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COMPLETE OPEN MANIFOLDS
OF NON-NEGATIVE RADIAL CURVATURE

YOSHIROH MACHIGASHIRA

We generalize the Toponogov hinge theorem and the Alexandrov
convexity to the context of radial curvature, and study complete open
Riemannian manifolds of non-negative radial curvature.

0. Introduction. It is well-known that a non-negative curved mani-
fold has some interesting characters as exemplified in the Soul theorem
(ICG)) or the Toponogov splitting theorem ([T]). In such theorems,
Toponogov’s comparison theorem plays an essential role.

Throughout this paper let M be a connected complete Riemannian
manifold of dimension n > 2. For a point 0 € M , the sectional cur-
vature K, of M restricted to those planes that are tangent to some
minimal geodesic starting from o is called minimal radial curvature
from o and is denoted by K™". The notion of radial curvature was
initiated by Klingenberg in [K] to prove a homotopy sphere theorem
for compact simply-connected manifolds with %-pinched radial cur-
vature. Also in the case where M is noncompact and o is a pole
of M, Greene and Wu have shown some results related to the radial
curvature from o (see [GW]).

In [M], it is shown that Toponogov’s comparison theorem holds for
the edge angles at x; and x; of a minimal geodesic triangle with ver-
tices at 0, x;, and x, under suitable condition on K™, Moreover
by using this fact, some results related to the radial curvature from o
were obtained in [M] or [MS]. For example,

THEOREM 0.1 (Theorem A in [MS]). 4 complete noncompact Rie-
mannian manifold M which contains a point o such that K™ > 0
has exactly one end.

THEOREM 0.2 (Theorem C in [MS]). Let M be noncompact with a
point o such that K > 0. If

lim volB(o, r) > 1
=0 bo(r) 2’

153



154 YOSHIROH MACHIGASHIRA

then M is diffeomorphic to R", where volB(o, r) is the volume of the
r-ball B(o,r) in M around o and by(r) is the volume of the r-ball
of R".

In this paper we prove that Toponogov’s comparison theorem also
holds for edge angles at o (see Theorem 1.3) and investigate the topol-
ogy of complete open manifolds of non-negative radial curvature. By
using Theorem 1.3 we will obtain the

MAIN THEOREM. Let M be noncompact. Assume that K™® > 0
for some point o € M . Then:

(A) The set of critical points of the distance function from o is
bounded and consequently M is finitely-connected.

(B) M has at most two ends.

(C) If M has a line, then M is diffeomorphic to N x R, where
N is a hypersurface in M. Moreover the projection M — R is a
Riemannian submersion.

1. The Toponogov hinge theorem for radial curvature. For any J €
R, let M? denote the simply-connected surface of constant Gauss
curvature ¢ . First of all we recall the

THEOREM 1.1 (Proposition 1.1 in [M] or Theorem 1.1 in [MS]). As-
sume that K™ > for o€ M and 6 € R. Let y, and y, be length-
minimizing segments in M with y{(0) = y,(1) = o and let yy be a
length-minimizing segment such that y¢(0) = p1(1) and yy(1) = y,(0).
Then, there exist length-minimizing segments ¥, , ¥y, and %y in M?
with $1(0) = $2(1), 90(0) = $1(1), and $o(1) = $,(0) which are such
that

L(yl) =L(71) fori:ox 1> 2
and

61 := £(=71(1), 30(0)) > £(=5,(1), $(0)) =: b1,
07 := Z(=7o(1), 72(0)) > ZL(=7o(1), 72(0)) =: 65.
Moreover if 0, = 0, # 1, then there exists a piece of totally geodesic

surface of constant curvature & bounded by y,, vy, and a minimizing
geodesic joining o to yo(1) (which is not necessarily y,) in M .

The above theorem is shown by dividing y, into sufficiently small
sub-arcs {yo |i_ ,¢1}i=1,..,n, Where o = 0 and ¢y = 1, and ap-
plying Berger’s comparison theorem to obtain the angle estimates at
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vo(ti_1) and yo(¢;) of a geodesic triangle A(o, yo(ti—1), yo(t:)) (cf.
Theorem 2.2 in [CE]). If 6, = §; # n, then the angles at yo(¢;_;) and
vo(t;) of any geodesic triangle A(o, yo(t;_1), yo(¢;)) must be equal
to the angles of the corresponding triangle in M? respectively for

i=1,---, N—1. Also the angle at yy(ty_;) of A(o, yo(tn_1), ¥2(0))
equals the angle of the corresponding triangle. Moreover for every
i=1,-.-, N, there is a minimal geodesic y joining o to yy(¢;) such

that y C exp,(X), where X C T, M is the plane spanned by 7;(0) and
the vector parallel to 73(0) along y;. Hence we obtain the minimal
geodesic 5 joining o to yp(l) = y2(0) such that 7,(0) C exp,(X)
and a totally geodesic surface of constant curvature J bounded by
71, ¥5 and yo. (For detail see [M].)

We can check the following corollary by dividing a geodesic triangle
into two triangles.

COROLLARY 1.2. Under the assumption of Theorem 1.1,

du(0, yo(s)) 2 ds(d, Jols))  forsel0,1],

where dy; and ds denote the distance functions on M and M?® re-
spectively.

The following theorem implies that edge angles at 0o can be com-
pared.

THEOREM 1.3. Assume that K" > 6 for o € M and 6 € R.
For any minimizing geodesics oy : [0, 1] = M and o, : [0, 1] - M
starting from o, we have the following results

(1) Let 6; : [0,1] — M® for i = 1,2 be minimizing geodesics
starting from same point such that

L(o))=L(6;) fori=0,1,2

and
£(61(0), 62(0)) = £(51(0), 52(0)).
Then
du(o1(1), 02(1)) < ds(61(1), 62(1)).

(2) (The Alexandrov convexity). Let O , be the angle at 6 of the
triangle A(6, X;, ;) in M% corresponding to Ao, o,(s), 0x(1)) in
M. Then és,, IS monotone non-increasing in S, t.

(3) In (1), if equality holds, then there is a piece of totally geodesic
surface of constant curvature 6 bounded by o, 0, and a minimal
geodesic joining o1(1) to o,(1).
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Proof of Theorem 1.3. (1) We work with M?—¢ instead of M?,
where € is any small positive number.
Put

1= tes[gp”{llfor 5 <, dy(01(5), 02(5)) < ds_c(G1(5), G2(5))}-

Then Rauch’s comparison theorem implies that 7z, > 0. Suppose that
tp < 1. Then we see that

du(o1(t) , 02(%0)) = ds_e(61(%0) , G2(%0))-
Thus we can apply Theorem 1.1 to the geodesic triangles
A(O » 01(10) s GZ(tO)) in M

and X
A(61(0), 61(to), G2(t9)) in M€,
that is, if we let Gi and 6; for i =1, 2 be the angles at a;(f;) and
gi(t,), then i i
6, >6; and 6, > 0,.

In the case where 6, > 6, , the first variation formula implies that
du(oy(to+h), ar(to + h)) < ds_e(G1(to + 1), G2(to + 1))

for sufficiently small 2 > 0. This contradicts the definition of ¢;.
Next we consider the case where 6, = ;. Since the assumption that
tp < 1 says 68, # m, the later half of Theorem 1.1 implies that there
exists a piece of totally geodesic surface of constant curvature d — €
bounded by ”11{0,10] , ‘72|[0,t01 and a minimal geodesic joining ()
to o5(tp). This contradicts K™ > §. This completes the proof of
(1).

(2) It suffice to show that for arbitrary fixed s € (0, 1] and ¢ €
(0, 1),

(1.1) 05,0 > 65 4, for small &> 0.

By continuty of 6 ;, we may assume s < 1. Put
6 = £(61(0), 62(0)).

Restating (1), we see that 0 , < 0 for all s,¢¢€ [0, 1]. Thus in the
case where és, ;= 0, clearly (1.1) holds. Hence we consider only the
case f; ;< 0.

Let ¢ be minimal geodesic in M? starting from 6 and passing y;
parameterized as 6(¢) = y;. From Theorem 1.1, the angle at y; of



MANIFOLDS OF NON-NEGATIVE RADIAL CURVATURE 157

A(6, Xg, J;) does not exceed the angle at g,(¢) of A(o, ai(s), oa(2)).
If the angles are equal to each other, by the latter half of Theorem
1.1, it must be that és,, > 0, because the minimal geodesic joining o
to oy(s) is unique. This contradicts f; , < 6. If the angle at y, is
smaller than the angle at g,(¢), then the first variation formula implies
that

d(;(é > &(t + h)) 2 dM(O > UZ(I + h))

for small 2 > 0, that is,

és,t+h < és,t-
This completes the proof of (2).
(3) We apply (2) to obtain that if

du(o1(1), 02(1)) = ds(61(1), 62(1)),

then 6 = 9s,, for all s, ¢t € [0, 1]. Hence the angles at X; and y, of
A(6, Xg, ;) equal the angles at o,(s) and o5(t) of Ao, 6(s), 02(1))
respectively for all s,¢ € (0, 1). Thus there is a piece of totally
geodesic surface of constant curvature 6 bounded by gy |(0,51, 02 |0,
and a minimal geodesic o5 ; joining o;(s) to o»(¢). Hence ds ((0)
is contained the plane spanned by &(s) and the vector parallel to
2(0) along o |j,5. Taking s,  — 1, we obtain a minimal geodesic
joining a;(1) to a>(1).
The proof of Theorem 1.3 is completed.

REMARK 1.4. By using Theorem 1.3 (2), we can construct the ideal
boundary M(oo) of a complete open manifold M of nonnegative
radial curvature and the Titz metric on it. However it is not needed
in this article.

2. Proof of the main theorem. Now part (A) of the main theorem
is shown directly from Theorem 1.3 in the same way as the proof of
the corollary to Theorem 1.5.A in [G] or Corollary 2.9 in [C].

In the remainder of this paper, we agree that geodesics will be pa-
rameterized by the arc-length.

Proof of part (B) of the main theorem. Suppose that M has three
or more ends. Then there are three rays y;, 7>, and y3 starting from
o going to different ends. Let /; be a minimal geodesic joining y;(¢)
to ,(t) and 6, the angle at 6 € R? of A(G, %, ;) in R? such
that do(6, X;) = do(6, J;) = t and do(X%, ;) = L(l;). Since the
distance between o and /; is bounded from above by some constant
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C independent of ¢, Corollary 1.2 implies that the distance between
0 and the segment joining X; to ; is also bounded by C. Thus we
see that

6, »m ast— oo

and consequently
£(71(0), 72(0)) = 7.
Similarly, we have that

£(72(0), 73(0)) = £(73(0), 71(0)) = =.

This contradicts and hence completes the proof of (B).

In Lemma 1.3 in [MS] it is shown that if a non-negative minimal
radial curved M with base point o has a line, then there is a line
passing through o. We will show that a similar thing is realized for
any x € M. We define a Busemann function F, on noncompact M
for a ray y by

F,(x):= tlirglo[t —dy(x, 7(0))] for x € M.

LEMMA 2.1. Under the assumption of the main theorem, if there is
a line o through o, then for any x € M there is a unique line [,
through x which is biasymptotic to o. Moreover there exists a flat
totally geodesic strip bounded by a(R) and [(R).

Proof. Choose the parameter of o such that ¢(0) = o and set
01+(t) :=a(xt) for t > 0. Let S be a minimal geodesic joining o to
x and put 04 := Z(B(0), 6+(0)). Let O, be the angles at 6 € R2
of A(é, %, y+.) in R? corresponing to A(o, x, g+(t)) in M, and

~

putﬂioo = lim;_ O, . (Theorem 1.3 (2) guarantees the existence
of 61 .) Then i
F(,i (x)=d(0, x)cosOi0-

Thus we obtain that

(2.1) c0s 0400 + €0s0_o <0

because it follows from the triangle inequality that
F, (x) + Fy_(x) <0.

On the other hand, by Theorem 1.3 we see that

(2.2) Oroo +0_0o <6, +0_=m.
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The formulas (2.1) and (2.2) imply that 6., + 6_o, = 7, and con-
sequently 6., + 6_, = n for all > 0 from Theorem 1.3. Thus we
obtain that 64, = 6, for all ¢ > 0 and there are two pieces of totally
geodesic surface of constant curvature 0 bounded by o+ 4, # and
l+;, where [y, are geodesics joining x to g+(¢). Hence there exist
two rays /.4 starting from x and asymptotic to oi such that l'xi(O)
are parallel to ¢.(0) along . Moreover there exists a flat totally
geodesic strip bounded by ¢ and [/ := /., Ul,_. To prove that /, is
a line, we consider /,,(—s) =: x; for arbitrary s > 0O instead of x.
Then /,_|js, ) is the unique ray starting from x; and asymptotic to
o_ because x; is an interior point of a ray /,_ (see Theorem 1.1 in
[S]). Hence we see that /,|[_s o) 1S a ray and /, must be a line. This
completes the proof of Lemma 2.1.

Proof of part (C) of the main theorem. Let o be a line passing
through o parameterized as o(0) = o, constructed in Lemma 1.3 in
[MS]. Let o, be o], ) and put N;:= (F, )~ '(s) for s € R. Then
Ns is a smooth hypersuface of M because the gradient vector at x
of F, is unique and its length equals 1 for any x € M by Lemma
2.1. For x € M let xy € [,(R) be the point such that dys(0, x¢) =
dy(o, I(R)), where [, is asin Lemma 3.1. Then Lemma 3.1 implies
that xy is unique and contained in »,. Thus we can define a map
g : Ny — Ny for all s € R by gs(x) := xo. This map is clearly
bijective and a local diffeomorphism, that is, a global diffeomorphism.
Hence at last we obtain the desired map G : M — Ny xR by G(x) :=

(%0, Fo.(x)).

REMARK 2.2. Each hypersurface N; is a star-shaped subset of A,
that is, a minimal geodesic joining g (s) to a point in N; is contained
in N;. Moreover if the Busemann functions F"ha,eo] and FG'[-w,al for
a € R are convex, then N is totally convex for any s € R and the
map G is an isometry. But we do not know whether it is true or not
that the Busemann function for a ray passing through o is convex
under the condition KM > 0.
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