PAIRED CALIBRATIONS APPLIED TO SOAP FILMS, IMMISCIBLE FLUIDS, AND SURFACES OR NETWORKS MINIMIZING OTHER NORMS

Gary Lawlor and Frank Morgan

Abstract

In this paper we introduce a new method for proving area-minimization which we call "paired calibrations." We begin with the simplest application, the cone over the tetrahedron, which appears in soap films. We then discuss immiscible fluid interfaces, crystal surfaces, and one-dimensional networks minimizing other norms.

1. Introduction In her classification of soap-film singularities [T1], Jean Taylor proved only by the process of elimination that the cone over the edges of the regular tetrahedron minimizes area among surfaces separating the four faces. We give a direct proof which applies to regular simplices in all dimensions. See Figure 1.0.1.

Configurations of several immiscible fluids try to minimize an energy proportional to interfacial surface area, but the constant of proportionality varies for each pair of fluids. Chapter 2 proves that certain cones minimize such weighted areas.

The surface energy of a crystal depends on direction, as given by a norm Φ on unit normals. Chapter 3 proves certain cones Φ minimizing, such as a cone over a triangular prism. The hypotheses involve basic geometric questions, such as the number of possible cardinalities of equilateral sets (i.e., sets of pairwise equidistant points) for a norm on R^{n}.

We also consider 1-dimensional Φ-minimizing networks for differentiable norms Φ. It is well-known that length-minimizing networks meet in threes at 120° angles. Chapter 4 classifies the singularities in Φ-minimizing networks in R^{n} and establishes $n+1$ as the sharp bound on the number of segments that can meet at a point.

Figure 1.0.1. The cone over the tetrahedron provides the least-area soap film which separates the four regions.
Photo by F. Goro.
1.1 The regular simplex cone is area-minimizing. As an illustration of paired calibrations, we now sketch a proof that the truncated cone C over the $(n-2)$-skeleton of the regular simplex centered at the origin in R^{n} is area-minimizing among hypersurfaces separating the $(n-1)$-dimensional faces F_{i} of the simplex.

Let p_{i} be the vertices of the dual regular simplex with unit length edges. Each p_{i} lies on the ray from the origin through the center of the face F_{i}, and all p_{i} are at the same distance from the origin. Note that $p_{j}-p_{i}$ is the unit normal to a piece of the cone C.

Consider a competing surface M, dividing the simplex into regions R_{i} containing F_{i}. (If any region is a "bubble" containing no F_{i}, just call it part of R_{1}.) Let $M_{i j}$ be the surface separating R_{i} from R_{j}, oriented with normal pointing into R_{j}. Since p_{i} is a constant vectorfield, its flux through the boundary of R_{i} is zero by the divergence theorem. Thus,

$$
\begin{gathered}
\sum_{i}\left(\text { Flux of } p_{i} \text { through } F_{i}\right)=-\sum_{i \neq j}\left(\text { Flux of } p_{i} \text { through } M_{i j}\right) \\
\quad=\sum_{i<j}\left(\text { Flux of } p_{j}-p_{i} \text { through } M_{i j}\right) \leq \sum_{i<j} \text { area } M_{i j}
\end{gathered}
$$

Figure 1.1.1. It is an open question whether the tetrahedron bounds a smaller soap film which does not separate the four regions. This figure was done by Jean Taylor of Rutgers University and The Geometry Center, following an idea due to Bob Hardt.

The first term is independent of M, and we get equality if $M=C$, so that

$$
\text { area } C \leq \text { area } M
$$

We call the p_{i} paired calibrations because on each piece of surface we are considering the combined effect of two fluxes. (In place of flux we could have used differential forms, as in the standard theory of calibrations.)

For this simplex cone there is an interesting variation on the proof, using projections onto the faces of the simplex. For each i, project $M \cap \partial\left(R_{i}\right)$ orthogonally onto F_{i}. Each regular point of M gets projected onto two faces, say F_{i} and F_{j}. The sum of the two stretch factors (signed Jacobians) is maximized when $M_{i j}$ is perpendicular to $p_{j}-p_{i}$, which is true everywhere if $M=C$. Since C is stretched the most, it must have the least area.

It is an open question whether the tetrahedral frame bounds a smaller stable or unstable soap film which does not separate the four regions. See Figure 1.1.1.

A related open question asks whether the standard triple bubble is the least-area way to enclose three given volumes. See Figure 1.1.2.

We remark that a hypersurface minimizes area among separators if and only if it is size-minimizing (for some orientation with multiplicities; cf. [M8 2.8]).

Among separating hypersurfaces, area-minimizing of course implies $(M, 0, \infty)$-minimal (the "area-minimizing" conditions of [T1, I. (8)]). The converse holds in R^{n} for $n \geq 4$, as follows by the methods of B. White [W1]; it fails for $n=3$, although it does hold for $n=2$.

Ken Brakke discovered our fundamental idea independently and has developed it further (see $[\mathbf{B 1}],[\mathbf{B} 2],[\mathbf{B 3}]$). For a partial extension to curvey minimal surfaces and constant-mean-curvature surfaces see [M11].

Figure 1.1.2. It is an open question whether the standard triple bubble is the least-area way to enclose three given volumes. (Jim Bredt) [M10].
1.2 Immiscible fluids (Chapter 2). A configuration of immiscible fluids F_{1}, \ldots, F_{m}, such as air, benzene, mercury, and water, tends (in the absence of gravity) to minimize an interface energy. This energy is proportional to area, with a different constant of proportionality $a_{i j}$ for each pair of fluids.

Theorem 2.5 gives a sufficient condition for energy minimization for a hypersurface H consisting of planar pieces $H_{i j}$ with unit normals $n_{i j}$ separating F_{i} from F_{j}. H is energy minimizing if whenever
k hyperplane pieces $H_{i_{1} i_{2}}, H_{i_{2} i_{3}}, \ldots, H_{i_{k} i_{1}}$ meet along a codimension2 plane, we have the balancing condition

$$
\begin{equation*}
a_{i_{1} i_{2}} n_{i_{1} i_{2}}+\cdots+a_{i_{k} i_{1}} n_{i_{k} i_{1}}=0 \tag{1}
\end{equation*}
$$

and for any distinct integers $1 \leq j_{1}, \ldots, j_{k} \leq m$,

$$
\begin{equation*}
\left|a_{j_{1} j_{2}} n_{j_{1} j_{2}}+\cdots+a_{j_{k-1} j_{k}} n_{j_{k-1} j_{k}}\right| \leq a_{j_{1} j_{k}} . \tag{2}
\end{equation*}
$$

The proof parallels the flux proof sketched in 1.1, with the points p_{i} chosen so that $p_{j}-p_{i}=a_{i j} n_{i j}$. Thus the essential step involves finding an "equilateral set" of points p_{i} at prescribed distances from each other (cf. 2.1, 2.3).

Examples include the cone over the 1 -skeleton of the cube in R^{3}, which minimizes surface energy if an interface between opposite regions would be $\sqrt{2}$ times as costly as between adjacent regions (cf. 2.2, 2.6).
1.3 General norms (Chapter 3). The energy $\Phi(S)$ of a crystal surface S is given by an integral $\int_{S} \Phi(n)$ in which the weighting of area depends on the unit normal n at each point. (The same symbol Φ is used both for the norm $\Phi(n)$ and for the associated total surface energy $\Phi(S)$.) Chapter 3 generalizes our earlier results to general norms Φ.

Theorem 3.9 gives a sufficient condition for a hypersurface H consisting of planar pieces $H_{i j}$ separating regions R_{i}, R_{j} to minimize $\sum \Phi_{i j}\left(H_{i j}\right)$. Let $\Phi_{i j}^{*}$ denote the norm dual to $\Phi_{i j}$ (see 3.1 for definitions). Let $n_{i j}$ denote the unit normal to $H_{i j}$, and let $n^{*}{ }_{i j}$ denote a $\Phi_{i j}^{*}$-unit dual to $n_{i j}$. Then H minimizes $\sum \Phi_{i j}\left(H_{i j}\right)$ if whenever k hyperplane pieces

$$
H_{i_{1} i_{2}}, \ldots, H_{i_{k k_{1}}}
$$

meet along a codimension- 2 plane,

$$
\begin{equation*}
n_{i_{1} i_{2}}^{*}+\cdots+n_{i_{k} i_{1}}^{*}=0, \tag{1}
\end{equation*}
$$

and for any distinct integers $1 \leq i_{1}, \ldots, i_{k} \leq m$,

$$
\begin{equation*}
\Phi_{i_{1} i_{k}}^{*}\left(n_{i_{1} i_{2}}^{*}+\cdots+n_{i_{k-1} i_{k}}^{*}\right) \leq 1 . \tag{2}
\end{equation*}
$$

Again the proof parallels the flux proof sketched in 1.1, with the points p_{i} chosen so that $p_{j}-p_{i}=n^{*}{ }_{i j}$. Thus the essential step
involves for example finding points p_{i} at unit distance from each other in the Φ^{*} norm (cf. 3.2).
C.M. Petty [\mathbf{P}, Theorem 4] proved that for any norm Φ^{*}, there are 4 equidistant points ("an equilateral tetrahedron") in R^{3}. Consequently the cone over the 1 -skeleton of a certain dual tetrahedron is minimizing. It is an open question whether there are always $n+1$ equilateral points in R^{n} (cf. 3.3).

For some smooth, strictly convex norms Φ^{*} on R^{3} there are 5 equidistant points (3.4). Consequently certain cones over the $1-$ skeleton of triangular prisms are Φ-minimizing (3.5). In these new singular cones, nine surfaces and six curves meet at a point.
1.4 Existence and regularity. The existence of minimizers for area or any single norm, as boundaries of top-dimensional currents, is an easy application of geometric measure theory. When the various interfaces are assigned different weightings (of a single norm), as with immiscible fluids, existence theory requires the methods of F . Almgren [\mathbf{A}], with certain stringent additional hypotheses to avoid "frothing." (See [A, VI. 1 (7)]. We remark that for existence, these additional hypotheses may be relaxed to a triangle inequality $\sigma_{i k} \leq \sigma_{i j}+\sigma_{j k .}$.)

For all of these problems, almost everywhere regularity follows by the methods of Almgren [A], with improvements in cert'ain cases by J. Taylor [T1, T2] and B. White [W2].

No one has worked out extensions of the existence and regularity theory to the case of different norms for different interfaces.
1.5 Minimizing networks (Chapter 4). Generalizations of the classical Steiner or Fermat problem (cf. [CR, pp. 356-361]) ask for the shortest network connecting a finite set of "boundary" points in R^{n}. It is well known that the solution consists of finitely many straight line segments, generally meeting at auxiliary nodes in threes at 120° angles.

Replace length by a differentiable norm Φ and minimize $\int \Phi(T)$, where T is the unit tangent vector. Again there is a Φ-minimizing network consisting of finitely many straight line segments, generally meeting at auxiliary nodes.

The main structural question asks how segments can meet at a node. In partial analogy with our results on hypersurfaces, we
give necessary and sufficient conditions for a collection C of rays a_{j} emanating from the origin to be Φ-minimizing. Let a_{j}^{*} denote the Φ^{*}-unit duals to the a_{j}. Then C is Φ-minimizing if and only if

$$
\begin{equation*}
\sum a_{\jmath}^{*}=0 \tag{1}
\end{equation*}
$$

and any subcollection of the a_{j}^{*} satisfies

$$
\begin{equation*}
\Phi^{*}\left(\sum_{j \in J} a_{j}^{*}\right) \leq 1 \tag{2}
\end{equation*}
$$

To show these conditions necessary, one considers variations (1) displacing the origin of all the vectors, or (2) displacing the origin of some vectors and connecting the new origin to the old.

To show the conditions sufficient, in analogy to the hypersurface case, one uses the $p_{j}=a_{j}^{*}$ as calibrations.

Using these results, Theorem 4.5 gives a complete characterization of nodes in Φ-minimizing networks in R^{n}, including the fact that at most $n+1$ segments meet at a point. For example, the network connecting the vertices of a regular tetrahedron to the center of mass is Φ-minimizing for certain Φ.
1.6 References. Expositions of our results appear as [M6], [M9], [LM], and [M5]. For an introduction to rectifiable sets and geometric measure theory see $[\mathbf{M 4}]$. For a survey on calibrations, see [M1] or [M2].
2. Immiscible fluids. This chapter provides examples of cones which minimize total interface energy, as for immiscible fluids. These cones serve as models for general singular structure. Examples include cones over simplices and cubes.

Immiscible fluids F_{1}, \ldots, F_{m} tend to occupy (disjoint) regions R_{1}, \ldots, R_{m} in such a way as to minimize the total interface energy. This energy is proportional to area, but the constant of proportionality or interface energy $a_{\imath j}$ depends on which two fluids F_{i}, F_{j} are separated by the interface.

The first theorem starts with any configuration of m points in R^{n} and produces an associated energy-minimizing partition of the unit ball into m regions.

2.1 Immiscible Fluids Theorem I.

Given real numbers ("interface energies") $a_{i j}=a_{j i}>0$ for $1 \leq i \neq$ $j \leq m$, suppose there are points $p_{1}, \ldots, p_{m} \in R^{n}$ such that

$$
\left|p_{j}-p_{i}\right|=a_{i j}
$$

Let $C \subset B(0,1)$ be a hypersurface which divides $B(0,1)$ into regions R_{1}, \ldots, R_{m} separated by pieces of hyperplanes $H_{i j}$ normal to $p_{j}-p_{i}$.

Then for any other hypersurface $T=\cup T_{i j}$ (a closed set which is a C^{1} manifold almost everywhere) which also separates the $R_{i} \cap S(0,1)$ from each other in $B(0,1)$ (with R_{i} facing R_{j} across $T_{i j}$),

$$
\sum a_{i j} A r e a H_{i j} \leq \sum a_{i j} A r e a T_{i j}
$$

Proof. Let $S_{i}=R_{i} \cap S(0,1)$. Then

$$
\begin{aligned}
\sum_{i<j} a_{i j} \operatorname{Area}\left(H_{i j}\right) & =\sum_{i<j}\left(\text { Flux of } p_{j}-p_{i} \text { through } H_{i j}\right) \\
& =\sum_{i}\left(\text { Flux of } p_{i} \text { through } S_{i}\right) \\
& =\sum_{i<j}\left(\text { Flux of } p_{j}-p_{i} \text { through } T_{i j}\right) \\
& \leq \sum_{i<j} a_{i j} \operatorname{Area}\left(T_{i j}\right)
\end{aligned}
$$

REMARK. We can allow more general competitors T; select the regions R_{i} in such a way that their topological boundaries have finite area, and let T be the union of reduced boundaries. Almost everywhere, T will separate exactly two regions and will have a well-defined approximate tangent plane.
2.2 Examples for immiscible fluids. In Theorem 2.1, if P is the polytope with vertices p_{i}, C could be the cone over the $(n-2)$ skeleton of the dual polytope. For example, if P is a unit regular octahedron in R^{3}, the distance $a_{i j}$ between adjacent points is 1 , while the distance $a_{i j}$ between opposite points is $\sqrt{2}$. Consequently, for these interface energies, the dual cone C over the 1 -skeleton of the cube is minimizing. See Figure 2.2.1.

Figure 2.2.1. The cone over the cube is energy-minimizing if interfaces between opposite regions are $\sqrt{2}$ times as costly as between adjacent regions. The proof uses the dual polyhedron, the unit regular octahedron, where opposite points are a distance $\sqrt{2}$ apart.

The same result holds for the hypercone over the $(n-2)$-skeleton of the cube in R^{n}. Ken Brakke [B1] proves stronger results by generalizing our constant vectorfields p_{i} to variable divergence-free vectorfields. He proves that for $n \geq 4$, the cones are actually areaminimizing. More specifically, let $a(n)$ denote the least value of the interface energy between opposite regions for which the hypercone over the cube in R^{n} is minimizing. Then $a(3)=\sqrt{2}, 0.545<$ $a(4)<0.94$, and $a(7)=0$. Thus the cone over the cube in R^{7} is area-minimizing even if we do not require opposite regions of space to be separated.

Given a set of interface energies $a_{i j}$ between four immiscible fluids in R^{3}, Theorem 2.1 applies if there are points p_{i} with $\left|p_{j}-p_{i}\right|=a_{i j}$, i.e., if there is a tetrahedron with edge lengths $a_{i j}$. The following generalization of the triangle inequality, due to Schoenberg [\mathbf{S}], tells whether or not there is an n-simplex with prescribed edge lengths. Schoenberg's theorem also gives a criterion for embedding more than $n+1$ points in R^{n} with prescribed distances between them. An interesting discussion of these results appears in Blumenthal [B], Section 4.3. Blumenthal includes another criterion in R^{3} in terms of the three angles at one of the vertices of the hypothesized tetrahedron.
2.3 Proposition ([S], Theorem 1). Given positive numbers $a_{i j}=$ $a_{j i}, 0 \leq i, j \leq n$, with $a_{i i}=0$, there are points p_{0}, \ldots, p_{n} in R^{n}
such that $\operatorname{dist}\left(p_{i}, p_{j}\right)=a_{i j}$ if and only if the matrix Q with entries

$$
q_{i j}=\frac{1}{2}\left(a_{0 i}^{2}+a_{0 j}^{2}-a_{i j}^{2}\right)
$$

is positive semidefinite.
If Q has rank s, then the points can be located in R^{s} but not in R^{s-1}. In particular, the points will be in general position in R^{n} if and only if Q is positive definite.

Proof. Suppose we have the $n+1$ points in R^{n}. Let $w_{i}=p_{i}-p_{0}$ for $1 \leq i \leq n$. Form an n by n matrix W whose columns are w_{i}. Then $W^{T} \bar{W}=Q$, which is therefore positive semidefinite. More generally, if the $n+1$ points are in general position in R^{s}, then W will be an s by n matrix of $\operatorname{rank} s$, so that Q will have rank s.

Conversely, if Q is positive semidefinite of rank s, we can find an s by n matrix W such that $W^{T} W=Q$; then let p_{i} be the $i^{t h}$ column of W, with $p_{0}=0$.
2.4 Remark. In Theorem 2.1, of course if $H_{i j}=\emptyset, C$ remains minimizing for $a_{i j}^{\prime}>a_{i j}$, so that the hypothesis may be weakened to $\left|p_{j}-p_{i}\right| \leq a_{i j}$ for any such pair i, j. It follows for example that for a nearly flat tetrahedron or other pyramid the minimizer is the set of faces not including the base. The theorem also admits the possibility that some $R_{i}=\emptyset$, i.e., that we are allowing in competition fluids which need not occur in the minimizer.

The following reformulation of Theorem 2.1 gives easily checked sufficient conditions for a configuration of immiscible fluids to minimize interface energy. The conditions are not necessary in general (see Example 2.2).
2.5 Immiscible Fluids Theorem II. Given real numbers ("interface energies") $a_{i j}=a_{j i}>0$ for $1 \leq i \neq j \leq m$, let $C \subset B(0,1) \subset$ R^{n} be a hypersurface which divides $B(0,1)$ into nonempty regions R_{1}, \ldots, R_{m} separated by pieces of hyperplanes $H_{i j}$, oriented with unit normals $n_{i j}=-n_{j i}$ pointing from R_{i} into R_{j}.

Suppose that whenever k hyperplane pieces $H_{i_{1} i_{2}}, H_{i_{2} i_{3}}, \ldots, H_{i_{k} i_{1}}$ meet along a co-dimension-2 plane,

$$
\begin{equation*}
a_{i_{1} i_{2}} n_{i_{1} i_{2}}+\cdots+a_{i_{k} i_{1}} n_{i_{k} i_{1}}=0 \tag{1}
\end{equation*}
$$

Further suppose that for any distinct integers $1 \leq i_{1}, \ldots, i_{s} \leq m$,

$$
\begin{equation*}
\left|a_{i_{1} i_{2}} n_{i_{1} i_{2}}+\cdots+a_{i_{s-1} i_{s}} n_{i_{s-1} i_{s}}\right| \leq a_{i_{1} i_{s}}, \tag{2}
\end{equation*}
$$

whenever the $n_{i, i_{j+1}}$ are all defined because $H_{i_{j} i_{j+1}}$ occurs.
Then for any other hypersurface $M=\cup M_{i j}$ (a closed set which is a C^{1} manifold almost everywhere) which also separates the $R_{i} \cap$ $S(0,1)$ from each other in $B(0,1)$ (with R_{i} facing R_{\jmath} across $M_{i j}$),

$$
\sum a_{i j} \text { Area } H_{i j} \leq \sum a_{i j} \text { Area } M_{i j} .
$$

Proof. We will apply Theorem 2.1 with Remark 2.4. Put $p_{1}=0$. To define p_{j} for $1<j \leq m$, consider a generic path γ_{0} from R_{1} to R_{j} passing through distinct regions $R_{i_{1}}=R_{1}, R_{i_{2}}, \ldots, R_{i_{s}}=R_{j}$. Let

$$
\begin{equation*}
p_{j}=a_{i_{1} i_{2}} n_{i_{1} i_{2}}+\cdots+a_{i_{s-1} i_{s}} n_{i_{s-1} i_{s}} . \tag{3}
\end{equation*}
$$

From (1), the definition of p_{j} is independent of the choice of path γ_{0}. Moreover, if γ is a generic path from R_{i} to R_{j} passing through distinct regions $R_{k_{1}}, \ldots, R_{k_{s}}$, then

$$
p_{j}-p_{i}=a_{k_{1} k_{2}} n_{k_{1} k_{2}}+\cdots+a_{k_{s-1} k_{s}} n_{k_{s-1} k_{s}} .
$$

By (2), $\left|p_{j}-p_{i}\right| \leq a_{i j}$. If $H_{i j}$ occurs, then there is a direct path from R_{i} to R_{j} and

$$
p_{j}-p_{i}=a_{i j} n_{i j} .
$$

The result follows by 2.1 with 2.4.
3. General norms. This chapter provides examples of cones which minimize hypersurface energies given by general norms $\Phi_{i j}$ on the space of normal vectors, as in the surface energy of crystals. Such cones serve as models for general singular structure. The case when all of the norms $\Phi_{i j}$ are equal is of primary interest. Examples include a cone over a triangular prism (Proposition 3.5).
3.1 Definitions. A norm Φ in R^{n} is a homogeneous convex function on R^{n}, positive except at 0 . That is,

$$
\begin{aligned}
\Phi(a x) & =|a| \Phi(x), \\
\Phi(x+y) & \leq \Phi(x)+\Phi(y), \\
\Phi(x) & >0 \quad \text { if } \quad x \neq 0 .
\end{aligned}
$$

The associated energy $\Phi(S)$ of a hypersurface S is given by the integral $\int_{S} \Phi(n)$ of the norm of the unit normal n.

The dual norm to Φ, denoted Φ^{*}, is given by

$$
\Phi^{*}(w)=\sup \{w \cdot v: \Phi(v)=1\} .
$$

Then

$$
|v \cdot w| \leq \Phi(v) \Phi^{*}(w) .
$$

If equality holds, we say that w is dual to v.
Geometrically, a vector w is dual to a given vector $v($ say $\Phi(v)=$ 1) if w is an outward-pointing normal (of any length) to the unit Φ-ball at v. See Figure 3.1.1. If the unit Φ-ball is not differentiable at v, then the direction of w is not uniquely determined; w only needs to be normal to any supporting hyperplane.

The following facts are true about dual norms (cf. [M3, Prop. 3.3]).
(1) $\Phi^{* *}=\Phi$
(2) Φ^{*} is differentiable if and only if Φ is strictly convex
(3) Φ^{*} is $C^{1,1}$ if and only if Φ is uniformly convex
(4) Φ^{*} is smooth $\left(C^{\infty}\right)$ and uniformly convex if and only if Φ is smooth and uniformly convex.

One often imposes conditions (2) or (3); see Remarks 3.7, 3.8.
Note that the relation " w is dual to v " is symmetric only if understood properly: If w is dual to v with respect to the norm Φ, then v is dual to w with respect to the norm Φ^{*}.

The following theorem starts with $m \Phi_{i j}^{*}$-equidistant points in R^{n} and produces an associated energy-minimizing partition of the unit ball into m regions.
3.2 General Norms Theorem I. Let $\Phi_{i j}=\Phi_{j i}$ be norms on R^{n} for

Figure 3.1.1. The vector w is dual to v.
$1 \leq i \neq j \leq m$. Suppose there are points $p_{1}, \ldots, p_{m} \in R^{n}$ such that

$$
\Phi_{i j}^{*}\left(p_{j}-p_{i}\right)=1
$$

Let $C=\cup H_{i j} \subset B(0,1)$ be a hypersurface which divides $B(0,1)$ into regions R_{1}, \ldots, R_{m} separated by pieces of hyperplanes $H_{i j}$ with unit normals $n_{i j}$ dual to $p_{j}-p_{i}\left(i . e ., n_{i j} \cdot\left(p_{j}-p_{i}\right)=\Phi_{i j}\left(n_{i j}\right)\right)$.

Then for any other hypersurface $M=\cup M_{i j}$ (see remark following Theorem 2.1) which also separates the $R_{i} \cap S(0,1)$ from each other in $B(0,1)$ (with R_{i}^{\prime} facing R_{j}^{\prime} across $M_{i j}$),

$$
\sum \Phi_{i j}\left(H_{i j}\right) \leq \sum \Phi_{i j}\left(M_{i j}\right)
$$

Further, if it happens that two regions R_{i} and R_{j} do not face each other across a surface $H_{i j}$ of positive area, i.e., $H_{i j}=\emptyset$, then we can allow $\Phi_{i j}^{*}\left(p_{j}-p_{i}\right) \leq 1$ for any such i and j.

Proof. Let $S_{i}=R_{i} \cap S(0,1)$. Then

$$
\begin{gathered}
\sum_{i<j} \Phi_{i j}\left(M_{i j}\right)=\sum_{i<j} \int_{M_{\imath j}} \Phi_{i j}(n)=\sum_{i<j} \int_{M_{\imath j}} \Phi_{i j}^{*}\left(p_{j}-p_{i}\right) \Phi_{i j}(n) \\
\geq \sum_{i<j} \int_{M_{\imath j}}\left(p_{j}-p_{i}\right) \cdot n=\sum_{i<j}\left(\text { Flux of } p_{j}-p_{i} \operatorname{through} M_{i j}\right) \\
\quad=\sum_{i}\left(\text { Flux of } p_{i} \text { through } S_{i}\right)
\end{gathered}
$$

with equality if $M_{i j}=H_{i j}$.
3.3 Remarks. Of course for $\Psi=\Psi^{*}$ the standard Euclidean norm on R^{n}, there is an "equilateral" set of $n+1$ points (at the vertices of a regular simplex) satisfying the hypothesis of Theorem 3.2. It is an open question whether there are $n+1$ such equidistant points for any norm Ψ on R^{n}, even for Ψ smooth and uniformly convex and $n=4$. It is true in R^{3}. Indeed, C.M. Petty [\mathbf{P}, Theorem 4] proves that for any norm Ψ on $R^{n}(n \geq 3)$, any maximal equilateral set S satisfies

$$
4 \leq \operatorname{card} S \leq 2^{n}
$$

By maximal we mean a set to which we cannot add another equidistant point; the same norm may have larger equilateral sets.

Both bounds are sharp. The second equality holds for the nonsmooth, non-uniformly-convex ℓ^{∞} norm with cubical unit ball and the 2^{n} equidistant points at the vertices of the cube (the only example, up to linear equivalence).

Section 3.4 will give a smooth, uniformly convex norm Ψ on R^{3} with 5 equidistant points. Petty $[\mathbf{P}$, p. 373] observes that it follows from work of Grünbaum [G] that 5 is the upper bound for norms on R^{3} not satisfying a certain "Property P ," in particular, for uniformly convex norms. We conjecture that 5 is the upper bound for differentiable norms in R^{3} too.

Thus the possible cardinality and combinatorial structure of Ψ equilateral sets for norms Ψ on R^{n} remains open, even for differentiable norms on R^{3}, the case of greatest physical interest. Also see Kusner [\mathbf{K}].
3.4 Examples. Here we describe some norms Ψ on R^{3}, including one with five points all a unit Ψ-distance from each other.

Let T be the standard regular tetrahedron in R^{3} with three vertices p_{1}, p_{2}, p_{3} in the $x y$-plane and the fourth p_{4} on the positive z-axis, and let $p_{5}=-p_{4}$; see Figure 3.4.1.

Figure 3.4.1. The regular tetrahedron T and its reflection.
Let Ψ_{0} be the norm such that the top half of the unit Ψ_{0}-sphere is the truncated cone over the unit circle in the plane with vertex $(0,0, z)$, with $z>0$ chosen so that $p_{4}-p_{1}, p_{4}-p_{2}$, and $p_{4}-p_{3}$ are on the cone, and therefore the vertices of T are Ψ_{0}-equidistant. See Figure 3.4.2.

Figure 3.4.2. The unit Ψ_{0}-ball. All six sides of the regular tetrahedron have Ψ_{0} length 1 as well.

Simple trigonometry shows that

$$
\Psi_{0}\left(p_{4}\right)=1-\frac{1}{\sqrt{3}}<\frac{1}{2}
$$

The norm Ψ_{0} can be smoothed to uniformly convex norms Ψ_{1} and Ψ_{2} with

$$
\Psi_{1}\left(p_{4}\right)<\Psi_{2}\left(p_{4}\right)=\frac{1}{2}
$$

maintaining symmetry under rotations about the z-axis and keeping the two circles of Figure 3.4.2 in the unit sphere. See Figure 3.4.3. Then the five points $p_{1}, \ldots p_{5}$ all satisfy

$$
\Psi_{2}\left(p_{i}-p_{j}\right)=1 \quad \text { for } i \neq j
$$

Figure 3.4.3. The unit Ψ_{2}-ball. All five vertices of the regular tetrahedron and its reflection are unit Ψ_{2}-distance apart.

The following proposition gives a new minimizing cone in R^{3}. See Figure 3.5.1.
3.5 Proposition. The cone over the 1 -skeleton of any triangular prism is Φ-minimizing for some smooth, uniformly convex norm Φ. At the origin, nine surfaces and six curves meet at a point.

Proof. Let Φ be the dual of the norm Ψ_{2} of Example 3.4. Let p_{i} be the vertices of the regular tetrahedron and its reflection as in Figure 3.4.1, so that $\Phi^{*}\left(p_{j}-p_{i}\right)=1$. Let $n_{i j}$ be the unit vectors dual to the $p_{j}-p_{i}$. These vectors $n_{i j}$ include the unit normals to the cone C over the edges of a certain vertical right triangular prism P, which by 3.2 is Φ-minimizing. Any other triangular prism is affinely equivalent to P, and hence its cone is minimizing for some norm.

Note that since the closures of the two regions of space corresponding to the points p_{4} and p_{5} only intersect at the vertex of C, we can allow $\Phi^{*}\left(p_{4}-p_{5}\right) \leq 1$, so that C is also Φ-minimizing if Φ

Figure 3.5.1. The cone over the triangular prism is Φ-minimizing.
is the dual of the norm Ψ_{1} of Example 3.4.
The methods of this paper do not require the piecewise planar surface to be a cone. For the integrand Ψ_{2} and its dual Φ just considered, there is a one-parameter family of surfaces which we can prove are Φ-minimizing. The boundaries are the edges of taller and shorter triangular prisms. They are described as follows. For concreteness, scale the above Φ-minimizing cone C so that its height is 1 , and let its vertex be the origin.

Figure 3.5.2. Other Φ-minimizing surfaces.
To obtain a Φ-minimizing surface of height $L>1$, cut off the half of C where $z>0$ and lift it up a distance $L-1$. Connect
the two pieces with the Cartesian product of a horizontal Y with a vertical line segment of length $L-1$. See Figure 3.5.2. This surface is composed of three vertical trapezoids and six triangles.

To obtain a Φ-minimizing surface of height $L<1$ (say $L=1$ $2 d$), cut out the portion of C where $-d<z<d$, shift the upper remaining piece down a distance $2 d$, and add a horizontal triangle to fill the hole in the middle. See Figure 3.5.2. This surface has six trapezoids and four triangles.
3.6 Proposition.Each of the one-parameter family of surfaces described above is Φ-minimizing for the smooth, uniformly convex norm $\Phi=\Psi_{2}^{*}$.

Proof. The normals n_{i} are the same as for the cone C, with one additional normal $n_{10}=n_{10}^{*}$ for the shorter surfaces, which have the horizontal triangle.
3.7 Remarks. More singular examples are provided by norms Φ which fail to be strictly convex (which means that the dual norm Φ^{*} fails to be differentiable). For example, let Φ^{*} be the ℓ^{∞} norm on R^{n}, which has a cubical unit ball, whose 2^{n} vertices are equidistant. By Theorem 3.2, the union of all the axis hyperplanes (the cone over the generalized octahedron) is Φ-minimizing.

As a second example, let Φ^{*} be the ℓ^{1} norm, whose unit ball is the regular octahedron or "cross-polytope." The $2 n$ vertices of the octahedron are equidistant in this norm. Again by Theorem 3.2, the cone over the cube is Φ-minimizing. (In R^{3}, the cone over the cube is also Φ-minimizing if the unit Φ^{*}-ball is a hexagonal prism, whose height is adjusted so that six of its twelve vertices are the corners of a regular octahedron.)

If the unit Φ-ball in R^{3} has a large flat face on top, so that the unit Φ^{*} ball comes to a sharp point on top, then the graph of any function on the disc with Lipschitz constant at most 1 is Φ-minimizing. Thus there are infinitely many Φ-minimizing ways to split the cylinder.

Remark. As in Remark 2.4, for any pair i, j for which $H_{i j}=\emptyset$, the hypothesis of Theorem 3.2 may be weakened to $\Phi_{i j}^{*}\left(p_{j}-p_{1}\right) \leq 1$. The theorem also admits the possibility that some $R_{i}=\emptyset$.

The following reformulation of Theorem 3.2 gives easily checked sufficient conditions for a configuration to minimize the energies
given by norms. Again the case where all the norms $\Phi_{i j}$ are equal is of primary interest.
3.9 General Norms Theorem II. Let $\Phi_{i j}=\Phi_{j i}$ be norms on R^{n} for $1 \leq i \neq j \leq m$. Let $C \subset B(0,1) \subset R^{n}$ be a piecewise planar hypersurface which divides $B(0,1)$ into nonempty regions R_{1}, \ldots, R_{m} separated by pieces of hyperplanes $H_{i j}$ oriented with unit normal $n_{i j}=-n_{j i}$ pointing from R_{i} into R_{j}. Let $n^{*}{ }_{i j}=-n^{*}{ }_{j i}$ be a $\Phi_{i j}^{*}$-unit dual to $n_{i j}$, i.e.,

$$
n^{*}{ }_{i j} \cdot v \leq \Phi_{i j}(v),
$$

with equality for $v=n_{i j}$.
Suppose that whenever k hyperplane pieces $H_{i_{1} i_{2}}, H_{i_{2} i_{3}}, \ldots, H_{i_{k} i_{1}}$ meet along a codimension-2 plane,

$$
\begin{equation*}
n^{*} i_{i_{1} i_{2}}+\cdots+n^{*}{ }_{i_{k} i_{1}}=0 . \tag{1}
\end{equation*}
$$

Further suppose that for any distinct integers $1 \leq i_{1}, \ldots, i_{k} \leq m$,

$$
\begin{equation*}
\Phi_{i_{1} i_{k}}^{*}\left(n^{*} i_{i_{1} i_{2}}+\cdots+n^{*}{ }_{i_{k-1} i_{k}}\right) \leq 1, \tag{2}
\end{equation*}
$$

whenever the $n_{i_{j} i_{+1}}$ are all defined because $H_{i, i_{j+1}}$ occurs.
Then for any other hypersurface $M=\cup M_{i j}$ (see remark following Theorem 2.1) which also separates the $R_{i} \cap S(0,1)$ from each other in $B(0,1)$ (with R_{i} facing R_{j} across $M_{i j}$),

$$
\sum \Phi_{i j}\left(H_{i j}\right) \leq \sum \Phi_{i j}\left(M_{i j}\right) .
$$

Proof. Replace $a_{i j} n_{i j}$ by $n^{*}{ }_{i j}$ in the proof of Theorem 2.5 to obtain p_{i} such that $p_{j}-p_{i}=n^{*}{ }_{i j}$ (when $H_{i j}$ occurs) and more generally $\Phi_{i j}^{*}\left(p_{j}-p_{i}\right) \leq 1$ for all i and j. The result follows by Theorem 3.2 and Remark 3.8.

Remarks. If the $\Phi_{i j}$ are differentiable at $n_{i j}$, then condition (1) is necessary for the first variation to vanish (cf. Lemma 4.1). If $\Phi_{i j}$ is not differentiable at $n_{i j}$, then $n^{*}{ }_{i j}$ is not uniquely determined ($\Phi_{i j}^{*}$ is not strictly convex; cf 3.1(2)).

In the statements and proofs of Theorems 3.2 and 3.5 , the assumption implicit in the definition of a norm that $\Phi(-v)=\Phi(v)$ is unnecessary; the hypothesis $\Phi_{i j}=\Phi_{j i}$ must merely be replaced by $\Phi_{i j}(v)=\Phi_{j i}(-v)$.
4. Minimizing networks. This chapter charecterizes singularities in energy-minimizing networks. In particular, Theorem 4.5 shows that in R^{n} at most $n+1$ segments meet at a point. A good reference is [M7, Chapter 10].

For any norm Φ on R^{n}, for any piecewise differentiable curve C with unit tangent vector T, define the energy

$$
\Phi(C)=\int_{C} \Phi(T)
$$

Any finite set of "boundary" points can be connected by a Φ minimizing network, consisting of finitely many straight line segments, possibly meeting at auxiliary nodes (cf. [A2]).

The following lemma gives a useful formula for the first variation of Φ-energy.
4.1 Lemma. Let Φ be a differentiable norm on R^{n}, and let $a \in R^{n}$. The first variation in $\Phi(a)$ satisfies

$$
\delta(\Phi(a))=\frac{a^{*}}{\Phi^{*}\left(a^{*}\right)} \cdot \delta a .
$$

Here a^{*} is a vector dual to a, so that equality holds in the general inequality $v \cdot w \leq \Phi(v) \Phi^{*}(w)$ when $v=a$ and $w=a^{*}$.

Proof. Differentiating

$$
\Phi(a)=\frac{a^{*}}{\Phi^{*}\left(a^{*}\right)} \cdot a
$$

yields

$$
\delta(\Phi(a))=\frac{a^{*}}{\Phi^{*}\left(a^{*}\right)} \cdot \delta a+\delta\left(\frac{a^{*}}{\Phi^{*}\left(a^{*}\right)}\right) \cdot a
$$

and the second term vanishes because

$$
\frac{b^{*}}{\Phi^{*}\left(b^{*}\right)} \cdot a \leq \Phi(a),
$$

with equality when $b=a$.

The following theorem gives a characterization of Φ-minimizing network cones.
4.2 Theorem. Let Φ be a differentiable norm on R^{n}, and let Φ^{*} denote the dual norm. Let $a_{1}, \ldots, a_{k} \in R^{n}$, normalized so that $\Phi\left(a_{j}\right)=1$, and let $a_{1}^{*}, \ldots a_{k}^{*}$ denote the duals such that $\Phi^{*}\left(a_{j}^{*}\right)=1$ and $a_{j} \cdot a_{j}^{*}=1$. Then the network C consisting of rays from the origin to a_{1}, \ldots, a_{k} is Φ-minimizing if and only if

$$
\begin{equation*}
a_{1}^{*}+\cdots+a_{k}^{*}=0 \tag{1}
\end{equation*}
$$

and any subcollection of the a_{j}^{*} has a sum of Φ^{*}-norm at most 1 :

$$
\begin{equation*}
\Phi^{*}\left(\sum_{j \in J} a_{j}^{*}\right) \leq 1 . \tag{2}
\end{equation*}
$$

Remarks. Condition (1) is the equilibrium condition for k segments meeting at the origin. By convexity, such an equilibrium is a minimum (for fixed topological type). Cf. [CG, (10) and Theorem 3]. Condition (2) deals with other topological types.

If Φ is not differentiable, the dual vectors a_{j}^{*} are not uniquely determined. If (1) and (2) hold for some choice of the a_{j}^{*}, then C is Φ-minimizing.

The converse fails for nondifferentiable Φ. Alfaro et. al. [A1, A2] show that the cone consisting of four vectors along the axes in R^{2} is minimizing for a certain piecewise C^{∞}, uniformly convex norm Φ, but conditions (1) and (2) hold for no choice of the a_{j}^{*}. Conger [Con] proves an analogous result for six vectors along the axes in R^{3}.

For the nondifferentiable, non-uniformly-convex ℓ^{∞} norm on R^{n}, with cubical unit ball, the 2^{n} vectors from the center to the vertices of the unit cube form a minimizing network. Cf. $[\mathbf{H}]$.

Proof of Theorem 4.2. First suppose C is Φ-minimizing. For variations in C displacing the center an amount δa, since Φ is differentiable, Lemma 4.1 gives a first variation of

$$
\left(\sum a_{j}^{*}\right) \cdot(-\delta a),
$$

so that (1) holds. Similarly for variations displacing the origin of the segments $\left\{\overline{0 a_{j}}: j \in J\right\}$ an amount δa and adding a line segment
joining the old origin to the new, the first variation is

$$
\left(\sum_{j \in J} a_{j}^{*}\right) \cdot(-\delta a)+\Phi(\delta a)
$$

so that (2) holds.
Second, suppose (1) and (2) hold. Let N be any network connecting the points a_{j}. For $j \geq 2$, let P_{j} be paths in N from a_{1} to a_{j}, such that no P_{j} overlaps itself. For each segment S_{i} of N, let $\left\{P_{j}: j \in J_{i}\right\}$ be paths containing S_{i}. Then

$$
\begin{align*}
\Phi(C) & =k=\sum_{j=1}^{k} a_{j}^{*} \cdot a_{j}=\sum_{j=2}^{k} a_{j}^{*} \cdot\left(a_{j}-a_{1}\right) \quad \text { by }(1) \tag{1}\\
& =\sum_{j=2}^{k} \int_{C_{j}} a_{j}^{*}=\sum_{j=2}^{k} \int_{P_{j}} a_{j}^{*} \quad \text { by Stokes's theorem } \\
& \leq \sum_{i}\left|\int_{S_{1}} \sum_{j \in J_{t}} a_{j}^{*}\right| \\
& \leq \sum_{i} \Phi\left(S_{i}\right) \quad \text { by }(2) \\
& =\Phi(N) .
\end{align*}
$$

Therefore, C is Φ-minimizing.
The following two lemmas pave the way for the main theorem 4.5 of this section.
4.3 Lemma. Suppose we have a set of vectors in R^{n} labelled as $a_{1}, \ldots, a_{k}, a_{1}^{*}, \ldots, a_{k}^{*}$, with $k \geq 3$, and suppose that $a_{j} \cdot a_{j}^{*}=1$ for each j, and $\sum a_{j}^{*}=0$. Then there is a differentiable norm Φ on R^{n} with dual norm Φ^{*} such that

$$
\begin{equation*}
\Phi\left(a_{j}\right)=\Phi^{*}\left(a_{j}^{*}\right)=1 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Phi^{*}\left(\sum_{j \in J} a_{j}^{*}\right) \leq 1 \quad \text { for all } \quad J \subset\{1, \ldots, k\} \tag{2}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
-1<a_{i} \cdot a_{j}^{*}<0 \tag{3}
\end{equation*}
$$

for all $i \neq j$. Φ may be chosen to be C^{∞} and uniformly convex.
Proof. Suppose there is such a norm. Since Φ is differentiable, the unit Φ^{*} ball B^{*} is strictly convex (3.1 (2)). If $\xi \in B^{*}$, then

$$
\begin{equation*}
-1 \leq a_{i} \cdot \xi \leq 1 \tag{4}
\end{equation*}
$$

with equality only if $\xi= \pm a_{i}^{*}$ (since unit duals are unique for a differentiable norm). Now suppose that $i \neq j$, and let $\xi=a_{i}^{*}+a_{j}^{*}$. By (2), $\xi \in B^{*}$. Using this ξ in (4) gives

$$
1+a_{i} \cdot a_{j}^{*}<1
$$

so that

$$
a_{i} \cdot a_{j}^{*}<0
$$

Similarly, (4) with $\xi=a_{j}^{*}$ yields

$$
-1 \leq a_{i} \cdot a_{j}^{*}
$$

with equality only if $a_{j}^{*}=-a_{i}^{*}$. But if $a_{j}^{*}=-a_{i}^{*}$ then $k<3$ (since $a_{3} \cdot a_{1}^{*}$ and $a_{3} \cdot a_{2}^{*}$ cannot both be negative if $a_{1}^{*}=-a_{2}^{*}$).

Conversely, suppose (3) holds. Consider the symmetric polytope

$$
C^{*}=\left\{\xi:\left|a_{i} \cdot \xi\right| \leq 1 \quad \text { for all } i\right\}
$$

Since $a_{i} \cdot a_{i}^{*}=1$ and (3) holds, each a_{i}^{*} lies on the interior of a distinct face of C^{*}. Also since $a_{i} \cdot a_{j}^{*}<0$ for $i \neq j$ and $\sum a_{j}^{*}=0$, each sum $\sum_{j \in J} a_{j}^{*}$ satisfies

$$
-1 \leq-a_{i} \cdot \sum_{j \in J^{C}} a_{j}^{*}=a_{i} \cdot \sum_{j \in J} a_{j}^{*} \leq 1
$$

with equality only if $\sum_{j \in J} a_{j}^{*}= \pm a_{i}^{*}$. Hence each sum $\sum_{j \in J} a_{j}^{*} \neq \pm a_{i}^{*}$ lies in the interior of C^{*}. Since there are only a finite number of these sums, we can smooth C^{*} and obtain a C^{∞}, compact, symmetric, uniformly convex body $B^{*} \subset C^{*}$ having these same properties. Take Φ^{*} to be the norm with unit ball B^{*}, and Φ to be the dual norm. Then Φ is C^{∞} and uniformly convex, and (1) and (2) hold.
4.4 Lemma. Let $a_{1}, \ldots, a_{k}, a_{1}^{*}, \ldots, a_{k}^{*}$ be vectors in R^{n} such that

$$
\begin{equation*}
a_{1}^{*}+\cdots+a_{k}^{*}=0 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i} \cdot a_{j}^{*}<0 \quad \text { for } \quad i \neq j \tag{2}
\end{equation*}
$$

Then $C a r d\left\{a_{i}\right\} \leq n+1$. Indeed, either the a_{i} are linearly independent or the a_{i} constitute the k vertices of $a(k-1)$-simplex with the origin in its interior.

Remark. Z. Furedi, J. Lagarias, and F. Morgan [FLM, Thm. 3.2] show that if equality is allowed in (2), but still $a_{i} \cdot a_{i}^{*}>0$, then $C \operatorname{ard}\left\{a_{i}\right\} \leq 2 n$.

Proof of Lemma 4.4. If a_{1}, \ldots, a_{k} are linearly independent, we are done. Otherwise we may assume

$$
a_{k}=\sum_{i=1}^{k-1} \lambda_{i} a_{i}
$$

with

$$
\lambda_{1}, \ldots, \lambda_{p} \geq 0>\lambda_{p+1}, \ldots, \lambda_{k-1}
$$

Suppose $p \geq 1$. For fixed j such that $1 \leq j \leq p$,

$$
0>a_{k} \cdot a_{j}^{*}=\sum_{i=1}^{k-1} \lambda_{i} a_{i} \cdot a_{j}^{*} \geq \sum_{i=1}^{p} \lambda_{i} a_{i} \cdot a_{j}^{*}
$$

because for $i>p, \lambda_{i} a_{i} \cdot a_{j}^{*}>0$. Summing over j yields

$$
0>\sum_{i, j=1}^{p} \lambda_{i} a_{i} \cdot a_{j}^{*} \geq \sum_{i=1}^{p} \lambda_{i} a_{i} \cdot\left(\sum_{j=1}^{k-1} a_{j}^{*}\right)
$$

because for $i \leq p<j, \lambda_{i} a_{i} \cdot a_{j}^{*} \leq 0$. Thus

$$
0>\sum_{i=1}^{p} \lambda_{i} a_{i} \cdot\left(-a_{k}^{*}\right) \geq 0
$$

because for $i \leq p, \lambda_{i} a_{i} \cdot a_{k}^{*} \leq 0$. This contradiction implies that $p=$ 0 , i.e., each λ_{i} must be negative. Hence the $k-1$ points a_{1}, \ldots, a_{k-1} must be linearly independent and the k points a_{1}, \ldots, a_{k} are at the vertices of a $(k-1)$-simplex with 0 in its interior.
4.5 Theorem. Let Φ be a differentiable norm on R^{n}. Then at most $n+1$ segments come together in a Φ-minimizing network. Indeed, a 1-dimensional cone C consisting of at least three rays emanating from the origin is Φ-minimizing for some Φ if and only the rays are linearly independent or pass through the k vertices of $a(k-1)$ simplex with the origin in its interior.
Φ may be chosen to be C^{∞} and uniformly convex.
Remarks. If C is the cone over the regular tetrahedron centered at 0 in R^{3} with vertices a_{i}, the unit ball of Φ can be taken to be a smoothing of the cube with vertices $\pm a_{i}$; in R^{n}, a smoothing of the polytope with vertices $\pm a_{i}$.

The differentiability hypothesis is necessary. See the remarks after 4.2.

The planar case was treated in [Coc], and with more careful attention to differentiability in $[\mathbf{L}]$ and [A2].
M. Alfaro, T. Campbell, J. Sher, and A. Soto (written up in [A3]) have considered the related problem for directed length-minimizing planar networks. They proved that segments sometimes meet in sixes, but never in sevens.

Proof of Theorem 4.5. First suppose that the rays pass through the vertices a_{1}, \ldots, a_{k} of a $(k-1)$-simplex with the origin in its interior. Because the origin is in the interior, we can choose the vertices on the rays in such a way that their sum is zero. Using a nonsingular linear transformation we may also assume that the simplex is regular, with $\left|a_{j}\right|=1$. Let $a_{j}^{*}=a_{j}$. Then $a_{j} \cdot a_{j}^{*}=1$, $\sum a_{j}^{*}=0$, and $-1<a_{i} \cdot a_{j}^{*}<0$ for $i \neq j$. It follows by Lemma 4.3 and Theorem 4.2 that the cone C over a_{1}, \ldots, a_{k} is Φ-minimizing for some Φ as asserted.

Second, let a_{1}, \ldots, a_{k} be linearly independent. Using a nonsingular linear transformation, we may assume that the a_{j} are orthonormal . Let $a_{j}^{*}=a_{j}-\frac{1}{k-1} \sum_{i \neq j} a_{i}$. Then $a_{j} \cdot a_{j}^{*}=1, \sum a_{j}^{*}=0$, and $-1<a_{i} \cdot a_{j}^{*}=-\frac{1}{k-1}<0$ for $i \neq j(k \geq 3)$. Again by Lemma 4.3
and Theorem 4.2, the cone C over a_{1}, \ldots, a_{k} is Φ-minimizing for some Φ as asserted.
(An alternative argument for part two would have been to perturb part one.)

Now let C be any Φ-minimizing cone. By Theorem 4.2 and Lemma $4.3, C$ is the cone over points a_{1}, \ldots, a_{k} in R^{n}, with associated points a_{\jmath}^{*} such that $\sum a_{j}^{*}=0$ and $a_{i} \cdot a_{j}^{*}<0$ for all $i \neq j$. The conclusion now follows by Lemma 4.4.

Acknowledgments. Lawlor was partially supported by a Na tional Science Foundation postdoctoral fellowship and was employed at Princeton University while this research was done. Morgan was partially supported by a National Science Foundation grant and by the Institute for Advanced Study. We want to thank Colin Adams, Victor Klee, Jeffrey Lagarias, Erwin Lutwak, and Dave Witte for their help with Section 3.3, and Claire Chan for a number of helpful questions and comments.

References

[A1] Manuel Alfaro, Mark Conger, Kenneth Hodges, Adam Levy, Rajiv Kochar, Lisa Kuklinski, Zia Mahmood, and Karen von Haam, Segments can meet in fours in energy-minimizing networks, J. of Undergraduate Math., 22 (1990), 9-20 .
[A2] Manuel Alfaro, Mark Conger, Kenneth Hodges, Adam Levy, Rajiv Kochar, Lisa Kuklinski, Zia Mahmood, and Karen von Haam, The structure of singularities in Φ-minimizing networks in R^{2}, Pacific J. Math., 149 (1991), 201-210.
[A3] Manuel Alfaro, Existence of shortest directed networks in R^{2}, Pacific J. Math., to appear.
[A] F. J. Almgren, Jr., Existence and regularity almost everywhere of solutions to elliptic variational problems with constraints, Memoirs Amer. Math. Soc., 165 (1976), 1-199.
[AT] F. J. Almgren, Jr. and Jean Taylor, The geometry of soap films and soap bubbles, Sci. Amer., 235 (1976), 82-93.
[B] Leonard M. Blumenthal, Theory and Applications of Distance Geometry, 2nd ed., Chelsea, New York, 1970
[B1] Kenneth Brakke, Minimal cones on hypercubes, J. Geom. Anal., 1 (1991), 329-338.
[B2] Kenneth Brakke, Soap films and covering spaces, to appear in J. Geom. Anal. (also Minnesota Geometry Center research report GCG54).
[B3] Kenneth Brakke, The Surface Evolver, Experimental Mathematics, 1 (1992), 141-165.
[CG] G. D. Chakerian and M. A. Ghandehari, The Fermat problem in Minkowski spaces, Geom. Dedicata, 17 (1985), 227-238.
[Coc] E. J. Cockayne, On the Steiner problem, Canad. Math. Bull., 10 (1967), 431-450.
[Con] Mark Conger, Energy-minimizing networks in R^{n}, Honors thesis, Williams College, 1989, expanded 1989.
[CR] R. Courant and H. Robbins, What is Mathematics?, Oxford Univ. Press, New York, 1941.
[F] Federer, H., Geometric Measure Theory, New York, Springer-Verlag, 1969.
[FLM] Z. Füredi, J. C. Lagarias, and F. Morgan, Singularities of minimal surfaces and networks and related problems in Minkowski space, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, Vol. 6, 1991.
[G] Branko Grünbaum, Strictly antipodal sets, Israel J. Math., 1 (1963), 5-10.
[H] M. Hanan, On Steiner's problem with rectilinear distance, J. SIAM Appl. Math., 14 (1966) 255-265.
[K] Robert B. Kusner, in Richard K. Guy, An olla-podrida of open problems, often oddly posed, Amer. Math. Monthly, 90 (1983), 196-199.
[LM] Gary Lawlor and Frank Morgan, Minimizing cones and networks: immiscible fluids, norms, and calibrations, Extended abstracts of lectures presented at the AMS special session, "Computing Optimal Geometries", AMS Selected Lectures in Math. (Jean E Taylor, ed.), 1991, 27.
[L] Adam Levy, Energy-minimizing networks meet only in threes, J. of Undergraduate Math., 22 (1990), 53-59.
[M1] Frank Morgan, Area-minimizing surfaces, faces of Grassmannians, and calibrations, Amer. Math. Monthly, 95 (1988), 813-822.
[M2] Frank Morgan, Calibrations and new singularities in area-minimizing surfaces: a survey, in Henri Berestycki, Jean-Michel Coron, and Ivar Ekeland, ed., Variational Methods, Prog. Nonlin. Diff. Eqns., Vol. 4 (Proc. conf., Paris, 1988), Birkhäuser, Boston, 1990, pp. 329-342.
[M3] Frank Morgan, The cone over the Clifford torus in R^{4} is Φ-minimizing, Math. Ann., 289 (1991), 341-354; Announced in A sharp counterexample on the regularity of Φ-minimizing hypersurfaces, Bull. Amer. Math. Soc., 22 (1990), 295-299.
[M4] Frank Morgan, Geometric Measure Theory: a Beginner's Guide, Academic Press, New York, 1988; Second edition, 1995.
[M5] Frank Morgan, Minimal surfaces, crystals, and norms on R^{n}, Proc. 7th Annual Symp. on Computational Geom., June, 1991, N. Conway, NH.
[M6] Frank Morgan, Minimal surfaces, crystals, shortest networks, and undergraduate research, Math. Intel., 14 (1992), 37-44.
[M7] Frank Morgan, Riemannian Geometry: a Beginner's Guide, Jones and Bartlett, 1992
[M8] Frank Morgan, Size-minimizing rectifiable currents, Inventiones math., 96 (1989), 333-348.
[M9] Frank Morgan, Compound soap bubbles, shortest networks, and minimal surfaces, video of AMS-MAA address, San Francisco, 1991.
[M10] Frank Morgan, Soap bubbles and soap films, in Joseph Malkevitch and Donald McCarthy, ed., Mathematical Vistas: New and Recent Publications in Mathematics from the New York Academy of Sciences, vol. 607, 1990.
[M11] Frank Morgan, Strict calibrations, constant mean curvature, and triple junctions, preprint (1994).
[P] C.M. Petty, Equilateral sets in Minkowski spaces, Proc. Amer. Math. Soc., 29 (1971), 369-374.
[S] I. J. Schoenberg, Remarks to Maurice Frechet's article "Sur la definition axiomatique d'une classe d'espaces vectoriels distancies applicables vectoriellement sur l'espace de Hilbert", Ann. of Math., 36 (1935), 724-732.
[T1] Jean Taylor, The structure of singularities in soap-bubble-like and soap-film-like minimal surfaces, Ann. Math., 103 (1976), 489-539.
[T2] Jean Taylor, The structure of singularities in solutions to ellipsoidal variational problems with constraints in R^{3}, Ann. Math., 103 (1976), 541546.
[W1] Brian White, Existence of least-area mappings of N-dimensional domains, Annals Math., 118 (1983), 179-185.
[W2] Brian White, Regularity of the singular sets in immiscible fluid interfaces and solutions to other Plateau-type problems, Proc. Center Math. Anal., Australian Natl. Univ., 10 (1985), 244-249.

Received May 27, 1992 and accepted for publication December 7, 1992.

Brigham Young University
Provo, UT 84602
E-mail address: lawlor@math.byu.edu

Williams College

Williamstown, MA 01267

E-mail address: frank.morgan@williams.edu

