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ON THE COMPACTNESS OF A CLASS OF
RIEMANNIAN MANIFOLDS

ZHIYONG GAO AND GUOJUN LI1ao

A class of Riemannian manifolds is studied in this pa-
per. The main conditions are 1) the injectivity is bounded
away from 0; 2) a norm of the Riemannian curvature is
bounded; 3) volume is bounded above; 4) the Ricci cur-
vature is bounded above by a constant divided by square
of the distance from a point. Note the last condition is
scaling invariant. It is shown that there exists a sequence
of such manifolds whose metric converges to a continuous
metric on a manifold.

Introduction. Let £ = L(H, K,V,n,io) be the set of n-dimen-
sional Riemannian manifolds (M, g), s.t.,

(0.1)

4)
5)
.6

)

M is diffeomorphic to (Bs, go), the standard Euclidean ball
of radius 2, center = 0;

(M, g) has C* curvature tensor in M;

for any z € M, the Ricci curvature at = |Ric(g)(z)| < Hr™2,
where r = dist(z, 0);

the injectivity of (M, g) > 1o > 0;

| 1Em(g)|2dg < K;

volume of (M,g) < V.

In the case when the condition (0.3) is replaced by |Ric(g)| < H,
and (0.6) is replaced by a diameter bound, a compactness property is
proved by the first author in a more general setting. The purpose of
this paper is to extend some of his results to the present situation

where the bound om Ricci curvature of (M,g) blows up like 7~

2

at a point. As an application, we will discuss the compactness of
orbifolds with a finite number of singularities.

23



24 L.ZHIYONG GAO AND GUOJUN LIAO

The main result is:

THEOREM 0.7. Let (My,gx) € £, k =1,2,3,.... Then there
ezists a subsequence (again denoted by (My, gx)), a C* manifold M’
diffeomorphic to By(0), and a C° metric g’ on M’ s.t. g — ¢’ in
C°%-norm on M’ and the convergence is in C1*-norm away from 0.

In Section 1 we study the geodesic balls centered at 0. A com-
pactness estimate of the metric ¢ will be derived. In Section 2, a
small geodesic sphere is shown to have a small diameter. In Sec-
tion 3, some L™ ?-curvature pinching results are derived, which will
be used in Section 4 to show the existence of harmonic coordinates.
We will prove in Section 4 the above main result and a slightly
different version.

In the definition of £, if (0.3) is replaced by a 1-sided condition

(0.3) Ric(g) > —Hr™ g,

then the above compactness result should be modified as follows.
Denote the set of such Riemannian manifolds by £’.

THEOREM 0.8. Let (Mg, gx) € L', k = 1,2,3,.... Then there
exists a subsequence of (My, gx), which converges in C°-norm to a
C*® manifold M' with a C° metric ¢'.

1. In this section, we assume that for some H > 0, 5 > 0,
(M, g) is a Riemannian manifold diffeomorphic to B, satisfying

(1.1) Ric(g) > —Hr™2g;

(1.2) inj(g) > 1o > 0.

Let B,(0) = {z € M|d(0,z) <} be the geodesic ball of M centered
at 0. Consider a geodesic polar coordinate system {r,z!,--- 2" '}
on B,(0), we have

n—1
(1.3) ds(g)? = dr® + Y gij(r,z)dz'da’;

i=1
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1 9? 1 g 0

14)  Riwj = =5 2s05(r2) + 5 30 0% g g,
( ) J 2 argg](r x)—'_ 4 Zg argkarg]l

For the Ricci curvature in the radial direction, we have

0? 1(0
.9 R, = a.. ’
(15 e VO | rate)
where  g(r) = g(r, z),
(1.6) Vg dVo = \/det(gig) dz" A ... A dz"T,

(dVo = the volume element of the standard Euclidean sphere)
and

0

9g i ij k0
= Zg]gkla_'gij'a_rgkl'

ar
g

We start out with the following estimate:

PROPOSITION 1.7. For p < 2, there exists Cy = Cy(H,n) > 0

. [

Proof. The function is essentially the same as that given in [12],
p.5-6. For any piecewise C* function ¢ of r with ¢(p) = 0, we have

o () [

n—1 r¢° P
< 2/2 2 _ 2 42 .
< = /0(7«(,5 + ¢¥)dr /OrqSRndr

—gwsan

2

dr

Take € = %, ¢=p—r,and use —R,, < Hr™%, we get

2

¢ 0
200 32| 9
/07'(¢ r) 8rg dr

<32(n-—1) /(;45(7”2 + (¢ — 7')2) dr + Hv/:(ﬁ(qé — r)2)r_2 dr
< C(an)pS
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Thus,

¢
b
0

2

0
ar

1 ¢ ? 1
dr < 2/ ri (¢ —r)? dr < ECI(H,n)p.
0

(%)

'é;g

O

PROPOSITION 1.9. There exists Cy = Cao(H,ig,n) > 0 s.t. for

anyr € (0, —20-), we have

A<

Proof. From (1.5) and integration by parts,

/0 2Rndr—--—%r aglng+2/ 2r——lng——/

Thus

9
or ng

1

0 ¢ 1 ¢
120 < -2.2 L / 2
27‘ arln\/g_]{/or rdr+4Clr+(0r

1 é
<3Hr+Cir+ (n—1)2 (/O r (;9

Cy(H, to,n)r.

IN

Next we study the induced metric g(r) = 3 gi;(r, ) dz'dz’ on
the geodesic sphere
S,(0)={z € M:d(z,0)=r}, r< 329

PROPOSITION 1.10. There exists C5 = C3(H,n) > 0 s.t. for
0<r1<r2<-ﬁ, we have

eC31‘2r1_lg(rl) S g(rz) S 6031'2r1—1g(r1).
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Proof. From Proposition 1.7, we have, for any vector

v=>,...,v") e TS,
h(’l"g) r2 | 9 T2
< —_— <
_/Tl S Inh(r)|dr < (/
T2

h(r1)
< \/7"_2(017"2)%7‘1—1 =4/C1—,

™

In

0 _
Eg rdr) ] 1

where h(r) = g;;(r) dv'dyi. Hence e%™1 < %((:—f% < %27 where
C3z = \/C1. D
Before we go any further, let us make some remarks regarding

conditions (0.3) and (0.5). Let 7 > 0 be small. Define a new metric
g" on M by ¢"(z) = 77 %g(7x).

REMARK.
(1.11) If g satisfyes (0.3)", so does g".
(112) [ 1B dg” = [ 1R(g)I* da.

Therefore, by a scaling of this type if necessary, we can assume that
g satisfies (0.3) and (0.5) with K < 1.

Once we have Proposition 1.10 we can control the L™? norm of
the Riemannian curvature tensor Rm(r) of g(r), the induced metric
on S(0,r).

THEOREM 1.13. If (M, g) € L' then for any p < %l, there exist
ro € (5,p), Cai= Cy(H, K, ig,n) >0, s.t.

n
2

(1.15) /S o 1By do(ry) < Car

Proof. By Lemma 1.17 in [12],3Cs = C5(H, ig,n) s.t. for p < %,

pl o
J; fare

dr < Cs (L + /: |Rm(g)|* d?“) :
pm g
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From Proposition 1.10, there exists C = C(H,io,n) s.t.

C™V3(p) < V5(r) < Cs/9(p)

for r € (2,p), ie., \/9(r) is equivalent to /g(p). Thus for some
constant Cs = Cg(H,9,n) > 0, we have

/p
e
2

Integrating over S,(0), we get

/B,,\Bg

n

0

o V9(r)dr < Cs (p‘"\/g(p) n /; |Rm(g)|? Va(r) dr) '

dg < Cep‘”[o, dg(p) + Ce/B |Rm(g)|? dg.

or
Taking p = %2, we get
a " 0\ " n
/ —9g| dg < Cs (—) vol (S-&) + Ce/ |Rm(g)|? d
B%Q\B%Q or 4 1 B%(l
By Bishop’s volume estimate [1], 3C; = C7(H,ip,n) s.t.

vol (Sm)) < C;. Thus we get a constant Cg = Cs(H,9,n) > 0
4
s.t.

(1.16) /B

0
4

dg < Cs + CB/B' |Rm(g)|? d

o
4

9
87‘9

\By
8

Define g” = r=2g with r = 2. Noticing that Ric(¢") > —Hr?,
inj(g") > 1o, we can apply (1 16) to g7. By the scaling invariance

of (1.16), we get
= fpqray

~/BP\B§
< Ca+Ca /B [Bm(g")|? dg"

7
=Cg + 08/B |BRm(g")|? dg
< Cs+ CsK = C.

T

dg
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Hence

(1.17) /;(

2

J;

(1.17) and the Gauss formula on S,

1/(0 0 0 0
Rm(g)ijrt = BRm(g(r))ijm + 1 (59%;9_7'9]‘1 — Egjka—r'gil>

imply that there exists a constant C = C(H, K,9,n) > 0 s.t.

f7 () 1RmtatrE aato)) o

p n
< c+cﬁ </5 |Rm(g)|? dg(r)) dr
<C+CK.

This implies the existence of r, € [g, p] and Cy = Cy(H, K,19,n) >
0 s.t.
[ 1Rm(r,)|? dg(r,) < Car.

P

O

We now state and prove the compactness estimate of the induced

metric on small geodesic spheres.
Let (M,g) € L', p<%2, let r,€ [‘g—,p] as in Theorem 1.13.
We have the following

THEOREM 1.18. There ezists C19 = c10(H, K,i9,n) > 0 and a
C* Riemannian metric h(r,) on the geodesic sphere S,, s.t.

(1.19) Cl'blg(rp) < Tth(rp) < Crog(ry);

Proof. Proposition 1.10 and Theorem 1.13 are sufficient for car-
rying through the argument in [12]. O
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2. In this section, we show that the diameter of a small geodesic
sphere is small. More precisely,

THEOREM 2.1. There ezists C1; = C11(H, K, 1, V,n) s.t. for
any (M,g) € L', any r€ (O, 52‘1) , diam(g(r)) < Cyyr.

Proof. First observe that there exists a constant
C=C(H,K,ipV,n) >0 s.t.

(2.2) diam (5%,) <c

To prove (2.2), we normalize by scaling so that 1o = 4. Let v be a
minimal geodesic on the geodesic sphere S;(0). We show that there
exists C = C(H,1,V) s.t.

lengthy < C.

Let o be any curve in the annulus B%(O)\B%(O) s.t. for 0 <
t1 <ty <---<1, alltitit1] is a minimal geodesic in the annulus.
The geodesic balls centered at (¢;) with radius 6 can be made
mutually disjoint by choosing § > 0 sufficiently small. Let N be the
number of these balls. By Gromov’s relative volume estimate [6],
the volume of each small bal is bounded from below by a constant
C' = C'(H,i9,V,n). But the total volume of the mannifold M is
bounded from above by V (cf. (0.6)). Hence N < V/C'. Since the
induced metric g(r;) and ¢(rz) are equivalent (by Proposition 1.10),
we can project a|[t;,t;+1] into Si(0), to get (2.2).

Next, apply (2.2) to the metric g” defined by ¢g"(z) = 772¢(7z).
By scaling properties, we get

diam (g(r)) < Cf:,—t.
0
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3. Let (M,g) be in L. As before we use the geodesic polar
coordinates at 0, i.e.,

n—1
g =dr* + Z gij(ar,r)d:ci dz’ = dr? + g(r),

1,7=1
where ¢g(r) = g(z,r) is the induced metric on the geodesic sphere

S-(0).
We will begin with the following estimate:

PROPOSITION 3.1. For p <2, 5 € (0,p), we have

/ (max/
T(2,2) \ n<p JS(z,r)

<C(Hmnp) [ Ralo)l? do,

where B(x,r) is the second fundamental form of S(z,r),

T(Tl 77) {xEM|dzst:c0 (Q Q)}
472 42

Proof. Let z € T(4,2) y € M st d(z,y) = p < % Let
v be the minimal geodesic from z to y with y(0) = z, ~(p) =
y, d(z,y) = p. Observe that, as a consequence of Proposition 1.10,
there exists a constant Cj, = C12(H,10,n) > 0 s.t. for any Jacobi

field X on v with X(7(0)) =0, < X(~()),~4(]) >= 0, we have

[X(v())] £ Cra| X (v(D))]

V't € [0,[], where [ = the length of ~.
Let E be the parallel vector field along v with

E((l)) = X(v(1)),

then the vector field A, defined by A = X — E, is again a Jacobi
field. Assume | X(v({))] = 1. We have

da(r)) date)

B(z,r) + %g(x, r)

/IIA’IQ:/I <A A di </11Rm|lX]]A| dt
0 0 ’ ~Jo

< Cu(Cua+1) [ [Rm| = Cra [ |Rml,
v 2
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where Cy3 = C13(H, 10,n).

Next, by a cut-off function argument, one can show that (c.f. [12],

p.31)
(3.2) A1) < Cua / | Rml2.

We claim that there exists C15 = Cy5(H, K, 19,n) s.t.

2

B(z,) + 79(2(1)

(1) < Cus [ ]
Y
To see this, let X, Y be vector fields on S(z,() s.t.

XN = 1Y (D) =1,

and let E, E be parallel vector fields on v with

E((1) =Y (x(1)).

Extended X, Y to the geodesic ball B(z,!) s.t. they are Jacobi fields

on each radial geodesic. Then, clearly B(X,Y) =
— <V, X)Y >= - < XY >. We have, from (3.2), that

L
)

1
=< XY > —7< E)Y > |*(v(])

=] < X'~ SBY > (D)

< CulY (+()? / |Bm|? = C1a / | B2,

|B(X,Y)+ 5 < X,Y > [*(v(1))

To finish the proof, we define f(z,y), for z,y with d(z,y) = p+ g
%0
—, b
27 y )
1 2
f(l'ay) = I?akx B(xar)+_g($7r) (7(T))>
n<r<p r

<

where 7 is the minimal geodesic from z to y, r = distance from z.
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Let
wer(1.9)
and
Y = U (xS(x,p—{-n))CMxM
zET(%,g)
Then

[ ] 56050= [ g 1500 d0-0)) doo
=/Q (/Qy f(z,y) dgy(w)> dg(y),

where g, is the induced metric of S (3:, p+ ) and Q, =T ( %)
S(y,p+ g) C S(y,p+ g) We have

[ 1@< [[([ e dote)) daw)
Define 7(t) = 7(t) for t € [0, p]. From (3.3) we get
L, £(z:v) doy @)
< C(H,n,p)/ (

y

By Proposition 1.10,

dg, (7 (,0 + 2 t)) >C (H,n, §> dg, ().

Therefore

p 2
[, fen o < e (Hanl) [ R
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Finally we have

p 7 2
z,y) <C\{H,n,n, - vol(T(—, + >>/ Rm(g)|2d
[, fen < (tnm oot (1 (Lp+n)) [, Rmio)ids
1 . n
S C (H7n7n7 —7p7 V7lo> / IRm(g)|2dg'
n B(p+n)

O

Let Rm(r) be the scalar curvature free curvature tensor of g(r).
We have the following proposition.

PROPOSITION 3.4. For any x € T (%,—g), where n € (0, p) with

p < % we have

/np (/S(m |Rm(r)| dgx(r)> dr

< C(H,n,n,p,t0) ((/B . |Rm(g)|? dg)

+ (max /
n<p JS(z,r)

1
A —Yzx
+I7IIISaPX /S(x,'r) (r) t Tg (7')

=

0.0

: dgx(r)).

A) + 2g(r)

Proof. Rm(r) can be expressed as

(Bm(r))iju

= (Bm(r))iju — B(r)

(n=1)(n—-2

where R(r) is the scalar curvature of g(r). We have

/S(a:,r)

)(gik(r)gﬂ(r) — ga(r)gik(r)),

Bix(r)Bji(r) — rizgik(r)gjl(r) ' dg(r)
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- S(zr) Bix(r) (le(r) + %g;z(r))

n
4

—%gjz(r) (Bik(r) + %gm(ﬂ) dg(r)

n
4

B(r) + ()| dg(r)

<c [ Bt
S(z,r)

¢ [ B+ ~gtr)| dg(r)

S(z,r)
<c([ |Bo)+ o)
T —g\Tr

< steo ~9

+C /
S(z,r)

n
2

dg(r>) 2

Br)+ ~o(r)|" do(r).

This implies that
/..S(x,r)

< C(H, Keio,n) (fser

n

! ) dg(r)

(Bikle - Bz‘lBjk) - ;g(gikgjl - gilgjk)

B(r) + g(r)

: dg(r))
+C(H’ [{7 iOan) fS(:v,r) : dg('f')
By Gauss formula,

(Rm(g))ijre = (Bm(g(r)))iju + Bir(r)By(r) — Ba(r)Bjk(r).
Therefore

[

B(r) + 19(r)

Run(9(r)) = ~5(ois(r)gu(r)

—gia(r)ge(r)) e dg(r)) dr

< C(H,n,n,p) (/B )|Rm(g)|§ dg) :

(zvp

: dg(r))%

: dg(r)> .

1
+C(H,n,n,p) (max /S(z , B(r)+ ;g(r)

n<r<p

1
+C(H,7’L, 77,/0) (max /S( | B(T‘) + —;g(r)

n<r<p
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Observe that

v/Tz(n,o)

S C(H’ I{, iOa nanap) (/B

n
4

(n—1)(n—-2)

R(r) — dg

=

(gl )

(z.p)

Hence (3.4) follows immediately. O

PROPOSITION 3.5. For 0 < n < p < 2, let (M, gx) €
L' z € My with dist(zg,0)€ (3,321) Assume

" dgu(r) — 0

Blza,r) + ~u(r)

e = max /
n<r<p JS(z,r)

and
Pk = / |Rm(gx)|2 dgr =+ 0 as k — oo.
B(xk)P)

Then there exists a diffeomorphism ¢y : S(1) — S(zk,p) for each
k=1,2,3,---, s.t.

[ \igu(r) = r* d8%|% db — 0
s(1)

uniformly for n < r < p, where S(1) is the Fuclidean unit sphere,
and
|#39x(p) — P’ d92lco —0 as k — oo.

Proof. Proposition 1.10 and Theorem 1.13 enable us to carry out
the arguments in [12] (cf. 5.18, 5.21, and 5.25). g

4. In this section we prove the existence of a controllable har-
monic coordinate system under the smallness condition of the L™/2-
norm of curvature tensor.

ProPOSITION 4.1. For any n € (0,1), there exists
e =€(H,n,io,n) >0 s.t. if (M,g) € L satisfies / |Rm(g)|>dg <
M
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€, then there exists a diffeomorphism
3n

F=(h' A% - h"): T(1+Q 3—’1> —»T(1+g,~2~

272 )CR

having the following properties:

(a) A=0;

(b)y F7! (T (1 + 4,7+ n)) D T(1—n,2n) and the image of F' D
T(1+2,2);

(c) A — &Y < Tg% on T (1 +2 21); where
hY =< Vh*', VA >;

(d) |dh¥|ce < C(H,n,n)  for some o € (0,1) on
T(1+2,%2);

(e) |IFP=rY << ,where |F|?=Y (k)% r =dist(z,0);

100n

1

(f) ||d*h¥||Le < C(H,n,n) on T(l'—l—22 5—'1> for some ¢ >

47 4
n.

Proof. Suppose for k = 1,2,---, (My,gx) € L  with
| 1Rm@lE <
m —-.
M, Ik — k

Proposition 3.1 implies that Jy, € T (g, %) s.t.

dgk(yx,T)

1
By (yk, ) + ;gk(ykvr)

Nk = max /
n<r<1 J Sy (yk,r)

. 1 n
< (tmint) [ Bnol® do
n B;
< Ck™L.

Proposition 3.5 implies that there exists  ¢x : S1 — Sk(yx) = S;
s.t.

w9k — gol? dgo < Ck™",
/T(lm)|¢kgk 9ol? dgo

where ¢ has been extended trivially to 7'(1,7), go is the flat met-

ric on By. In the Euclidean coordinates z = (z!,--- ,2"), go = &i;.

Next we solve the Dirichlet problem

AF =0 in T(1,7)
F=x on 9T(1,n).
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By Proposition 1.10, we can show (as in [14])

1 1
VF —-Vzl|?dg < =C [H,n,~,n,10 ) .
L‘(l,n)l iDIg g = k ( » na7777'0)

By a standard argument involving DeGiorgi-Nash-Moser iteration,
it follows that F' is the desired diffeomorphism. O

. THEOREM 4.2. For each My, gx € L, there ezists, forl =1,2,-
open sets Fi(l) C My s.t. Fi(I+1) D Fi(l) and Fx()UB(I™!) = Mj.
There also exists a diffeomorphism ¢r(l) for each pair of k and

o (D) : T(L,17Y) € R™ — Fi(l) such that ¢r(1)*gx converges

in CY* norm to some C** metric g} on T(1,I7') C R™

Proof. By rescaling, we can assume that g satisfies
[, 1Rm(g0)|¥dg. < e
M

where € > 0 is given by Proposition 4.1. Therefore we have harmonic
coordinates

BE T, ( 1+, 3”)ch-+1)(7,) <1+" 3")CR"

27 2
satisfying (a)-(f) of 4.1. Taking n = I*, by the Holder estimate (d),
we have, for each [ = 1,2,---, a subsequence of (M}, gx), denoted

by gi(!), s.t. gr(l) converges in the C%-norm on T} (1 + 17, %’L) cCM
to a C1* metric g} on D(I). We can then take

77377) 1
= = .
Fi(l) Tk(1+“ "=

By passing to a subsequence if necessary, we can make Fx({+1) D

Fi(1).

THEOREM 4.3. Let ¢’ be a metric on M' = B,|{0} defined by
g'(z) = gi(z) tf = € Fi(l). Then ¢’ can be extended as a C° metric
on B;.

Proof. Theorem 2.1 says that the diameter of a small geodesic
sphere around 0 is small. Hence 0 is the only possible singularity. To
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show that 0 is a removable singular point, let, for fixed N =1,2,--- ,
C(p, N) = {x e M|£ < d(z,0) < 2,0} .

By Theorem 4.2, a subsequence (Mg, gx) converges to M' away
from 0. Thus for each p,3k = k(p),3 a submanifold Ci(p, N) C
(M, 9x), 3y, € Ci(p, N) s.t. y, — z, € C(p, N) (with dist(z,,0) =
p), and such that

2
<p5

Rm zd ——/ RM (a2 dd'
Ly B0 dai = [ [RM (g dg

and

< p.
Cl,a

(2ct0.3020) - (360,900

By (0.5),
[ IBM(g)Edg —0 as p—o.
C(p,N)

Consequently,
[ IRM(g)Edg 0 as p—o0.
JCk(p,N)

Therefore, from the zero pinching theorem of [12], it follows that
(-};Ck(p, N),yp) converges to a flat manifold Dy in C'*-norm as

p — 0. Thus (%C(p, N),xp) converges to (Dy,en) in C1*-norm.
The direct union of (Dy,en) has to be (U(0),e) where 0 is the
isolated singular point, e is a unit vector in |BbbR", and U(0) is a
simply connected flat manifold since -:;C'(p,N) is the C1* limit of
simply connected manifolds %C’k(p, N). Hence U(0) = B(2) — {0}.
Letting N — oo have that (%C(p,O),:cp) converges to {B(2) —
{0}, e} in CY*norm. It follows that ¢’ can extend to a C° metric
on M', diffeomorphic to B; C R™. O

REMARK. In the case (Mg, gx) € L', we use Proposition 3.5 di-
rectly in place of Proposition 4.1 and Theorem 4.2. This, combined
with Theorem 4.3, proves Theorem (0.8).

REMARK. Let O be the set of compact orbifolds with finitely
many singular points, satisfying (0.3)-(0.6). Let I' be the group
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acting on these orbifolds. We can lift a neighbourhood of each
singular point via I' to B™. It then follows from Theorem (0.7) that
O has the same compactness property.
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