', π) be a chart for Q
with x e U and j> e C/ such that ττ(j ) = JC . The local group at x is
defined to be Gy , the isotropy group of y.

We have that Gy is isomorphic to the linear group formed by its
differentials at y. If ([/;, G;, I/,-, π, ) are two charts with x e ί/,
and 7Γ|(y/) = x and Λ is an overlap map sending y\ to >>2 then con-
jugation by dhyχ provides an isomorphism between dGyχ and dGy<ι.
It follows that the local group at x is independent of the choice of
chart and is well defined up to conjugacy as a subgroup of G\{n, R)
where n = dim Q.

DEFINITION 1.5. The set of conjugacy classes in G\{n, R) of local
groups of Q is denoted by 3?Q and the class of a subgroup H in %?Q
is denoted by (H). The set &Q is partially ordered by (H) < (H1) if
H is conjugate in G\(n, R) to a subgroup of H'. Note that &Q is
finite if Q is compact.

Many of the concepts one would want in a theory of orbifolds are
most precisely defined in the language of groupoids. This approach
can be found in [7] and in more detail in [5].

DEFINITION 1.6. For ^ = { ( ί / Q , G α ) F α ) π α ) } α G Λ , an atlas for Q,

there is the topological groupoid IV whose set of objects is Q =
{x: x € LLeΛ Ua) and whose morphisms are the germs of local dif-
feomorphisms which commute with the natural map π from Q to
\Q\. Thus the morphisms are generated by the germs of local groups
and overlap maps. ΓV has the "germ" topology ([5, 3.7]).

DEFINITION 1.7. Q is orientable if there is an orientation of Q
which is preserved by IV A weaker notion is that of local orientάbil-
ity which means that all the local groups are subgroups of G\{n, R) + .

Suppose F is a topological space and G is a topological group
acting effectively on F . As a generalization of (F, G) bundles we
have:

DEFINITION 1.8. An ( F , G) orbibundle E Λ Q is defined as an

( F , G) bundle £ - ^ Q with a ΓV action (see [7, §2.2]) on E through

( F , G) bundle isomorphisms which extends the natural action on Q.

There is an induced map E/Γ& -^ \Q\ of Γ^ quotients and

P"ι(Ua) = Ua XG F where Ga acts on F by elements of G. If

F is an orbifold, G < Diffeo(F), E is a smooth ( F , G) bundle and
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IV acts smoothly on E, then E/Γf/ has a natural orbifold structure
which we often denote by E.

Many of the usual notions for bundles carry through to orbibun-
dles, including associated principal orbibundles and reduction of the
structure group G, [13, §1]. Vector bundles are now generalized to
(Rπ, Gl(n, R))-orbibundles, called orbivector bundles. Riemannian
metrics on orbivector bundles are reductions of their structure group
to O(n). An oriented orbibundle would be one where E is an ori-
ented (F, G) bundle and T% preserves the orientation.

The most revelant examples for this paper include the tangent bun-
dle to Q, TQ, (which is TQ with T% acting by differentials), its as-
sociated principal G\(n, R) orbibundle, PQ, and, given a Riemann-
ian metric g on Q, the associated principal O(n) orbibundle, PgQ.
We note that PQ, respectively PgQ, are smooth manifolds and that
there is a smooth right G\(n, R), respectively O(ή), action with finite
isotropy groups whose orbit space is Q. Thus since any paracompact
orbifold admits a Riemannian metric, we conclude that any compact
orbifold is the quotient of a compact manifold (of higher dimension)
by a smooth compact Lie group action with finite isotropy groups.

For the groupoid T<% there is a universal principal ΓV bundle [7,
§3.1] £TV Λ 5ΓV and natural maps ψy\ BΓ& -> \Q\, ψv\ EYy ->
Q making the appropriate diagram commutative. If %' is another
atlas for Q, BY%< is homotopy equivalent to BT% by a homotopy
h such that hψ% = ψw [5, Remark 8.1]. Thus we often denote BT%
by BQ and ψ% by ψ. One model for BQ is PgQxO{n)EO{n) ([5,
Remark 8.2]). Also a map of orbifolds λ: Qr —• Q is defined by a
generalized homomorphism [5, §4.8; 7, §2.3] λ between T%* and T%
and so defines a homotopy class of maps Bλ: BQ' —• BQ. Here W
and % are atlases for Qr and Q, respectively .

For F an ( F , G) orbibundle over Q we denote by ψ* V the bun-
dle ψ^E/T^. Then since IV acts freely on £ I V we have the fol-
lowing.

LEMMA 1.9. ψ*V is an ordinary (F, G) bundle and so is classified
by a map f: BQ-+BG.

If the structure group of the orbibundle V reduces to L < G then
/ lifts to a classifying map to BL. Also for the orbifold map λ: Qf —•
(2, λ*V is defined by the bundle F x Γ λ over Q1 with Γ^» acting

on the right of X. Working through the definitions one checks that
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(Bλ)*ψ*V = ψ'*λ*V. Here ψ'\ BQ -» \Q\ is the canonical map.
From [5, 6.4] and [7, 4.2.4] we have

LEMMA 1.10. If Q is a locally orientable, n-dimensional orbifold
then | β | is a rational homology manifold.

Thus as in [16, §2] | β | has a twisted fundamental class [Q] e
Hn(\Q\\Q)> where Q, or o r β , denotes the orientation system of
| β | . We also have that if E Λ Q, denoted φ, is a locally orientable
(Έίn/K, G)-orbibundle with K finite and orientation preserving and
G < NG\(n^(K)/K, where NGI(«,R)(X) is the normalizer of # in
Gl(w, R), then Hn(\Ex\, \Ex-0\ ; Q ) , J C G \Q\, defines an orientation
system for φ, denoted or^ or Q. In general, in # w ( | i ? | , \EQ\; p* orψ)
there is a unique class, μ^, called the Thorn class of φ such that

\Jμφ: Hk(\E\;Γ) 5 Hn+k{\E\, \E0\-r®p*orφ) for any rational lo-
cal system Γ. If e e Hn(\Q\ or^) is the class which gets mapped
onto βφ by p* then e is called the twisted Euler class of φ. Also
if Q is the orientation double cover of Q associated with φ then
# * ( | β | or0) = /?*(|Q ; | Q)~ , the - 1 eigenvectors of α* where a is
the involution of the cover.

LEMMA 1.11. Suppose Q is a locally orientable orbifold. Then ψ*
is a rational cohomology isomorphism, both for trivial coefficients and
between H*(\Q\; ovQ) and H*(BQ; ψ*oτQ).

Proof. The trivial coefficient case is proved in [5] and [7, 4.2.3].
One has that H*(BQ; ψ* OΪQ) is isomorphic to the - 1 eigenvectors
of Ba* acting on H*(BQ' Q) and these coincide with if *( |β ' | Q)"
under the isomorphism ψ'* where ψ'\ BQ —• \Q\. D

Assume that ζ is an orbivector bundle over a locally orientable
orbifold Q and that V is a (Rn/K, G) orbibundle over Q as above
with TQ®V oriented.

DEFINITION 1.12. (i) The zth Pontrjagin class of ζ, Pi(ζ), is de-
fined to be (ψ*)-ι(Pi(ψ*(ζ))).

(ii) Let x E H*(BG; Q) where the coefficients are those of the
canonical (ΊLn/K, G) bundle over BG\ then x(V) e i/*(Q; or β ) is
the class (ψ*)~ι(f*x).

From the discussion following Lemma 1.9 we conclude
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LEMMA 1.13. Pontrjagin classes of orbivector bundles have all the
usual properties, as in [12]; in particular, they respect direct sums, are
zero for trivial bundles and natural with respect to orbifold maps. The
other characteristic classes of orbibundles in the above definition have
the latter two properties.

DEFINITION 1.14. Suppose \X\ c \Q\. We say that X is a /c-dimen-
sional suborbifold of Q if there is an atlas

for Q such that for every a e Λ with Ua Π \X\ Φ 0, Ua Π R^ is
invariant under G α , and na{Ua Γ\Rk) = UaΓ)\X\.

If A7 = {α G Λ: C/α Π |AΓ| ^ 0} then X has the orbifold structure
given by the atlas W = {(Ua n |X|, <?*/*«, F α n R*, π α | F n Λ *)} α € A ' >
where ϋΓα is the (normal) subgroup of Ga which acts as the identity
o n F α Π R * . _

Let Jj'a denote UQΠRk. If Q is a Riemannian orbifold then
TTJIJJ' decomposes as TTJ'a @v{U'a) and this is invariant under Γ^

restricted to U α G Λ ' F ^ . Therefore LlαeΛ' v(u'a)lK0L defines a normal
bundle v(X) over Z . |X| can be written as U | ^ | where (Kβ) is
constant for x e \Xβ\. Then u(Xβ) is a (Rk/Kβ, No{k)(Kβ)/Kβ)-
orbibundle.

From the equivariant tubular neighborhood theorem [2] applied to
PgQ ([6, Proposition 2.1.2]) we obtain

PROPOSITION 1.15 (orbifold tubular neighborhood theorem). Let Q
be a suborbifold oftheparacompact orbifold Qn. Then there is a neigh-
borhood U of Q in Q which is orbifold diffeomorphic to the total
space of the normal bundle v(Q!) of Q.

Similarly one has an Orbifold Collaring Theorem which says that if
W is a paracompact orbifold then d0 W x [0, 1] is orbifold diffeomor-
phic to some neighborhood of d0W in W. By using the Collaring
Theorem and standard arguments from the manifold case [4, §1.3] one
obtains the geometric theorems necessary for the development of orb-
ifold cobordism. Namely, one can glue two orbifolds together along
orbifold diffeomorphic orbifold boundaries to form a new orbifold
and also that one can "straighten the angle" as for manifolds.

DEFINITION 1.16. Suppose Qi9 i = 1,2, are two closed, oriented,
^-dimensional orbifolds. We say that Q\ is oriented orbifold cobor-
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dant to Qι, written Q\ ~0 Qι, if there is an oriented orbifold W
such that Q\ II -Qi — d0W with the inherited orientation.

Analogous to manifold cobordism, oriented orbifold cobordism is
an equivalence relation on the set of closed, oriented, ^-dimensional
orbifolds. We denote the class of Q by [Q]o and the set of oriented
orbifold cobordism classes of «-dimensional orbifolds by Ω w o r b .
Ω*jOΓb is a graded ring via disjoint union and the cartesian product.

2. H characteristic numbers. We assume henceforth that Q is a
smooth, oriented, Riemannian n-dimensional orbifold and that H is
a finite subgroup of SO(n) of degree d (Definition 3.1).

We motivate our definition of H characteristic numbers by first
considering the case where H is maximal in &Q . Then the H singular
set, QH (see below), is a manifold. It follows from a twisted bordism
theory that some multiple m of the normal bundle uH of QH bounds
another bundle E if and only if {pi(TQH) u f*x, [β"]) = 0 for all
x G H*(BNO(d}(H)/H; Q) and pi a product of Pontrjagin classes
with 4|/| + d im* = dimζ)^ (Lemma 2.8). Here / is the classifying
map of Vfi. A standard geometric construction using E then gives
a cobordism between rπQ and an orbifold Q with &Q* C%/Q- (H)
(Lemma 2.2).

For H nonmaximal our H characteristic numbers are orbifold
characteristic numbers of the same form as above. To define these we
construct an orbifold QH and its normal bundle VH which are the
best orbifold approximation of the H singular set and a neighbor-
hood of it in Q. As these numbers are orbifold cobordism invariants
(Lemma 2.14), if all of them are 0 for all H we can successively
apply the above cobordism to make Q rationally cobordant to a man-
ifold whose Pontrjagin numbers are all zero and which thus rationally
bounds. It then follows that some multiple of Q bounds.

DEFINITION 2.1. The H singular set of Q is QH = f {x e Q\{H) <

(Gx)}.

Now suppose that H is maximal in &Q . Then for a chart (17, H,

V9 n) for Q with U(λQH φ0 we have UΓ)QH_= π(Ί?*) so QH is
a manifold and a suborbifold. Also for φ: U c U\ —> Ui an overlap
map, dφ\VH is in NQ^(H) and hence the normal bundle of QH

 9

vH, is an (Rd/H, NO{d)(H)/H)-b\xndle.

LEMMA 2.2. Suppose that Q is a closed orbifold and that PH

bounds. That is, there is a compact manifold Z and a smooth
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(Rd/H, No(d){H)/H)-bundle ξ over Z such that (i) dZ = QH, (ii)
ζ\<2» = vH, and (iii) the orientation of the bundle (TZ ®ξ)\QH is the
same as that of v{QH, Z) θ TQH ® vH. {Here the normal bundle
°f QH in Z > v(QH, Z) has outward direction positive.) Then Q is
oriented orbifold cobordant to an orbifold Q with 2/Q» c &Q - (H) via
an orbifold W with &W = &Q.

Proof. Let h: U —• ΌuH be an orientation preserving orbifold dif-
feomorphism from a closed tubular neighborhood U of QH onto
the total space of ΌuH. (In general if η is a (Rd/H, NO^(H)/H)
orbibundle then Όη and Sη denote the associated orbibundles with
fiber Όd/H, respectively Sd~l/H.) Let W = (QxIuΌζ)/~ where
~ is defined by identifying ( c, 1) in Ux{l} with h(x) e ΌuH c D^.
Once we straighten the angle at SIΉ , W becomes an oriented orb-
ifold with boundary Q Π β 7 , where Qf = (Q-(U-dU))x{l}uSξ/ - 7

with ~ ; the above identification restricted to dU x {1}. Since ξ is
an Rd/H bundle over a manifold, &Όξ = &Rd,H C &Q and ^ c

- (H) and hence &w = &Q and ̂ Q> c&Q-{H). π

This leads us to consider the following twisted bordism theory. Sup-
pose T isa (Rd/H, No{d)(H)/H)-b\mdle over a CW complex B with
finite skeleton in each dimension.

DEFINITION 2.3. Consider pairs (Mι, / ) , where Λfz is a compact
manifold and f:M->B with Γ Λ / θ / * ϊ oriented. We say that two
such pairs (Af/,.//), i = 1, 2, with M/ closed, are twisted cobordant,
denoted (Mi, f\) ~t {Mi > ^2) ? if there is a pair (W / + 1, g) as above
such that (i)ΘW = Mx UM2, (ii) g|M / = /•, and (iii) ( Γ ^ θ ^ * T ) | M i

has the same orientation as v{M\)®TM\ θ / f ϊ and (TW® g*Ύ)\M2

opposite the orientation of v(Mj) ® TM2 θ f% T , where ι/(Λ//), the
normal bundle of Af/ in W, has outward direction as positive.

Let [Af, f]t be the class of (Af, /) and Ω/sί(T) the group of these
cobordism classes. Ω*,/(T) is a left Ω* module via [N][M, / ] ^ =
[iV x Af, /π2]ί where n2 is projection onto the second factor and Ω*
denotes the oriented manifold cobordism ring.

LEMMA 2.4. Ω / f ί(T) ® Q = 0 j = o Ω y ® ///_,-(£ Q).

Proof. When T is oriented /*T has an induced orientation and
hence Af is oriented. Thus Ω/ f ί(T) = Ω/(2?) and the lemma is a
result of [4, Theorem 14.2]. Otherwise one traces arguments checking
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orientations ([6, Lemma 4.2.3]) to obtain

Ω M ( T ) = πι+k(Jt(fk xz2 B), oo) for k > I + 2,

where (a) B is the orientation double cover for T , and (b) Z2 acts
by the diagonal using (a) and the orientation reversing action on γk.
Here γk denotes the canonical fc-dimensional vector bundle over
BSO(λ ) and Jt{γk Xz2B) is the Thorn space of the unoriented vector

bundle γk xz2B.
Standard arguments [12, 18.3], now involving the Thorn iso-

morphism for local orientation systems, tell us that^for j < 2k - 1
there is an isomorphism between %j{J^{yk xz2 B), 00) ® Q and

Hj_k(BSO(k) *z2B;Q). Calculations with - 1 eigenvectors show
that the latter is isomorphic to

0 Hm(BO(k) Q) ® Hj_k_m(B Q)

(J-k

Θ 0 JΪW(BO(*) Q) ® Hj_k-m(B Q)
\m=0

Since j-k < k-\ and i/*(BO(Λ:); Q) consists of sums of elements
of the form pje with the Euler class e in dimension k (Lemma 3.7),
Hm(BO(k);Q) = 0 w h e n 0 < m < j - k . Also Hm(BO(k);Q)
is isomorphic to Ω m in that range [12, Chapter 18] and the result
follows. D

LEMMA 2.5. Hr{B Q) has a basis {xr? 1, . . . , xr,xr}
 such that for

each 1 < i < λr there is a singular manifold {M\, f) with fi*[M[] =
xrJ.

Proof. If T is oriented this is Theorem 15.3 [4]. Otherwise by
that theorem Hr{B', Q) has a basis {y\, . . . , yμ} for which there
are singular manifolds (Pf, gi) with gu[P[] = yf . Here β: B1 -> B
is the orientation double cover for the bundle T . One can then con-
struct a basis {x^i, . . . , xr ίλ} for Hr(B', Q)~ and singular mani-
folds {M\, ft) with fi*[M[] = jcr>ϊ , and let f = βfi, x r > z =

We proceed in a manner analogous to [4, Chapter II] to define
invariants for this bordism theory. Let xr^ e Hr(B;Q) so that
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(xr>1, xrj) = δij . Suppose [M, f]t e Ω/,(T). For r an integer with
/ = rmod4 and / a partition of (/ - r)/4 let pj^rj[M, /] denote
the number (piTMl)f*xr>j, [Λf]). Standard arguments like those in
[4, Chapter II, § 17] yield that these numbers are zero if [M, f]t = 0
and then define elements of Hom(Ω/ j(Ύ), Q).

Let 0 < r\ < Ϊ2 < < rω < I be those integers with I = rs mod 4
and Hr(B; Q) Φ 0. Consider triples (s, k, K) where 1 < s < ω,
1 < /: < λr and Â  is a partition of (l-rs)/4. Let i? be the square ma-
trix (pi9rb,i[VjxMrjm , fj7t2\) where the rows are indexed lexicograph-
ically by triples (b, i, /) as above and the columns by (m, y, / ) .
Here if / = {a\, . . . , a^} is a partition of v then F/ denotes the
generator CP2aι x x CP2 α* of Ω 4 v .

LEMMA 2.6. 77ze matrix R is nonsingular.

Proof. For 1 < b, m < ω let Rb

m be the submatrix of R with
entries /?* r *[K* x M*m,/*π2], and then, for 1 < / < λr and

' b ' σ

1 < 7 < \ let JR '̂̂ . be the submatrix of Rb

m with entries

b j

We first note that the matrix Rb

m is zero if b > m, since then

fy > r w and fjxrb>1 £ Hrb(Mjm: Q) can only be zero for dimension

reasons. If we show that Rb

b is nonsingular for all b then we will

have that R is nonsingular. To do this we prove that Rb

b

)l. is zero if

/ Φ j and nonsingular if i = j . It can be shown that

K+L=I

Also pκ(TMrpufjxrb^ = 0, unless K = 0, in which case

Hence Rb

b'
1. is the zero matrix if / Φ j , and when / = j the matrix

with entries pi[Vj], which by Theorem 16.8 [10] is nonsingular. D

LEMMA 2.7. If all pi^rj[M, f] are zero then some multiple of
[M, f\t is zero.

Proof. Since R is nonsingular the Pi,rbj are linearly indepen-
dent and thus by dimensional considerations from Lemma 2.4 form
a basis for Hom(Ω/ ,(T), Q). From this it follows that if all the



ORIENTED ORBIFOLD COBORDISM 309

Pi9rbj[M, f] are zero then [M, f]t is zero in Ω/ / ( T ) ® Q . In ad-

dition we get that the [Vj x Mr m , fjUilt are linearly independent and

so form a basis of Ω/,(T) ® Q. We call such a basis formed in this

way a preferred basis. Ώ

For // maximal in &Q , vH has a classifying map / : QH ->
BNO{d){H)/H and so our /f characteristic numbers are defined by

(Pi(TQH)Uf*x, [QH]) for xeH»-d-*s(B(No{d)(H)/H);Q) and /
a partition (iχ9 . . . , /„,) of s. These numbers are linear combinations

LEMMA 2.8. If all the H characteristic numbers of Q are zero then
some nonzero multiple of uH bounds as in Lemma 2.2.

Proof. This follows from the previous lemma where T is the canon-
ical (Rd/H,NO{d)(H)/H) bundle over BNo{d){H)/H. If (M, f)
bounds (W, g) we may assume that g is smooth and hence that
£*T is smooth. D

When H is nonmaximal QH need not be an orbifold as there may
be crossings at those points with local groups larger than (H), (e.g.
(e2πi/P) x (1) < {elπilp) x (elπilp)) which we break apart as jollows.
For every x e QH choose precisely one linear chart (Ux, Gx, Ux, πx)
with H <GX and πx(0) =x. Let [Hf], ... , [H£] be those distinct
conjugacy classes of Gx with Hf conjugate to H in O(n) and Hf —
H.

DEFINITION 2.9. \QH\ = {(x, [Hf]): x e QH, 1 < i < kx}.

This construction is a refinement of ΣX in [9, §1]. One. can

give explicit charts for QH [6, §3.1; 9, §1]. Locally QH looks like

UH'/(NGχ(Hf)/Kf) where Kf = {k e NGχ{Hf): ky = y for all
—HχX

y e Ux

ι }. The overlap maps are essentially restrictions of those
of Q.

REMARK 2.10. (i) We can write QH as ]}0<j<rQ
J

H where QJ

H is
the set of elements (Λ: , [Hf]) of QH such tfiat (Kf) is constant.
We choose a representative Kj of this class so that Kj > H. We
also assume that Ko = H. Thus Q°H = 0 if H $ &Q. (ii) If (H)

is maximal in % , then QH = QH = Q^. (iii) Since d(U**) =

ϋ * ϊ , do(Qi

H) = (d0QYH.
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We have that TV _„* = TT/J Θ U(V^) and the differentials of
x\U ι

the overlap maps and of the elements of Noχ{Hf) factors accordingly.
Define the normal orbibundle of QH to be

" * = ( LI v{VHJ)INGχ{Hf))/ ~
H

where (y,v)~ {φ(y), dφ2v) for all appropriate overlap maps φ and
dφ2 denotes the differential of φ in the normal direction. vH\ ,

abbreviated vjj, is a (Rd/Kj, No^(Kj)/Kj)Ότbibundle.
TvH is oriented as inherited from Q however, neither VH nor

QH need be orientable or even locally orientable as the following two
examples show.

ExAMPLe 2.11. Let the dihedral group D2p act on R3 = C x R

by α ( * i , x2, x3) = (xι, -x2, -X3) and jff(*i, x2, X3) = β(z, ^3)
= (elπilpz, JC 3). Then β = R3/Z)2p is orientable, but βz =
Έίι/(x ~ -x) is not locally orientable at {0} .

EXAMPLE 2.12. Let Q be the quotient of S 2 x C by the D2p

action: a(x, v) = (-x, v), β(x, υ) = {x, e2πilpv). β 7 is orientable.
ζ ^ = S2/D2p = RP2 is locally orientable, but not orientable.

P

Note that in both of these examples NO^(ZP) = O(2). However, if
NO^)(H) is a subgroup of SO(rf) then vH has a natural orientation
and so QH is oriented.

There is one exception to this induced orientation. In declaring
TVH oriented as inherited from Q one is assuming that the chart
(UX9 Gx, Ux, πx) with H < Gx in the definition of QH came from
the orientation atlas of Q, which is always possible unless degree H
is n. In the case where we cannot have H < Gx we give the point x
an orientation of - 1 in QH . This makes sense since if H has degree
n and is conjugate to H' in O(n), but not SO(w), one can show
that Rn/H is oriented orbifold diffeomorphic, and hence cobordant,
to -Rn/H'.

DEFINITION 2.13. Let β: B(Nso{d)(H)/H) -> B(No{d)(H)/H) be

the canonical orbit map. For x e Hn-d-4s(B(No(d)(H)/H) Q) and

/ a partition (i\9 ... 9 im) of s define PiyX[Q] to be the number

(i) <j>i(T°)l)x(v%), [Q°H]) ^QH is locally oriented,

(ii) \{pj{TQ%)Όβ^x{ϋ%)ΛQQH]) otherwise.



ORIENTED ORBIFOLD COBORDISM 311

Note that the two definitions agree when Q^ is locally orientable.
The set of all such numbers, for all x and / , are called the H char-
acteristic numbers of Q. Also when H is maximal these are the same
as the numbers defined for that case.

LEMMA 2.14. If Q = d0W where W is an oriented orbifold then
pj X[Q] = 0 for all H, and pairs (I, x).

Proof. By a standard argument and Lemma 1.13 ^
Pi(i*TW%) = rp^TW^). Similarly jr(i/£(β)) = i*x(v%(W)). There-
fore pΪ9X[Q] = (i*(Pi(TW%)\jχ(v%(W))), [Q°H]) which in turn is zero
since [Q°H] = d[W%] and i+d = 0. D

Using Q x I with the appropriate metrics at the ends it follows
from the above proposition that these numbers are independent of
the metric on Q. Also it is easy to see that the Pi9χ*s define additive
homomorphisms from Ω* o r b to Q. If H, H' are finite conjugate
subgroups of O(n), one can show [6, after Lemma 3.2.7] that via the
conjugation the set of H characteristic numbers of Q is equal to the
set of Hf characteristic numbers of Q.

THEOREM 2.15. If all the H characteristic numbers of Q are zero
for all finite subgroups H of SO(/ί) then some multiple of Q orientably
bounds another orbifold W with &Q = &w

Proof. Let H be maximal in &Q . Since the H characteristic num-
bers are all zero, by Lemmas 2.2 and 2.8 some multiple r\ of Q is
cobordant to an orbifold Q\ with &Q C 3?Q - (H) via an orbifold
W\ with &w = &Q. Since Q\ ~0 r\Q> by the discussion following
Lemma 2.14 all the H' characteristic numbers of Q\ must also be
zero for all H' e % .

Let s = c a r d ( ^ ) . Proceeding as above we get an oriented Qs with
Qs ~o fj-iβί-i ~o o rs-\ Γiβ and &Qs = {e}. Thus Qs is a
manifold whose Pontrjagin numbers are all zero and so 2QS bounds
a manifold Ws. Therefore 2rs_χrs_2 -ΊΊQ orientably bounds the
orbifold

W = 2r5_1r,_2 r2Wx U U ^ ^ 2WS^ U2Qs Ws

and &W = &Q. D

3. Analysis of the numbers. In this section we first collect a few
definitions concerning real linear groups and representations. Lemmas
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3.3 and 3.4 show how the centralizer CO^)(H) decomposes as a prod-
uct of orthogonal, unitary and symplectic groups and thus by Lemma
3.7 how H*(BCO(d)(H); Q) is generated by Pontrjagin, Chern, and
twisted Euler classes. This enables us to prove that HS(BCO^(H) Q)
= 0 if s+d is odd (Lemma 3.8) and then, since H*(BNO{d)(H)/H; Q)
< H*(BCoyi)(H) Q) (Lemma 3.9), that every odd-dimensional orb-
ifold rationally bounds. The Aj + 2 case often requires further infor-
mation about NO^(H)/H as we indicate by considering special cases
in Theorem 3.11. Finally we use a group considered in this theorem
(a certain representation of S8) to construct a (4/ + 2)-dimensional
oriented orbifold which does not rationally bound.

DEFINITION 3.1. A subgroup K of Gl(&, R) defines a real faithful
representation of the abstract group K. K is irreducible if this repre-
sentation is irreducible. Suppose Ki9 i = 1, 2, are two linear groups
and φji G —• G\(ki, R) are two representations of a group G with
Kt = (pi(G). Let β = (<pι, φ2). By K\ ®β K2 we mean the linear
group (<p\ ® φi){K). We will omit the subscript β when the result-
ing ambiguity has no effect. Km means φ(K)Θm for some faithful
representation φ of K. If K is a subgroup of G\(k, R) and has no
trivial summands then the degree of K is k.

DEFINITION 3.2. A real irreducible linear group is of symplectic
{or H) type if it has degree 4k and is conjugate in Gl(4k, R) to a
subgroup of Gl(fc, H ) . It is of complex (or C) type if it has degree
2k and is conjugate in G\(2k, R) to a subgroup of Gl(k, C) but
is not of symplectic type. Otherwise it is of real (or R) type. A real
linear group is of real, complex, or symplectic type if all its irreducible
components are of that type.

For L = R, C, H and / any positive integer let L(i) = O(/), U(/),
Sp(ϊ), and d(L) = 1 ,2 ,4, respectively. Let H be a finite subgroup
of O(d) of degree d. Schur's Lemma , Theorems 1.10 and 6.7 of
Chapter II, [3], imply the following two lemmas.

LEMMA 3.3. // H is irreducible of type L then Co(<md)(Hm) =
L(m). Here we are identifying L(\) < L(d/d(L)), with the group
of scalar matrices in L(d/d(L)), and thus with a subgroup of O(d).
Note that under this identification O(l) < SO(d) iff d is even.

LEMMA 3.4. In general we can write H as H = φ / = 1 K™' where
Ki are nonequivalent irreducible representations of H in O(di). Then
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REMARK 3.5. From the above lemmas we conclude that
SO(d) if and only if H has no irreducible direct summand of odd
degree.

DEFINITION 3.6. If all the irreducible components of H are of even,
respectively odd degree then H is of even, respectively, odd type. Note
that an odd type group must be of real type.

LEMMA 3.7. (i) H*(BL(m) Q) is a polynomial algebra with gen-
erators

(a) the symplectic Pontrjagin classes xz of dim 4/, / = 1, . . . , m,
when L = H,

(b) the Chern classes c\ of dim2/, i — 1, . . . , m, when L = C,
(c) the Pontrjagin classes pi of dim4/, / = 1, . . . , [m/2], when

L = R.
(ii) if*(BO(2ra + 1) Q) = 0 and 7/*(BO(2m) Q) is the graded

vector space with basis Pi{ •/?/ e where 1 < i^ < m for 1 < k < j
and e is the twisted Euler class of dimension 2m.

Proof, (i) is a standard result found in [1, 8]. The classes in (ii)
are the - 1 eigenvectors of α* where a is the orientation reversing
involution on BSO(j). •

LEMMA 3.8. If HS(BCO^)(H) Q) is nonzero then d + s is even.

Proof. Write H as in Lemma 3.4. Then by that lemma

H*(BCO{d)(H) Q) = <g) H*(BCO{mA)(Kp) Q).
\<i<r

If H is of even type then by Remark 3.5 the orientation systems of
the canonical bundles over the BCo^m d^K™1) 's are all trivial. Then

by Lemmas 3.3, 3.4 and 3.7(i) each nonzero Hs(BCo{mιdι)(K^1); Q)
is even dimensional and so s + d is even.

If H is of odd type H*(BCo{mid)(K™<) Q) = /P(BO(mf-) Q) and

we conclude [6, §5.1] that H*(BCQ^)(H);Q) is 0 if some mz is
odd and otherwise Q(p/^i er), the graded rational vector space
with basis pje\ - er, the βi 's denoting the Euler classes (of
dimm/) and pi any appropriate product of Pontrjagin classes. Thus

if Hs(BCO{d)(H) ;Q)^0, d + s = ΣUi ^™/ + 4|/ | + Σ / = i mz , which

is divisible by four.
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If H is of neither type we can write H = H\ @ H2 where Hi is of
odd type and #2 is of even type and combine the above results for
our lemma. D

LEMMA 3.9. Let H be a finite subgroup of SO(rf). Then

(i) The projection π: NO^(H) -> NO^{H)/H induces an isomor-

phism Bπ*: H*(B(No(d)(H)/H) Q) - H*(B(No(d)(H)) Q)

(ii) The inclusion i: CO^(H) —• NO^(H) induces an isomor-

phism of H*(B(NO(d)(H));Q) onto a subgroup of H*(B(Co{d)(H));Q).

Proof, (i) Consider the fibration

BH -+ BNO{d)(H) - B(No{d)(H)/H)

of classifying spaces. Since H is finite H*(BH; Q) = 0. Also H is
orientation preserving, and so the result follows by the Serre spectral
sequence.

(ii) NO(d)(H)ICO^(H) is finite as it embeds in Aut(if). Thus we

get the covering space No{d)(H)/Co(d)(H)^BCO{d)(H)HBNo{d)(H)
and (ii) from transfer theory. D

THEOREM 3.10. If Q is an odd dimensional oriented orbifold then
some multiple of Q bounds an oriented orbifold W with &w = &Q

Proof. The H characteristic number Pi,x[Q] is defined when 4|/| +
dim* = dim<2 - deg/f. Thus, if d i m β is odd, dim t + deg/f is
odd, and by the previous two lemmas x = 0. Consequently all the
orbifold characteristic numbers of Q are zero and our result follows
from Theorem 2.15. D

We now turn to the (4/ + 2)-dimensional case. Let &&f be the
set of all finite subgroups of SO(m) where m is allowed to vary over
all positive integers. Let %? denote the set of elements H of S^&f
such that Hs(BNO(d)(H) Q) is nonzero implies s + d is divisible by
four. Here d is the degree ofH. As in Theorem 3.10 if dimQ is
not divisible by four and ? Q C / then some multiple of Q bounds.

THEOREM 3.11. Suppose H e f

(i) // H is of odd type then He^.
(ii) HuH2e^ implies HxxH2e^.

(iii) If H is of complex type and conjugate to a group which is
invariant under complex conjugation then H e β?.



ORIENTED ORBIFOLD COBORDISM 315

(iv) If H is a direct sum of symplectic type linear groups and groups
of the form Km with K irreducible, of real type and άtgK odd or
άegKm divisible by four, then H is in βf.

(v) All abelίan elements of Sfiff belong to β^.
(vi) β? is a proper subset of %

Proof, (i) This follows from the proof of Lemma 3.8.

(ii) Let di = deg//;. No{d^di){Hx x H2) has CO(έ/i+έ/2)(^1 x H2)

(= C0{di){Hx) x Co{d2)(H2)) and therefore NO{dι)(Hx) x ^0(^(^2) as

a finite index subgroup. By transfer H*(BNO(d+dj(Hι x H2)\ Q) is

contained in H*(BNO{di)(Hx) Q) ® H*{BNo{dj{H2) Q).
(iii) Write H as in Lemma 3.4 where now each Kj is of com-

plex type. We may also assume that this direct sum is closed un-
der complex conjugation in O(d), which is conjugation by the diag-
onal matrix, a, with ( 1 , - 1 , . . . , 1 , - 1 ) down the diagonal. Thus
No(d)(H) contains the semidirect product ( x}=i U(nij)) XQ (a) and
hence H*(BNo{d)(H) Q) < H*(B(( XS

J=1 U(mj)) xΘ (a)) Q). Since
a G SO(d) if and only if d is divisible by four, we can show that
H*(B(( X y=i U(mj))Xβ(a)) Q) is the graded vector space with basis
consisting of those cj - -Cj with dim Cj Cj = d mod 4, where cj
is any product of Chern classes in H*{BU{mj) Q).

(iv) Write H as K\@ K2® K3 where K\ is of symplectic type,
K2 is of real and even type, and K3 is of real and odd type. Let
dt = degKi and 57 be an integer such that Hsι{BCo^d^(Ki) Q) φ 0.
Both d\ and dι are divisible by four, as are s\ and 2̂ from Lemma
3.7 (i) and Remark 3.5. By the proof of Lemma 3.8 tf?3 + S3 is also
divisible by four.

(v) Every irreducible abelian group in <9&f is either of complex
type and acts on C, or Z 2 and acts on R. Hence we can write
any abelian group H in SWf as H\ ® H2 where H\ is of complex
type of degree d\ and H2 is a direct sum of φj((Z2)

m)*s with φj
irreducible. By taking a conjugate in O(d\) we may assume that H\
is closed under conjugation by the matrix ad , as in (iii) and so the
matrix ad Θid^ is an element of NO^(H). Also φj has degree one,
so we combine (iii) and (iv) to obtain our result.

(vi) For H e SWf irreducible of real, even type

If md is not divisible by four there is not enough information to
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draw the conclusion of (iv). For example, there may be no orien-
tation reversing involution in No^md){Hm) to make our coefficient
system nontrivial and hence kill off the Pontrjagin classes. If one
had such an involution of an orientation preserving linear group H
with CO{d){H) = Cso(d)(H) it would have to be an outer automor-
phism of H. This tells us that a possible counterexample might
be Sn, n Φ 2, 6, as these groups are complete. In fact S% [11,
character table] does have an irreducible, faithful character χ of de-
gree seventy with χ(σ) — 10 for σ a transposition. Furthermore
all symmetric group representations have real type so this can be
realized by a subgroup H of O(70). If A is a transposition in
H \r{A) = 10 and deg/7 = 70 implies that A is orientation preserv-
ing. As H is generated by transpositions we conclude that H is orien-
tation preserving and hence an element of SWf. Since H is complete,
H*(B(Nom(H)/H) Q) = H*(BCo(70)(H) Q) = Q = Q(p0). D

COROLLARY 3.12. There is a (4/ + 2)-dimensional oriented orbifold
which does not rationally bound.

Proof. Let V = ΌΊ0/H, with H as in the proof of (vi) and the
standard orientation on D 7 0 . V has orbifold boundary S = Sβ9/H.
Since S = d0V, Lemma 2.14 and Theorem 2.15 imply that some
multiple k of S bounds an oriented orbifold W with &w = ^ . Also
^ C ^ F - (H). We form the oriented orbifold Q70 = kVuksW and
note that the only H characteristic numbers are rational multiples of
Po[QH] 9 the orientation weighted number of points labeled H. There
are k such points—the origins of the k V 's—and they all have the
same orientation. Thus Po[QH] is nonzero and so by Lemma 2.14 no
multiple of Q bounds. α

4. Generators of Ω* > o r b ® Q. Following the proof of Corollary 3.12
we construct a basis Pn for Ω w o r b ® Q and show that Ω* o r b ® Q
is a free commutative algebra over Ω* ® Q with generators a certain
subset of the bases Pn , n > 0.

Let 3?n be the set of conjugacy classes (H) in O(n) of those finite
subgroups H of SO(/i) with Hn-4s-d(B(NO{d)(H)/H);Q) φ 0 for
some s > 0, where d — deg//. Note that <%2m+\ i s empty by Lemma
3.8.

For each (H) e 3?n let ΓH denote the canonical (Rd/H,

No{d)(H)/H) bundle over B(NO{d)(H)/H) and &H = &Rd/H. Con-

sider the vector space Ωπ_έ/>ί(Γ/^)®Q and its basis [Vjx Mr-m , fjUj\t
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indexed by (m, j , / ) , as in §2 and the proof of Lemma 2.7. Let T
denote (/7π2)*Γ//. Since ST = <90DΎ Lemma 2.14 and Theorem 2.15
imply that a nonzero multiple k of SΎ bounds an oriented orbifold
W with &w = &H- (H). We let Q(H, m,j,J) = £DT u f c 5 T W
and define a linear map

by mapping k[VjxMjm , fjπ2]t in Ωn_ ί / ί(Γ/ /)(8)Q to β(ΛΓ, m, 7, / ) .

PROPOSITION 4.1. Φ is a rational vector space isomorphism.

Proof. If we view S as the vector space with basis indexed by
H characteristic classes pi 9 r j with H ranging over <JPn we see by
Lemma 2.14 and Theorem 2.15 that there is an injective linear map
λ from Qn, orb ® Q to S sending an orbifold to its H characteristic
numbers. We note that AΦ|Ω (Γ )®Q is injective. Indeed, for x e

Q), and u = Σ N / [ ^ . X M^ , /7 π2] e

By Lemma 2.6 if the αz 's are not all zero there is an x for which
P/,JC(Φ(W)) φ 0. For any (K) e 3?n λΦ maps the finite dimensional
vector space SK = (&(H)e& ^n-dj^H) ® Q to itself. Also by the
above paragraph and the fact that for (H) e ^ β ( # , m, 7, / ) ^ is
the empty set when (H) Φ (K) and fc(Fj x My") when (^) = (K),
we see that λΦ so restricted is an isomorphism of SK . Consequently

and hence Φ are isomorphisms. D

Let Pn be the set of all Q(H, m,j,J) where (i/) e ^ and
x AίJw , y}π2]ί is a preferred basis for ΩΠ_έ/>ί(Γ^) ® Q. By the

above lemma Pn is a basis for Ω n ? o r b ® Q.
Q(7/? m, 7, /) is dependent on A: and PF but if we choose an-

other pair k! and W and let Q\H,mJ, J) = &'DT U^'5T ^
w e s e e t h a t k Q ' ( H , m , j 9 J ) ~ 0 k ' Q { H , m , j , J ) U X w h e r e & x c

Let <9rt = {Q(H, m, j,0) e Pn' H is not a direct product (as a
linear group)}.
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PROPOSITION 4.2. Ω* )0rb ® Q is a free commutative algebra over
Ω* ® Q with generating set {On, n > 0}.

Proof. By the preceding discussion we may assume that

Q(H,m,j,J) = VjxQ(H9m,j,O).

Also Ω u + l j O r b ® Q = 0,so [<2M<2% = [CMC]* in Ω * , o r b Θ Q . By

the proof of Theorem 3.11 (ii) H^B(No(d_^dΊ(HxHf)/(HxHf));Q)

is a subgroup of H*{B{No{d){H)/H) Q)®H,{B{No{dl){Hf)IHf) Q).

Then by Lemma 2.4 some multiple of [Mjm , /}]; e ^ ^ ( Γ ^ ^ ) lifts

to ΩΓ > ί(Γ// x ΓJJ') and so can be written as

Here [N?, gj]t is a preferred basis element for Ωn t(ΓH), [Pi ? /zΛ']

one for Ω/ ^(Γ^) and

/?: B(NO(d)(H)/H) x B(No{dΊ(H')/Hf)

is the natural map. Hence as at the beginning of the proof we may
assume that [Q(HxH',r,j, 0)]o is equal to Σ<*i[Q(H, "i, h> 0)]o
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