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THE STRUCTURE OF sl(2, 1)-SUPERSYMMETRY:
IRREDUCIBLE REPRESENTATIONS

AND PRIMITIVE IDEALS

DIDIER ARNAL, HEDI BEN AMOR AND GEORGES PINCZON

We give a detailed study of the enveloping algebra of the Lie su-
peralgebra sl(2, 1), including classification of irreducible Harish-
Chandra modules, completeness of finite dimensional irreducible, ex-
plicit computation of center, and classification of primitive ideals.

Introduction and main results. Lie superalgebras are important both
in physics and in mathematics [5]. In physics, they are used e.g. to
unify fermions and bosons in a unique picture (one irreducible repre-
sentation of the structure) via supersymmetry. In mathematics, their
enveloping algebras provide a class of very interesting noetherian al-
gebras. Much information is known about enveloping algebras of Lie
algebras (e.g., [4]), but for superalgebras there is a lot to do (see e.g.
[2] for a pioneering work, and [13] for a very nice survey of results
obtained up to now). Let us restrict to the simple case; then a natural
distinction does appear between simple superalgebras with an envelop-
ing algebra which is a domain and others. The first case is exactly the
series osp(l, 2ή), which are also the only semi-simple simple super-
algebras [8]. The simplest model of this case is h = osp(l, 2) U(h)
was completely studied in [16], including explicit computation of Prim
U(h). The simplest model of the second case is g = sl(2, 1), and
the purpose of the present paper is a complete study of U(g). We
shall give a classification of irreducible Harish-Chandra modules, a de-
tailed computation of the center Z(g) of U(g), and a classification
of Prim U(g).

Let us recall known results: finite dimensional irreducible represen-
tations of g = sl(2, 1) are known [18], and also unitary irreducible
are classified ([6], [7]). Moreover, finite dimensional representations
provide a complete set of representations [2], but are generally not
fully reducible.

A fundamental result of our paper is the fact that finite dimen-
sional irreducible provide a complete set, because of information that
can be deduced on U(g). Actually, we deduce an explicit determi-
nation of the center Z(g), which shows that Z{g) is not a finitely
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generated algebra, a big difference with usual properties of simple Lie
algebras, and even with h = osp(l, 2)! Also we deduce some "struc-
tural" identities between central elements of U(g) and U(h), which
are of interest since they "contain" the reduction of £/(g)-modules
into £/(λ)-modules. We then study irreducible ^-modules, and es-
tablish a bijection with irreducible g^ -modules, following an idea of
[9]. Restriction to Harish-Chandra case is easily done, and classifi-
cation of irreducible Harish-Chandra modules follows. We point out
the natural introduction of two cases: the first one (regular case) has
to be treated via induction from g^ (as suggested in [9]); the second
one (degenerate case) is strange, since degenerate irreducible are still
irreducible when restricted to the subalgebra h (some kind of special
Gelfand-Zetlin trick!).

Finally, we give a classification of Prim U(g). As mentioned for
representations, primitive ideals are either regular or degenerate, and
these two classes appear to be quite different. Roughly speaking, de-
generate primitive are "big ideals" (though generally minimal primi-
tive!), and corresponding quotients are actually primitive quotients of
U(h). Once more, as in the case of h, the metaplectic case is singular,
and leads to a very interesting primitive quotient of U(g), obtained
as an extension of the Weyl algebra by a parity.

Before giving a precise description of our results, let us mention
some new results of several authors, which were announced after our
paper was accepted, and which are sometimes parallel to ours:

First, a classification of Pήm U(g), for g = sl(2, 1), was an-
nounced by I. Musson [14], based on his results of [12]. This clas-
sification is obtained by techniques which are different from ours.

Second, a bijection between Prim U(g) and Prim U(gζ), for clas-
sical simple g of type I (including g = sl(2, 1)), has been announced
by E. Letzer [10], also based on [12]. This bijection is not a lattice
isomorphism, so it gives less information (in the case of g = sl(2,1))
than our results, or Musson's results [14], In any case, an explicit
description of primitive ideals of g = sl(2, 1) (e.g. in terms of gen-
erators) is still to be done, and we think that our techniques can be a
milestone for such a description.

Third (and suggested by our Theorem 3) it has been announced
independently by I. Musson [15] and E. Letzer [11] that if g is classical
simple and g φ b(n), then finite dimensional irreducible provide a
complete set; this result is of great interest, since information is known
(in general) about irreducible, but very little is known (and probably
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very little is to be known!) about the general finite dimensional case.
Let us now give a precise description of our main results (unex-

plained notations are to be found in §§(0) and (I)).
Section (I) is a description of g, and of some subalgebras of g,

which will be used in the paper. We also introduce corresponding
Casimir elements.

Given an irreducible ^-module V, let Vo (resp. VQ) = {v e V/A± V
(resp. E±v) = 0}. In §(Π), we first prove ((II. 1.2) and (11.1.4.(3))):

THEOREM 1. (1) VQ (resp. VQ) is an irreducible g^ -module.
(2) V —• VQ (resp. VQ) is a one-to-one mapping from Π(g) onto

The proof uses induction techniques, which were developed in [9]
for finite dimension, but which happen to work in general for g.

We then distinguish between degenerate irreducible ^-modules
( ^ = 0), and regular ones (& φ 0), and obtain (Π.1.5), (II.1.6) and
(Π.1.7)):

THEOREM 2. (1) Let W be an irreducible g-Q-module, and X =
Indg• fg W. Then if %? ^ 0 in X, X is an irreducible g-module.

(2) Let V be an irreducible g-module, then:

• if V is degenerate, V is an irreducible h-module.
• if V is regular, V = lndg ]gV0.

We also specify the g^ -reduction of irreducible ^-modules V,
which is very dependent on the fact that V is regular or degener-
ate (II. 1.5), (II. 1.6). We then apply Theorem 1 to irreducible Harish-
Chandra ^-modules, and obtain a complete classification (Π.2.2). We
specify s-reduction of this type of ^-modules in the degenerate case
(II.2.3), and regular case (II.2.4). Note that some reductions do con-
tain indecomposable non-irreducible ^-modules (Π.2.5).

Let Πr(g) (resp. TΙ f(g)) be the set of irreducible regular (resp.
finite dimensional irreducible regular) representations of g.

In§(ΠI) we prove (III.l):

THEOREM 3. H((g) is a complete set of representations of g.

It was known that finite dimensional representations of g provide a
complete set [2]. Nevertheless, the only well-known finite dimensional
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representations are irreducible ones, and finite dimensional represen-
tations are generally not fully reducible, so our result is a real improve-
ment, and proves to be useful.

In §IV, we compute the center Z(g) of U(g), and obtain (IV.4.1):

THEOREM 4. Z(g) has basis {1, {β'l^)n^, n > 0, p > 0}.

As a consequence, Z(g) is a free C[^]-module, with a basis {1, ^ ,
n > 1} such that Ψn% = ^n+p, V/i,p > 1 (IV.5.1). Therefore,
Z(g) is not a noetherian algebra, and, a fortiori, not a finitely gener-
ated algebra (IV.5.2).

In §(V) we describe degenerate primitive quotients of U(g), i.e.
quotients by kernels of degenerate irreducible representations.

We introduce the algebra Wp, which is obtained when extending
the Weyl algebra W by a parity P, in the following way:

Let σ be the automorphism of W defined by (a)σ = ( - l ) d e g α α ,
a e W, then

W is obviously contained in Wp, and P = [^Q] . Given any irre-
ducible representation π of W in a space F , the subalgebra of L(V),
generated by n{W) and the natural parity of V, is isomorphic to Ŵ>
(V.3.1), and Ŵ> is a quasi-simple primitive algebra (V.3.3).

We prove (V.5.1):

THEOREM 5. All but one primitive degenerate quotients of U{g) are
isomorphic to primitive quotients of U(h), and the exceptional one is
isomorphic to WP.

Let us recall the singularity which occurs in Prim U(h): primitive
ideals of infinite codimension are always of type U(h)/(C-c), except
one, which is U(h)/(L+ 1/4) (see [16] and (V.2.3)) and corresponds
to the value c = -1/16 (metaplectic case); the corresponding quotient
is the Weyl algebra W. The exceptional case of Theorem 5 is exactly
this metaplectic case.

Conversely, if B is either a primitive quotient of U(h) different
from W, or if B = Wp, we define an explicit morphism from U(g)
onto B ((V.4.3)). As a consequence

THEOREM 6. If π is any irreducible representation of h, there exists
a degenerate representation π of g such that π\h = π.

In §(VI), we give a classification of Prim U(g). We first distinguish
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between the degenerate and regular cases, and write

Prim U(g) = FήmrU(g) U PήmdU(g).

Let g7 = PrimU{h) x Z 2 , Z2 = { + , - } , with the identification:
(/,+) = (/,-) if / = U(h)(L + 1/4), or if / is the kernel of the

trivial representation.

THEOREM 7. Prim^t/^) = g7.

We note that Prim U(g^) ~ Prim U(g+) ^ Prim U(s) x C (VI. 1.2)
and define PήmrU(go) in the following way: given (/,λo) G
Prim C/(gj>) = Prim U(s) xC , there exists q e C such that (β-tf) € /
then (/, λo) e PrimΓC/(^) if and only if q - λo(Λo + 1) ^ 0. Then
we prove (VI.3.2):

THEOREM 8. PήmrU(g) ~ VήmrU(g^).

Finally, the classification of Prim U(s) and Prim U(h) being well
known (e.g., [16]) we obtain a classification of Prim U(g).

Though the distinction between degenerate irreducible representa-
tions, (which correspond to the vanishing of Ψ and every ^ of
Z{g)) and regular ones, seems quite natural, it is very interesting that
the degenerate case can be interpreted in terms of irreducible rep-
resentations of a simple subalgebra h, whence the regular case (via
inducing techniques) is interpreted in terms of irreducible representa-
tions Of gQ .

It is proved in [12] that any element of Prim U(ω) is the kernel
of an irreducible Verma module, when ω is a classical simple Lie
superalgebra (an extension of a classical result of Duflo). This gives a
parametrization of Prim U(ω), but unfortunately not one to one.

If ω is a semi-simple Lie algebra, minimal primitive ideals of U(ω)
are well known: they are generated by maximal ideals of Z(ω) ([4,
(8.4.4)]). For simple Lie superalgebras, the situation is more involved:
for instance, the ideal U(h)/(L+l/4), of U{h), is minimal primitive,
but not generated by its intersection with Z(h) ([16]). Nevertheless,
it is the only ideal of this type in U(h) note that it comes from the
metaplectic representation [16]. For U(g), complexity is increasing,
since:

THEOREM 9 (VI.5). If I e PήmdU(g), and if codim/ = oo, then
I is minimal primitive, and I is not generated by its intersection with
Z(g).
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Finally, we prove two "structural" equations, holding in U(g), and
involving the (commuting) elements K, Q,& and 31. These equa-
tions give an explanation of the g^ -reduction of regular irreducible
g-modules. On the other hand, they do not give any information in
the degenerate case. This stresses the difference between regular and
degenerate primitive ideals.

(0) General conventions and notations.

(0.1) All vector spaces considered in this paper are vector spaces
over the field of complex numbers C. Accordingly, all (Lie, or super
Lie, or associtive) algebras are algebras over C. When (Lie or asso-
ciative) Z2-graded algebras are concerned, all considered objects are
implicitly assumed (if the contrary is not mentioned) to be Z2-graded:
so, module (or representation) means Z2-graded module, submodule
means homogeneous submodule, ideal means homogeneous ideal, ir-
reducibility means Z2-irreducibility, primitive ideal means homoge-
neous primitive ideal, etc.

(0.2) Given an associative Z2-graded algebra A, we define on A
a Lie algebra, and a Lie superalgebra structure by:

a, b G A, [a, b]L = ab - ba,

a e 4ieg(a), b e Aάeφ), [a, b] = ab - {-\

(0.3) Given a Lie algebra, or a Lie superalgebra ω , we denote
by Π(ω) (resp. Π ̂ (ω)) the set of (equivalence classes of) irreducible
(resp. irreducible finite dimensional) representations of ω.

(0.4) We denote by U(ω) the enveloping algebra of ω, by Z(ω)
the center of U(ω), and by Prim U(ω) the set of primitive ideals of
U(ω).

(0.5) We recall that a subset Π of Π(ω) is a complete set of rep-
resentations of ω if:

ue U(ω)9 π(w) = 0, VπeΠ=^w = 0.

(0.6) We mention that we use both terminology of ω-modules, or
of representations of ω, as convenient.

(0.7) The Weyl algebra W is the associative Z2-graded algebra
generated by p and q and relations [p, q] = 1 (for details, and
relations between W and osp(l, 2), see [16]).
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(I) Notations.

(I.I) We denote by g = g$ Θ gj the complex simple Lie super
algebra sl(2, 1), or, equivalently W2, in the notations of [9]. g^ is
isomorphic to gl(2), so we write g$ = s Θ CId, where s ~ sl(2),
and gj reduces, under the adjoint representation of g^, into gj =
g-\®g\, gj ^ D(l/2) under ads, and adld|g. = -jldgj, j = - 1 , 1.

We set g+ = g fiΘgi. We introduce respective basis {Y, F , G, K}
of g^, {Δ±} of ^i and {E±} of g_i, with (nonvanishing) brackets
given by:

(1.1.1) [Y, F] = F, [Y, G] = -G, [F, G] = 27,

[Γ,£±] = ± ^ ± , [r,

[F, £_] = -£+, [G,

(1.1.2) We denote by D/(/), / E 1/2N, the irreducible represen-
tation of s of dimension (21 + 1), and by Df(l, AQ), / € 1/2N,
A Q G C , the irreducible representation £>/(/) extended to ^ by set-
ting K υ = Ao^, Vυ € Df(l). Using Schur's lemma, any finite
dimensional representation of g^ is isomorphic to one (and only one)
representation Df(l, AQ) .

(1.1.3) We introduce:

A± = - ^ ( F ± + Δ±), A± = ̂ ( - ^ ±

Thesubspaces Λ and h of g with respective basis {Y, F , G, A±}
and {7, F , G, ̂ 4±} are subalgebras both isomorphic to osρ(l, 2),
and the (nonvanishing) brackets are given by:
(1.1.4)

[7 , A±) = ±1/2Λ±, [F, ^_] = -A+, [G, ̂ + ] = - ^ _ ,

[A+9 A+] = F , μ_ , ̂ _] = - G , μ + ? ^ - l = r ,

and similar brackets replacing A± by A± . Remaining (nonvanishing)
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brackets are given by:

(1.1.5) [A+,AJ\ = -iK, [A-,A+] = iK,

[K, A±] = jA± , [K, A±] = ~A± .

(1.1.6) We denote by 3ff{l)9 I e 1/2N, the irreducible represen-
tation of osp(l, 2) of dimension (4/ + 1). As an s = osp(l, 2)Q -
module, <®/(/) reduces into Df(l)®Df(l - 1/2) (see a complete de-
scription of 3ff{l) e.g. in [3]). As an h (or /z)-module for the adjoint
action, g reduces into 3f/{l) Θ«Sr/(l/2).

(1.1.7) Given a Lie superalgebra ω, we denote by U(ω) its en-
veloping algebra, and by Z(ω) the center of U(ω). We shall use the
following results:

(1.1.8) Z(s) is the polynomial algebra C[Q], where Q =
\{FG + GF) + Y2, and Z(g^) is the polynomial algebra C[Q, K].

(1.1.9) Z(h) (resp. Z{h)) is the polynomial algebra C[C] (resp.
C[C]), where C = Q - l / 2 μ + , ^ _ ] L (resp. C = Q - l/2[i+, i l ] L )
[16]. The Killing form of g is nondegenerate, so, by standard argu-
ments, it provides an element & e Z(g) (Casimir element) which is
given by

(1.1.10) W = Q - 1/2[A+,A-]L - l/2[i+, AJ\L - K2

= Q- (Δ+£_ - Δ-E+) - K(K - 1)

= Q - (£+Δ_ - £_Δ+) - K(K + 1).

Introducing L = [A+, AJ\L, L = [A+, A-]L, one has [16]:

(1.1.11) Q = L(L+1) = L ( Σ + 1 ) ,

C = L(L + 1/2), C = Z(Z + 1/2),

(II) Irreducible modules.

(II. 1) Let V be an irreducible ^-module. By Quillen's lemma
(e.g., [3]), Z(g) acts by scalars on V. We define VQ = {v/A±v = 0}
then

(II. 1.1) LEMMA. K 0/{0}.

Proof. One has Δ+Δ_ VcV0.Jf Δ+Δ_ = 0, then Δ+ F+Δ_ F c Vo,
so ô = {0} implies Δ+ = Δ_ = 0. We obtain a contradiction, unless
V = {0} which is usually not considered irreducible. D
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It is easy to check that Vo is a sub g^-module. Actually Vo char-
acterizes the g-module V:

(II. 1.2) PROPOSITION. (I) If V is an irreducible g-module, then

Vo is an irreducible g^ -module.

(2) The mapping V -> Vo from H(g) into Π(g^) is one-to-one and

onto.

Proof {see [9]). Let V be a nontrivial irreducible g-module. For
any graded g§ -invariant nonzero subspace W c Vo, one has V =
W + (E+W + E-W)+ E+E-W, since the written sum is g-stable. Let
W = V0ΠE+E-V0. If W φ{0}, we find V = W, since £* = El =
[E+E-] = 0, and it follows that V must be trivial. So VonE+E- Fo =
{0}.

Let W = (Vo Θ E+E-Vo) Π ( £ + F 0 + £_F 0) if PΓ ^ {0}, then we
find: E±W c W, so W is g-stable, and therefore W = V. But
then, we find V = Vo θ E+EV0 = E+Vo + E-V0, so E+E-Vo = {0},
and Vo = V, from which follows that V must be trivial.

Finally, we obtain V = Vo θ (E'+Fo + ^ - F Q ) θ E+E- VO . Given
any graded sub-g^-module W of Vo, if W ^ {0}, we have V =
W θ {E+W + E-W)@ E+E-W, so W = Vo follows, and Vo is an
irreducible g^ -module. Necessarily Vo c V^, or ^o c ^ .

We assume given an irreducible g^ -module Wo, that we consider
as a g+ = (gQ® g-\) module by setting A±v = 0 , V u ^ o We
introduce the g-module X = lnάg^gWo.

Using the Poincare-Birkhoίf-Witt theorem, we have: X = WQ@W\@

W2 , where H^ = E+W0®E_WQ, JF2 = E+E-fFo are g^ -submodules.
From (1.1.1) and the irreducibility of Wo, there exists λoeC such

that
K\WQ = A oId^ o, K\Wχ = (λ0

WQ

Using (1.1.1), we then see that Δ± map W\ into WQ9 and W2 into
Wx. Any ^-stable subspace S reduces as S = (SΠWO) φ (SnWx) ®
(S Π W2), so, if S is a g-submodule, one has S Φ X if and only if
5 c Wi®W2. It results that X has a biggest g-submodule Xm a x 7̂  X,
and one, and only one, irreducible quotient, namely X/Xmzx -

Let F = X/Xmax 9 and //: X -> F be the canonical projection. In
order to show that VQ = Wo, we consider μ " 1 ^ ) = {v\A±v e Xmax},
and reduce μ'ι{V0) = PF0 θ (//"H^o) Π ̂ ) θ ^"H^o) n W2. If t; G

ι W i , i Φ 0, then by the Poincare-Birkhoff-Witt theorem one
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has Uv c Wx e W2, so U(g)v ψ X , v e Xm aχ, and Fo = Wo, as
claimed.

Actually, this proves that the map defined in (2) is onto. Now if an
irreducible g-module F ' satisfies Fo' = Wo , then V is an irreducible
quotient of X, so V ~ V this finishes the proof of (2). D

(II. 1.3) PROPOSITION. Let V be an irreducible g-module.
(1) As an s-module, V reduces into V = V0θVi®V2, where Vo

is irreducible, V{ = E+Vo + £LF 0 is a quotient of D(l/2)®V0> and
either V2 = E+E- Vo = {0} or V2 is isomorphic to VQ .

(2) K acts on V by

= (λo+l/2)t; ,υeVι;Kυ = (λo+l)v ,υeV2.

(3) Let F_i = F3 = {0}; then E± map Vj into VM, and Δ± map
Vi into Vi-ι, for i = 0, 1, 2. Moreover E+E-Vγ = Δ+Δ^Fi = {0}.

(4) Lei QIF0 = /(/ + l)IdFo then & = {I - λo){l + λo + l ) I d κ .

Proof. If we look at the proof of (II. 1.2), we see that V reduces as
V = Vo θ V\ Θ V2, with Fo ^-irreducible, and Ki = £ + F 0 + £ _ F 0 ,
V2 = E+E-V0.

Moreover,

ΛΓk0 = AoWro, K\Vχ = (λ0 + l/2)IdK l, K\y2 = (λ0 + l)Idκ2.

The first assertion of (3) is an immediate consequence.
Since E±V2 = Δ±F0 = {0}, one has E+E-Vx = Δ+Δ^Fj = {0}.

From [X, E+E-] = 0, VX € ,s, and the irreducibility of Fo , we
deduce that F2 = E+E-Vo is either {0}, or isomorphic to Fo .

The mapping X®v -* Zv from ^iΘf'o onto Fi is an .s-morphism,
and this achieves the proof of (1).

We can write & = Q - (£+Δ_ - £_Δ+) -K-K2; V being irre-
ducible, ^ = c ldκ, we compute Wυ = (/(/ + l)—Ao — AQ)I;, ^ G Pb,
and obtain c = (/ - λo)(/ + AQ + 1). π

(II. 1.4) REMARK. (1) (II. 1.2) shows that the classification of irre-
ducible ^-modules is equivalent to the classification of irreducible g^ -
modules, which is not known explicitly. Nevertheless, (II. 1.2) leads
to a classification of series of irreducible ^-modules, as will be shown
in the following subsection, and we shall show that these series are
complete.

(2) (II. 1.3) shows that the s -content of an irreducible ^-module
is related to the reduction of tensor products Df (1/2) ® VQ , VQ an
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irreducible s-module. Indecomposable Df( 1/2)0*6 can appear, we
shall see examples in the next subsection.

(3) There is an analogue of (II. 1.2) and (II. 1.3) when replacing Δ±
b y £ ± , F o by V^ = {v/E±v = 0}, V[ = Δ+F 0 '+Δ_F 0 ' , F ^ Δ + Δ . F J .

We note that for an irreducible V, one has V\ φ {0} unless V is
trivial. Now, V2 = {0} does happen for nontrivial V, and examples
will be given in next subsection. For the time being, we specify the
parameter values for which it is the case:

(II. 1.5) PROPOSITION. We keep the assumptions and notations of
(Π.1.3) and (11.1.4.(3)). Then V2 = {0} (resp. V{ = {0}) if and only
if & = 0. In this case, and if V is not trivial, one has VQ = V[,
V\ = VQ , so V splits into a direct sum of two irreducible g^-modules.
V is an irreducible h (resp. h)-modulef with Casimίr values C — C —
1(1 + 1/2),or C = C = (l+ l/2)(/ + 1).

Proof. Assuming V2 = {0}, we take v Φ 0, v e VQ , and compute
Δ+Δ_CE+J?_v) = 0, using (1.1.1).

We obtain [Q-K(K+l)]v = (/-Λo)(/ + Ao+ l)υ = 0,so Wv =0.
On the other hand, if &v = 0 since V2 c VQ , which is ^-irreduci-

ble, and since Δ+Δ_p2 = {0}, one has V2 = {0}, or F2 = FJ and
F2

; = {0}. In the second case V = V2 θ V[, and V[ c ^ then
Fo = {0} and a contradiction, so V2 = {0}. Then, FJ ίlK0 = {0} if
F is not trivial. But K is a scalar on FJ, so by (II. 1.3), Fo c Vx,
F/ c Fo and F2

; = {0}. From (11.1.4.(3)), F = Ko

; θ F/, so FJ = Fi
is g-ζ -irreducible.

As an s-module, F reduces into the irreducible submodules Vo and
V\. If W is a nontrivial sub A-module, then F/PF is an Λ-module
which is ^-irreducible, and this cannot happen unless VjW is trivial
[9]. Then either VQ or V\ is a trivial s-module. If Vo is trivial, then
by(Π.1.3), V\ is not isomorphic to F 0 ,so W = (WnV0)®(WnVι).
Vo and Fi being ^--irreducible, one has W = Fi, so fF is an Λ-
module which is s-irreducible; therefore V\ is trivial and there is
a contradiction. Similar arguments using (11.1.4.(3)) give the same
result if V\ is trivial.

Finally C can be computed on VQ , and one finds, by (1.1.9), (1.1.1),
C = Q- l/4(Δ+£_ - A-E+)\vo = Q - 1/2K\VQ, SO the announced

values, and the same computation provides the same value for C. π

(II. 1.6) PROPOSITION. Let VQ be an irreducible g+-module, with
K = λoldVo, Δ± = 0, β = /(/ + l)IdF o, and let X = I n d ^ u F 0 . Then
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g? = (/ - Ao)(/ + Ao + l)Idχ .If&φO, then X is irreducible, and, as
s-modules, Xo~ Vo, X\ ^Df{\/2)® Vo, Xx ^ Vo (see (II. 1.3)/or the
notations).

Proof. From the Poincare-Birkhoίf-Witt theorem, X = Vo® V\ Θ V2,
where Fί = 2?+ FoΘis_VQ, V2 = E+E- VQ . From (1.1.1), AT is diagonal
on this reduction, with respective eigenvalues λo, λo + 1/2, AQ + 1
moreover Fί ~ Df (1/2) ® Ĵ o, and F2 ~ f̂  as ^-modules. Since
X = £/(£)*o, we need only to compute ^ on ^o, but, using (1.1.10),
&\VQ = Q- K - K2 = (I - λo)(l + λo+ l)IdVo.

Next, from the proof of (II. 1.2), X has a maximal g-submodule
W, which is contained in V\ Θ V2 moreover, X/W is irreducible and
(jr/JFJo = Ko. W being i^-stable, one has W = (Wn Vx)®(Wn V2).
Now, if W n V2 = F 2 , then (X/W)2 = {°}' b u t t h e n ^ = 0, a
contradiction with our assumption. Therefore W c Vγ, but since Δ±
map V\ into P^ ? and £± map Fi into V2, one has Δ ± | ^ = E±\w =
0, and W is a trivial g-module, if W φ {0}. Then &\w = 0, so a
contradiction. Therefore W = {0}. D

(II. 1.7) COROLLARY. Let V bean irreducible g-module, such that
<& φ 0, Vo is an irreducible g+-module and V ~ Ind^ ^g VQ .

Proof. From the proof of (II. 1.2), V is a quotient of Ind^ t#^b,
then apply (II. 1.6). + D

(II. 1.6) and (II. 1.7) suggest the introduction of a partition of Π(g):

(II. 1.8) DEFINITION. An irreducible g-module V is regular (resp.
degenerate) if ^ φ 0 (resp. ? = 0 ) o n F .

We denote by Π r(g) (resp. Ud(g)) the set of (classes of) irreducible
regular (resp. degenerate) ^-modules.

(II.2) Let ω be a superalgebra, and k a subalgebra of ω^, as-
sumed reductive in ω. An ω-module V is a Harish-Chandra module
if F is a semi-simple ^-module, with finite dimensional isotypical
components. Here, we shall consider the cases: ω = s, k = C 7
ω = £Q, /: = C7ΘCAΓ; ω = g, k = CΓeCAΓ. In any of these cases,
A: is abelian, so the condition for V to be a Harish-Chandra module
is that V = φ λ e r Vλ, where Vλ = {v e V\X t; = λ{X)v , VX G A:},
and dim Vλ < oo, Vλek* .

Obviously, we can restrict (II. 1.2) to the case of Harish-Chandra
modules, and this leads to a classification of irreducible Harish-
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Chandra g-modules, generalizing the classification of unitary irre-
ducible g-modules given in [6], [7],

(Π.2.1) PROPOSITION. Let V be an irreducible Harish-Chandra g-
module\ then Vo is an irreducible Harish-Chandra g^ -module, and
characterizes V up to equivalence. The mapping V —• VQ is one-to-
one and onto.

Now, we need some notations: We introduce the following H.C.
^-modules: D(l, m 0 ) , (/) 1, (-/) T, for complex / and m 0 , Df(l),
/ G j N . D(l, mo) is irreducible when (mo - /) and (mo + /) ψ Z ,
(/) I and (-/) t are irreducible when / φ 1/2N, £)/(/) is irreducible
and dim Df(l) = 21 + 1 (see e.g. [3]).

Defining Kv — λ$v , Vi>, we extend these s-modules to H.C. g^ -
modules that we denote by D(l, m 0 , λ0), (/, λ0) | , (-/, Ao) T and

Df(I,λo).
Using (Π.2.1) and e.g. [3], we obtain a classification of irreducible

H.C. g-modules:

(II.2.2) PROPOSITION. Let V be an irreducible H.C. g-modulef

then V is one {and only one) of the modules of the following list:
(1) 9f(l9 m o ,λo), / = -1/2 + peiθ, 0 < θ < π, p e R+, 0 <

Re mo < 1, (mo — /) and (mo + I) $ Z, VQ — D(l, mo, λo),
(2) [ / , A o ] | , lφh/2, A e N , Vo = (l,λo)l,
(3) [-/ ,AolT, lφh/2y heN, F 0 = ( - / , λ 0 ) ΐ ,

I, le 1/2N, F o = !>/(/ , Ac
= /(/ + 1), and ^ = (/ —.

Proof. It results from the well-known classification of irreducible
H.C. 5-modules. D

(Π.2.2) gives a classification, and we now make s-reduction precise.
We begin by degenerate Harish-Chandra modules:

(II.2.3) PROPOSITION. Let V be an irreducible degenerate H.C.
module. Parameters I and mo are specified as in (Π.2.2). Then:

(l)IfV = 3>(l,mo,l),(resp. &{l, m0, -I- 1), lφ-l/2), Vo =
D(l, mo) and Vx =/)(/-1/2, m o +l/2) (resp. D(l+l/2, m o + l / 2 ) ) .

(2)IfV = [l,l]i (resp. [ / , - / - l ] | , / # - l / 2 ) , Vo = (I) [ and
Vι = (1-1/2)1 (resp. ( / + 1 / 2 ) | ) .
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(3)J/K = [-/,-/]t (resp. [ - / , / - l ] | , 7^-1/2), Vo = (-
and K! = (1/2-/) T {resp. (-1/2-/) T).

(4) 7/F = % ( / , / ) , lφθf(resp % ( / , - / - l ) ) , Ko = !)/(/)
K! = Df(l - 1/2) (rap. Df(l + 1/2)).

(5) V = 3ff{Q, 0) is the trivial representation.

Proof. V is an irreducible h = osp(l, 2)-H.C.-module, and the
^-reduction of such modules is known (e.g. [3]). D

We now study ^-content of regular irreducible H.C. ^-modules.
Using (II. 1.6), the problem is reduced to the s-content of Df(1/2) ®
VQ , when V$ is an irreducible H.C. ^-module. We need some notation:

There exists, up to equivalence, one and only one H.C. s-module
which is a nontrivial extension of (-1) j (resp. (1) T) by Df(0) (see
e.g. [10]). We denote this indecomposable module by 2s (0) 1 (resp.
2s(0) T). Moreover, there exists, up to equivalence, one and only one
H.C. s-module which is a nontrivial extension of D(0y mo) by itself
(see e.g. [10]).We denote this indecomposable module by ED(0, mo).
Note that E(0) j and E(0) | are quasi-simple (actually Q = 0),
whereas ED(0, m0) is not (one has Q2 = 0, but Q Φ 0).

(II.2.4) LEMMA. Let V§ be an irreducible H.C. s-module, with
Q = 1(1+1). Then
* first case: if I Φ -1/2, and

• VocχD(l9mo), then Df(l/2) ® Vo ^ D(l + 1/2, m 0 + 1/2) Θ

^ ( / ) l , then D/(l/2) ® Vo ̂  (I + 1/2) | θ ( / - 1/2)1.
^(-l)hthen

Df (1/2) β Ko ~ (-(/ + 1/2)) T θ(-(/ - 1/2)) ΐ .

Z>/(l/2) β Fo - /)/(/ + 1/2) θ /)/(/ - 1/2).

* second case: if I = - 1 / 2 , ί ^ n 2 ) ^ ( 1 / 2 ) ® ^ is always indecompos-
able. One has

. ifV0 = Z)(-l/2, wo), ίteπ 2)/(l/2) ® Fo - ^2)(0, m 0 ) .
• if Vo - (-1/2) I (r«p. (1/2) T) ίA^π 2)/(l/2) ® Fo w a non-

trivial extension of E(0) | (rωp. £ ( 0 ) T) δy ( - 1 ) 1 (resp. (1)T)
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Proof. Indication of proof: compute Q and try to diagonalize: this
reduces to diagonalization of a series of 2x2 matrices, which turns out
to be possible if / Φ -1 /2. If / = — 1 /2, a long, but straightforward,
computation using adapted basis, gives the results. D

(Π.2.5) REMARK. (1) Using (II. 1.3), (II.2.2), (II.2.3) and (II.2.4),
we see that, in "most" cases, irreducible H.C. g-modules reduce as
a direct sum of two, three or four irreducible H.C. s-modules. Nev-
ertheless, from the second case of (Π.2.4), there exists series of ir-
reducible H.C. ^-modules which are not semi-simple ^-modules, but
contain an indecomposable nonirreducible H.C. s-modules. Note that
in cases Fo = (-1/2) | or Fo = (1/2) | , one has length5(F) = 5, in
all other cases, lengthy(F) = 2 , 3 or 4.

(2) The question of h (or Λ)-content of an irreducible H.C. g-
module V is natural. Actually, it can be given a complete answer:
as seen in (II. 1.5) for a degenerate F , V is h (or h)-irreducible; for
a regular F , there are two cases: assuming that Q\v0 = /(/ + l)Idκ0,
then if / = -1/2, F is an indecomposable nonirreducible h or h
H.C.-module; if / Φ -1/2, F is a direct sum of two irreducible h
or h H.C.-modules; note that the underlying subspaces of these h, or
h reductions need not coincide; actually, there is coincidence only if
λ0 = —1/2. The proof of this last claim needs a complete computation
of explicit action of generators of g on a suitable basis of V and will
not be given here.

(Ill) Complete sets of representations.

(III. 1) PROPOSITION. Let L be a subset of 1/2N, such that (/ +
1) G L if I e L, and let Λ be an infinite subset ofC; We assume that
(l-λo)(l + λo+l)φθ, V(/,Λ0)eLxΛ. Then {%(/, λ0), (/, λ0) e
L x Λ } is a complete set of representations of g.

COROLLARY 1. Tl f(g) is a complete set of representations of g.

COROLLARY 2. Tl f(g) is a complete set of representations of g.

Proof. To prove (III. 1), we have to introduce some notation:
(III.2) Given a space F on which s acts by Df(l), a standard basis

of F is a basis {φ_ι, p_/+i, . . . , ψι) such that the action is given by:
Yψn = nψn , Fφn = -(n-l)φn+x, Gφn = {n + l)φn-ι, where, once

and for all, undefined vectors have to be interpreted as 0.
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Now, we introduce a suitable basis of 9ff{l, λ0), when g7 ^ 0, and
/?έθ:

We start with a standard basis { p π , n = - / , - / + 1,...,/} of Vo,

and introduce:

v Λ = (/! + / + l/2)E+φn_ι/2 + (n-l- l/2)E-φn+ι/2,

/i = / - l / 2 , - / + l / 2 , . . . , / + l / 2 ,

and

ω n = E+φn_ι/2 + E-φn+xl2, n =-I+1/2,-I+ 3/2, ... , I-1/2

(where, once more, undefined ^-factors have to be interpreted as 0).
Moreover, we introduce zrt = E+E-ψn , n = —/, — / + 1 , . . . , / . Then
it is an easy computation to check that the reduction V\ ~ Df{l+1 /2)θ
Z)y(/ — 1/2) of (Π.2.4), is actually realized on the subspaces Fj+ and
Fj" generated respectively by {vn} and {con}, and that {̂ w} and
{ωn} are standard basis; moreover {zn} is a standard basis of V2.
Complete computation of the action of g on these basis gives:

(III 2 1) E ± ψ n = 2fTΪ^Vn±ι/2 ~<<nT l>>C°n±l^?

E±vn = ± ( Λ τ(l+ l / 2 ) ) z π ± 1 / 2 , ^ ± ω r t = ± z π ± 1 / 2 ,

(ΠI.2.2)

(III.3) Keeping the notation of (III.2), we prove (III. 1):
We first note that, since g^ is a central extension of s by CUT,

any set of representations of #Q of type {£>/(/, Ao), / € - ^ infinite
C 1/2N, Ao € Λ infinite} is a complete set of representations of #Q .

Given u e C/(^), we write

«= Σ uaβaΎE^EίάiΔί,

a,β'=0,l

with uaβa'β> G ^
We assume that u vanishes in any irreducible finite dimensional

representation specified in (III. 1).
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We start with 3ff(l, λo), with / Φ 0, and computing u <pn = 0,
we obtain:

= 0 (component on ^ ) ,

Wiooo^/i+i/2 - "0100^/1-1/2 = 0 (component on D{1 + 1/2)),

{n - l)uiooocon+l/2 - (n + l)uomωn_ι/2 = 0

(component on D{1 - 1/2)).

From the first equation, and our preliminary remark, we deduce that
"noo — 0 We then note that changing / into (/ + 1), and writing
the third equation, which will be the component on D(l + 1/2), we
obtain, identifying v[Λ ~ F / / + 1 ) ' " :

(Π - I - 1)MlOOO^if+l/2 - (Λ + / + 1 ) M 0 1 0 0 ^ / I - 1 / 2 = 0 .

The system satisfied by Wiooo^«+i/2 a n d ̂ 0100^-1/2 ? has determinant
- 2 ( / + l ) , has leads to Wiooo^+1/2 = Woioô /1-1/2 = ° and then w1Ooo =
^oioo = 0.

Similar arguments, using u zn = 0, will lead to WQOH = wooio =

^0001 = 0

We next compute u v = 0, v e V{, and note that this will split
into a component on 2̂ > and a component on Fί. The first one gives:

(uul0E+E-A+ + uno\E+E-A-)v = 0, taking v =vn, v = ωn , we
deduce:

(n - (/ + 1/2))MHIO^Λ+I/2 - (n + / + l/2)ι/noi^_ 1 / 2 - 0,
u\\l0zn+\/2 — u\\§\zn-\β = 0,

from which we deduce that Mmo = w noi = 0.
Now, the second component, taking v = vn, v = ωn , will lead to:

WlOlO^+l - ^1001^ - UouoVn + U0mVn_ι = 0,

(n-l+ l/2)umoωn+ϊ -{n-l- l / 2 ) w 1 0 0 i ω A 2

- (π + / + l/2)MOiioωΛ + (n + / - l/2)MOioiωπ-i = 0,

{n-l- 1/2)MIOIOVII+I - (w + / + l/2)w 1 0 0 i^

-{n-l- l/2)wOiio^ + (n + / + l/2)uOioi^-i = 0,

{n-l- l/2)(n - I + l/2)M 1 0i 0ωπ + 1

-(/i + / + l/2)(n - / - l/2)M100iωΛ

-{n-l- \/2){n + I + l/2)u0n0ωn

+ / - l/2)MOioiωπ-i = 0.
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Once more, we change / into (/ + 1), and deduce the following
system:

UlOlθVn+1 ~ UiooiVn ~ WOllOty, + U0l0\Vn-\ = 0 ,

(n - / - l/2)umovn+ι - (/i - / - 3/2)«iooiVΛ - (n +1 + 3/2)wOπo^

+ (/! + /+ l/2)ttOioi^-i = 0,
(n - / - l/2)ttioiovπ+i - (/i + / + l/2)uiooivπ - (n - / -

+ (n + /+l/2)wOioi^-i = 0 ,
(yι - / - 3/2)(/i - / - l/2)M10i0

- (n - / - 3/2)(n

+ (Λ + / + 3/2)(/ι + / + l/2)wOioi^-i = 0.

The determinant of this system is -2(/ + 1)(2/ + 1)2(2/ + 3), so we
conclude that:

and then

= "0101 = 0 .

Now, we get u = UnnE+E-A+A-, and we compute uzn = 0, to
obtain

(λo-/)(λo + / + l)unnzn = 0? so unn =u = 0. π

(III.4) REMARK. The proof of (III. 1) can easily be adapted to con-
struct other complete sets of representations of g. For instance, the
irreducible H.C.-modules &{l, mo,λo) of (II.2.2) provide a com-
plete set, and so do the irreducible H.C.-modules of type [/, AQ] | , or
[-19 Λ-o] ΐ (IΠ-5) (III. 1) reveals to be useful to prove structural identi-
ties in U(g): actually, one only has to verify that the wanted identity
is valid in any finite dimensional irreducible regular representation,
and it will hold in U(g). We give an example:

Let us recall the "structural" identity 4Q2-(8C-1)(?+2C(2C-1) =
0, which holds in U(h) [16] (roughly speaking, this identity contains
the U(s) reduction of U(h)). We now establish the corresponding
identity for U(g) it involves the commuting elements Q, K and W.

(IΠ.5.1) PROPOSITION.

[& - Q + K(K - l)][g? - Q + K(K + 1)]
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Proof. Using formula given in (III.2), and (II. 1.3), the identity holds

in any π G H.{(g), so we conclude using (III.l). D

In physics terminology, (IΠ.5.1) expresses a relation between the
isospin numbers which are the possible values of Q, and the baryonic
numbers, which are the possible values of K, in an irreducible finite
dimensional representation (a multiplet).

(IV) Center of U(g).

(IV. 1) Given a Lie algebra, or a Lie superalgebra ω, we recall that
Z(ω) denotes the center of U(ω). Letting V be an ω-module, we
denote by Vω the submodule of ω-invariant vectors; for instance,
when V = U(ω) with the adjoint action, one has U(ω)ω = Z(ω).

When ω is a semi-simple Lie algebra, then Z(ω) is a polynomial
algebra C[Qi, . . . , Qr], where r = rankω. For simple Lie superalge-
bras, the situation is not so simple, as will be shown by the description
of Z(g), g = sl(2, 1), that we shall now give.

(IV.2) We introduce the elements U\ = 1, U2 = E+A- - E-A+,
u3 = F£_Δ_ - GE+A+ - Y(E-A+ + £+Δ_), u4 = E+E-A+A- , of
U(g). It is easily seen that wz e U(g)go, Vz.

(IV.2.1) LEMMA. U(g)go is an abelian algebra, and a free

C[<2, K]-module with basis {u\ ,U2,u^, u^}.

Proof. Let W be the subspace of U(g) with basis {E
a, β, a1, β' = 0, 1}. As a g^ -module (for the adjoint action), U(g)
— ^(^o) ® ̂  ^ ^s known (e.g. [1]) that, as an 5 -module, {/($) ~
C[Q] (g>i/, with Λ̂  = Σ w e N 7 ^ ' a n d ^ - β / ( w ) ; therefore, as a
#Q -module, C/(^) ~ C[β, ^ ] ® H, and /7M ~ Df(n, 0). Moreover,
as a #Q -module,

, -l/2))®Έxt(Df(l/2, 1/2))

where the reduction is written according to increasing degree from 0
to 4, the 0-degree Z)/(0, 0) being C, the 2-degree Df(0, 0) being
Cu2 9 the 4-degree Df(0, 0) being CU4. In the reduction of the g^ -
module H ®W", there will appear one more invariant, coming from
H\ ® Z)j(l, 0), and only one, which is exactly #3, so (H ® W)go =
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C θ Cu2 θ Cw3 θ Cw4. Following the notations of (III.2), let V =
Vo θ F+ θ V~ θ V2 be a ^-module of type % ( / , Λo), with g7 ^ 0
let u, v e U(g)go, then w and i; act by scalars on ^ > V\ > V{~ and
F 2 , so [u, i>]L = 0 on V, and by (III.l), [w, v]L = 0 in £/(g). α

(IV.3) In order to give an explicit basis of Z(g), we have to in-
troduce a second Casimir operator by

3 =

(IV.3.1) LEMMA. 3eZ(g).

Proof. This can be seen by direct computation, or, preferably, as
follows:

Using (1.1.1) and (IV.2), one has:

(IV.3.2) Δ+Δ_£+£_ = Q- K(K + 1) - Ku2 + u3 + £+£_Δ+Δ_ .

Therefore, if V is any irreducible ^-module, with Q\γ =
/(/ + 1) and K\VQ = λ0, one has A+A-E+E-\Vi = Δ+Δ_£+E_|κ2 =
0 and A+A-E+E-\VQ = (I - λo)(l + λ0 + 1). By similar computa-
tions, £+£r_Δ+Δ_|Fo°= £+£_Δ+Δ_|κ1 = 0, and, since V2 = E+E-Vo,
^ + £_Δ + Δ_|κ 2 = (/ - λo)(l + λ0 + 1)! It follows that 9J\VQ = 2ί\Vχ =
2ί\Vi = (2λ0 + 1)(/ - λo)(l + λ0 + 1). Therefore, for any °u e U(g),
one has \2), u] = 0, in any irreducible ^-module, so, using (III.l),

π

(IV.3.3) REMARK. (1) We note that the value of 3 in an ir-
reducible ^-module V such that Q|κ0 = /(/ + 1), K\γ = λo, is
(2λo+ l)(/-λo)(/+A o +1). Actually, if °& = 0 on V, t h e n ° ^ = 0 on
V. Special cases corresponding to 2ί = 0, coming from λo = -1/2,
are discussed in (11.2.5.(2)).

(2) From (1.1.10) and (IV.3.2), one has:

(IV.3.4) 3 = (2K + l ) (β - K(K + 1)) - 3Ku2 + u3 .

(IV.4) Let A be an associative algebra, and Z an element of the
center of A. Assuming that Z is not a zero-divisor in A, we can
define the fraction algebra ^ z > generated by A and Z " 1 (see e.g. [4,
(3.6)]). Using (III.l) it is clear that W is not a zero-divisor in U,
so can we introduce U = U(g)&. Let Z(g) be the center of U;
obviously Z(g) = Z{g)<g .

(IV.4.1) PROPOSITION. Let Λ = ̂ " 1 . Then

(1) Z(*) = C[Λ,
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(2) Z(g) is the subalgebra of C[Λ,
Λ > 0 , /? > 0}.

, with basis {1,

Proo/. Given z e Z(g), using (IV.2.1), we write z = P0(z) +
P2(z)u2 + Pi(z)u3 + P4(^)M4, Pi e C[β, # ] .

We consider the mapping Po: Z(g) —> C[β, AT]. It is clear that Po

is linear. Moreover, if z, z Έ Z ( g ) ,

(P0(z) + P2(z)u2 + P3(z)u3 + P4(z)u4)

Therefore, in any ^-module V of type ^ / ( / , λo), with ^ ^ 0, one
has: ^ ^ | F 0 = ^o(zz/)lκo = ^b(z)^b(z/)lκ0, from which we deduce that
Po(zz') = PQ(z)P0(z') (note that U2\VQ = w3|κ0 - U4\VQ = 0) .

If we assume that -Po(z) = 0, then, since uz — zu, Vw e U(g),
and F = U(g)Vo, using (III.l), we deduce that z = 0.

We have an injective morphism PQ from Z(g) into C[β, ϋΓ], such
that Po(^) — Q- K(K + 1), so we can extend Po t 0 a n injective
morphism Po from Z{g) = Z(g)& into C[β? K]Q-K(K+\) . Then
Po(^"Λz) = (β - * ( * + l))^Po(z), so P0(Λ) = (2A- + 1), and K =
P0(l/2(Λ- 1)) moreover P o ( ^ + 1/4(Λ2 - 1)) = Po(^) + i^(^+ 1) =
<2, so PQ is onto, and (1) is proved.

To prove (2), we first compute the action of u2, 1/3 and u4, in
a g-module V of type Df(l, λ0), with g7 ^ 0, and / ^ 0 . We
follow the notations of (III.2), and use the relations (1.1.10): W = Q -
K(K+\)-u2,(lN32): A+A-E+E--E+E.A+A-= Q-K(K+1)-

Ku2 4- W3 , and the proof of (IV.3.1), to obtain:

Vo

K
K
v2

u2

0

l-λo

-(/ + Ao+1)

-2(Ao+l)

0

-(/ + 3/2)(/-A0)

-(/-l/2)(/ + λo+l)
-2/(/+l)

u4

0
0

0

(/-Ao)(/+Ao + 1)

Now, let us assume that An eZ(g), n > 0. Then, since Po(An) =
(2A: + 1)", one has An = (2λ0 + l)w in F . We write Λ" - Po +
P2u2 + P3W3 + P4W4, P/ G C[β, K], and compute Λπ |κ+ and AnIr-
respectively for

F = % ( / - 1/2, λQ - 1/2) and V = % ( / + 1/2, λ0 - 1/2).
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W e obta in a sys tem between p 2 = Pi(l(l + l ) > ^ o ) a n d P3 —

I - λo)p2 - (/ - λQ)(l + l)p 3 = 2«[Λg - (λ0 + 1/2)"],

/ + λ0 + l)p2 -1(1 + λo+l)Pi = 2n[λn

0 - (λ0 + l/2)»].

It follows that

_Ao2»[Ag-(Ao+l/2)»] 2»[Ag-(Ao+l/2)»]
Λ " (/-Λ0)(/ + λ 0 + l ) ' a G Pi~ (I-λo)(l + λ0 + I) '

and this is a contradiction, since p2 and P3 are not polynomials of /
and λ0, as they should be. So we conclude that Λ" $ Z(g), if n > 0.
Now, we prove that KnΨ e Z(#), V/i > 0. We write Λ"^ = Po +
P2U2+P3U3+P4U4, P(eC[Q, K] and compute Λ"^ on F+, Ff and
F2, respectively in 3ff{l - 1/2, λ0 - 1/2), % ( / + 1/2, Λo - 1/2) and
% ( / , λ0 - 1). Denoting p2 = P2(l(l + 1), Λo), P3 = W ( / + 1),
and P4 = P4(l(l + 1), λo), we obtain:

/>2 - (/+ 1)Λ = (/ + Λo)(2Λo)» - (l + λo+l)(2λo+l)n,

Pi + lP3 = (/ - λo)(2Λo + 1)" - (/ - λ0 + l)(2Λo)B

from which we deduce p2 = (λo - l)(2Λo)n - Λo(2Λo + 1 ) " , Pz =
(2Λ0 + 1)" - (2Λo)Λ, and p4 = (2λ0 - l)n - 2(2Λ0)" + (2Λ0 + 1)". Let
P2 = 2"{(K -\)Kn- K(K + 1/2)"}, i>3 = 2"{(K + 1/2)" - K " } , and
P4 = 2"{(K - 1/2)" - 2K" + (K+ 1/2)"}, we obtain that A"W =
Po + P2u2 + P 3 « 3 + P4U4, in any % ( / , Λo), with g7 φ 0, and / > 1 / 2 ,
and therefore in ϊ/(g) by (III. 1). This proves (2). D

(IV.5) Let us set Ψn = AnW, n > 1 then, from (IV.4.1), Z(g) is
a free C[^]-module with basis {l,%, n>l} and one has:

This last relation has several consequences: First, given an irre-
ducible g-module π such that π(<2)|κ0 = /(/ + 1) and π(AΓ)|κ0 = λo,
then, using (IV.3.3), one has:

On the other hand, given complex numbers c and k, there exists a
character ξ^ of Z(g) such that ζckC^) = c and ^ A : ^ ) = kc; ξ is
defined by ξckC^n) = knc. Note that, when c — 0, then £Oit is th e

trivial character ε for any k (definedby δ ( ^ ) = ε ( ^ ) = 0, Vn > 1).
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From (IV.4.1), {ζck, c, Λ: e C} exhausts the characters of Z(g).
Obviously, any character ξ of Z(g) is the infinitesimal character of
an irreducible g-module (see e.g. §11 and (IV.3)). Secondly, one has:

(IV.5.1) PROPOSITION. Z(g) is not a noetherian algebra.

COROLLARY. Z(g) is not a finitely generated algebra.

Proof. Let / = Z(g)Φ, and A = Z(g)jl\ given z e Z{g), let us
denote by z its class in A . Then {1, ^ , n > 1} is a basis of the
vector space A, and one has

%.§>p = 0y Vn,p> 1 .

Itfollows that any subspace contained in the subspace general by
{Wn, n > 1}, is an ideal, so A is not noetherian. A fortiori (since
A is a quotient of Z(g)), the same holds for Z(g). •

(V) Degenerate irreducible representations and corresponding primi-
tive quotients. In this section, we use representation notation (and not
module notation) to avoid confusions.

(V.I) We recall that an irreducible representation π of g in V is
degenerate (resp. regular) if π(&) = 0 (resp. π ( ^ ) Φ 0) an ideal / of
U{g) is a degenerate primitive (resp. regular primitive) if / = Kerπ,
for some irreducible degenerate (resp. regular) π . In the degenerate
case, with the notations of (IV.5), I Π Z(g) = Kerε, so % = / ,
Vn > 1. Quotients U(g)/I9 where / is degenerate (resp. regular)
primitive will be called degenerate (resp. regular) primitive quotients
of U(g).

(V.2) We develop structural results about U(h), which will be
needed later. We introduce L = [A+ , AJ\L and note that

(V.2.1) Q = L(L+1)9 C = L ( L + l / 2 ) , [X9L] = 09

\/Xes [16].

Using [9, (1.7.1) and (1.7.2)], we obtain:

(V.2.2) A±(L + 1/4) = -(L + \/A)A± .

Given an irreducible representation π of h , one has n(C) = eld, so
π(L) 2 + l/2π(L) — c = 0; therefore π(L) can be diagonalized, with
eigenvalues l\ and /2 = —1/2 — l\. Comparing with the reduction
V —V-@V- into two irreducible representations of s [16], and using
(V.2.1), we deduce that V^ and Vj are eigenspaces of π(L).
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We say that a complex number / is admissible, if / = -1/4 + reiθ,
with r > 0 and 0 < θ < π. Up to isomorphism, we can assume that
π(L)\V- = lldy-y with / admissible, and then π{L)\v- = (-l/2-/)IdκΓ

We denote by PQ and Pj the projections onto V§ and Vj. If
/ Φ - 1 /4, it is easily seen that

(V.2.3) P-ΰ=mί^R, P,= -M2±±.

In the singular case / = -1/4 (which is the case e.g. of the metaplectic
representation), one has

(V.2.4) LEMMA. // / = -1/4, M = Kerπ = U(h)(L + 1/4) =
(Z,+ 1/4)C/(Λ) and t/(A)/Kerπ is the Weyl algebra W (for definition
of W, see (0.7)).

From (V.2.1), (L + 1/4) e Kerπ, and from (V.2.2), us-
ing the fact that U(h) is generated by A+ and A- , we deduce that
U(h)(L+ 1/4) c Kerπ. Now [π(Λ+), π ( ^ ) ] L = -1/4, so π(U(h))
is a quotient of the Weyl algebra W, which is known to be quasi-
simple, therefore C/(Λ)/Kerπ is the Weyl algebra. It is proved in
[16], that Kerπ = (Q - 3C)U(h) + (C + l/4)U(h), but Q - 3C =
- 2 L ( L + l / 4 ) and C + 1 / 1 6 = ( L + 1 / 4 ) 2 . D

(V.3) The Weyl algebra W is a domain, so, in the case / = -1/4,
there cannot exist u and υ in U(h) such that π(w) = PQ and π(w) =
Pj. Therefore, we have to introduce the algebra W^,/^ generated by
π(U(h))9 PQ and P j , or, equivalently, the algebra WP generated by
π{U(h)) and the parity operator P, defined by Pv = ( - 1 ) ^ , υ e V\.
It is not obvious that W'p does not depend on the choice of π , so we
prove it:

(V.3.1) PROPOSITION. Let π be an irreducible representation of the
Weyl algebra W in a space V, and let P be the parity operator of V.
Let Wp be the subalgebra of L(V) generated by π{W) and P; then
WP = π(W) θ Pπ(JV).

COROLLARY. Let n and π' be Wo irreducible representations of
W then the corresponding WP and WP>, are isomorphic.

Proof. From P2 = 1, it is clear that WP = π(W) + Pπ(W). Let us
set V = VQ® VJ, U = WQ + wτ, if u e L(V), with

4o=\Ug> u-} and MT=L°_ Uθ]
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Given a e W, we set

ά = π(a)=

If we assume that ά^ — 0, then (α^p)2 = 0, and, recalling that W is

a quasi-simple domain, we deduce a^ = 0 similarly αyy = 0 implies

0Q = 0. If we assume that 5JQ = 0, then άί = 0, so ^ = 0 similarly

— = 0 implies aj = 0.

Now let α + Pέ = 0, with a, 6 E W. Then

= 0

It follows that (a+b)-^ = 0, so (tf+&)yy = άjj + ^JJ = 0, and then

άjϊ = byj- — 0. Therfore, a^ = Z?Q = 0. Similarly, (α+fe)^- = 0

implies (Λ+&)JQ = 0, and then άj^ = b^ = 0 therefore αy = bj = 0.

Finally a = b = 0.
For the corollary, let P' be the parity of V and π'(α) = a, aeW.

We define ^: WP -* WP> by 0(3 + Pb) = a + P ;5 0 is clearly an
isomorphism. D

From (V.3.1) and its corollary, using the quasi-simplicity of W, we
can give the following intrinsic definition of Wp : Wp is the algebra
generated by p, q and P with relations:

(V.3.2) [p, q]L = 1, pP = -Pp, qP = -/></ and P 2 = 1.

This algebra has a realization as matrix with coefficient in PF, which
is as follows: let σ be the automorphism of W defined by aσ =
(_l)degaα? Λ e ^ d e g α ? then, in WP, one has Pα = aσP, Va e W.
Therefore

is realized by

(V.3.3) PROPOSITION. WP is a quasi-simple primitive algebra.

Proof. Wp is primitive from its initial definition. Let / be a two-
sided ideal in WP assuming / φ WP, we can fix a maximal left ideal
J' such that J c Jr. Let π be the irreducible representation of WP
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on V = Wp/J'. Writing V = F5Θ Vτ, from deg(P) = 0 and P2 = 1,
we deduce that π(P) is diagonal in V^ and Vj, with eigenvalues ± 1 .
Denote by VQ ±ι and Vj ±ι the corresponding eigenspaces. Assum-
ing, for instance, that V^χ Φ {0}, and using (V.3.2), we find that
vo l ® V\ -l *s s t a ^ l e ' a n ( * therefore V = V§ χ Θ Vj _χ. This proves
that π(P) is exactly the parity operator of V. Up to an isomorphism
of V exchanging the grading, the same holds if V^ _χ ψ {0}. If V9 is
π(M^)-stable, from V = VIΘ V±, we deduce that V1 is π(ff»-stable,
so π\w is irreducible. Let u = a + Pb e Kerπ, α , ί G ^ , using
(V.3.1), we see that π(a) = π(6) = 0, and since W is quasi-simple,
it results that a = b = 0. So Kerπ = {0}, but / c Kerπ implies
/ = {0}. D

(V.4) Given any complex / φ -1/4, let c = /(/ + 1/2), // =
(C - c)C/(A) and JS7 = t/(A)//7; if / = -1/4, we set £ _ 1 / 4 = WP.
For any value of /, we have a morphism from U(h) into 5/ (recall
that W = U{h)/{L + 1/4)C/(Λ)) given w e C/(Λ) we denote by u its
image in B\. We now define an element of P\ of B\ in the following
way: if / = -1/4, we set P_i/4 = P if / ^ -1/4, we set

As a consequence of (V.2.1) and (V.2.2), one has Pf = 1,

[X,P/] = 0, V X e s and ~A±Pt =-P{A±.

We now define elements of 5/ by

_ (V.4.2)^ 7/ = 7 , F/ = F , G/ = G, μ / ± ) = A±, (ΛΓ7) = P/Z and

Aι± = /P/^[±.

(V.4.3) PROPOSITION. The mapping X e g -> X/ defined by
(V.4.2) w αw isomorphism from g onto a subsuperalgebra of B\,
and it extends to a morphism φ\ from U(g) onto B\, which satis-
fies

COROLLARY 1. The algebras B\ are primitive quotients of U(g);
any irreducible representation of B\ can be extended to a degenerate
representation of U(g).

COROLLARY 2. For any irreducible representation π of h, there ex-
ists a degenerate representation ft of g such that π\h = π.
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Proof. For (V.4.3), one has to prove that the elements defined in
(V.4.2) do satisfy the commutation rules (1.1.4), (1.1.5); it is a straight-
forward computation, using essentially (V.2.1) and (V.2.2). Then, by
the universal property of U(g), we can extend to a morphism φ\
from U(g) into B\. If / Φ -1/4, it is clear that φ\ is onto. If
/ = -1/4, recalling that Γ + 1/4 = 0, we get K_ϊ/4 + 1/4JP_1 / 4 =
P_ 1 / 4(Γ + 1/4) = 0, so P = P_ 1 / 4 = -4K_ι/4 and therefore B_ι/4 =
WP = φ-l/4[U(g)]. Finally,

= Q- \{[Aι+, At_]L + [ J / + , I/_]L) - * /

= L ( L + 1 ) - i (L + L ) - L 2 = 0.

Corollaries 1 and 2 are immediate consequences of (V.4.3). D

(V.5) Let us now start with an irreducible degenerate represen-
tation π of g in V, and introduce the subspaces V$ and V\ of
(II.1.5), such that V = Vo Θ Vx, π(Δ±)|F o = 0, π(£±) | F i - 0. Note
that π(E+E-) = π(Δ+Δ_) = 0. Using (II. 1.5), π is an irreducible
representation of h, so π(C) = cldκ .

By (1.1.9), one has π(L) = 2(π(β) - π(Q) since V=V0®Vι is a
reduction of π | 5 into irreducibles ((II. 1.5)), we must have π(L)\yQ = /Q
and π{L)\Vχ = h . But π(C) = π(L)(π(L) + 1/2) by (V.2.1), so
/t = /0 or \ = -/ 0 - 1/2. From (1.1.3), π(A±)V0 = π(£±)F 0 , so,
by (II.1.3), Fi = π(A+)V0 + π(A-)V0. Using (V.2.2), π ( L ) π μ ± ) v =
(-/o - l/2)π(-4±)^, if ^ G Pb, so we conclude that lχ = -/ 0 - 1/2.
We set / = /o, and use (V.2.1) to obtain π(C) = 1(1+1/2), π(Q)|κ0 =
/(/ + 1) and π(β) | K l = (/ « l/2)(/ + 1/2). So, if we assume that° V
is infinite dimensional, we have π(U{h)) ~ B\, if / Φ -1/4, and
π{U{h))^W9if / = -l/4 [16].

Now L = μ + 5 ^ - k = l/2[^+ + Δ + , E- + Δ _ ] L , so, using (1.1.1),
and A±\yo = 0, E±\Vχ = 0, Δ+Δ_ = E+E_ = 0 on F , we deduce

π(L)\Vι=-π(K)\Vr

It follows that if P' is the parity operator defined by P'v = (-l)ιv ,

υ eVi, one has π(AΓ) = P'π(L), and by similar arguments π(^ί±) =

iP'π(A±).
If / = -1/4, then π(L) = - 1 /4IdF , so π(K) = -1 /4P ; , and if we

introduce B_ι/4 ~ π(U(h)) Θ P'π(U(h)), we deduce that π(U(g)) ~
^-1/4-

If / ^ -1/4, then π(P/)|κ0 = 1, n{Pi)\Vχ = - 1 , so π(Pz) = P*, and
therefore π(C/(^)) = π(U(h)) ~ B\. So we have proved
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(V.5.1) PROPOSITION. Let V be a degenerate infinite dimensional
primitive quotient of U(g) then there exists I such that V ~ 2?/.

(V.5.2) REMARK. Note that B{ = Br if /' = -/ - 1/2, so we can
restrict to admissible values of /.

(V.6) We now treat the case of finite dimensional degenerate prim-
itive quotients. The discussion is very similar to the preceding case,
so we give fewer details.

First, we note that, any irreducible finite dimensional degenerate
representation π of g being actually an irreducible representation of
h, since Burnside's theorem holds for finite dimensional irreducible
representations of h [16], one has π(U(g)) = π(U(h)) = L(V), if V
is the space of π. Moreover, from [3], there exists n e 1/2N such that
dim V = 4n, V = V^®Vj, with dim V^ = In + 1, dim Vj = In - 1,
and π(C) = n(n + 1/2). Actually π induces an isomorphism π from
Bnιj onto L(V)9 where /„ is the unique nontrivial two-sided ideal of
Bn [16]. Let us note V = Vn , π = πn , and introduce φn = πn o φn

we get a surjective morphism from U(g) onto L(Vn).

(V.6.1) Summarizing:

PROPOSITION. Any primitive degenerate nontrivial finite dimensional
quotient of U(g) is an algebra L(Vn), n e 1/2N, d i m ^ = 4n,
Vn = VnQ θ VnΊ, with dim V^ = In + 1, dim VnΊ = In - 1.

(VI) A classification of primitive ideals of U(g).

(VI. 1) Primitive ideals of U(s), and U(h) are well known (see e.g.
[16]). It will turn out that classification of primitive ideals of U(g)
is related to both classifications, according to the fact that one has to
distinguish between degenerate and regular cases. We introduce the
following notation: we denote by FήmdU(g) the set of degenerate
primitive, and by PήmrU(g) the set of regular primitive, so we have
a partition Prim U(g) = Prim</[/(#) U FήmrU(g). Now, we need a
description of Prim U(gζ) and of Prim U(g+) (where g+ = g^ θ gj)
which is achieved by the following lemma:

(VI. 1.1) LEMMA. Given a primitive ideal I of U(s) and a complex
λo, let

, λ0) = 9(1, λQ) θ



sl(2, 1)-SUPERSYMMETRY 45

Then φ and ψ are one-to-one mappings from Prim U(s) onto
Prim U{gζ) and Prim U(g+).

Proof. Actually, this comes from the fact that, starting from an
irreducible representation π of s, one can extend to gjj by π(K) =
λo, and then to g+ by π(Δ+) = π(Δ_) = 0, and, conversely, any
irreducible representation of g^, or g+ is obtained by this way as is
easily seen from the commutation rules (1.1.1). α

(VI. 1.2) COROLLARY. PrimC/^) = Fτim U(g+) = PήmU(s) x
C.

(VI.2). We classify PήmdU(g). Let % be the set obtained from
Prim U(h) x Z 2 , Z2 = { + , - } , by the identification ( / , + ) = ( / , - ) ,
if / = u(h)(L + 1/4), or if codim/ = 1. Let / e Prim U{h) ([16]),

• if / = (C - c)U(h), with c = 1(1 + 1/2), / admissible, and
/ Φ -1/4, we define:

E+(I) = E(I, +) = Kcτφι, E-(I) = E(I, - ) = Ker0_ ( / + 1 / 2 ).
• if / = (L + l/4)t/(Λ), we define:
E+(I) = E(I, +) = E-(I) = E(I, -) = Kerφ_iμ.
• if / = Ker^y(n), n e 1/2N, setting πn = 9Sf{ri), we define:

E+(I) = E(I,+)=Kπ(πnoφn),

E.(I) = E(I, -) = Keτ(πnoφ_n_ι/2),

if n φ 0, and £±(Ker%(0)) = Ker%(0, 0).
So we get a mapping E: £? —*• PήmdU(g).

(VI.2.1) PROPOSITION. E is a one-to-one mapping from W onto

Proof. E is onto by (V.4), (V.5), and (V.6). Moreover, E±{I) n
U(h) = /; a s s u m e t h a t E+(I) = £ _ ( / ) = J , I φ { L + l/4)U(h). L e t
/ be admissible such that (C - /(/ + l/2))U(h) c /. Then by (V.2.1)

(AT, -l)(K!-(l +1/2))

and since K_\_\β = —-K/, the same holds when replacing / by
- ( / + 1/2). Therefore (K -l)(K-(l+ 1/2)) e E+(I), and (ΛΓ + /) x
(ΛΓ + (/ + 1/2)) € £_ ( / ) . So K e J. From (1.1.5), we deduce A c / ,
so A c / , and / = Ker^y(O). This proves that £" is one-to-one. D

(VI.3) We now classify PήmrU(g).
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Given (/, λ0) e Prim £/(#+)> w i t h I € Prim£/(5 ) , let us fix any
irreducible representation p of g+ such that Ker/? = (J, Ao), and
introduce / = Ker[Ind^+^(/?)], which is a two-sided ideal of t /(g).
Actually, / is not necessarily primitive, so we have to restrict to
Primr £/(£+), which is defined as follows:

Let (/ , λo) G Prim U(g+) then, from the classification of primitive
ideals of U(s) (see e.g. [16]), there exists a (unique) q e C such
that (Q - q)U(s) c / . We then compute q - λo(λo + 1) > and define
Prim r £/(#+) as the subset of (/, λo) satisfying q - λo(λo + 1 ) ^ 0 .

So we assume (/, λo) G Prim rt/(g+), and then, by (II. 1.6) π =
Ind^ |^(p) is irreducible, so / = Kerπ is primitive. Given p' such
that Kerp1 = (/, λo), π' = Ind g \g{ρ') and / 7 = Kerπ', one has

(VI.3.1) LEMMA. / ' = / .

Proof. By [4, (5.1)], / (resp. / ; ) is the biggest two-sided ideal of
U(g) contained in U(g)(I, λo).

From (VI.3.1), we can now define a mapping E from Primr£/(g+)
into Primr£/(g) by E(I) = / .

(VI.3.2) PROPOSITION. £ is one-to-one mapping from PήmrU(g+)
onto PrimrC/(5p).

Proo/. Let / = £ ( / , λ0) = E(Γ, λ ;

0). Let π be any irreducible

representation of g, acting on F , and such that Ker ft = / . With the

notations of (I), let p be the corresponding irreducible representation

of ^ + on FQ; then by (II. 1.7) ft = Indgjgp. Now let p(K) = λo,

and p(Q) — q the minimal polynomial of K = π(K) is

(K - λo)(K - (λ0 + l/2))(K - (λ + 1)) = m(K)

therefore / Π C[K] = m(A^)C[A'], and this proves (since λo is the
eigenvalue with smallest real part) that λo, which was a priori de-
pendent of p, is actually not. It follows that λo = λ'o = λo. Sec-
ondly, there exists a unique c eC such that Ψ - c e J, and one has
c = q -λo(λo + 1) (see (II. 1.6)). So q is also independent of p, and
therefore q = q1 = q.

If / is of infinite codimension, then / and V have to be also of
infinite codimension, so, from the classification of Prim U(s) (see e.g.
[16]), / = (Q - q)U(s), /' = (Q - q')U(s) and then / = / ' . If /
is of finite codimension, then / and /' are two primitive ideals of
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U(s), both of finite codimension, and both containing (Q - g)U(s)
therefore / = /'. So we have proved that E is one-to-one.

Now given / e Primr£/(g), using (II. 1.7), there exists (/, λo) e
Primr £/(#+) such that E(I, λo) = / ; so E is onto. D

(VI.4) Prim U(s) and Prim U(h) are very well known and classi-
fied (e.g. [16]), so (VI.3.2), together with (VI.2.1) and (VI. 1.1), gives
a complete classification of Prim U(g).

(VI.5) PROPOSITION. If I is a degenerate primitive ideal of U(g),
and if codim/ = oo, then I is minimal primitive, and I is not gen-
erated by its intersection with Z(g).

Proof. Assuming / degenerate primitive, and codim/ = oo, we
first prove that / is minimal primitive:

If / is primitive, and / c /, then / is degenerate; we set / =
£ ( / ' , α), / = £(/ ' , β), with / ' , /' e PήmU(h) and α, β e Z2.
Then / ; = U(h)nJ, V = C/(Λ)n/, codim/7 = codimΓ = oo,
and / ' c /', so, using the results of [9], J' = Γ. Then E(Γ, a) c
E(Γ, β) If a Φ β, arguments similar to the proof of (VI.2.1) give
K e I = E(Γ9 β), therefore, by (1.1.5), / = Ker£>/((), 0) (a contra-
diction), so I = J.

Note that InZ{g) = Kerε ((IV.5)), U(g)Kcτε c /. By (VI.2.1),
there exist infinitely many degenerate primitive / with codim/ =
oo, which are all minimal primitive from beginning of the proof, so,
necessarily, they all satisfy / Φ U(g) Kerε. D

(VI.6) As pointed out in [16], the h^ -reduction of irreducible h-
modules is contained in the following "structural" equation:

4Q2 - (8C - \)Q + 2C(2C - 1) = 0

which holds in U(h) between the respective Casimir elements of
ΛQ and h. We now give the corresponding "structural" equations
in U(g), which involve Q, K, ^ and 2!. They contain the #Q -
reduction of regular irreducible ^-modules:

(VI.6.1) PROPOSITION.

[(2K

= 0.
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Proof, These formulae can be checked directly (e.g. with the help
of a computer!), or preferably as follows:

Replacing both, & and 2f respectively by (l-λo)(l + λo + 1) and
(2λ0 + 1)(/ - λo)(l + λ0 + 1), they reduce to

(l-λo)
3(l + λo+l)3((2K+l)-(2λo+l))

x (2K - (2λ0 + 1))((2K - 1) - (2λ0 + 1)) = 0,

x ( β - (/ + l/2)(/ - l/2))(β - (/ + l/2)(/ + 3/2)) = 0,

and these last two relations are true in any representations 3ff(l,
((II.2.2), (II.2.4)). So using (III.l), we obtain (VI.6.1). D
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