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ON THE DERIVED TOWERS OF CERTAIN
INCLUSIONS OF TYPE Illχ FACTORS OF INDEX 4

PHAN H. LOI

Given an inclusion of type Illχ factors, λ φ 0,1, of
index 4 and with a common discrete decomposition, we
compute the principal graph of its derived tower based on
that on the associated type II\ inclusion. Applications to
the classification problem of hyperfinite type Illχ subfac-
tors are discussed.

1. Introduction. Since the introduction and development of
the theory of index by V. Jones in [J] to study a pair of type II\
factors, one of the main problems has been the classification, up to
conjugacy, of type II\ subfactors of the same index of the hyper-
finite type Hi factor i?0 Lately a great deal of progress has been
made on this problem in [Ol], [PI], [P2]. As these works show,
the tower of higher relative commutants (also known as the derived
tower) associated with an inclusion of type II\ factors is an impor-
tant conjugacy invariant finer than the index, and if the inclusion
has finite depth, or more generally the generating property as intro-
duced in [P2], then this invariant contains sufficient information to
determine the subfactor completely.

In another development, the notion of an index has been extended
by various authors, [Ko], [Ln], [PiPol] to arbitrary inclusions of
factors that are associated with a normal faithful conditional expec-
tation.

In [Ll], it is shown that the theory of index for type Illχ factors,
λ φ 0,1, is closely related to that for type II\ factors. In particular,
when both factors are of type Illχ, λ φ 0,1, then such an inclu-
sion can be studied by means of a common discrete decomposition.
Motivated by the classification work on injective type Illχ factors
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of A. Connes by using the automorphism approach (cf. [Cl]), a
method of classifying hyperfinite type III\ subfactors of the Pow-
ers factor Rχ is presented in [L2]; it consists of the study of the
outer conjugacy problem of trace scaling automorphisms which act
simultaneously on a pair of hyperfinite type 7/QO factors with finite
index.

It is shown in Proposition 3.1 of [L2] that the type II I\ derived
tower is always contained in the one obtained from the type Hi
pair arising from a common discrete decomposition. The difference
between these two derived towers may be viewed as an obstruction
for a hyperfinite type III\ inclusion of finite depth to split as a
tensor product of a type II\ pair with the Powers factor R\ (see
Proposition 6.1 in [L2] and [Ka]). Using this criterion, it is deter-
mined in [L2] that, in the index less than 4 case, if the principal
graph of the type III\ derived tower is Z^n, E6 or Eg, or if the type
Hi principal graph is An,Eβ or E&, then the type III\ inclusion
splits into a tensor product as described above and it is therefore
classified by the type Hi pair of tensor components.

In this paper, we will study type III\ (hyperfinite) inclusions of
index 4 and with a common discrete decomposition. More specif-
ically, we will determine the principal graph of such an inclusion
based on that one of the associated type 7/χ pair. These results will
then be applied to determine those (hyperfinite) type III\ λ φ 0, 1
inclusions that split as tensor products and to construct uncount-
ably many non-conjugate type ///λ, λ φ 0, pairs of factors with
index 4 and principal graph Aoo5θO.

Our computations will be based on the results established in
[GHJ] to the effect that the principal graph of a pair of type 7/χ
factors of index 4 is an extended Coxeter-Dynkin diagram of type
A, D and E (for finite depth inclusions) or one of the infinite graphs
Ao^Aoo^oo, DQO (for infinite depth inclusions). The classification
result of hyperfinite type Hi pairs of index 4 in [P2] will also be
needed. In addition, we will also use the string algebras model in-
troduced in [O2] to facilitate our computations.

The basic references for this paper are [J], [Ko], [Ol], [O2], [PI],
[P2], [L2]. We will use the results, definitions and terminologies in
these works freely.
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2. Preliminaries. The standing assumption throughout this pa-
per is a pair of hyperfinite type IIIχ factors, A φ 0,1, N C M such
that there is a normal faithful conditional expectation E : M —> N
of index 4 and such that N C M admits a common discrete decom-
position with respect to E. This means that if φ is a generalized
trace on JV, then φ — φoE is a generalized trace on M and it follows
that N C M is isomorphic to NφxθZ C M^x^Z, where θ is a trace
scaling automorphism on Nφ C M^ with mod θ = A and Indi? =
The Jones index of Nφ C M^ (cf. [LI]). Note that this decompo-
sition is essentially unique and does not depend on the choice of φ.
So, we may identify N C M with QXQΊΛ C P X # Z where Q c P is
a pair of type 7/QO factors of index 4 and 0 is an automorphism on
Q C P with mod θ = A.

In order to set up the framework of our calculations of the type
III\ derived tower, we need to recall its relation with that of the
associated type II\ inclusion. The arguments below differ slightly
from those in [L2] but appear more suitable for our purpose here.

Let - C Qk+\ C f t C ' C Q C P b e a tunnel for Q C
P with Jones projections {e_fc}λr>o> and conditional expectations
E-k : Qk-i -» Qk, here we set Qo = Q, Q\ = P and Eo = E.

Since θ-χoEoθ = E, E(θ(e0)) = θ(E(e0)) = (IndE)'1; by 1.7 of
[PiPol], there is a unitary u in Q such that Aduoθ(e0) = e0 and as
a result, #i =Adu o θ preserves the inclusion Q\ C Q C P because
Qx = {eoJ'ΠQ. Note also that as E-\ is equivariant with respect to
θι and as we can identify M with Px# 2 Z and iV with Qx^Z, £"_i
extends to a conditional expectation from iV onto Nι = QχX^Z; it
follows that JVI is a downward construction of N C M.

Reiterating the argument above as in [L2], we obtain for each
k > 0 a perturbation θk of β by a unitary in Q which preserves
Qk C C Q C P and in this process, a tunnel for TV C M has
been constructed whereby the k-th. subfactor in this tunnel is given
by Nk = QkXθkZ By Proposition 3.1 in [L2] we have N'kΓ\ M =

As IndjE = 4, by the arguments in [GHJ] the principal graph
of TV C M and that of Q C P are both of the type: A, D, E, or
^oo, ôo,oo? ^oo Our aim is to determine all the possible combina-
tions of these graphs that may occur.
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Note that the family of automorphisms {θk}k>0 when restricted
to the sequence of finite dimensional algebras {Q'k Π P}k>o satisfy
the following properties:

(1) θk is trace preserving for each k > 0;
(2) θk preserves the inclusion Q)nP C Q'ά Π P for 0 < j < k\
(3) θk extends θk-i]
(4) θk(e-j) = e-j for 0 < j < k - 1.
Here the trace on Qk Π P in (1) is given by the restriction of the

conditional expectation E_k ° E-^-i) o o i?0 : P —> Qk. In other
words, {̂ fc}fc>o is an element of the group Q as defined in Section
5 of [L2], which may be called the group of automorphisms on the
principal graph of Q C P or the group of standard automorphisms
with respect to the tunnel {Qj}j>o We also recall that there is a
homomorphism (the standard homomorphism) from Aut(P, Q) into
Q which maps outer conjugacy classes in Aut(P, Q) to conjugacy
classes in Q (cf. [L2]).

Thus to compute the type Illχ derived tower, we need to know:
(1) the derived tower of the type II\ inclusion;
(2) the group of automorphisms on the type II\ principal graph;
(3) the fixed point algebras of elements of the group in (2).
According to the results of [GHJ], the principal graph of the

derived tower of a type II\ pair of index 4 has been determined and
all that remains to be done is the calculation of (2) and (3).

To this end, we need to use the model of string algebras intro-
duced in [O2] to represent the inductive system {Qf

k Π P}k>o and
then obtain a formula of a family of filtered automorphisms {θk}k>o
in terms of the strings.

3. String representation formula for automorphisms of an
inductive system of finite dimensional algebras. To acquaint
the reader with the notations as well as the definitions involved with
string algebras, we include a brief summary of those facts that will
be relevant to our task at hand. The definitions and notations are
all taken from [O2].

Let Λ = {An, ̂ }n>o be an inductive system of finite dimensional
C*-algebras such that:

(l)Ao = C;
(2) 1% : Ak —» An is a unital *-homomorphism for each k < n such
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that if o ιn

m = ιn

k if k < m < n.

We are going to construct a graph G as follows. Let the n-level
vertices G^ of G be the set of equivalence classes of irreducible left
modules of An, for each x G G^\ choose a representative H(x) =
AnH{x) which is a finite dimensional Hubert space. The unique 0
level vertex is denoted * and has representative H(*) = C. The set
of vertices of G is defined to be G<°) = Un>o G^.

For x G Gffl and y G Gn+u An+ΎH{y) restricts to a left An-module
by means of the *-homomorphism iJJ+1. We let G^y be the set of
edges e with source x and range y and have cardinality the multi-
plicity of AnH(x) in AnH(y)<> and we choose a family of isometries
H(e) : H(x) —> H(y) which are An-module morphisms and have mu-
tually orthogonal ranges. The n-level edges of G are Gft — U G$
with x,y as above, and the set of all edges of G is defined to be

. We have:

H(e)*H(f)=6(eJ)lH(s{e))

for any ej G G ( 1 ) with r(e) = r(/), and £ # ( e ) # ( e ) * = l^ ( y ) for

any ?/ G Gn+i* where the sum is over all e G G^ with r(e) = y.

Conversely, let G be an oriented, locally finite, connected graph
with a distinguished vertex * = *G? °ne can construct an inductive
system of finite dimensional C*-algebras known as the string algebra
of G.

As above G^ is the set of vertices and G ^ the set of edges. For
e G G^\ s(e) and r(e) denote, respectively, the source and range of
e. A path is an n-tuple £ = (ei , . . . , en) of edges with s(ei+ι) = r(e t )
and we set s(ξ) = θ(ei),r(£) = r(en) and the length of ξ is |£| = n.

Two paths ξ = (e i , . . . , en) and η = (/i,... , / n) can be composed
if r(en) = θ(/i), in this case ξoη = (eu e 2 , . . . , en, / i , . . . , / n ) .

A string on G is an ordered pair p = (£,77) of paths with θ(£) =
s(η) and r(£) = r(7/), |£| = |ι/|. We set p+ = £ and /?_ = 77. As with
paths, two strings p and σ can be composed if r(p) = θ(σ) and in
this case, p o σ = (p+ o σ+, /?_ o σ_).

If p and σ are two strings of the same length, the product of p
with σ is defined to be: pσ = ^(/?-, σ+)(p+, σ_) and the *-operation:
/?* = (/9_,p+). Let An be the linear span of all strings with source
* and of length n, then under the product and *-operation defined
above, An is a finite dimensional (due to the local finiteness of G)
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complex unital C*-algebra.

We define next i£ : Ak —> An,k < n by i£(p) = Σ ^ P ° (£>£)>
the sum is over all paths £ of length n — k with θ(£) = r(p). It
can be easily checked that i\ is a unital *-homomorphism and for
k <m < n, i£ o if = ijj.

Thus starting from an oriented, pointed, locally finite and con-
nected graph G, one can construct the string algebra of G which is
an inductive system of finite dimensional C* -algebras.

The following result of [O2] shows that any inductive system of
finite dimensional C* -algebras can be put in string form.

THEOREM 3.1. Let A = (-An,i£)n>o be an inductive system of fi-
nite dimensional algebras with Ao = C and unital *-homomorphisms
i%. Then A is isomorphic to the inductive system of string algebras
of the Bratteli diagram G of A.

The isomorphism in Theorem 3.1 is defined as follows:
Write, as before,

An= Σ H(x)®H(x)*.

For each string p of length n on G, define θn(p) — H(ρ+)ξo ®
)̂ o)*? where H(ρ+) is the isometry H(en)o- o Jϊ(βi) if p + =

(ei , . . . ,e n ), H(p-) is defined similarly, ξo G H(*) = C is a fixed
unit vector and ξ®η* stands for the rank one operator sending ζ to
(ζ\η)ξi then θ is the isomorphism between A and the string algebra
of its Bratteli diagram.

Now let a = {αn}n>o be a system of automorphisms of {An, i^}n>o
such that α n + i o iJJ+1 = i^+1 o α n for each n. We will establish a for-
mula that expresses the action of a in terms of the strings. First we
prove that α induces an automorphism on the graph G (the Bratteli
diagram) of {An,i£}n>o, under the extra assumption that G has at
most one edge between any 2 vertices on consecutive levels.

As before, we write An = Σ (0) H(x)®H(x)*, where each H(x)

is an irreducible left An-module. For each x £ G!£\ define a new
action of An on H(x) by a ξ = αn(α)£ for α £ Λn and £ £ H(x).
Since -fiΓ(a ) is also irreducible under this new action, there is a unique
#' £ Gffi and a unitary UXiXι : H(x') —• i?(#) such that

Uχ,x>aU*χt = α n (α) for all a £ A n .
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Define a(x) = x1 and set Un = Σ (0) UXjOί(x), then for all a G

Any an(a) = UnaU*.
Thus to each or G Gn°\ there is a unique a(x) G G^0) such that

a(H(x) ® H(x)*) = H(a(x)) ® H(a(x))* and α induces a bijection
on G£>.

To define the action of α = {αn}n>0 on the edges of G, we fix an

x G G^ij and let ζ,η be arbitrary (nonzero) vectors of H(x). We

have

Σ

£ UnH(e)ξ®(UnH(e)ηγ

and

~ fn-iξ ®

Since α n o i^_2 = ^_ χ o α n _ l 5 we get:

UnH(e)ξ®(UnH(e)ηy =

With a fixed y in G ^ and e G GgJ, the range of C/n/ί(e) is
contained in H{a{y)), and so we have:

(UnH(e)η\UnH(e)η)UnH(e)ξ = (UnH(e)V\H(f)Un_in)H(f)Un_^

for some / G G^/x α/ %, which is unique by our hypothesis. By
Schur's lemma, U^_1H(f)*UnH(e) is a complex scalar which we
denote by W(e^f). Thus the equality above becomes:
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Hence W(eJ) has modulus 1 and UnH(e) = W(eJ)H(f)Un^.
Defining α(e) to be /, we have then constructed an automorphism
of the graph G. We will write W(e) instead of W(e, α(e)) and define
W(ξ) = W(e1)W(e2) • • • W(en) for a path ξ = {eu... , en).

We should point out that the preceding argument is actually a
special case of the notion of a connection introduced in [Ol] where
more general filtered *-homomorphisms are considered. However,
being able to represent the action of a on the string algebra in
terms of its induced automorphism on the graph turns out to be
rather useful for our computations.

As mentioned before, there is a *-isomorphism θ = {θn} from the
string algebra of G onto {>4n,z£} given by:

where p = (p+,p-) is a string of length n and ξo is a fixed unit
vector in i/(*) = C. With ρ+ = (ei,... , en) and p_ = (fu . .. , / n ) ,
we have:

<Xn(θn{p)) = UnH(P+)ξ0 <g> (UnH(p.)ξ0)*

= UnH(en) o o H{e1)ξ0 ® (UnH(fn) • #(/i)&>)'.

Since we may choose Uo so that ί/o£o = {o, we have:

UnH(en) • • • H(ei)ξ0 = UnHieJU^Un-i • • • U^Hie^Uoξo

= W(en)H(a(en)) • • • W(e1)H(a(e1))ξ0

= W(en) ~W(e1)H(a(p+))ξ0

= W(p+)H(p+)ξ0.

A similar calculation also works for UnH(fn) if(/i)£0. It follows
that

*»(*»(/»)) = W(p+)H(a(p+)ξ0 ® (W(p-)H(a(p.)ξoγ

= W(P+)W(p.)θn(an(p)).

With a slight abuse of notation, we will omit the 0n's in our
formula and will just write:

.) = W(p+)W(p-)(a(p+),a(p-))
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Note however that a on the right denotes the induced automor-
phism on the graph of {An,z£}, whereas a on the left is the actual
automorphism on the string algebra. It turns out that the induced
automorphism on the graph can be easily computed in most cases,
once we know the type of the graph.

4. T h e type Illχ derived tower. In preparation for the com-
putations of the type Illχ derived tower, we need to recall the fol-
lowing results in [GHJ] and the classification results in [P2], [O3],
[IK], [Ka2].

THEOREM 4.1. (cf. 4.6.7 in [GHJ], [P2]) Let B C A be a pair of
type Hi factors with index 4, then the principal graph of B C A is
either an extended Coxeter-Dynkin diagram of type A, I), E or one
of the infinite graphs Aoo, Aoo,oo? Ax>

Each of these graphs can be realized as the principal graph of an
inclusion of the form R^ C [Ro ® M2(C)] , where G is a subgroup
of 5f/(2), the latter acts by way of an infinite tensor product action
on i ? 0 C i ? 0 ® M 2 ( C ) .

More specifically, we have the following correspondence:
The cyclic group Z n corresponds to An, the dihedral group of

2(n — 2) elements to jDn,n > 4; the tetrahedral group (= A4) to
Eβ , the octahedral group (= 54) to Eγ and the icosahedral group
(= A5) to Eg. For the infinite graphs, SU(2) corresponds to Aoo,T
to Aoô oo and the infinite dihedral group to D^.

For details of the classification of the hyperfinite type 7/χ subfac-
tors of index 4, the reader is referred to [P2], [O3], [IK], [Ka2].

Let B C Abe type IIχ hyperfinite factors with finite index and
finite depth, {Bj}j>o a spanning tunnel of B C A with Jones pro-
jections {e_j}j>o such that Bo = B. Recall that by [PI], [O2], such
a tunnel exists with the property Bj Π A j A. Let Q be the group
of standard automorphisms corresponding to the tunnel {Bj}j>o
(cf. Section 2). For each a G G, a can be extended to an auto-
morphism on B C A. Assuming that Ba and Aa are factors, then
[Aa : Ba] = [A:B] and {Bf} is a tunnel for Ba C Aα. Recall that
by [GHJ], B C A has finite depth if there is j > 0 such that the
Jones projection e_j has central support 1 in Bj Π A.
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LEMMA 4.2. Let B C A and a G Q be as above. Then Ba C Aa

has finite depth if and only if a has finite order.

Proof. Suppose that Ba C Aa has finite depth, then as B C A
and Ba C Aa share the same Jones projections and (BJ)1 Π AQ C
BjΠA^BcA also has finite depth. It is straightforward to check
that (B'j Π Af T AQ. By Lemma 4.2.4 in [GHJ], the finite depth
condition of Ba C Aa and B C A implies that the periodicity
assumption in Theorem 1.5 of [Wen] is satisfied. Hence [A : Aa] is
finite and is equal to the period k of α.

Conversely, suppose that B C A has finite depth and ak — Id for
some positive k. As above, since Bj Π A j A, (Bj Π A)a | AQ.

For each j , let Gj be the embedding matrix for (J5j (Ί A)α C Bj ΓΊ
A. By Theorem 1 of [PiPo2], \\Gj\\2 < [A : AQ] for all; . Since {B^Π
A} is periodic, such an inequality would not hold unless {(Bj Π A)a}
is also periodic. Since the Jones projections e_j for Ba C AQ are
also the Jones projections for B] Π Aa and (B] Π A)α = B' Π Aa C
(Bf)' Π Λα; we conclude that Ba C Aa has finite depth. D

We would like to point out that with a little more work, we can
actually show that J5j Π Aa = (Bf)' Π Aa for all j .

The following lemma is a formula for the I2—norm for the trace
vectors for the algebras defined by An and Dn. The proof consists
of a straightforward inductive argument and will be omitted. Note
that An here has 2n vertices.

LEMMA 4.3. Let £j and ηJ

n be the trace vectors on the j ~ t h floor of
the finite dimensional algebras determined by the graphs An and Dn

2 77, o 2τ7- — 4

respectively. Then for any j > n, \\ξJ

n\\ = — and \\ηJ

n\\ = ^ .

We can now state the main theorem of the paper.

THEOREM 4.4. Let N C M be a pair of hyperfinite type Illχ
factors with index 4 and a common discrete decomposition. The type
III\ principal graph can be determined according to the following
table:
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(1)
(2)

(3)

(4)

(5)

(6)

(7)
(8)

(9)
(10)

Type Hi graph
An,n>2

M
Dn,n>5
D4

Eβ

E7

E8

Doc

Ace
A

•''•oo.oo

G
Tx σ Z 2

50(3, R)

z 2Z 2 or S3

z 2trivial

trivial
trivial
trivial

z 2

Type III\ graph

An, Anl, 1>1,/
A γ) ^> 1 A

Dn, D2n-2

D4, D6, Eβ
T? JP

E7

E8

Doo

AQO

A D

Dn +2

Proof. Throughout the proof, we will let B C A be the associated
type Hi P^ir of N C M, Γ(^£), Γ(M,;V) will denote the principal
graphs and we set Yk = B'k Π A where Bk is a tunnel of B C A
together with the Jones projections {e_j} > 0 .

(1) Γμ f B ) = i n , n > 2.
First we determine the corresponding group £? for Λn. Consider

the graph An with the string p = (/?+,/9_) as labeled:

P-

Wr'ύe p+ = ( 6 , ,61), P- = (̂ 7i, — ,»/n).
Let α = {ctk}k>o £ ^ Considering the induced automorphism by

a on the graph Q, there are two possibilities:
(i) α(6) = £1 and α(τ/i) = τ/χ;
(ii) α(^i) = 7/1 and a(ηx) = ̂ .

If α is of the first type, then c*(£t ) = ζi and α(r/ί) = r/i for 1 < z < n
and hence αn_χ is the identity of Yn-ι, whereas on Yn^ the action
of an can be described as follows: it is the identity on Yn-ιe-nYn-ι
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and is given by Adu (locally) on the direct summands orthogonal
to yn_ie_nyn-i, where

Γi o
\

and w = W(p+)W(p-), where α(/>+,p_) =
(Cf. Section 3). Since Yk+ι = ^ ^ - ( i t + i ) ^ , for A; > n, a is completely
determined by its action on Yn, it follows that elements of ζ? that
are of the first type are represented by elements of the unit circle
T.

If a is an automorphism of the second type, then a(ξi) — ηι for
1 < i < n and α(/9+,/?_) = W(ρ+)W(p-.)(ρ_,ρ+). It is easy to check
that a has order 2 and is the product of an automorphism of the
first type with the automorphism σ defined by σ(/0+, p-) = (p_, p + ) .

If a is an automorphism of the first type then σaσ~ι = a"1.
Hence Q is contained in the semidirect product of T by Z2 via this
action.

Conversely, to prove that Q = T xσZ2, we recall that by a result in
[PiPol], the inclusion B C A is locally trivial in the sense that there
exist a type II\ factor P isomorphic to i?0, and an automorphism θ
of P with outer period n such that B C A has the form: {x ®θ(x) :
x £ P} C P ® M2X2(C). For each w e T, consider α € Auί(A, 2?)
defined by:

"l Ol
aw =

We claim that aw acts trivially on the principal graph An if and only
if wn = 1. For by [LI] and [Ka], aw acts trivially on the principal
graph if and only if there is a sequence of unitaries {u^} in P such
that

" * 0
aw = lim

0 θ(uk)

This means that w = {u^ is in P ω , the algebra of central sequences
of P and θω(u)u* = K; in P^. But as θω has period n in P ω , the
preceding assertion holds if and only if ti;n = 1 by [C2].

Thus if wn φ l ,4hen aw acts non-trivially on the graph and
the corresponding element in Q is of the first type. As a result,
T C G By Connes' classification result of automorphisms on the
hyperfinite type Hi factor, θ is outer conjugate to 0"1, say θ o ψ =
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Adu o(^o θ~ι, where φ £ AutP and u is a unitary in P, it follows
that the automorphism σ on B C A defined by:

makes sense and induces a non-trivial element of Q, namely the ele-
ment σ defined above which acts on T as a period 2 automorphism.
Hence we have determined that Q = T xσ Z 2 .

We can now determine the fixed point algebra of an element a =
{ctk} of Q. If a is of the first type, then it is clear that an-\ is the
identity on Yn.λ and that Y£ = Yn-λt-nYn-λ φ C φ C. Thus the
Bratteli diagram of {}̂ .α}£_0 is Pascal's triangle and according to
the list in [GHJ], this implies that the principal graph for {Yk*}k>o
is either Am or Aoo|OO. In fact, by Lemma 4.2, the graph is Am if
and only if a has finite order, say /. By the Wenzl index formula,

\\ξj II 2

we have: / = [A : Aa] = 2 , for j large enough, where ζJ

m and ££

ll^ll
are, respectively, the trace vectors of the j ~ t h floor of the algebras

~ ~ Tfί
determined by Am and An. It follows from Lemma 4.3 that / = —.

n
If a has infinite order, then the graph for {Y£} is A^^.
If a is of the second type, then it is easily checked that YQ , Yf, Yf

are, respectively, C, C, C 4 , for n = 2 and C, C, C 3 for n > 3.
Hence the principal graph of {Yj*} is D4 if n = 2 or Dm or Doo if
n > 3.

By Lemma 4.2, the graph is Dm for some m. We refer to the
figure of An as before. A simple calculation shows that the direct
summand of Yn formed by the paths p+ and p_ gives rise to a 2-
dimensional subspace in Y£, which is in the orthogonal complement
of Yn-xC-nYn-i- This implies that the principal graph of {Y£}k>o
has at least two vertices at the n~~th level. By looking at the list
provided in [GHJ], we can conclude that the principal graph of
{yfc

α} is Dn+2- We can also get the same result by using the Wenzl
index formula.

(2) ΓA}B = Λi.
In this case, observe that since B'Π A = M2 X2(C) and B C A has

depth 1, any element of Q is determined by its action on B'Π A and
hence by a 2 x 2 unitary matrix, up to scalars of moduli 1. It follows
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that Q can be identified with £^2x2(C)/T, which is isomorphic to
S£/(2)/{/,-/}, and hence to 50(3,R). Now the same kind of
arguments as in (1) can be applied to get the type III graph, which
is either An or AootOO.

(3) Γ ( Λ > B ) =Dn, n> 5.

It is clear that in this case, Q = Z 2 . Let α = {α*} be the nontrivial
element of G, then αn-2 is the identity and thus the principal graph
of {Y£} is either Dm or Doo. Again Lemma 4.2 eliminates DQQ.
Using the Wenzl index formula, we can determine m to be 2n — 2.

(4) Γ(Λf jB) = £>4.

In this case, by Corollary 1 of [P2], B C A is isomorphic to either
i?o C i?o x Z 4 or i?o C i?o X Z 2 ΘZ 2 so that the corresponding group
Q is either Aut(Z4) = Z2 or Aut(Z2 Θ Z2) = S3 (cf. Theorem 6.3 in
[L2]).

In either case, if α = {α^} G ̂  is an element of order 2, then the
same argument as in (2) shows that the principal graph of {Y^} is
D6.

Suppose now that Q = S% and α = {&k} is an element of order 3
of Q. Consider the Bratteli diagram of Yo C Y\ C Y2 C I3:
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On 1 ,̂ viewed as the string algebra spanned by the strings formed
with the paths &, 1 < i< 4, we may assume that a(ξi) = £2? #(£2) =

6, <*(6) = ξi and α(&) = &•
It is then easily checked that Y« ^ CYf £ C, and Y£ ^ C2.

Now an arbitrary string in Y3 has the form p = Y,tj=i cύ(6> ίj)-*
where C{j £ C. Using the representation formula for a on the strings
established in Section 2 we have:

= Σ

Thus α(/?) = p if and only if CijW(ξi)W(ξj) = cα(t )α(j) for 1 <
h j <ί 4. Writing out these equations explicitly, the dimension of
Yg is found to be 6. On the other hand, since Yf already contains
Y£e-3Y° = M2(C), we can conclude that Y£ = M2(C) φ C φ C .
This shows that the Bratteli diagram for Y° C Y? C Y2

a C Y£ is:

Upon inspection of the list in [GHJ], we infer that the principal
graph for {Yj?} must be E6 or Eg. But in order for the Wenzl index
formula to hold, the graph must be E6.

(5) Γ(Λ,B) = E6.

As is easily seen, Q = Z2. Let a be the nontrivial element of £,
then Y« 9* CYf ^ C,F2

α S C2 and F3

a ^ M2(C) Θ C. Using
the string representation of α, a simple computation similar to that
in (3) shows that the dimension of Y£ is 15. Since Y£ already
contains Y^e^YJ* = M 2(C)φM 3(C), we see that Y° is isomorphic
to M2(C) Φ M3(C) 0 C φ C. As in (3), we can now conclude that
the principal graph for {Y^} is Eγ.
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The proofs of the remaining cases are quite simple and are left as
an exercise. Q

REMARK 4.5. From Theorem 4.4 (1), we see that hyperfinite
type Hi subfactors with Dn as principal graph can be realized as
fixed point algebras of a standard automorphism of period 2 on an
inclusion having An_2 as principal graph. Such a result has also
been obtained in [IK] independently, but the automorphism used
in [IK] is different from ours.

5. Applications, Theorem 4.4 has many consequences regard-
ing the classification of type Illχ subfactors of index 4 of the Powers
factor Rχ. First, we are going to determine those hyperfinite inclu-
sions satisfying the hypotheses in 4.4 that split as tensor products.

A criterion for the splitting is obtained in [L2] when the inclusion
is irreducible and has finite depth.

THEOREM 5.1. (cf. Theorem 6.1 [L2]) Let N C M be an irre-
ducible type Illχ inclusion having finite index, finite depth and a
common discrete decomposition. If the derived tower of N C M is
equal to that of the corresponding type II\ pair, then N C M splits
as a tensor product.

Applying this criterion to the case of index 4, we have the follow-
ing.

COROLLARY 5.2.. Let N C M be a hyperfinite type Illχ in-
clusion with index 4 and a common discrete decomposition. Then
there exist hyperfinite type II\ factors B C A such that N C M is
isomorphic to B ® Rχ C A® Rχ if one of the following conditions
is satisfied:

(a) The principal graph of the derived tower of N C M is Eg.
(6) The principal graph of the derived tower of the associated type

Hi inclusion is Eγ, Eg.

Proof (a) If the type III graph is Eg-> then by Theorem 3.2, the
principal graph of the type Hi inclusion coming from the common
discrete decomposition agrees with that of N C M and so by The-
orem 5.1, N C M splits as a tensor product type inclusion.
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(b) If any of the conditions in (b) is satisfied, then since the cor-
responding group Q for each of these graphs is trivial, the principal
graph of TV C M agrees with that of the associated type IIχ inclu-
sion. By Theorem 5.1, N C M splits as a tensor product. D

According to the classification result in [P2], [O3], each of the
graphs mentioned in Corollary 5.2 determines a unique subfactor of
ί?o, and as a result a hyperfinite type Illχ inclusion satisfying one
of the conditions in Corollary 5.2 is also unique.

As a glance at the table in Theorem 4.4 might suggest, the case
of the graph An is interesting for its group Q differs from the rest in
that it is infinite and we are going to show that in this case we can
construct a family of uncountably many pair of non-conjugate type
7//λ, A φ 0, with index 4 and having Aχ))OO as principal graph.

Keeping the same notations as in Theorem 4.4, we first establish
a simple lemma regarding the conjugacy classes of the elements in
the group Q for the graph An, n > 1.

LEMMA 5.3. Let Q be the group of standard automorphisms cor-
responding to the graph An.

a) For n>2,G= Txσ Z2 and we have:
i) Two elements a, β in T are conjugate in Q if and only if

* = β±1;
ii) For any element a in T, aσ is conjugate to σ.

b) For n = l, G = SU(2,)/{/ - I), and a, β are conjugate in Q
if and only if a = β±λ.

Proof, a) First, let us consider the case of An with n > 2. Let α
and β be two distinct elements of T which are conjugate in T xσ Z2.
Let θ be such that θaθ~ι = β. We may assume that θ is of the form
σθ where θ is some element of T. We then have:

β = θaθ ' 1

ucr- 1

_ 1

= a

= σaσ \ as T is abelian,
__2

which proves i).
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For any a € Ί \ let β e T be such that β2 = α. Then (βσ)σ(βσy1 =
β V = ασ and ii) follows.

b) In the case of A\, recall that Q is isomorphic to SU(2)/{I, — /}.
For any u € 5C/(2), it is easy to see that u is conjugate in Q to
\eiι 0 1

, for some < G R . Thus a and β are conjugate in C? if and

onlyif α = ^ ± 1 .
It follows that there are uncountably many non-conjugate ele-

ments in Q corresponding to An. D

COROLLARY 5.4. For each 0 < A < 1, and each n > 1, there is
an uncountable family of non-conjugate type III\ subfactors of R\
of index 4 such that the type III \ principal graph is Aoo)00 and the
type Hi principal graph is An.

Proof Starting with a hyperfinite type II\ pair B C A having An

as principal graph (such a pair exists by [GHJ]). By Lemma 5.3,
there exist uncountably many non-conjugate automorphisms on the
derived tower of B C A that correspond to the elements of T with
infinite order. As these automorphisms are trace-preserving, they
extend to automorphisms on B C A which are non-conjugate and
aperiodic, as shown in Section 5 of [L2]. For each element a of this
family, we form the automorphism a ® Θ on B ® i?o,i C A ® Jϊo.i?
where θ is the unique automorphism on J?o,i with mod θ = A. Now
the type Illχ inclusions formed by taking the crossed products:

B ® i?o

are mutually non-isomorphic and have Aoo oo as principal graph.

D
Using the continuous decomposition for type III\ factors, we

have:

COROLLARY 5.5. For each n > \, there exists an uncountable
family of non-isomorphic type IIIχ subfactors of the Araki-Woods
factor with index 4 such that the type HI graph is AoojOO and the type
II graph is An

Proof. Let B C A be the pair of hyperfinite type II\ factors
having An, n > 1, as principal graph. Then as we know, the cor-
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responding group of automorphisms contains T as a subgroup. De-
note the elements in the subgroup T by {α7} rp and let {θt}tefi
be the (unique) one-parameter trace-scaling automorphism group of
the hyperfinite type 11^ factor i?o,i (Cf. [C4], [Ha]). For ε > 0
and < G i?, consider the one-parameter group {aeχpiεt ® θt} acting
on the pair B <g) RQ^ C A ® i?o,i. Since {ctexpiet} are non-conjugate
for different e's, the type III\ pair of factors obtained by taking the
crossed products are thus pairwise non-isomorphic. From Theorem
4.4, the principal graph of these pairs of factors is A^^. D

Actually, as the following proposition shows, the examples con-
structed in Corollary 5.5 exhaust all the one-parameter standard
automorphisms on the hyperfinite type II\ pair B C A with An as
principal graph, for any n > 1.

PROPOSITION 5.6. Let {θt}teR be a one-parameter group of au-
tomorphisms on B C A. Let φ(t) G Q denote the standard auto-
morphism corresponding to θt. Then we have:

i) φ(t) = Id, V< G R, or

2πit

ii) φ(t) ~ e Ό for n > 2, or ψ{t)

2πtt
e Ό 0

2πtt for n = 1,
0 e

where t0 φ 0 and t0Z = {t G R: φ{t) = Id}.

In the latter case, for any two one-parameter groups 0'1' and

on B C A, φ(θ^) and φ(θ^) are conjugate in Q if and only if

ί(1) - + ί ( 2 )

Proof. Suppose that φ(t) φ Id for some ί G R, then the kernel
{t G R : φ(t) = Id} is a closed subgroup of R due to the continuity
of the standard homomorphism (Cf. [L2]), and so it is of the form

, for some non-zero to. It is then elementary to show that φ{t) ~

2πit

e *o for n > 2 or φ(i)

2-κιt

e 'o 0
2πtt for n = 1. The rest of the

0 e *o

statement in ii) follows from Lemma 5.3. D

For the existence of one-parameter group on B C A with pre-
scribed standard invariants, we note that if for each s G R, we set

θt = Ad 2πist ? then from the proof of Theorem 4.4, φ{β\ ) =



340 PHAN H. LOI

Id if and only if nst is an integer, thus by Proposition 5.6,

is classified, up to conjugacy, by — . It follows that if s ψ ±s ' , then
ns

θ^ and θ(s') are non-conjugate.
REMARK 5.7. As will be explained in the next section, the

results of Corollaries 5.4 and 5.6 follow readily from known results
on the classification of automorphisms on hyperfinite type III\ fac-
tors in [KST]. However, it is reassuring to know that the standard
invariant can also be used to study the conjugacy problem for au-
tomorphisms via the subfactor approach.

6. Remarks . Finally we would like to explain the results of The-
orem 4.4 and its corollaries from the perspective of the classical in-
variants for automorphisms on a single factor that were introduced
in [C3], [T]. First we would like to recall the construction of locally
trivial subfactors, which appear in [J], [PiPol], [P2]. We thank
Prof. S. Popa for suggesting to us the possible relation between this
construction and our results.

Let P be a factor, and θ £ Aut(P), consider N = {x (B θ(x); x 6
P} C P ® M2x2(C) = M. Let E : M -> N be defined by :

F(\ab]\_ 1 \a + θ-\d) 0 1
\[cd\) ~ 2 [ 0 θ(a) + d\m

It is then simple to check that E is a normal faithful conditional
expectation and that \τιάE = 4 by the local index formula.

If P is of type III\, A φ 0, 1, then so are N C M. However,
it is not true in general, that N C M admits a common discrete
decomposition. In fact, we have the following:

PROPOSITION 6.1.. N C M admits a common discrete decompo-
sition if and only if mod(θ) = Id,

Proof Recall that N C M has a common discrete decomposition
if and only if a generalized trace on iV gives rise to a generalized
trace on M by composing with E.

Suppose that there is a common discrete decomposition for TV C
M. Let φ be a generalized trace on P, then the balanced weight



DERIVED TOWERS OF CERTAIN INCLUSIONS 341

ψ Θ ψ is also a generalized trace on N. Let μ be such that F-\nμ —
mod(θ) with A < μ < 1, where F denotes the flow of weights.
Replacing, if necessary, θ by a unitary perturbation of itself, we
may assume that ψ o θ = μθ. Let φ = (φ φ φ) o E, we have: φ —

ψ® φ. Since φ is a generalized trace on M, σ^ = IdM ,

where T = — -—-, and for all ί, we have:
In A

t
σ, . . . _ σf(a) σf(b)u*t]

utσΐ(c) σξ(d) J

where ut = [D(l + μ 'ψ) : Di^^ψ)} - ( l ± f - l ) . R then
2 2 t \ 1 + μ J

follows that μιT — 1 and hence mod(θ) = /c?.
The converse is clear. D

In general, if the type Illχ inclusion E : M —* N does not have
a common discrete decomposition, one can always perturb E by a
positive invertible element in N' Π M so that N C M will have a
common discrete decomposition with respect to this new conditional
expectation .

Now let P be a hyperfinite type III\ factor, θ G Aut(P) with
mod# = Id, ψ a generalized trace on P. Then we may assume that
φ o θ = θ and so θ(Pφ) = Pφ. Let pa(θ) = n and po(0) = m be the
asymptotic and outer periods of θ. By [C3], θ = 0V^, with pa{θf) —
po(θ') = n and ^ ( P ^ ) = Pφ. Observe that if N(θ) C M denotes
the locally trivial inclusion constructed using #, then the type /TΌo
inclusion from the common discrete decomposition of N C M is
locally trivial and is determined by the restriction of θ on Pφ.

Suppose first that m and n are both positive. As θn is centrally

trivial, by [KST], there is some t G 7̂ 77, T = — -—-, such that
1 ΊΛ In A

e(#n) = e(σf). Note that m — nk for some positive k and σ%t is
T A; — 1

inner. Hence t G {Γ, — , . . . , — : — Γ } . Once t is fixed, then by

[C3], [KST], 0 is classified by : po(β'), t(θ) and η{θ'). Note that

we actually have t £ {τT\ 1 < / < &, and(l^k) = 1}. In other

words, ί is a primitive fc~ί/ι root of unity, and 7(#;) is an n~ ί/ι root
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of unity. Thus with m and n fixed, the number of non-conjugate
automorphisms is nx the number of primitive k~th roots of unity.

From the subfactor point of view via the locally trivial factor
construction, this corresponds to the case when the type III\ graph
is Am and the type IIχ graph is An. Identify each of the primitive
k~th root of unity with its conjugate and let / be the number of such
pairs, then by Theorem 4.4, the number of non-conjugate type III\
subfactors that arise this way is at least n x /, which is less than the
number of non-conjugate automorphisms with the same asymptotic
and outer periods as explained above.

This discrepancy is due to the fact that the locally trivial factor
constructions from θ and θ~ι are always conjugate by means of the
isomorphism that switches the diagonal entries of P ® M2X2(C);
whereas in general, θ and θ~ι are not outer conjugate.

If po(θ) = 0 and pa(θ) = n > 0, then this corresponds to the case
when the type III\ graph is Aoo?oo, and the type II\ graph is An.
By [C3], θ = θ'σf with po(θf) = n and t £ TZ. Hence there are
uncountably many non-conjugate automorphisms with these con-
ditions. This is consistent with our results since in this case, the
standard invariant is given by an element of the circle of infinite
order.

If m and n are both zero, then θ is unique up to conjugacy by
[Cl]. This corresponds to the case where the type IIIχ graph and
the type II\ graph are both J4OO|OO In this case, θ is outer conjugate
to Idp ® θ0. This result is also consistent with Theorem 4.4.

Suppose now that P is of type IIIχ and θ £ Aut(P). As in
[KST], we may assume that θ admits an invariant dominant weight
φ so that θ(u8) = w5, for all s £ R, where {us} is the one-parameter
unitary group in P associated with the continuous decomposition
of P given by ψ. Hence θ(Pφ) = Pφ.

Since any inclusion of type III\ factors admit a common con-
tinuous decomposition (Cf. [LI]), the type 11^ inclusion of the
continuous decomposition of N(θ) C M — P ® M2x2(C) is also
locally trivial and is determined by the restriction of θ to Pφ.

If Po(θ) = 0 and pa(θ) = n, then po(θ\Pφ) = n. In this case,
the type III\ graph is A^oo and the type IIχ graph is An. By a
result in [KST], θn —Adwoσf and thus θ is classified by t £ i?, and
the obstruction of θ\Pφ, once n is fixed. This explains the result of
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Corollary 5.5.
It would be interesting to pinpoint the exact relationship be-

tween the classical invariants for automorphisms and the standard
invariant that is constructed from considering either the common
discrete or continuous decomposition for factor-subfactor pairs ob-
tained from the locally trivial factor construction.
Note Added in Proof. After the completion of this paper, we received
the preprint [P3] of S. Popa, in which it was shown, among other
results, that trace-scaling automorphisms on a strongly amenable
inclusion of hyperίinite type //QQ factors with finite index are classi-
fied by their standard images. In particular, Theorem 4.4 provides
a list of all inclusions of hyperfinite type ///A, 0 < A < 1, with
index 4 and a common discrete decomposition.

We also received the preprint [EKa] in which another kind of
symmetries on the principal graph is considered.
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