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THE BOUNDARY DISTORTION
OF A QUASICONFORMAL MAPPING

JUHA HEINONEN AND PEKKA KOSKELA

We investigate how quasiconformal mappings / : B n —• Rn distort
Hausdorff measures of sets on the boundary dBn .

1. Introduction. Recent exciting developments in the study of the
boundary behavior of conformal mappings, orchestrated by Makarov
([Ml], [M2], [M3]), lead to the natural question: what is the boundary
distortion of a quasiconformal mapping / of the unit ball Bn into
Rn ? Makarov's results assert that for any conformal mapping of the
unit disk in the plane there is a set of full measure on the boundary
whose image has Hausdorff dimension precisely one. There is no hope
for such results for general quasiconformal mappings as shown by well-
known examples. In fact, given 0 < a < 1 there is a quasiconformal
self-homeomorphism of the unit disk carrying a set of full measure
on the circle into a set of Hausdorίf dimension a (see [Ro], [T2]). In
the other direction, given 1 < a < 2 it is not difficult to construct
a quasiconformal mapping of the disk onto a Jordan domain such
that the image of any boundary set of positive measure has Hausdorff
dimension a.

In this article we discuss various questions related to the bound-
ary distortion of quasiconformal mappings; in particular, we demon-
strate that in spite of the discouraging counterexamples at least some
features of the restricted expansion/contraction phenomenon are re-
tained. Naturally, our results lag behind the deep information avail-
able in the case of conformal mappings, but we feel that some of the
techniques used in this paper are of interest in the higher dimensional
quasiconformal theory. It is also our hope that the modest beginning
here will inspire future research in this area. Several open questions
are listed at the end of the paper.

2. Main results. In this section we describe our main results. The
proofs will follow in subsequent sections.

2.1. Notation. We let B(x9 r) stand for the open n-ball centered
at x with radius r, and we assume n > 2. For short, Br = B(0, r)
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and B" = B(0, 1). The boundary, the complement, and the closure of
a set E c Rn are denoted by dE, CE, and £ , respectively. We write
%fs for the ^-dimensional Hausdorff measure and usually, for simplic-
ity, we write β^n-\{E) = \E\. Also, dim#is denotes the Hausdorff
dimension of a set E. We often let C denote a generic positive con-
stant which is not necessarily the same at each occurrence. Moreover,
sometimes we write A « B if there is C such that C~ιA < B < CA.

The conformal («)-modulus of a path family Γ will be denoted by
mod Γ. Often Γ = A(E, F\ A)9 the family of all paths joining two
sets E and F in A. For the basic properties of the modulus, see
[VI].

The outer dilatation Ko{f) of a homeomorphism f:D-+Df is
defined by

mod Γ

where the supremum is over all path families Γ in D such that
mod/Γ Φ 0. Then the inner dilatation is JKΓ/(/) = Ko(f~ι) and
/ is said to be K-quasiconformal if

= max{Ko(f), */(/)} < * < oo.

We recall the basic relations

Ko(f) < Kj{fγ-1, Kj(f) < Ko(f)n-1

If / is a quasiconformal mapping of Bn into Rn , then an analog of
Beurling's theorem ensures that / has angular limits at each point on
the boundary dW1 except possibly in a set Ef of zero n-capacity. In
particular, Ef has Hausdorff dimension zero (see, for instance, [N,
Corollary 7.14], [Vu, Chapter IV]). In the following we understand
that / is defined on dW via its radial extension; it is immaterial
what the value of / is in the exceptional set Ef.

The standard reference to the basic theory of quasiconformal map-
pings is [VI].

2.2. Contraction, Our first three results concern the boundary com-
pression of quasiconformal mappings.

THEOREM A. Suppose that f is a quasiconformal mapping of Bn

into Rn. Then for any set E c dW with positive %?n-.\-measure, the
Hausdorff dimension of f(E) is at least
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If n = 2 and / is conformal, we recover the classical Beurling
estimate for the support of harmonic measure. In fact, the idea of
the proof for Theorem A goes back to Beurling. The lower bound in
Theorem A is undoubtedly not sharp. It is perhaps too optimistic
to hope for the bound (n - l)(Ko(f))x^ι~n\ which would give
Makarov's result as a special case, but a reasonable conjecture is
(n - \){2Ko{f))l/(1~n) + ε for some ε = ε(n, K) > 0. This would
correspond to Carleson's result [C] for conformal mappings. Although
Carleson's ingenious method morally works for quasiconformal map-
pings, it is not clear to us how to transfer the final steps in his argu-
ment into «-space. If we place an additional constraint on the target
domain, an improvement to Theorem A is immediate.

Recall that a domain D c R w is b-uniform if each pair of points
x, y e Z> can be joined by an arc L in D such that

diamL < b\x-y\

and

min{diamL[x, z], diam L\y9 z]} < Z?dist(z, 3D)

whenever z e L and L[w, z] denotes the subarc of L between w
and z.

THEOREM B. Suppose that f is a quasiconformal mapping of Bn

onto a b-uniform domain. Then for any set E c ΘBn with positive
β?n-\-measure, the Hausdorff dimension of f(E) is at least

where ε > 0 depends only on n, Ko(f), and b.

Theorem B is a consequence of the following result which extends
[NP, Theorem 9].

THEOREM B'. Suppose that f is a quasiconformal mapping of B"
onto a b-uniform domain D. Then f~ι is Holder continuous in D
with exponent a = (2Ko(f))1/(ι-n) + ε for some ε = e(n, K0(f), b) >
0.

The distortion of general Hausdorff measures is described in the
next theorem. We let Df denote the differential of a quasiconformal
mapping / , which exists almost everywhere in the domain of / .
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THEOREM C. Suppose that f is a quasiconformal mapping of W
into Rn such that \Df\~r e Lι{W) for r > 0. Then for any set
E c dW with positive ^-measuret 0 < s < n - 1, the Hausdorff
dimension of f(E) is at least

sr

n- s + r'

Astala and Koskela [AK] have shown that if / is a ϋΓ-quasiconfor-
mal mapping of Bn, then always \Df\~r e Lι(Bn) for some r =
r(n, K) > 0. Thus Theorem C is never vacuous. The exact value of
r(n, K) is not known but for n > 3 it satisfies r(n, K) —• oo as K —•
1 (see [Re, Chapter 4]). For conformal mappings Pommerenke [PI]
has obtained the lower bound r(2, 1) > 1.39. Moreover, Carleson
and Makarov [CM] have recently established that if / is univalent in
the unit disk B2 and E c <9B2 with positive ^-measure, 0 < s < 1,
then the Hausdorff dimension of f(E) is at least s/(2 — as), where
0 < a < 2 is an absolute constant (see also [M2]). By using this result
and factorization, we see that

whenever E c dB2 is as above and / is quasiconformal in B2 note
that K(f) = Ko(f) = Ki{f) in the plane.

We shall show in Lemma 5.1 below that if n Φ 4 and if / is as in
Theorem C, then there is a quasiconformal mapping g of B" such
that g = f on dBn and that \Dg\~r e Lι(Bn) for all

°
thus for n φ 4 Theorem A follows from Theorem C.

If / is a ΛΓ-quasiconformal self mapping of Rn, then it follows
from [Gl, Theorem 3] that

dimHf(E) > p{n,K)-n
dim// E ~~ p(n, K) - dim// E

for any set ί c R " , where p(n, K) > n is defined to be the supre-
mum of all p > n such that \Df\ e Lfoc(Rn). Also, if n = 2 and if /
has a ΛT-quasiconformal extension to the whole plane, Astala's recent
affirmative solution to the area distortion problem [A] guarantees the
lower bound 2(1 + K)~ι in Theorem A. We emphasize that in The-
orems A and C / need not have to have a continuous extension to
ΘBn.
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2.3. Expansion. Now we turn our attention to the other aspect
of the Makarov theory, namely expansion. Makarov's insight was to
show that if the derivative of a conformal mapping / satisfies

liminf|/'(rw)| = 0

for all w in a set E c dB2, then / cannot expand at almost all points
in E. Consequently, since / ' is analytic, Plessner's theorem implies
that the expansion occurs in a subset of zero measure on <9B2. For a
quasiconformal mapping f:D-^Dr there is, in general, no pointwise
defined derivative but the integral average

(2.4) af(x) = exp U £ log Jf(y) dy\

has proved to be a good substitute; here Bx = B(x, dist(x, dD)/2)
(see [AG1], [AG2], [AK], [Ha], [K2]). Take notice that if / is con-
formal, then log Jf(x) = 21og|/'(jc)| is harmonic, whence cif{x) =

/
Pommerenke [P2] simplified and strengthened Makarov's argument

in [Ml] as regards the expansion. We simplify it a bit further and show
that more or less the same proof goes through for quasiconformal
mappings. Of course Plessner's theorem is not applicable in this case
and we have to be content with the following formulation.

THEOREM D. Suppose that f is a quasiconformal mapping of Bn

into Rn. Let

Eoo = < w G dBn : 0 < liminf af(rw) < limsnpaf(rw) = oo > .

Then
dBn = E0uEiUEoo (disjoint union)

where |JEΌ| = 0 and f(E{) has σ-finite β^n-.\-measure. Moreover, if
EcElf then \E\ = 0 implies \f{E)\ = 0.

Pommerenke's version of Makarov's theorem follows from Theo-
rem D. Indeed, if / is conformal, then a/(x) = \f(x)\ and Plessner's
theorem implies |£Όo| = 0.

DEFINITION. We say that a quasiconformal mapping / of Bn into
Rn has the Makarov property if there is a set E of full measure on
the boundary of Bn such that f(E) has σ-finite (n - l)-measure.
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By Theorem D, / has the Makarov property if for almost every
w e dBn either

liminf aArw) = 0 or lim supaf(rw) < oo.

As mentioned in the introduction, this need not always be the case.
For instance, one can construct a quasiconformal mapping / of R2

that carries the unit circle onto the van Koch snowflake such that

|/(z) -f(w)\ « φ - t ι ; | β , α =

for all z, w e <9B2 (see [Tl]). It is easy to see that then the image of
any set E c dB2 of positive length has Hausdorff dimension 1/α > 1.
In fact, in this case limr_>i af(rw) = oo for all w e dB2 .

Incidentally, we do not know of any examples in dimensions n > 3
where £Όo has positive %?n-\-measure. Vaisala [V6] has constructed
a quasiconformal mapping of the unit ball Bn onto a Jordan do-
main whose boundary has positive volume; it would be interesting to
know the behavior of df for such a mapping. Another interesting
open problem is to find conditions (other than \Eoo\ = 0) that would
guarantee the Makarov property. In dimension n = 2 we have the
following sufficient condition which is an immediate consequence of
a recent work of Fefferman, Kenig, and Pipher [FKP].

THEOREM E. Suppose that f is a quasiconformal mapping of B2

into R2. Let μ(z) denote the complex dilatation of f for z € B2. If
the function

\μ{z)\2

1-1*1
is a Carleson measure in B2, then there is a set E c dB2 such that
\E\ = 2π and f(E) has Hausdorff dimension 1. Moreover, f has the
Makarov property.

Recall that a measure v in B2 is a Carleson measure if there is
a constant C > 0 such that u(B nB2) < Cdiami? for each disk B
centered at a point on dB2.

Theorem E tells us that if the dilatation of a quasiconformal map-
ping becomes small on the boundary in a certain uniform sense, the
boundary distortion is not different from that of a conformal map-
ping. We do not know to what extent Theorem E is sharp for the class
of mappings that become "conformal at the boundary".
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It is clear that a quasiconformal mapping can have the Makarov
property without its dilatation tending to zero as we approach the
boundary, but it seems difficult to give nontrivial conditions guaran-
teeing this.

As our final result we state an analog of Theorem E for n > 3.
Because 1-quasiconformal mappings in space are Mόbius transforma-
tions, the following theorem comes as no surprise.

THEOREM F. Suppose that n > 3 and that f is a quasiconformal
mapping of Bn into Rn such that

K(f\(B»\Brj))-+l,

where Γy | 1. Then for any set E c dBn with Hausdorff dimension s,
0 < s < n - 1, the Hausdorff dimension of f(E) is s.

We do not know whether the mapping / in Theorem F has the
Makarov property.

3. Proof of Theorem A. Let f:Bn -» D be a ΛΓ-quasiconformal
mapping; we normalize /(0) = 0 and dist(O, dD) = 1. Fix a point
y edD and let 0 < r < d/2, where

d = d(n,K) = dist(/S1 / 2, dD).

Then for the path family

r = A(fBι/29B(y9r)ndD;D)

we have the estimate

m o d Γ < ω?-\n , ,

and so

(3.1) modi

where Γ = f~ιΓ and Ko = Ko(f). Let E denote an arbitrary
compact subset of the set of all boundary points w £ dBn such that
the radial limit lim,.^ f(tw) = f(w) exists and satisfies \f{w)-y\ <
r. Let

If w G E and γ £ Γi, then by Lindelόf s theorem for quasiconformal
mappings either f(γ) is nonrectifiable or / has the limit f(w) e
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B(y, r) along γ. Because the modulus of nonrectifiable paths is zero,
we conclude that

(3.2) modi"! <modΓ.

By reflecting one can show that

(3.3) modΓ 0 <2modΓ 1 ,

where
Γ0 = (E,dB(0,2);B(0,2)),

(see e.g. [HM, Lemma 3.8]). Next, if we replace E by a (possibly
degenerate) spherical cap E* c dBn such that \E\ = \E*\, then

(3.4) modΓo1 <modΓ 0 ,

where ΓQ is the symmetrized family

Γ*0 = (E*,dB(0,2);B(0,2));

see [S]. Let
rx = diam E*π\E* | W"-1).

A symmetrization argument (see [HM, (3.14)]) combined with the
above inequalities (3.1)—(3.4) yield

r, <

< cnexv{-(2Ko)
ι/{ι-n)logd/r} < C{n,K)f*,

where a = (2Ko)
ι/{ι-n). Finally since rx » \E*\ιHn-V =

and since E was arbitrary, we infer that

\f-ι(B(y,r)ndD)\<C(n,K)rfi,

where β = (n - \){2Ko)
xl{χ-n).

To complete the proof, suppose that F cdD is such that <%β(F) =
0, where β is as above. Fix ε > 0 and cover F by balls B(yι, r, ),
r2 < d/2, such that £Vrf < ε. The preceding argument shows that

for each i in particular,

\f~lF\ <

where C = C(/ι, K). Letting ε ^ 0 yields \f~ιF\ = 0, as desired.
The proof of Theorem A is complete.
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4. Proofs of Theorems B and B7. We begin with a lemma.

4.1. LEMMA. Suppose that ΰ c R " is a domain such that 3D =
3D*, where D* = Rn\D is an unbounded b-uniform domain, and let
yoeD. Then there exists ε = ε(n, b) > 0 such that

mod Γrx < f— n

5 ° ~ (logd/r)n~ι

for 0 <r < d = dist(y0 ? 9D)/2 am/ xoe3D, where

Γr,Xo=A(dB(xθ9r)nD9dB(xo,d)nD9D).

Proof. Fix x 0 ^ ^ D , 0 < r < d, and define

if x e (5(jc0, d) n JD)\5(X 0 , r) and p(x) = 0 otherwise. Then

mod Tr x < I ρndx.
' ° JR"

Because Z>* is 6-uniform, for each r < t < d there is a point z e
dB(xo, t) such that J?(z, ί/2fe) c D*. Hence a simple calculation
verifies that

L
with β = ε(b, n) > 0 as desired.

To prove Theorem B7, we first observe that because D is uniform,
/ extends to a quasίmόbius embedding of dBn into R" = R" U {oo}
by [V4, 5.6], and hence D* = Rn\D is an unbounded //-uniform
domain for some b' = b'(n, K, b) by [V5, 5.10]. Then we apply the
argument of [AK, Theorem 2.3] together with the previous lemma (see
also [NP, Theorem 7]) to conclude that

(4.2) 1 - I/" 1 (x) I < C dist(x, dD)a

holds for all x e D, where a is as described in the theorem. The
reasoning here is so similar to that in [AK], that the details are best left
to the reader. Now condition (4.2) guarantees that f~ι is α-Hόlder
continuous in D (see [GM, 2.24, 3.4]), and the theorem follows.

Finally, Theorem B is an immediate consequence of Theorem B7,
as f~ι extends to an α-Hόlder continuous mapping of dD.

5. Proof of Theorem C. We first establish the following lemma and
indicate how Theorem A follows from Theorem C for n Φ 4.
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5.1. LEMMA. Let f be a quasiconformal mapping from Bn into
Rn and suppose that n φ 4. Then there is a quasiconformal mapping
g from Bn into Rn such that g = f on ΘBn and \Dg\~r e Lι{W)
for any

0

Proof. By [TV, Corollary 7.12] there is, for any ε > 0, a quasicon-
formal mapping g from Bn onto D = f(Bn) such that kD(f(x), g(x))
< e and

(5.2) L-ιkp(x,y) < kD(g(x), g(y)) < LkB»(x,y)

for all x, y EBn; here K denotes the quasihyperbolic metric in a
domain. Standard estimates for the quasihyperbolic metric give

<

where d = min{dist(/(;c), dD), άist{g{x), 3D)}. Thus

\f(x)-g(x)\<(eε-l)d<d/2

for ε > 0 small enough. This implies

dist(g(x), dD) > dist(/(x), dD)/2.

On the other hand, the reader can verify that the proof of [AK, The-
orem 2.3] gives

dist(f(x),dD) > c~ι(\ -

for some C > 1 independent of x, so that

(5.3) dist(#(jc) ,dD)>C~ι(l- |

Because (5.2) guarantees that g is locally bilipschitz satisfying

for almost every x e Bn , we arrive at the desired conclusion by com-
bining this with (5.3) and integrating.

Suppose now that / is as in Theorem A. In Theorem C take s =
n - 1 then

sr _ (n - \)r
n-s + r r+ί
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which equals (n - l)(2Ko(f))ι/{ι-n) if

1

We thus can conclude Theorem A for n φ 4 from Theorem C and
Lemma 5.1.

Before the proof of Theorem C, we recall some facts about p-
modulus and HausdorίF measure.

For the definition of MP(Γ), the p-modulus of a path family Γ,
1 < p < oo, we refer to [VI, Chapter 1]. Notice in particular that
Mn(T) = mod Γ. If A is a set in W1, we say that A has zero p-
modulus if

Mp(A(A',dB;B)) = 0

for each compact A! c A and for some (each) ball B containing A!.
Next we suppose that 1 < p < n, for if p > n, no nonempty subset
of R" has zero p-modulus. Then we have

MP(A) = 0=> dimH(A) <n-p

and
&n-p(A) <oo=> MP(A) = Ό,

whenever A cRn. See e.g. [V2].
To begin the proof, fix 0 < s < n— 1 and let E c dW1 be a set such

that 0 < β%{E) < oc. We may assume that E is compact, that / has
radial limits everywhere in E, and that those limits lie in a fixed ball.

Let 1 < q < p < n. We are going to estimate the ^-modulus
of the path family Γ = A(Bχβ, E\ Bn). Because / is ACL^ in
the sense of [VI, 26.5], we may assume by Fuglede's theorem [VI,
28.2] that / is absolutely continuous on each path in Γ. Thus if p
is admissible for the image family F = A(f(B\β)9 f{E)\ Z>), the
function p(x) = p(f(x))\f'(x)\ is admissible for Γ. Therefore, we
have the following ^-modulus estimate

Mq{T)< I p*{f{x))\f{x)\*dx

(P-Q)IP

by Holder's inequality. The last integral converges if

(5.4) P^qfΓr-
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Consequently, for these values of p and q,

<C f pt>(f(x))\f(x)\ndx < C ί p(yγdy,
JB" JD

where the quasiconformality of / was used in the last inequality.
Since p was arbitrary,

(5.5) Mq{Tfl* < CMp(A(f(Bι/2), f(E) R»)).

On the other hand, by using the theory of QEDP -domains [Kl] one
can show that

Mg(A(E, dB(0, 2); B(0, 2))) < C(q, n)Mq(Γ),

and hence

Mq{E) > 0 => Mp(A(f(Bι/2), f(E) RΛ)) > 0,

by (5.5). Finally, by again invoking the QEDp-theory [Kl], it is not
difficult to see that Mp(f(E)) > 0 if Mp(A(f(Bx/2), f{E) W)) > 0.
We conclude that

Mq{E) > 0 => Mp(f(E)) > 0

for all 1 < # < /? < /i such that (5.4) holds. Now the theorem
follows from the indicated relationship between modulus and Haus-
dorίf measure. More precisely, choose q = n - s and observe that
dim//(/2s) >n-p for all p satisfying (5.4).

6. Proof of Theorem D. We assume throughout this section that /
is a AΓ-quasiconformal mapping of W1 onto a domain D. We recall
two basic distortion properties.

If x, y and z belong to a hyperbolic ball of radius R > 0 in Bn ,
then

|x - yI < t\x - z| =» |/(x) - f(y)\ < η(t)\f(x) - f(z)\

for an increasing homeomorphism η: [0, oo) -»[0, oo) that depends
only on n, AT, and i? see [V3, Theorem 2.4]. This property will be
called the local quasisymmetry of f.

Similarly, if x and y lie in a hyperbolic ball with radius R, we
have

(6.1) C-ιaf{x)<af(y)<Caf(x)9

where C depends only on n, K, and i?. This follows e.g. from the
local quasisymmetry combined with the Koebe type result

(6.2) C-'aΛx)
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where C depends only on n and K (see [AG1, Theorem 1.8]).
We start with two lemmata, similar to those in [P2]. The first was

proved in [K2, Lemma 2.6].

6.3. LEMMA. If γ c Bn is a rectίfiable curve with diamy >
dist(y, dW), then

dizmf(γ)<C faf(x)\dx\,
Jγ

where C = C(n,K).

6.4. LEMMA. Let A c dBn . If af(rw) < M for all 0 < r < I and
w e A, then

\f(wι)-f(w2)\<CM\wι-w2\

for all W\, w2 G A, where C = C(n, K).

Proof. We observe first that the assumption and Lemma 6.3 guaran-
tee that f{w) exists as a radial limit for each w e A, so the assertion
makes sense. Next, we may suppose that \w\ — w2\ < 1/10, for oth-
erwise Lemma 6.3 implies

l/(wi) - /(^2)l < diam/,4 < CM < lOCM\wχ - w2\.

Fix 0 < r < 1 such that

\rw\ — rw2\ « (1 — r) « | ^ i — w2\.

Then

+ \f{rw{) - f(rw2)\ + \f(rw2) - f(w2)\.

Because, by the local quasisymmetry and (6.2),

\f(rw{) - f(rw2)\ » dist(f(rWι), a/)) « α/ίπi Oίl - r)

<M(1 - r ) w M\wx -w2\,

it suffices to show, by symmetry, that

But this follows from Lemma 6.3, and the proof is thereby complete.

6.5. Dyadic decomposition of dBn. We require a decomposition
of dBn into sets that correspond to the dyadic intervals on the bound-
ary of the unit disk (or the dyadic subcubes of Rn). To be precise
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with this construction, let Q"""1 = [-1, l]n~ι be the closed unit cube

in
by
in R""1 and consider the radial stretching F: Qn~ι —• Bn defined

where vx is the unique point on dQn~ι where the ray tx, t > 0,
meets dQn~ι. Also, we set JF(O) = 0. Then F is an L-bilipschitz
mapping with L depending only on n. Next, let π: dBn\{en} —•
Rn~ι be the stereographic projection

Then

H = π" 1 o f : Q n l -> dB?_ = θB" Π {x € Rrt: xn < 0}

defines an L-bilipschitz mapping with L = L(n).
By dyadic cubes on dBn we mean the members of the family

3 = {H(Q), H*(Q): Q is a closed dyadic cube in Q ^ 1 } ,

where //* denotes i / followed by the reflection (JCI, . . . ,xn-ι, ^«) ^
( x i , . . . , xw_i, -JCΠ) . The members of 3 are also denoted by Q. By
construction, it is readily seen that they share the following properties
of the ordinary dyadic cubes:

(i) for a.e. point w on dBn there is a unique descending chain
of dyadic cubes converging to w

(ii) IQ| « \Q\ if <2 and Q' are within one generation apart.

Next, if Q e 2>, we let wQeQ denote the center of Q and it is,
by definition, the image of the center of the corresponding cube under
H (or H*). Moreover, zQ eBn is a tent-point of β if it satisfies

1 - \zQ\ « | z β - <u;β| » diamβ » K2|1/(Λ"1}

for some dimensional constants. Also observe that for each point
xeBn there is Qxe3 such that

1 - |Λ;| « dist(x, Qx) « diam β*

for some dimensional constants.
From now on, we assume that a fixed choice of the point ZQ has

been made for each Q e 3 .



THE BOUNDARY DISTORTION OF A QUASICONFORMAL MAPPING 107

6.6. L E M M A . Let Qe3f. Then there is AcQ and δ = δ{n) > 0
such that \A\ > δ\Q\ and that

(6.7) ^ \f(zQ) - f(w)\ < M{n, tf)dist(/(ze), dD)

for each w eA.

Proof. We normalize f(zQ) = 0 and dist(O, dD) = 1. Fix t > 1
and let At c β be the set of all points w in Q such that |/(w)| >
t. Consider the mapping g = foUg, where C/β is a Mόbius self
mapping of the unit ball that carries 0 to ZQ . Then g is a quasi-
conformal mapping with K{g) = AΓ(/) = K, and ^(0) = 0. Let
i , = ί/g 1 ^)* β = C/ρ^β), and let Tt denote the family of all
radial segments joining 51/2 to At. We have

and hence

moάgTt>{\og2γ'n\At\IK.

The local quasisymmetry together with our normalization implies that
g(B 1/2) c B(0, /ί) for some H = H(n,K). Thus

for t> H so that

and since \Q\ fm 1, we can choose ί = t(n, K) so large that

Moreover, for any E c dBn

\UQ{E)\ = I Ju(w)d^n-l(w) = ί \DUQ{w)\n-λ dβ?n-y{w)
JE U JE

and because \DUQ\ « diamQ on Q, we obtain

I/Ί\ 7\ ̂  WQ\Q\At)\
\Q\At\ ί δ Γ —

Finally, since for w e Q\At we have \g(w)\ < t, the assertion fol-
lows.
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Proof of Theorem D. Our proof closely resembles that of Pom-
merenke's in [P2]. First observe dBn\Eoo = Eo U E\, where

Eo = ίw e dBn : liminfaf(rw) = o l and Ex = ΘB^E

Now

(J , where Γ 1
= < w e i?i : lim sup αy(ru ) < /: V .

By Lemma 6.4 / is Lipschitz on Ak so that 1/(^)1 < oo in particu-
lar,^/^!) has σ-finite %?n-\-measure and / is absolutely continuous
in Ex.

We next show that Eo = EouAo, where \E0\ = 0 and |/(^o)l = 0
Then we can set E\ —E\\JAQ.

To this end, for each w EEQ and 7 = 1,2, . . . there is rjyW , 1 -

1/7 < 0\w < 19

 s u c h that

(6.8) af(rJ9Ww)<2-J.

Let βy,^; be the largest dyadic cube in 2 containing w with
diamβ/w < 1 - rJiW such a cube exists for almost every w e dBn .
Then the collection

^fe = { β y , u ; : ^ € £ o , j > k}

almost all of EQ , and by the Vitali covering theorem we can
countable collection of essentially disjoint cubes {Qkj} c 91 ̂

at
£on(Uβ^,/)| = |Io|.

covers
select a
such that

Next, Lemma 6.6 implies the existence of sets A^j c Qkj and δ > 0
such that

(6.9) M M

and that

(6.10) f{AkJ) c B(f(zkJ), Mdist(/(zM),

where zkj = zQk { and M = Af (Λ , AT). We define

and

i=l k=i
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Next, we show that \f(A0)\ = 0. It follows from (6.10) that each
f(Fk) can be covered by balls

B(f(zkj),Mdist(f(zkj),dD)) = BkJ.

Since the hyperbolic distance between zkj and rJiWw (where zkϊ

corresponds to Qkj = Qj,w for some j > k and w EEQ) is bounded
by a constant C = C(n), we have by (6.1), (6.2), and (6.8) that

dmmBkJ = 2Mdist{f(zkJ), dD)

< C(l - \zkj\)af(zkJ) < k

Thus

where C = C(n, K) here we used the fact that the cubes Qk / are
essentially disjoint. In consequence, since /(AQ) belongs to /(i7/) U
f{Fi+\) U for any / = 1 ,2 , . . . , /{AQ) can be covered by balls
Bk,ι> k>i, such that

This implies |/(^o)l = 0 _
It remains to show that |2so| = 0 > where EQ = EQ\AQ . Now

OO OO OO

i=l k=i 1=1

where |£Ό,ol = 0, and we want to show that |G/| = 0 for each / =
1 , 2 , . . . , where

k=i 1=1

Fix /. By construction, for almost every point w in G7 there is a
descending chain of cubes of the form Qk,ι, k > i, that converge to
w. It is then easy to see that w cannot be a point of density of G7
because

for all k by (6.9). This completes the proof of Theorem D.

7. Proofs of Theorems E and F. Suppose that / is as in Theorem E.
We can factor / as / = φ o h, where h: B2 —• B 2 is a quasiconformal
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mapping with h(0) = 0 and φ: B2 —* /(B2) is conformal. An easy
argument shows that the complex dilatation μ^ of h satisfies the
Carleson measure condition of Theorem E, i.e. |/^(z) | 2/(l - \z\) is
a Carleson measure in B 2 . Then [FKP, Theorem 3.3] shows that
the boundary correspondence of h induces an A^ measure on the
boundary of B 2 . To be more precise, the quasiconformal mapping h
gives rise to an elliptic operator

in the disk, where A(x) = Jh{x)[Dh(x)-χ}[Dh{x)-ιy for a.e. x e B2

A straightforward calculation shows that the ratio of

sup \\A(x)-Id\\, Bz = B(z9 (1 - \z\)/2)9
B

and \μh(z)\ is bounded from above and below by a constant indepen-
dent of Z G B 2 ; because the associated elliptic measure ω^ satisfies

for E c dB2 (see e.g. [GLM] or [HM])5 the assertion follows from
[FKP, 3.3].

In particular, we have \A\ = 0 if and only if \h(A)\ = 0 for A c
dB2. Makarov's theorem guarantees that there is a set Ef cdB2 such
that \E'\ = In and the Hausdorff dimension of φ{E') equals 1. Then
h-\Ef) = E is the desired set.

Next we prove Theorem F. Suppose that / is as in Theorem F and
let E c dBn be such that dim# E = s, 0<s <n-l. The proof will
show that there is no loss of generality in assuming that / is bounded.
Fix ε > 0. For w e dBn and r > 0 the domain

is ^-uniform with b independent of w and r. By [AH, Theo-
rem 1.3] there is Kx = K\(n,b) > 1 such that every bounded K-
quasiconformal mapping g of Dw>r with K < K\ can be extended to
a Ar2-quasiconformal mapping of Rn moreover, K2 -> 1 as K —• 1.
Thus for fixed ε > 0 w e can choose r > 0 so small that fw,r = f\Dw,r
extends to a ^-Quasiconformal mapping fWyV: R" —• Rw with s-ε <
sK^1'^ < 5ΆΓ2 < s + ε. Because AΓ-quasiconformal mappings
of Rn are Holder continuous with exponent j^/O-Ό on compact
subsets, / satisfies

M-ι\x-y\ι'a<\f(x)-f(y)\<Mw\x-y\", a = Kl

2

/{l~n\
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for all x , y e Dwr and for any w e dBn . In particular, the Haus-
dorίf dimension of f{EnDw^r) is at most s + ε and at least s-ε by
the choice of r. Finally, since dBn can be covered by finitely many
sets DWι9r9 . . . , DWk9r we conclude that

s - ε < dim// f(E) < s + ε,

and the theorem follows by letting ε -> 0.

8. Open problems. In the following, / is a AT-quasiconformal map-
ping of Bn into Rn.

Problem 1. Denote by μ(n, ϋΓ) the supremum of all numbers a
such that dimHf(E) > a whenever E c <9B" has positive %?n-\-
measure. By Theorem A, μ(n 9K)>(n- \)(2K)x^χ-n">. Find a better
lower bound for μ(n9 K).

Problem 2. Similarly, define μ(n, K, s), 0 < s < n - 1, to be
the supremum of all numbers a such that dim// f(E) > a whenever
E c dBn has positive ^-measure. By Theorem C, μ(n, K 9 s) >
sr/(n -s + r), where r = r(/z, K) > 0. Find a better lower bound for
μ{n 9 K 9 s). This is related to the unknown value of r(n, K).

Problem 3. Let r(π, ϋΓ) > 0 be the supremum of all r > 0 such
that \Df\~reLl(Bn). Show that

r(n,K)>

Note that the inequality r(2, 1) < 1 follows from elementary distor-
tion theorems for univalent functions. Brennan [B] has shown that
r(2, 1) > 1 (see also [PI]) and hence it would be natural to expect
that

This latter inequality would then give a better bound for μ(n, K, s)
in Problems 1 and 2.

Problem 4. Give conditions that guarantee that / has the Makarov
property. Improve the Carleson measure condition in Theorem E.

Problem 5. Let n > 3 and suppose that

K(r) = K(f\Bn\Br) -+ 1, r - 1.
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Under what conditions on K(r) does / have the Makarov property?
Is there a higher dimensional analog of the Carleson measure condition
in Theorem E? Mattila and Vuorinen [MV] have studied a related
question.

Problem 6. Let n > 3 and define £Όo as in Theorem D. Construct
a quasiconformal mapping such that |£Όo| > 0. Is it possible that

Problem 7. Let n > 3 and suppose that \dD\ < oo, where D =
f(Bn). Is f\dBn absolutely continuous? What about f~x\dDΊ This
question was asked by Baernstein and Manfredi [BM, p. 846]. Gehring
[G2] showed that f\dW is absolutely continuous if / has an exten-
sion to a global quasiconformal mapping; Vaisala [V3] proved the
same result under the weaker assumption that f(D) be uniform. Re-
cently the first author showed that f\dBn is absolutely continuous if
dD has an (n - l)-tangent plane %?n-\ almost everywhere [He]. The
absolute continuity of f~ι\dD is open in all these cases.
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