
PACIFIC JOURNAL OF MATHEMATICS
Vol. 165, No. 1, 1994

iί-GROUPS AND ELLIPTIC REPRESENTATIONS FOR SLW
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To Elizabeth

We determine the reductibility and number of components of any
representation of SL n(F) which is parabolically induced from a dis-
crete series representation. The i^-groups are computed in terms of
restriction from GLrt(jF), extending the results of Gelbart and Knapp.
This yields an explicit description of the elliptic tempered represen-
tations of SLn(F). We also describe those tempered representations
which are not irreducibly induced from elliptic representations.

Introduction. We continue our investigation of those representa-
tions of classical p-adic groups which are parabolically induced from
the discrete series. We now consider the group G = SLn(F). We
will describe explicit criteria for reducibility of induced representa-
tions, determine the number of constituents of such representations,
and develop criteria for the constituents to be elliptic. Moreover, we
can describe those irreducible tempered restrictions of G which are
not elliptic, and are also not irreducibly induced from an elliptic rep-
resentation.

We use the technique of restriction from G = GLn(F) . This tech-
nique has been used by several authors to describe various aspects of
the representation theory of G [4, 5, 6, 7, 14, 19, 20, 21, 22, 24, 30].
Our purpose here is to use some of these results to obtain information
on the structure of the generalized principal series for G.

Let P — MN be a parabolic group of G. Suppose that a is an
irreducible discrete series representation of M. We wish to determine
when the unitarily induced representation IG,M(P) is reducible, and
if so, what is the structure of its components. We use the theory of
i?-groups, as developed by Knapp and Stein [18], and Silberger [28].
This, along with the multiplicity one result of Howe and Silberger [14],
determines the structure of the commuting algebra C(σ).

The i?-group is a quotient of the subgroup W{σ) of Weyl group
elements which fix σ. If Δ' is the collection of reduced roots for
which the Plancherel measure of σ vanishes, then R ~ W(σ)/W,
where W is the group generated by reflections in the roots in Δ'. For
the groups Sp2 r t(iΓ), SOn(F), and U n ( i 7 ) , we were able to explicitly
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describe the group W{σ), and use the properties of Plancherel mea-
sures to determine which groups could possibly arise as i?-groups [9,
10]. However, what precise i?-grouρs can arise has yet to be deter-
mined, since the explicit computation of Plancherel measures is not
completed in these cases. The i?-grouρs for certain parabolics are
understood completely [8, 27]. In the case of SLn, the Plancherel
measures are well understood [24, 25], Moreover, there is already a
necessary condition, in terms of restriction, for a Weyl group element
w to be in W{σ) [24]. We show that this condition is sufficient, and
thus we obtain an explicit description for the i?-group, where all the
pieces are understood.

Let^P = MN be a parabolic subgroup of G, with P = ?Γ\G, and
M = M n G. Then there is a discrete series representation, πσ , of M
so that %G\M contains a as a constituent. The components of %O\M
are said to be L-indistinguishable. Since iG,M(σ) •-» *£ i/(πtf)> ^ e

Plancherel measures for σ are the same as those for πσ [24]. The
reducibility of induced representations for GLΠ are well understood
[3, 23], and we know the Plancherel measures for πσ explicitly [25].
Therefore, we know the zeros of the Plancherel measures for σ by
restriction. We then show that w e W(σ) if and only if wπσ ~
πσ®ηodet, for some η e Fx (cf. Lemma 2.3). A lemma of Shahidi
[24] shows that W is the set of w with the property that wπσ ~ πσ .
This gives an explicit description of R, as a group of characters, and
generalizes the results of [7]. For a fixed η, we construct a unique
element, wη, with wη e i?, and wηπσ ~ πσ<g>ί/det (cf. Theorem 2.6).
We use this explicit description of the elements of R, and a theorem of
Arthur [1], to describe the elliptic tempered representations of G (cf.
Theorem 3.4). We also give an explicit description of those irreducible
tempered representations of G which are not of the form /^,M'(τ)
for some Levi subgroup M', and some elliptic representation τ of
M' (cf. Theorem 3.8). This is based on a result of Herb [13].

Many results on reduciblity and number of components are also
obtainable by the method of Hecke algebra isomorphisms. Thus, our
reducibility results should match those in forthcoming work of Bush-
nell and Kutzko [5].

1. Preliminaries. Let F be a locally compact, non-discrete, non-
archimedean field of characteristic zero. Let q be the residual char-
acteristic of F. Let G be a connected reductive quasi-split algebraic
group defined over F. Let G be the ^-rational points of G. We
say that an element x of G is elliptic if its centralizer is compact,
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modulo the center of G. We let Ge denote the set of regular elliptic
elements of G [12].

Let ^2{G) denotethecoUectionof equivalence classes of irreducible
discrete series representations of G, and denote by %t(G) the equiv-
alence classes of irreducible tempered representations of G. Then
%i{G) C %i(G). If π e %t(G), then we denote its character by Θ π .
Since θπ can be viewed as a locally integrable function [11], we can
consider its restriction to Ge, which we denote by θe

π . We say that
π is elliptic if θe

π Φ 0. In general, we would like to describe %%{G),
and explicitly determine which classes are elliptic.

We say that M c G is a Levi subgroup of G if there is a parabolic
subgroup P of G with M as its Levi component. Let TV be the
unipotent radical of P. If AQ is a maximal F-split torus of G, then
we let Φ(G, AQ) be the set of roots of Ao in G. Let Δ be a collection
of simple roots. Then the conjugacy classes of parabolic subgroups of
G are in one-to-one correspondence with subsets of Δ. If θ c Δ, then
we let Aθ be the subtorus of AQ corresponding to θ. Let B = TU
be the Borel subgroup associated to A0 = Ao . Then a Levi subgroup
M is called standard if there is a parabolic P — MN, with P D B.
In this case, P is also called standard.

If ¥ is a Levi subgroup with split component A, then we de-
note the Weyl group NG(A)/ZG(A) by W(G/A) or W(A). Let w e
W(A), and choose a representative w for u> in NG{A). If (σ, F)
is an irreducible tempered representation of M, then we let ώd be
the representation defined by the formula wσ(m) = σ(w~1mw). The
class of ώσ is independent of the choice of w. We say that σ is
ramified if there is some non-trivial w e W(A) with wσ ~ σ. We de-
note by Indp(σ) the representation unitarily induced by σ. Since its
class depends only on M, not P, we may also denote it by iG,M(σ)

We denote by X(M)j? the collection of ^-rational characters of
M. We let α = Hom(X(M)F , Z), be the real Lie algebra of A, and let
α£ be the complexified dual of α [12]. Then there is a homomorphism
Hp: M —• α which satisfies

( ) F , meM.

For any z/Eα^ and σ e ^(Af), we let



80 DAVID GOLDBERG

The space V(u, σ) of l{y, σ) is given by

V{v, σ) = {/: G

Here <5p is the modular function of P. If t& € W(^4), then we let
N& = UΠw~ιNw, where iV is the unipotent radical opposed to JV.
We formally define an operator on V{y, σ) by

σ, w )f(g) = / f{w"ιng)dn.

If the integral converges for every choice of / and g, then we say
that A{y, σ, w) converges. If A{y, σ9w) converges then it defines
an intertwining operator between I(y, σ) and I(wv 9wσ).

THEOREM 1.1 (Harish-Chandra). Let w e W(A) and σ e
Let P' be the standard parabolic subgroup with Levi component
w~ιMw. Then A(v, σ9w) converges for v in the positive Weyi cham-
ber, and can be extended to a meromorphic function of v on α£. More-
over, there is a complex number μ{v 9σ9w) so that

A{y, a, w)A(wu, wσ, tϋ" 1 ) = /ι(i/, σ, w)-ιγll){G/P)γίJ)-ι(G/Pf),

constant γ<w(G/P) is defined in [12]. Moreover, v -»
//(ι/, σ ,w) is meromorphic on α£, α«ί/ holomorphic on lα*. D

The factor //(ί/, σ, tδ) is called the Plancherel measure associated
to i/,σ and tδ . When tί) is the longest element of the Weyl group,
we write μ{y 9 σ) = μ{y, σ, tδ), and write μ(σ) = //(0? σ) . If M
is a maximal proper Levi subgroup, then IG,M{P) is reducible if and
only if σ is ramified and μ(σ) ψ 0 [29]. One can normalize the
intertwining operators A(u9 σ9w) by a meromorphic (in v) scalar
factor to obtain a family of intertwining operators sf(v9σ9w) with
the following property [16, 26]. If we let $f(σ9w) = J/(0, σ, w),
then these operators satisfy the cocycle condition

for all t&i, t&2 € W(^4). One consequence of this normalization is
that the operators $f{y, σ, iϋ) are holomorphic on the unitary axis
m* [29]. Shahidi [26] has shown that the Plancherel measures and
normalizing factors are related to conjectural Langlands L-functions.

Suppose wσ ~ σ. Choose an intertwining operator T(w) with
T{w)(wσ) = σT{w). Then s/'{σ9w) = T{w)sf{σ,w) is a self-
intertwining operator for Indp(σ). Let JV(σ) = {w e W(A)\wσ ~
σ}. Denote by C(σ) the commuting algebra of iG,M(σ)-
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THEOREM 1.2 (Harish-Chandra [29, Theorem 5.5.4.3]). The collec-
tion {srf'(σ, w)\w G W{σ)} spans the commuting algebra C(σ). D

The theory of the Knapp-Stein i?-group tells us how to determine
a basis for C(σ) from among the J/ ' (σ, w). Let Φ(P, ̂ 4) be the
reduced roots of P with respect to A, and let β G Φ(P, ̂ 4). Let
Aβ be the torus (ker/? n^4)°. Let Λfy denote the centralizer of Aβ
in G. Then ¥ i s a maximal proper Levi subgroup of Mβ. Let
ββ(σ) be the Plancherel measure attached to ΪM , M ( ^ ) Since M is
a maximal proper Levi subgroup of Mβ , we know ββ(σ) = 0 if and
only if i&σ ~ σ, for some t& / 1 in W(Mβ/A), and /^ , M ( ^ ) is
irreducible. We denote by Δ' the collection of β e Φ(P, A) such
that μβ(σ) = 0. We let

R = R(σ) = {we W{σ)\wβ >0, V/JGΔ'}.

Let JF7 be the subgroup of W(σ) generated by the reflections in the
roots of Δ'.

THEOREM 1.3 {Knapp-Stein, Silberger [18, 28]). For any σ e 2 )
we have W{σ) = R\xW. Furthermore, W = {w e W(σ)\$f'{σ, w)
is scalar). D

Thus, {stf'(w, σ)\w e R} is a basis for C(σ). The number of
irreducible constituents of ΪG9M(^) ^S the number of irreducible rep-
resentations of R, and the representation corresponding to p e R
appears with multiplicity dim/?. Moreover, if vb\, vbi G i?, then

where the 2-cocycle η: Rx R-+C* satisfies

T{wxw2) = η(w{, w2)T(wι)T(w2).

It is known that C(σ) ~ C[i?]^, where C[i?]^ is the complex group
algebra, twisted by the cocycle η . The multiplicity of each constituent
of ΪG,M(σ) is equal to one if and only if R is abelian and η splits
[16, 17]. The isotypic components of iG,λf(σ) can be parametized by
the irreducible representations of R [17].

We now assume that R is abelian and C{σ) ^ C[R]. For each
w G R, we let α^ = {// G a\w-H = H} . Let Z be the split component
of G, and let 3 be the real Lie algebra of Z . Let α# = CϊweR a™
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THEOREM 1.4 (Arthur [1], Proposition 2.1). Suppose R is abelian
and C(σ) ~ C[R]. Then the following are equivalent:

(a) h,M(σ) has an elliptic constituent.
(b) All the constituents of IG,M{P)

 a r e elliptic.
(c) There is a w e R with α^ = 3. D

THEOREM 1.5 (Herb [13]). Suppose R is abelian and C(σ) ~ C[R].
Let π be an irreducible constituent of IG,M(^)' Then π = IQ9M'(T)

for a proper Levi subgroup Mf and some τ e <^(M') if and only if
KRΦI. Moreover, M' and τ can be chosen with τ elliptic if and only
if there is a WQER with <XR = a<w0. •

w0

We will use these last two theorems to describe the irreducible tem-
pered representations of SLn(F) which are elliptic, and those which
are not irreducibly induced from elliptic representations.

One of our main tools is the use of restriction theorems. We state
those we need below. Tadic [30] has extended these results to the
case where the quotient is not necessarily finite, but H is of the form
G\Z(G), with G\ the derived group of G.

THEOREM 1.6 (Gelbart-Knapp [7]). Let G be a totally disconnected
group, and suppose that H is an open normal subgroup of G, with
G/H a finite abelian group.

(a) If π is an irreducible admissible representation of G, then π\π
is the finite direct sum of irreducible admissible representations. Each
component of π\π appears with the same multiplicity

(b) If σ is an irreducible constituent of π\u, and Gσ = {g e G\
g σ ~ σ}, then G/Gσ permutes the inequivalent components of π\π
simply and transitively. (Here g σ(x) = o(g~xxg).)

(c) If σ is an irreducible admissible representation of H, then there
is an irreducible admissible representation πσ of G so that πσ\iϊ con-
tains σ.

(d) Suppose π and π' are irreducible admissible representations
of G such that both π |# and U'\H decompose with multiplicity one.
Suppose σ is a constituent of both π\jj and π ' | # . Then π | ^ ~ π ; | ^ ,
and πf ~ π <g> η, where η is a character of G, which is trivial on H.

2. The group SLΠ. Let F be as in §1. Let Gn =^L W and Gn =
GLn, as defined over F. We let Gn = Gn(F) and Gn = Gn(F). If
the dimensionJs clear we may just write G or G. Let Z = Zn be
the center of G.
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Let Ao C G be the subgroup of diagonal matrices, and let Ao =
GΠAQ. Let U be thejubgroup of unipotent upper triangular matrices.
Then U c G, and B = A0U is a Borel̂  subgroup of G, while 5 =
AQII is one of G. Let Φ(G, ̂ 4o) = Φ ( ^ 5 ^o) be the roots of Ao in
G. Let Δ = {e/-£/+i}"!"/ be the collection of simple roots given by B.
Let 0 c Δ , and let PQ = Λ/̂ JV̂  be the associated standard parabolic
subgroup of G. Then Pθ = PΘΠG = MΘNΘ, with Af̂  = Afo n G,
is a standard parabolic subgroup^ of G^ and every standard parabolic
arises in this way. Suppose M = Mθ. Then there is a partition
m\ + m-i H h m r = «, such that

M ~ Gmχ x x x G

Specifically,

AT =

I \o

ft e Jm

Then

Let A = Aθ be the split component of M, and A = AnG that of
M. Then

\ \ Ar /

where by λ, we really mean Λ,//m . Thus,

The Weyl group W = W(G/A) ^ J^(G/,4) is isomorphic to a sub-
group of Sr. More precisely, W is generated by the transpositions
(ij) for which mz = rrij . If (/y) is in W, then

\}j) ' \Λ \ 5 f , . . . , λ γ ) — \ A \ , . . . , Λ j , . . . , Λ / , . . . , λ r ) .
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Let MQ be the derived group of M,

I gi€Gm\ ~GmιX xGmm.

gr)

Note that MQ is also the derived group of M. Let

φ:M-+ Fx x x F *

r-l times

be given by

ψ(gi, £2, . . . , gr) = (dctg

We note that we have the following exact sequences.

(2.1)

det(2.2) 1 -> MA -> M ?5 Fx/((Fx)mι(Fx)m2... ( F x ) m . ) -• 1,

(2.3)

1 -> Afô ί ^ AT Λ Fx/(Fx)mι xFx/(Fx)m2 x . . . xFx/(Fx)mr-ι -+1.

We will choose specific splittings in order to simplify our later argu-
ments. For each m > 1 let {amΛ , α m , 2 , . . . , am,tJ be a collection
of representatives for Fx/(Fx)m . For each (ra, /)" let

a —

Then anj »-• αΛ > / splits (2.1).
Similarly, if y is a representative for

F x / ( ( F x ) w . ( F x ) m 2 . . . ( F x ) w 0 ,

then we let j? = (y ιn_χ). Then y *-> y splits (2.2). Now let

r - l

Let
7=1

i i r i . Then we let

ίar

am2,ι2

ar

λ{a)

Clearly, ψ splits (2.3).
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Note that if π G ̂ 2(Gn), and we write π|G | i = Θ 7 Pj , then [24, 30]
each pj appears with multiplicity one. Theorem 1.6(b) implies that
the anj permute the constituents pj transitively. The representa-
tions pj are said to form an L-packet for Gn . We also say that the
pj are L-indistinguishable.

Let σ G <§2(M). Then, by Theorem 1.6(c), there is some πσ G
^2(Af) with %O\M 3 0"- Moreover, if π^ is another such representa-
tion, then πf

σ = πσ ® η - det, for some character η of Fx (Theorem
1.6(d)). We denote πσ®τ/ det by πσ®η. Let π σ = πi ®π2® ® π r ,
with each π, G <§2(C?m ) . Let πσ |M = 0 / 07, with θ\ — a. We again
say that the representations σz are L-indistinguishable, and say that
{σ/} forms an L-packet of M. The reason for this terminology is
discussed in [7], If w G W(G/A), and we realize w as a permutation
on r letters, then wπσ ~ πW(\) ® πtl7(2) ® * ® 7Γ̂ (r)

Note that if n ^ = φ/^Pij, then πσ\Mo = Θ{7.}Θ/=i A7. i s

o

{7.}Θ/=i
multiplicity free. Thus, for i φk, Hom^o(σ^, σ{) = {0}. Note that
this (redundantly) implies that TIG\M is multiplicity free.

LEMMA 2.1 (Shahidi [24]). Let a e &2(M) and choose πσ e
which contains σ upon restriction to M. Let a G Φ(P, A). Then

(a) ΪG,M{σ)^ig^σ)\

(b) iMa,M(σ)^i^ 9j^(nσ);

(c) μα(σ) = //α(πσ)
α. D

For 1 < / < r, let Q = Σ}=i mj - ^or 1 < / < j < r, let α, 7 = ec -
ec +\. Then {αZ7|l < i < j < r} is a complete set of representatives
for the reduced roots, Φ(P, A).

COROLLARY 2.2. Lei σ am/ π σ 6e as in Lemma 2.1. Suppose
nσ = π\ ® ® πr. Then ay G Δ' ί/anrf only if π, ^ π ; .

Proof. Let a = a y . Recall that αEA' if and only if μa{σ) = 0.
By Lemma 2.1, μα(σ) = 0 if and only if μa(πσ) = 0. By [3, 25] this
is equivalent to π, — π/. •

We now describe the group W{σ) in terms of the representation
πσ.

LEMMA 2.3. Let σ G ̂ (Af), and suppose πσ G
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W{σ) = {w G W\wπσ ~πσ®η, for some η G Fx}.

REMARK. That wσ ~ σ implies wπσ ~ πσ <g> η for some η was
proved by Shahidi in [24].

Proof. If wσ ~ σ, then wσ <—• πσ\M Since wσ c wπσ\M, we
know that πσ|Af and wπσ |M have a common constituent. Thus, since
πσ\M and WTΓ^IM are multiplicity free, Theorem 1.6(d) implies that
wπσ ~ πσ ® η, for some η G Fx .

Now suppose that wπσ ~ πσ ® η. Then we know that wσ ~ σ[
for some /. Note that wπσ\M = 0 / 7 \ 0/=i ^ ( / y Suppose p$ =

® L i Av is an irreducible constituent of G\M - Since wπσ ~πσ®η,
^

we know that 7r̂ (/) ~ πz ® ̂ / for each /. Thus, ^(/jy and /?// are

L-indistinguishable. By Theorem 1.6(b) there is a choice of kt so that

&m,k.'Pij — Pw{ήj Suppose s = (iw(i) w2(i) - " wι~λ (/)) is a cycle

appearing in w . Without loss of generality, assume s = (1 2 /) . Let

m be the common value of rriχ, m-i, . . . , m/. For each 1 < / < / - 1,

we choose b\ = amk with the property that b\ p\j — Pμ+iy . Let

bι = (b\b2 - b[_ι)~ι. Then, since the b\ commute,

That is, we can take amk = b\. Therefore, we can choose α m k so
that their product over any cycle s of w is 1, and thus the product
of all am k is 1.

Let

6=

/3m,,*, \

\ amr,kr/

Then we have just shown that b G M. Thus, by Theorem 1.6(b),
b /?o is a constituent of σ | ^ . On the other hand,

b A) = ® amι A /?0- = (g) ̂ ( i ) ^ , = ̂ />o
i = l ι = l

Thus, wp0 c σ and ii;/?0 C it σ implies H o m i e r , wσ) Φ {0}.
Therefore, by multiplicity one, σ ~wσ . α

Let

L(7rσ) = {// G F x |π σ ® ̂ / ~ tί;π σ, for some w G
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Let X(πσ) = {η G Fx \πσ Θ η ^ πσ} . Note that if I J J G ~L{πσ), and
πσ ® η ~ πσ ® / , then ηχ~x E X{nσ). Thus, there is a well-defined
homomorphism 9?: W(σ) -*Έ(πσ)/X(πσ) given by φ(w) = ηX(πσ),
where wπσ ~πσ®η.

THEOREM 2.4. 77ze R-group of σ is given by

R(σ)^L(πσ)/X(πσ).

Proof. It is enough to show that ker φ = W, where W7' is the
group generated by reflections in the roots of Δ'. If α/ 7 e Δ!, then
7Γ/ ~ 7Γ;, so (/j) πσ ~ πσ, and thus, W c ker 9?. On the other
hand suppose w = S\S2 -^ is in ker^ . Let Si = (// /*2 /y). Since
wπσ ~ πσ, πZ/ — π, for 1 < / < 7 - 1. Thus, by Corollary 2.2,
α, 1 GΔ', for each /. Let α, / = α, , . Then

ι = l 1 = 1

Thus, ker^ = W, so L(πσ)/X(πσ) ĉ  W(σ)/W ~R. n

REMARK. The fact that W = {w\wπσ ~ πσ} was first shown, with
a slightly different proof, by Shahidi [24, Proposition 1.8].

REMARK. If P is the minimal parabolic, then Gelbart and Knapp
[7] showed that L(πσ) ~ R(σ). Thus, our result generalizes theirs, as
well as those of Keys [16].

COROLLARY 2.5. If a and σ' are L-indistinguίshable discrete series
representations of M, then R(σ) = R(σ'). α

While Theorem 2.4 describes R as a subgroup of (Fx/(Fx)n) ,
we desire a more explicit description of R. Let η e L(πσ). Let
Ω(η, i) = {j\τtj ~ Έi ® η} . Let ^ ( 1 ) = minΩ(^/, 1). For 2 < / < r,
let Γ(f/, /) = {wη(j)\j < i} . Then we let

Clearly wη eW.

THEOREM 2.6. Let η e L(πσ). Then wη is the unique element of
R(σ) associated with η.

Proof. Since, for each /, πw ^ ~ πι ® η, we have wηπσ ~πσ ®η .
Thus, wη G W(σ). Suppose αz ; G Δ'. Then πz ~ π 7 , so Ω(^, /) =
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Ω(η, j). Since i < j , we have wη(i) < wη(j), by construction. Thus,
wηaij = aw φW (j) > 0. Therefore, for each a G Δ', wηa > 0, and
thus wη e R(σ). α

3. Elliptic representations. We now use our description of the R-
groups of G to explicitly describe the elliptic tempered spectrum of
G. We also describe those tempered representations which are not el-
liptic, and are not irreducibly induced from an elliptic representation.
We begin with the multiplicity one result of Howe and Silberger. This
result has been extended to an arbitrary irreducible admissible unitary
representation of M [30].

THEOREM 3.1 (Howe-Silberger [14]). Let G = SLΛ(F), and let P =
MN be an arbitrary parabolic subgroup of G. Suppose a G %i{M).
Then each constituent of iGiM(σ) appears with multiplicity one. π

COROLLARY 3.2. For any σ e %i{M), C(σ) c- C[R]. α

LEMMA^3.3. Let P = MN be a standard parabolic subgroup of
Gj Leζ M be the Levi subgroup of G with M = M n G. Suppose
M ~ Gmχ x Gm2 x x Gm . If for some i and j , raz Φ mj, then
*G,Λ/(0") can never contain an elliptic constituent

Proof. By Theorem 1.4 and Corollary 3.2, IG,M(G) has an elliptic
constituent if and only if there is a w e R so that α^ = 3. Since
rm Φ mj, W(G/A) does not permute the blocks of M transitively.
Thus, there is no w e W(G/A) with α^ = 3 = {0}. Therefore, for
any σ £ ̂ (M), iG,M(σ) cannot contain an elliptic constituent. α

THEOREM 3.4. Suppose m\ — mi = = mr. Let σ e ^(Af), and

choose nσ e ^(M) with nσ\M D σ Then the following are equivalent:
(a) ΪG,M(^) has an elliptic constituent,
(b) every constituent of ΪQ A/(<T) is elliptic,
(c)

Proof. Since R is abelian and C(σ) ~ C[R], (1) and (2) are equiv-
alent, and both are equivalent to α^ = {0} for some w e R(σ).
Since mx = = mr, W(G/A) = Sr, and α^ = {0} if and only if
W is an r-cycle. Up to conjugation by an element of W(G/AQ) , we
can assume that w = (1 2 r). Let πσ = π\ ® ® πr, with each
πz G %2,(Gm) From Theorem 2.6, w G i?(σ) if and only if there is an



^-GROUPS AND ELLIPTIC REPRESENTATIONS FOR SLΠ 89

η eFx such that rf e X{πx), and ηj <£ X{πx) for 1 < 7 < r — 1,
with π; = τt\ ® i/1"""1. That is,

πσ ~ π\ <g> (πi Θ A/) ® (πi ® A/2) <g> ® (πi ® ^/ r~ 1).

Now it is clear that Σ(πσ)/X(πσ) = (η), so i?(σ) ~ Zr. D

REMARK. It is not the case that every irreducible tempered repre-
sentation of G either is elliptic, or is irreducibly induced from an
elliptic representation. This was already known for G = SL4, with
P = B, the Borel subgroup [13]. We will give a description of all
representations of G of this form. We begin with an example which
illustrates the ideas involved. This example is a generalization of the
example given in [13] for SL4.

_ EXAMPLE 3.5. Let m > 1, and let G = SL 4 m . Let M ~ Gm x
Gmx Gmx Gm. Let π e ^i{M). Suppose that η and χ are distinct
characters with η, χ and ηχ φ X{π), but η2, χ2 G X(n). Let

7Γ0 = π ® (π ® A/) ® (π ® /) ® (π ® ι/χ).

Let a c πo|jι/ Then A' = 0 . Note that 77 corresponds to the per-
mutation (12)(34), χ to (13)(24), and ηχ to (14) (32). These are
the non-trivial elements of R(σ). Note that CIR = {0}, but for each
w G ϋ ( σ ) , a™ ^ {0}. Therefore, by Theorem 1.5, no constituent of
iG,M{β) is irreducibly induced from an elliptic representation. D

DEFINITION 3.6. Let π e %2(Gm). Let η{, η2, . . . , r\ι, / > 2, be a
collection of characters of Fx . Let o ( ^ ) be the order of ηι modulo
X(π). Suppose that

(1) η[ιηl2 " *l\l £ X(κ) unless ηj G X(τr) for each j

(2) gcd(o(^ ))Li > 1
Let

ΓΛ, \ ί it U h 0 < // < oίηA,
Ω(π, 1/1,1/2, . . . , *//) = | π ® ^ ^ 2

2 ι// .̂ " ^ ^/

We call the collection Ω(π, η\, 2̂ * > *//) a multiple character seg-
ment for π .

DEFINITION_3.7. Let G = Gn. Suppose P = MN is^a standard
parabolic of G. A discrete series representation /? of M is said to
contain a multiple character segment Ω for π if, up to permutation
of the blocks of M,

for some p'.



90 DAVID GOLDBERG

THEOREM 3.8. Let σ e %Ί{M)y and choose πσ e %i{M) with
KC\M ^ σ Then any constituent of iG,λf(σ) is non-elliptic, and is
not irreducibly induced from an elliptic representation if and only if πσ

contains a multiple character segment Ω(π, Y\\ , . . . , r\{), with each
r\i e L(πσ).

Proof. Suppose πσ ~ %\ <g> ® nr, and {π i , . . . , πk} is a multi-
ple character segment Ω ( π i , η\ , . . . , ? / / ) . Further suppose that r\i €
~L{%o) for each ι/, . Then wη_ Φ 1, since for 1 < j < k, π 7 (8) i/, φ π 7 .
For 1 < j < k there are i\, z'2 > > '/ so that

Thus, there is a w e i?(σ), with w(l)
m denote the common value of m\, .

= 7 , for j = 1, 2,
.. , m^. Then,

\

+
k+\

. , k. Let

i = 0

V \ a,

We denote the subalgebra on the right by a!. Since gcd(0(ι/, )) > 2,
there is no character η so that, for each 2 < j < k, w*η(l) = j
for some /. Thus, there is no w G R with α^ c o!, and thus it is
impossible for α^ = OR for some w eR. Therefore, by Theorem 1.5,
every component of IQ,M(σ) is non-elliptic, and cannot be irreducibly
induced from an elliptic representation.

Now suppose that πσ does not contain a multiple character segment
with the described compatibility condition. Suppose that w(i) Φ i
for some w e R. Since there is no compatible multiple character
segment, we know there is a character, y, = ηk for some k, so that
nW(i) = τii % γj for some j . That is, we choose yz G L(X(πσ)) so
that the order of yz modulo X(πσ) is maximal with the property
that %i ® 7i φ %i. Let s(i) be the cycle of w7j which contains i .
Note that if w G i?, and ?/;(/) ^ /, then some power of s(i) appears
in W. (This follows from the construction of the elements wη of
R.) Suppose that γk φ γj mod(X(πσ)) for any 1 < j < o(yz) -
1. Then w7k(i) = /, and so m ® γk ^ m. Let γiχ, γiτ, . . . , y/f be
the distinct classes, modulo X(π σ ) , among the characters {γj}. Let
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WQ = Wy. Wγ. Wy. . By construction, the elements wy are disjoint
permutations, and WQ E R. Moreover, if there is a w e R with
w(i) = k, then wJ

0(i) = k for some j . Thus, θwo = OR. Therefore,
by Theorem 1.5, if /G,M(^) has no elliptic constituents, then each
constituent of iG,M(σ) can be irreducibly induced from an elliptic
representation of some proper Levi subgroup M' of G. D

REMARK. Suppose σ e ^ ( ^ O and all the constituents of π =
*G,M(0") are elliptic. We can parametrize the constituents by the
characters R of R. Let πκ be the constituent which corresponds
to KER. Then θe

π = 0, so Σκθ
e

π = 0. We would like to explicitly
know this relation between the characters θe

π . In [13] Herb gives
an explicit description of this character relation when G = Sp2n 0 Γ

SOΛ . In [10] we used the same techniques to carry out this program
when G = XJn. Assem [2] uses his global character expansions and
a result of Kazhdan [15] to describe this relation when G = Gn and
n is prime. Shahidi [24] showed that R(σ) ~ X(i~ ~(πσ))/X(πσ).

Thus, L(πσ) = X(ig j^(πσ)) Therefore, by extending the results of

Kazhdan, one hopes to describe this relation.
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