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SOAP BUBBLES IN R2 AND IN SURFACES

FRANK MORGAN

We prove existence and regularity for "soap bubbles"
in M2 and in surfaces, i.e., the least-perimeter way to en-
close and separate regions of prescribed area. They con-
sist of constant-curvature arcs meeting in threes at 120
degrees. If one prescribes the combinatorial type too,
then the arcs may bump up against each other.

FIGURE 1.1. Single, double, and triple bubbles in R3

presumably provide the least-area way to enclose and
separate the given volumes of air.
Drawings by J. Bredt [M5]
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1. Introduction. The general soap bubble problem seeks the
least-area way to enclose and separate m given volumes in E n or in a
smooth compact Riemannian manifold. Examples in R3 presumably
include the bubble clusters of Figure 1.1. Existence and regularity
almost everywhere for n > 3 was established by F. Almgren [Aim,
VI.2, IV.3(1)] and improved for the case n = 3 by J. Taylor ([Tl],
[T2]). A simplified discussion appears in the new edition of [M2,
13.3]. No such regularity results in the literature seem to apply to
the case n — 2.

Theorem 2.3 gives a relatively simple, direct treatment of the pla-
nar case n = 2. The proof provides a simplified illustration of the
rather technical methods of Almgren [Aim]. The main difficulty
is the possibility of regions of infinitely many connected compo-
nents. To eliminate this possibility, the proof reduces perimeter by
eliminating tiny components and delicately readjusting the areas
elsewhere (Lemma 2.2).

In a compact manifold, the regions need not be connected. For
example, the least-perimeter way to enclose a suitable given area in
a sphere with two thin tentacles would be two circles enclosing the
two tentacles.

In Rn, it is an open question whether the regions must be con-
nected. Of course for a single prescribed volume, the round sphere is
the unique solution (see [M4, 10.5]). Recent work by the Williams
College SMALL Undergraduate Research Geometry Group ([Fo],
see [Ml], [M3]), featured in the 1994 AMS What's Happening in
the Mathematical Sciences, has shown that for two given areas in R2,
the standard double bubble, consisting of two connected regions, is
the unique solution (see Figure 1.2). In R3, it is an open question
whether the standard double bubble of Figure 1.1 is a solution.

Indeed, for all n > 2, it has been an open question whether there
exists a least-area way to enclose and separate connected regions
of prescribed volumes, although it is deceptively easy to think it
obvious for n = 2 (cf. [B]). There are already substantial technical
hazards in obtaining discs of prescribed area of least perimeter in
compact surfaces (where perimeter counts twice when the curves
bump up against themselves). Exactly such difficulties delayed for
77 years the completion of Poincare's argument for the existence of
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a simple closed geodesic on a convex 2-sphere. See Section 3.4 and
[HM] for more information and for a new, simple approach, which
also provides discs of prescribed area of least perimeter in compact
surfaces. In his honors thesis [Ho], Hugh Howards (Williams '92)
gives a number of specific examples of perimeter-minimizing regions
in spheres, tori, projective planes, and Klein bottles.

Our Corollary 3.3 provides a least-perimeter way to enclose and
separate connected regions of prescribed areas, although the regions
may be connected only by infinitesimal strips. In addition to meet-
ing in threes at 120° angles, the edges may in theory bump up
against each other differentiably, joining and separating at isolated
points, as in Figure 3.2.

Corollary 3.3 follows from Theorem 3.2 on the existence and reg-
ularity of soap bubble clusters of prescribed combinatorial type. It
is easy to prove existence, using standard compactness for Lipschitz
functions and curves. It is difficult to control how wildly the solu-
tion curves may bump up against themselves. Such control follows
from comparisons and weak curvature bounds, based on a standard
variational argument (Lemma 2.2).

This work was partially supported by the National Science Foun-
dation and the Institute for Advanced Study. I would like to thank
John Sullivan and Dave Witte for helpful conversations.

t§

FIGURE 1.2. The standard double bubble is the unique
least-perimeter way to enclose and separate two given areas
in the plane [Fo].
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2. Planar soap bubbles of unrestricted combinatorial type.
Theorem 2.3 gives the existence and regularity of the least-perimeter
way to enclose and separate planar regions of prescribed areas. This
formulation does not restrict the combinatorial type of the solution
or even require each region to be connected.

The variational arguments will require the ability to make small
readjustments in the areas with controlled increase in perimeter.
Lemma 2.2 extracts the required arguments from F. Almgren [Aim,
VI.2(3)], which hold in general dimension and ambient manifolds.
First Lemma 2.1 states a standard fact from geometric measure
theory. (Nonorientability of M poses no real problem, since the
arguments are essentially local.)

LEMMA 2.1. [Fe, 4.5.12, 2.10.6]. Let Ro, RX) . . . , Rm be disjoint
subsets of M — Rn or any n-dimensional smooth, compact Rieman-
nian manifold M. Suppose that the topological boundary of each Ri
has finite (n — 1)-dimensional measure:

Hn'l{BdryRi) < oo .

Then each Ri is measurable and its current boundary Tt — dRi is a
rectίfiable set.

L E M M A 2 . 2 . ( A l m g r e n , s e e [ A i m , V I . 2 ( 3 ) ] ) . L e t R o , R l f . . . ,
Rm be disjoint measurable subsets of positive n-dimensional measure
of M — Rn or any n-dimensional smooth, compact Riemannian
manifold M, so that M — URi has measure 0. Suppose that each
current boundary Γt = dRi is a rectifiable set.
(1) For Tί71"1 almost every point x £ T%} x belongs to precisely one
other Tj; T{ and Tj have multiplicity one and a common tangent
plane at x, and Ri and Rj have the two associated half spaces as
tangent cones at x.
(2) There are c,ε > 0 and disjoint balls D\, D[, D2) Df

2) . . . , Dm,
D'm such that balls of twice the radius remain disjoint and such that
for arbitrary choices of Di or D\ and real numbers t0, ..., tm sat-
isfying Σti = 0 and max |t;| < ε, there are smooth diffeomorphisms
supported in

(3) (D1 or D[) U (D2 or D'2) U . . .
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with local changes in measure

AHn(Rt) = U ,
71-1^) < cmax|ί, | .

Proof. Since Σ Ti — 0, Ή 7 1 " 1 almost every point in UT2 belongs to
at least two of the Tz. Statement (1) follows by the Gauss-Green-
DeGiorgi-Federer Theorem ([M2, 12.1] or [Fe, 4.5.6]).

As in [Aim, VI.9], given small η > 0, there is a c\ > 0, such that
for any two i?t , Rj bordering as in (1), there is a small ball D, such
that for small t > 0, there is a diffeomorphism supported in D such
that

\AHn(Rj)-t\ <ηt
\AHn(Rk)\<ηt kφi.j
\AHn-ι(Tk)\ <cxt 0 <k <m.

The diffeomorphism simply locally pushes the halfspace approx-
imating Rj smoothly into the halfspace approximating R{. The
bound on A7ίn~ι(Tk) follows from general principles [All, 4.1].

Indeed there are many such disjoint D; we will need just two,
say Z), D'. Furthermore, given any proper subset / of the full set
of indices {0,1,... ,ra}, there are i 6 / and j € Ic associated as
in (1), as follows from applying the Gauss-Green-DeGiorgi-Federer
Theorem to UίG/i?2. Hence by reordering the indices if necessary,
we may obtain such small balls D\, D\, . . . , Dm, D'm, with D\, D[
associated with regions i?0, -Ri and generally with JDJ, Df associated
with regions i2t , Rj with i < j . Moreover we may assume these
balls, even if doubled in size, are all disjoint. Linear combinations
of these deformations yield the desired diffeomorphisms of statement
(2). D

THEOREM 2.3. (PLANAR SOAP BUBBLES). Given prescribed
areas A\, ..., Am > 0, there is a set S C IR2 of least 1-dimensional
Hausdorff measure Ή}(S) such that R2 — S is a disjoint union of
[not necessarily connected) components R$, ..., Rm, with only RQ
unbounded, and area(i?2) = Ax (1 < i < m). S consists of finitely
many arcs of circles or straight line segments meeting in threes at
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120° angles at finitely many points (possibly plus an unnecessary
additional set of Ή1 measure 0). All curves separating a specific
pair of regions have the same curvature.

Proof. Consider any set 5 C K2 with Ή}(S) < oo such that
R2 — S is a disjoint union of components i?0, .. , Rm, with only
Ro unbounded, and area(i?2 ) = A, . By Lemma 2.1, each R{ is
measurable and its current boundary T{ — dRi is rectifiable. By
[Fe, 4.2.25, p. 421], each T{ is a countable collection of simple closed
Lipschitz curves. Therefore the infimum for the following modified
problem is no greater than the infimum for the original problem.

(4) Modified problem. Find disjoint, bounded sets i?i, . . . , i?m,
of prescribed positive areas Ai, . . . , Am, with rectifiable current
boundaries TΊ, . . . , Tm, to minimize Ή}(uTi). (Let Ro = R2 —

The proof has four steps.

Step 1. There exists a solution to the modified problem (4).
Step 2. The Ti's are actually finite collections of simple closed Lips-
chitz curves. It follows that the R{ are components of R2 — UT2 and
hence admissible solutions to the original problem.
Step 3. A solution to the modified problem has the asserted regu-
larity.

Step 4- Any solution S to the original problem differs from a solution
UT{ to the modified problem by an inconsequential set of measure
0.

Step 1: Existence. Consider a sequence Rj, T/ = dR\, with 7
approaching its infimum a. We may assume Ή}(ΌTl) < 2a.

First we modify the sequence to stay inside a fixed large disc.
Consider the simple Lipschitz curves composing TQ which are not
enclosed by others and hence are surrounded by RJ

0 on the outside.
Since they have total length at most 2α, we can certainly move them
and all they enclose inside the disc about 0 of radius 3α, which then
contains every R\. Now by compactness (e.g., [M2, 5.5] or [Fe,
4.2.17]), we may assume that the R\ converge to i?t , the T- converge
to T{ — dR{, and area i?2 = A{. (In the limit, each Ri is defined
a priori only up to a set of measure 0, but viewing it as a region
bounded by but not including the countable collection of Lipschitz
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curves T{ removes the ambiguity.) Moreover by Lemma 2.2(1),

We have solved the modified problem (4).

Step 2: We show that each Γt is actually a finite collection of rec-
tifiable cycles. Otherwise, for some 0 < ε < 47r/cm2, Γ, contains
a cycle C of length ε, and C lies in a ball disjoint from 2.2(3), for
some choice of the alternatives Dj or D' . By 2.2(1), there is some
other Tj which contains a piece of C of length at least ε/m. Making
everything inside C part of Rj reduces 7ΐ1(UT'z ) by at least ε/m.
Since the area inside C is at most ε2/4τr, deformations supported
in 2.2(3) can restore the areas at a cost of increasing Ή}{uTι) by at
most racε2 /4τr. By the minimizing property of UTt ,

ε/m < mcε2/4τr ,

a contradiction of the choice of ε. Therefore each Γ, is a finite
collection of rectifiable cycles. It follows that the R{ are components
of R 2 — UT{ and hence admissible solutions to the original problem.

Step 3: Regularity. Since R{ and Rj are disjoint, T; and Tj cannot
cross. They may coincide only at finitely many intervals, since each
time they separate and come back together there is at least one
cycle of some T* in between. As shown in Step 2 there are only
finitely many such cycles. Therefore UTt is a union of embedded
Lipschitz curves which come together and separate at finitely many
points. By a variational argument, these curves must be circular
arcs or straight line segments, and all curves separating a specific
pair of regions have the same curvature.

We claim that at any such point, the set of k > 3 outward unit
tangent vectors must comprise a length-minimizing network con-
necting the m points at their heads. If not, for some a > 0, in
a small ball of radius r, length UT; could be reduced by at least
αr, while the change —ίt in area Ri satisfies |<t | < τrr2. Restoring
the areas by a deformation supported elsewhere as in 2.2(2) would
leave a net decrease in length T of at least ar — mcτrr2, which is
positive for small enough r. This contradiction of the minimality of
UT{ establishes the claim that the k unit tangent vectors must be
length minimizing.
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Consider variations moving the tails of two of the unit tangent
vectors v, w a distance t in the direction of any unit vector u and
adding a segment of length t connecting them to the origin. Then
the initial rate of change of length must be nonnegative.

0 < —- = 1 - (υ + u;) ti .
at

Taking u in the direction of v + w yields

1 > \v + w\ = v 2 + 2v - w ,

so that v - w < —1/2 and the angle between v and w is at least 120°.
Therefore there must be exactly three tangent vectors at angles of
precisely 120 degrees.

Step 4- Original problem. Finally consider any solution 5, R{ to the
original problem which must, by Step 2, attain the same minimum
a as a solution to the modified problem (4). Therefore if Tt = 3i?2,
5 ' = UTi C S is a solution to the modified problem and hence
to the original problem. It follows that S differs from £' by an
inconsequential set of Ή} measure 0. D

2.4. Soap bubbles in surfaces. Theorem 2.3 and its proof ex-
tend immediately to any smooth compact Riemannian surface. The
curves have constant geodesic curvature.
2.5. Segmentation problem. Our approach similarly provides a
simple existence and regularity proof for the segmentation problem
of Mumford and Shah [MS, Thm. 5.1], in which they approximate a
continuous function g by a function / constant on pieces of relatively
minimal perimeter. The analog of our Lemma 2.2 is trivial, since
the cost of incorporating one piece into another is at most its area
times twice the supremum of \g\.

3. Soap bubbles of prescribed combinatorial type. Theo-
rem 3.2 provides 2-dimensional soap bubble clusters of prescribed
combinatorial type, with weaker regularity properties. Corollary 3.3
minimizes perimeter over all combinatorial types with connected re-
gions, although in the solution a region may be connected only by
an infinitesimal strip. Section 3.4 gives an application to Poincare's
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argument for the existence of a closed geodesic on a 2-sphere of
positive Gauss curvature.

The regularity arguments will require the following lemma, which
says roughly that two curves curving away from each other cannot
rejoin again too soon.

LEMMA 3.1. Let M be a smooth (C°°) compact Riemannian
surface. Given c » I » ε > 0, exists l/c » δ > 0, such that
(1) δ-balls are topological discs;
(2) any curve C with geodesic curvature \κ\ < c, contained in a disc
of radius r < δy from some point p\ to some point p2, has length at
most (1 + ε)£o, where £Q = dist(pι,p2);
(3) any two such curves C, C which do not cross enclose a region
R of area at most ε£o; and

(4) if dR = C" — C, with C above C, then the geodesic curvatures
satisfy

sup K! > inf K — ε ,

(with upward curvature counted positive).

REMARK. It is not necessary to assume the curves C 2 , only that
the curvature bound holds weakly (so they are C 1 ' 1 ).

Proof. Of course in establishing each successive conclusion, we
may assume that the previous ones hold for larger c and smaller ε,
and we may further decrease δ. Conclusion (1) is standard, (2) and
(3) are obvious.

To prove (4), take c> — G, where G denotes the Gauss curvature
of M. Let εx < ε/3c. We may pick δ such that (l)-(3) hold for
εχ Let e*i, a2 denote the interior angles of R at pi and p2. By the
Gauss-Bonnet formula,

/ K - f K + (π - αi) + (TΓ - α 2) = 2π - / G
Jc Jc JR

Hence the lengths £, £' satisfy

t! sup K1 - Ivai K > - I G > -cελ£Q ,
JR

SO

£o sup K! + ε\£oc — £Q inf K + ε^c > —

sup K — inf K > — Zε\C > —ε ,
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as desired. D

The following theorem provides 2-dimensional soap bubbles of
combinatorial type prescribed by an embedded graph Go. In the
limit solution, edges of Go may shrink to points or bump up against
each other (perhaps coinciding along arcs), but they may not cross.
Where two edges coincide, the length counts twice. See Figure 3.2.

THEOREM 3.2. Let M be R2 or a smooth, compact, connected
Riemannian surface. Let GQ be a graph with faces Fo, ..., Fm

smoothly embedded in M. (If M is R2, count the unbounded region
as Fo.) Let Aχ} A2, ..., Am > Q, with ΣΛ < a r e a M.

There is a continuous deformation ft of M such that /o = id, ft is
injectiυe (0 < t < 1), area fi(Fi) = A{, and G = fι(Go) minimizes
length among such.

G consists of disjoint or coincident constant-curvature arcs meet-
ing

(1) at vertices of G with the unit tangent vectors summing to 0,

(2) at other isolated points where the edges remain C1 (actually

C1'1).

FIGURE 3.2. Given an embedded graph Go and prescribed
areas Aλ = 10, A2 — 1, A3 = 10, Theorem 3.2 provides a
least-perimeter deformation G of Go. In this figure, two
edges of Go have degenerated to points in the limit G. In
the limit, edges are allowed to bump up against each other,
as in the poorer admissible competitor G'. Where two edges
coincide, the length counts twice.

REMARKS. It two or more vertices of G coincide in the limit,
then (1) means that all of the remaining unit tangents there sum to
0.

If the length of overlapping edges counted just once, the prescrip-
tion of combinatorial type would be nullified and the problem would
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revert to that of arbitrary regions of Theorem 2.3. Moreover, since
there would be no a priori bound on multiplicity, there would be no
bound on mapping length (which counts multiplicity) and no easy
compactness argument for existence.

Proof. Take a sequence of smooth embeddings of Go with area
F{ —> Ai and length converging to the infimum. By an argument
based on the compactness of Lipschitz maps, we may assume con-
vergence to a Lipschitz limit G, which may bump up against itself.

Since the total length is finite, about any point p of G, there is
a small circle which intersects G in finitely many points of finite
multiplicity. Assume p is not a vertex of G. Some small open disc
D about p intersects G in finitely many Lipschitz curves CΊ, . . . ,
Cn beginning and ending on the boundary of D. These curves may
overlap, but they do not cross each other.

Let 7: [0,α] —> R2 be an arclength parameterization of one of
these curves, and let 0 < x < y < a. Consider replacing 7[#,$/]
by a geodesic Γ, saving \x — y\ — dist(7(a;), (7(2/)). If other curves
cross Γ, reroute them along Γ, with further savings. Any distortion
of area is bounded by the area between 7[#,y] and Γ, which by an
isoperimetric inequality is bounded by c\\x — y\2. Since our small
disc D is disjoint from (some choice in) 2.2(3), the diffeomorphisms
of 2.2(2) may be used to restore each area to its original value at
cost at most cc\\x — y\2. The resulting modification of G may be
approximated by modifications of the original embedded sequence.
Since G is length-minimizing among limits of such sequences,

\x-y\- dist(7(x),7(j/)) < c2\x - y\

and hence

\x-y\<

It follows that 7 is C1 (in fact, C1 '1/2; see [M6] for a proof for
R n in a more general context). By shrinking our disc D further if
necessary we may assume each C2 is a nearly horizontal G1 curve
through p, labeled CΊ, . . . , Cn from top to bottom.

Count upward curvature positive. Since the top curve C\ is free
to move upward, and any loss of area A A may be recovered at cost
cAA by 2.2(2), any savings in length AL < cΔA, which means that
its geodesic curvature κ,χ < c (weakly).
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Next κ2 < c, by the previous argument at points not in C\ and
by the previous result at points in C\. Then successively κ2 < c,
. . . , κn < c. Similarly from the bottom κn < — c, . . . , κ\ < — c. In
particular, the curves are C i j l .

If Cι = C2 = . . . , lump them all together as C\. Now if C2 =
C3 = . . . , lump them all together as C2, and so on. Thus we may
assume each C{ is disjoint from the other Cj on some interval, where
by a standard variational argument K{ must be a constant cz. On
an interval where Cz, Ct +i, . . . , Ci+j overlap, each has curvature

Choose ε > 0 so that all such distinct values of K differ by at
least ε. If necessary, shrink the disc D further so that Lemma 3.1
applies.

We claim that once C\ and C2 separate after leaving p, they never
meet again inside D. Otherwise focus on an interval of CΊ and
an interval of C2 which coincide only at their endpoints. We may
assume that along some subinterval C2 is disjoint from the other
Cj (if along this interval C2 = C 3 = . . . , lump them together and
call them C2). Upward variations imply that the curvature of C2

satisfies κ2 < c2. By Lemma 3.1, c2 > cχ—ε. By choice of ε, c2 > c\.
Therefore at both endpoints, for C\ and C2 to separate, C2 must
coincide with C3. But by induction, once C2 and C3 separate, they
cannot come together again. This contradiction proves the claim
that once C\ and C2 separate after leaving p, they never meet again
inside D.

It follows that the points where edges of G meet and separate
are isolated. Standard variational arguments show that elsewhere G
consists of constant-curvature arcs and that the unit tangent vectors
sum to 0 at vertices.As a nice limit of continuous deformations of
Go, G is a continuous deformation of Go. D

REMARK. Singularities of type (2) do occur. For example, on a
long, skinny torus, the shortest circle enclosing a sufficiently large
area will bump up against itself. Michael Hutchings points out that
a long string of bubbles in the Euclidean plane R2 can curve around
and touch itself.

The following corollary provides a least-perimeter way to enclose
and separate connected regions of prescribed area. Each region,
however, might be connected only by an infinitesimal strip. See
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Figure 3.3 and the remark after the proof.

COROLLARY 3.3. Let M be R2 or a smooth, compact, connected
Riemannian surface. Given A\,... ,Am > 0 satisfying Σ^i <
area M, there is a shortest graph G with faces of areas A\,... , Am.
(The edges but not the faces of G are allowed to overlap. For over-
lapping edges, count length with multiplicity.)

G consists of disjoint or coincident circular arcs meeting
(1) in threes at 120° angles at vertices of G,
(2) at other isolated points where the edges remain C l f l .

G Gr'
FIGURE 3.3. Corollary 3.3 provides least-perimeter
enclosures of connected regions of prescribed areas. The
theory allows regions connected only by an infinitesimal
strip as in G' as well as the conjectured solution G. Where
two edges coincide, the length counts twice.

Proof. Apply Theorem 3.2 to the finitely many combinatorial pos-
sibilities for G. The arcs meet in threes at 120° by a standard varia-
tional argument, as in the end of the proof of 2.2, using the freedom
to alter combinatorial type. D

REMARK. We conjecture that the edges of G are disjoint and
hence that the faces are connected open sets and there are no singu-
larities of type (2). Even in R2, the only known solutions are for one
area (the circle) and two areas (the standard double bubble, proved
by Foisy, Alfaro, Brock, Hodges, and Zimba [Fo]), with forthcom-
ing results on three areas by Cox, Harrison, Hutchings, Kim, Light,
Mauer, and Tilton [CHK].
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3.4. Poincare's geodesic. Theorem 3.2 and its proof general-
ize from area to the integral of any continuous positive function g
on a smoothly compact, connected Riemannian surface M. Along
the arcs not the curvature K but instead Kg is constant.

This extension provides another simple way to complete Poin-
care's argument for the existence of a simple closed geodesic on a
smooth compact Riemannian surface of positive Gauss curvature g
(see [P], [HM]). Indeed, by the theorem, there is a nice shortest
circle C enclosing half the total Gauss curvature of 4τr. A standard
variational argument yields a constant c such that along any arc of
C with multiplicity ra, Kg is c/m or 0, according to whether ra is
odd or even. By the Gauss-Bonnet Theorem, J K = 0. It follows
that C is a simple closed geodesic.
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