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ON THE COMPACTNESS OF A CLASS OF
RIEMANNIAN MANIFOLDS

ZHIYONG GAO AND GUOJUN LIAO

A class of Riemannian manifolds is studied in this pa-
per. The main conditions are 1) the injectivity is bounded
away from 0; 2) a norm of the Riemannian curvature is
bounded; 3) volume is bounded above; 4) the Ricci cur-
vature is bounded above by a constant divided by square
of the distance from a point. Note the last condition is
scaling invariant. It is shown that there exists a sequence
of such manifolds whose metric converges to a continuous
metric on a manifold.

Introduction. Let C — C(H, A", V, n, i0) be the set of n-dimen-
sional Riemannian manifolds (M, g), s.t.,

(0.1) M is diffeomorphic to (2?2,ί7o)? the standard Euclidean ball
of radius 2, center = 0;

(0.2) (M,g) has C°° curvature tensor in M;
(0.3) for any x 6 M, the Ricci curvature at x \Ric(g)(x)\ < Hr~2,

where r = dist(x,0);
(0.4) the injectivity of (M,g) > i0 > 0;

(0.5) / \Rm(g)\Ug<K;

(0.6) volume of (M,g) < V.

In the case when the condition (0.3) is replaced by \Ric(g)\ < H,
and (0.6) is replaced by a diameter bound, a compactness property is
proved by the first author in a more general setting. The purpose of
this paper is to extend some of his results to the present situation
where the bound om Ricci curvature of (M,g) blows up like r~2

at a point. As an application, we will discuss the compactness of
orbifolds with a finite number of singularities.
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The main result is:

THEOREM 0.7. Let(Mk,gk) e C, A; = 1,2,3,. . . . Then there

exists a subsequence {again denoted by [Mkigk))} # C°° manifold Mf

diffeomorphic to #2(0); and a C° metric gf on Mι s.t. gk —> g' in
C°-norm on M' and the convergence is in CliOί-norm away from 0.

In Section 1 we study the geodesic balls centered at 0. A com-
pactness estimate of the metric g will be derived. In Section 2, a
small geodesic sphere is shown to have a small diameter. In Sec-
tion 3, some Ln/2-curvature pinching results are derived, which will
be used in Section 4 to show the existence of harmonic coordinates.
We will prove in Section 4 the above main result and a slightly
different version.

In the definition of £, if (0.3) is replaced by a 1-sided condition

(0.3)' Rιc(g) > -Hr~2g,

then the above compactness result should be modified as follows.
Denote the set of such Riemannian manifolds by C.

THEOREM 0.8. Let (Mk,gk) e £', k = 1,2,3,... . Then there
exists a subsequence of (Mk,gk), which converges in C°-norm to a
C°° manifold M! with a C° metric g'.

1. In this section, we assume that for some H > 0, z0 > 0,
(M,g) is a Riemannian manifold diffeomorphic to B2 satisfying

(1.1) Rιc(g) > -Hr-2g;

(1.2) inj(g) > ι0 > 0.

Let Bp(0) = {x £ M\d(0,x) <} be the geodesic ball of M centered
at 0. Consider a geodesic polar coordinate system {r, x1, , xn~1}
on Bp(0), we have

n - l

(1.3) ds(g)2 = dr2 + Σ gtJ(r,x)dxιdxJ;
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(1.4)
d

For the Ricci curvature in the radial direction, we have

^ 2

(1.5)
dr2

where g(r) — #(r, x),

(1.6)

<9r'
9(r)

ij) dxι A ... A ώ"" 1 ,

o = the volume element of the standard Euclidean sphere)
and

dr Σ a ki & &
9 9 ¥r9-¥r9kl-

We start out with the following estimate:

PROPOSITION 1.7. For p < *%, there exists d = Ci(i/,n) > 0

fP

3 . t . /
Jo

d
dr < Cλp.

Proof. The function is essentially the same as that given in [12],
p.5-6. For any piecewise C°° function φ of r with φ(p) — 0, we have

(1.8)
4 j Jo

n - 1

2e
Γ(r2φ'2 + φ2)dr - Γ r2φ2Rndr.

Jo Jo

Take e = | , φ = p — r, and use — Rτr < Hr 2 , we get

fΦ a 2

/ r2(φ — r)2 —g dr

< 32(n - 1) /V 2 + (Φ~ r)2) dr + H Γ\r2(φ - r)2)r~2 dr
Jo Jo

<C(H,n)p3.
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Thus,

I V
d

dr~9

1 rΦ
dr-jfflr{φ-r)

d

D

PROPOSITION 1.9. There exists C2 = C2(H,i0,n) > 0 s.t. for
any r £ (O, *£•), we have

<C2.

Proof. From (1.5) and integration by parts,

/ r i?n αr = — r — In a -\— / 2r—- In a /
Jo 2 dr * 2 Jo dr * 2 Jo

Thus

rΦ „ Λ 1

dr9 dr.

2 \ 2

Γ 2

^
d 2 \ l

j 1 iαr r 2

< C2{H,i0,n)r.

Next we study the induced metric g{r) = Σga(r, x)dxιdχi on
the geodesic sphere

Sr(0) = {x £ M : d(x,0) = r}, r < - .

PROPOSITION 1.10. There exists C3 = C3(H,n) > 0 s.t. for
0 < Γi < Γ2 < ^- ; ϊ^e Λαt e

< g(r2) < tc^^g{rx).
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Proof. From Proposition 1.7, we have, for any vector

In
h(r2) dr <

rr2

" " 1

d

d~r9
rdr I r - 1

1

where h(r) = gZJ(r) dv%dvK Hence ec^rι' < J[^J < eC 3 r 2 ri \ where

03 =

Before we go any further, let us make some remarks regarding
conditions (0.3) and (0.5). Let r > 0 be small. Define a new metric
gr on M by gτ(x) = r~2g(τx).

REMARK.

(1.11) lϊ g satisfyes (0.3)', so does gτ.

(1.12) / \R(gr)\*dgτ= I \R{g)\* dg.

Therefore, by a scaling of this type if necessary, we can assume that
g satisfies (0.3) and (0.5) with K < 1.

Once we have Proposition 1.10 we can control the Ln/2 norm of
the Riemannian curvature tensor Rm(r) of g(r), the induced metric
on 5(0, r).

THEOREM 1.13. If (M,g) e C then for any p < ιf, there exist
rp G (f,ρ), C4 = C4(H,K,io,n) > 0, s.t.

JS(O,rp)

Proof. By Lemma 1.17 in [12],3C5 = C5{H,ι0,n) s.t. for p < *,

d

ζ ίr 9
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From Proposition 1.10, there exists C = C(H,io,n) s.t.

' < c3y/g{P)

for r G (§,/?), i e., y/g(r) is equivalent to y/g{p). Thus for some
constant C6 = C$(H,io,n) > 0, we have

Integrating over 5 ,̂(0), we get

JBP\B£ Or

Taking p = ώ., we get

dg<C6p
nί dg(p)

JSp

\Rm(g)\* dg.

VB*
dg < C6 (%-γ) vol (S,Λ + C6 I \Rm(g)\* dg.

By Bishop's volume estimate [1], 3Cγ = Cγ(H,io,n) s.t.

vollSijt)) < Cγ. Thus we get a constant C8 = Cs{H,io,n) > 0
\ 4 /

s.t

(1.16) /
B, \B,

4 8

dr
dg<C8 [

B,

\Rm(g)fi dg.

Define gτ = r~2g with r = &. Noticing that Ric(gτ) > -Hr~2,
inJ(9T) ^ 0̂) we can apply (1.16) to gτ. By the scaling invariance
of (1.16), we get

O n

/ -z-9 dg =
JBΛBP dr JBtn\B,n

d
dgr

•A \Rm{gτ)\τ dgτ

J B tn

\Rm(gr)\* dg

< C8 + C8K = Cg.
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Hence

(1.17)
d

dg(r) dr < C9.

(1.17) and the Gauss formula on 5,

Rm(g)ijk, = Rm{g(r))ijkl + - \^9ih-^9n ~ ^jk^guJ

imply that there exists a constant C = C(H,K,io,n) > 0 s.t.

drJ
2

< C + C J^JjRm(gψ dg(rή dr

< C + CK.

This implies the existence of rp E f, ρ\ and C4 = C^H, K, io,
0 s.ί.

\Rm(rp)\* dg(rp) <

We now state and prove the compactness estimate of the induced
metric on small geodesic spheres.

Let (M,g) e C, p< ^, let rp e [f,p] as in Theorem 1.13.
We have the following

THEOREM 1.18. There exists C10 = CιO(H,K,io,n) > 0 and a
C°° Riemannian metric h(rp) on the geodesic sphere Srp s.t.

(1.19) CfoMr,) < rp

2h{rp) < Cwg(rp);

(1.20) \Rm(h(rp))\ < C10.

Proof. Proposition 1.10 and Theorem 1.13 are sufficient for car-
rying through the argument in [12]. D
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2. In this section, we show that the diameter of a small geodesic
sphere is small. More precisely,

THEOREM 2.1. There exists Cn = Cn(H,K,io,V,n) s.t. for

any (M,g) 6 £', any r G (o, *f) , diam(g(r)) < Cur.

Proof. First observe that there exists a constant
,io,V,n)>0 s.t.

(2.2) diam (SiΛ < C.

To prove (2.2), we normalize by scaling so that z0 = 4. Let 7 be a
minimal geodesic on the geodesic sphere SΊ(O). We show that there
exists C = C(H,io,V) s.t

length 7 < C.

Let a be any curve in the annulus i?3(0)\i?i_(0) s.t. for 0 <
ti < h < ' < 1, α|[ίή^ +i] is a minimal geodesic in the annulus.
The geodesic balls centered at 7(ί* ) with radius δ can be made
mutually disjoint by choosing δ > 0 sufficiently small. Let N be the
number of these balls. By Gromov's relative volume estimate [6],
the volume of each small bal is bounded from below by a constant
C = Cf(H) io, V,n). But the total volume of the mannifold M is
bounded from above by V (cf. (0.6)). Hence TV < V/C. Since the
induced metric g(rχ) and g{r2) are equivalent (by Proposition 1.10),
we can project α|[<i,ίt +i] into 5i(0), to get (2.2).

Next, apply (2.2) to the metric gτ defined by gτ(x) = τ~2g{τx).
By scaling properties, we get

4r
diam(g(r)) < C—.

D
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3. Let (M,g) be in C. As before we use the geodesic polar
coordinates at 0, i.e.,

n-l

g = dr2 + Σ gtJ(x, r) dxx dx3 = dr2 + g(r),

where g(r) = g(x,r) is the induced metric on the geodesic sphere
S r(0).

We will begin with the following estimate:

PROPOSITION 3.1. For p < ^ , η e (0,p), we have

^js(χr]B^) + -g{Xlr)2dg{rή

<C(H,n,η,p) ί \Rm(gψdg,
JB(p+η)

where B(x,r) is the second fundamental form of S(x,r),

Proof. Let x e Γ (^, f) , V G M 5.ί. φ , y ) = /? < f - Let
7 be the minimal geodesic from x to y with 7(0) — x, η(p) =
y, G?(X, j/) = />. Observe that, as a consequence of Proposition 1.10,
there exists a constant Cχ2 — Cι2(H,io,n) > 0 s.t. for any Jacobi
field X on 7 with ^(7(0)) = 0 , < X(Ί(l)),Ί\l) > = 0, we have

\X{Ί{t))\<Cl2\X{Ί{l))\

V ί G [0, /], where / = the length of 7.
Let E be the parallel vector field along 7 with

£7(7(0) = * ( 7 ( 0 ) ,

then the vector field A, defined by A = X — yi?, is again a Jacobi
field. Assume |X(7(/))| = 1. We have

/ \A'\2= ί <A\A> dt< I \Rm\\X\\A\dt
Jo Jo Jo

< C12(C12 + 1) / \Rm\ = C13 ί \Rm\,
J-y J~i
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where Cχ3 = C13(H,iQ,n).

Next, by a cut-ofF function argument, one can show that (c.f. [12],

p.31)

(3.2) f (7(0) < C14 I \Rm\2.

We claim that there exists CΊ5 = C\s{H,K,io,n) s.t.

1 2 f
B(x,r) + 70(7(0) (7(0) < C15 / \Rrn\2.

To see this, let X, Y be vector fields on 5(x, /) s.t.

|X(7(O)I = 1^(7(0)1 = 1,

and let E,E be parallel vector fields on 7 with

£(7(0)=

Extended X, Y to the geodesic ball B(x, I) s.t. they are Jacobi fields
on each radial geodesic. Then, clearly B(X, Y) —
- < V v , X, Y > = - < X', Y >. We have, from (3.2), that

= \<x'-1

Ίε,γ>\2(Ί(i))

< C 1 4 |r( 7(0) | 2 / \Rm\2 = C14 / \Rm\2.

To finish the proof, we define /(#, y), for x, y with d(x, y) — ρ+ - <

f(x,y) = max
η<r<p

B(z,r) + -g(x,r) (7(0),

where 7 is the minimal geodesic from x to y, r = distance from x.
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Let

Ω= U

and

Σ =

Then

/ ίf(x,y)=ί (ί f(x,y)dgx(y))dg(x)
JΣJ JK 'y> J x e τ ( l i ) \ J s ( x < P + z ) J { 'y> y y y ' j yy '

/ f(x,y) dgy(x)) dg(y),

where gx is the induced metric of S (x, p + §), and Γty = T ( f ,§) Π

5 ( y ^ + a j c S(y,p+z). We have

(χ>y) < JQ (/Ω /(^.y) ^ W

Define η{t) = η(t) for ί € [0,p]. From (3.3) we get

/ f{χ,y)dgy{χ)
JΩy

,η,p)j^ (jjRm(g)\ή dgy

^({η)y) dt.

By Proposition 1.10,

dgy (7

Therefore

f{x,y)dgy{x)<c[H,n,η,?Λ ( \Rm{g)\^dg.
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Finally we have

B(P+η)

<C\H,n,η,-,p,V,i0) f \Rm(g)\idg.
\ η j JB(p+η)

π
Let Rm(r) be the scalar curvature free curvature tensor of g(r).

We have the following proposition.

PROPOSITION 3.4. For any x e T

P ^ *jt, we have

, where η G (0,/?) with

Γ ( ί \Rm(r)\ϊ dgx(r)) dr
Jη \Js(x,r) J

ί \Rm(g)\2dg
JBX(P)

max LS(x,τ)
+ -9*(r) dgx{r)

max / A(r) + -gx(r)
Jsίx.r) r

Proof. Rm(r) can be expressed as

dgx(r)\.

= {Rm{r))ijU -
R(r)

:(9ik{r)gji(r) - gu(r)gjk{r)),
(n - l)(n - 2)

where R(r) is the scalar curvature of g(r). We have

Js(x,r)
- -Έgik{r)gjι(r) dg{r)
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= / Bik(r) fc(r) + -gjι(r))

Btk(r) + ^ ( r ) ) 4 dg(r)

1

+c f
JSS(x,r)

B(r) + -g(r)

B(r) + -g(r)

dg(r)

dg(r)

<C
>S(x,r)

B(r) + -g(r) dg(r)

S(x,r)
B{r) + -g(r) dg(r).

This implies that

I ίβi β _ β

JS(x,r) l 3

< C(H,K,io,n) (/5(x,r) \B(r) + )g{r)f dg(r)

,2.

dg(r).

dg(r)

+C(H,K,io,n)fs(XιT

By Gauss formula,

(Rm{g))ijkι = (Rm{g(r)))ijkι + Bιk(r)Bjt(r) - Bu{r)Bjk(r).

Therefore

/
Jη S(x,r)

) - — {gίk{r)g3ι(r)

-g«(r)gjk(r))\fracn4 dg{r)) dr

<C(H,n,η,p)( f \Rm(g)\Ug)

+C(H,n,η,p) max /
\η<τ<p Jsη<τ<p Js(x,r

+C(H,n,η,p) max /
\ η<r<p JS(x,r)

B(r) + -g(r

B(r) + -g(r)

dg(r)

dg{r) .
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Observe that

Jτx(η,p
R(r)- dg

\Rm(g)\*dg

Hence (3.4) follows immediately. D

PROPOSITION 3.5. For 0 < η < p < ^ , let (Mk,gk) e

£ ' , xk G Mk with dist(xk,Q) G ( f? f/ Assume

ηk = max /
η<r<p JS(x,r

and

μk
=

B(xk,r) + -gk(r)
Γ

dgk -> 0

dgk(r) -> 0

k —* oo.

T/ien ί/iere ê zsfe α diffeomorphism φk : 5(1) —* S(xk,ρ) for each
K — _L̂  Zι^ O^ * * * ^ S . L .

/ \φlgk(r) - r2 dθψ dθ-> 0
Js(i)JS(1)

uniformly for η < r < ρ} where 5(1) is the Euclidean unit sphere,
and

\φ*kgk(ρ) — ρ2 dθ2\co -> 0 as k -^ oo.

Proof Proposition 1.10 and Theorem 1.13 enable us to carry out
the arguments in [12] (cf. 5.18, 5.21, and 5.25). D

4. In this section we prove the existence of a controllable har-
monic coordinate system under the smallness condition of the Ln'2-
norm of curvature tensor.

PROPOSITION 4.1. For any η e (0,1), there exists

= e(i/, n, zo, η) > 0 s.t. if(M^g) £ C satisfies / \Rm(g)\^dg <
J M
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t, then there exists a diffeomorphism

having the following properties:
(a) Δ = 0;

(b) F - 1 (Γ (l + \, 2 + 77)) D Γ(l - η, 2η) and the image of F D

(c) |Λ* _ δv]c0 < _£_ o n (

hij =<Vh\Vhj >;

(d) IdΛ ί'Ico < C(H,n,η) for some a e (0,1) on

( )

(e) | | F | 2 - r 2 | < ^ ; ^ e r e | F | 2 = ̂ W)2, r = dzst(x,O);
i

(f) K^'||L,<C(jy,n,i7) on T ( l> f, ? ) /or some 9 >

n.

Proof. S u p p o s e for k = 1,2, ••• , (Mg,gk) G C w i t h

^ \Rm(gk)\2 < I .

Proposition 3.1 implies that 3yk G Γ ί|, \ j 5.ί.

n.

1
ηk = maxri<r<lJsk(ykir)

Bk{yk,r) + -
r

<C [H,n,io,η,-) / \Rm(gk)\i dgk
\ ηj JB2

<Ck~\

Proposition 3.5 implies that there exists φk : S\ —̂  Sk(yk) « 5i

/ \Φl9k -9o\" dg0 < Ck \
JT(l,η)

where φk has been extended trivially to Γ(l, η), go is the flat met-
ric on B\. In the Euclidean coordinates x = ( r1, , xn), go = Sij.

Next we solve the Dirichlet problem

0 in
F = x on dT(l,η).
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By Proposition 1.10, we can show (as in [14])

dg<lc(H,nXη,Δ.
(M) k V V J

By a standard argument involving DeGiorgi-Nash-Moser iteration,
it follows that F is the desired diffeomorphism. D

THEOREM 4.2. For each Mkjgk e C, there exists, for I = 1,2, ,
open sets Fk(l) C Mk s.t. Fk(l+1) D Fk(l) and Fk(l)\JB{l~ι) = Mk.
There also exists a diffeomorphism φk(l) for each pair of k and
I : φk(l) : T^l,/"1) C Rn -> Ffc(/) sue/* that φk{iYgk converges
in C1'" norm to some C 1 ' " metric g\ on Γ(1,Γ 1 ) C Rn.

Proof. By rescaling, we can assume that gk satisfies

\Rm(gk)\idgk < e/
J Mk

where e > 0 is given by Proposition 4.1. Therefore we have harmonic
coordinates

satisfying (a)-(f) of 4.1. Taking η = Z"1, by the Holder estimate (d),

we have, for each / = 1,2, , a subsequence of (Mk,gk), denoted

by 9k(l), s.t gk(l) converges in the C2-norm on Tk ( )

to a CliOC metric g\ on D(l). We can then take

11 - v
By passing to a subsequence if necessary, we can make Fk(l + 1) D

Ώ

THEOREM 4.3. Let g' be a metric on M1 = -Bi|{0} defined by
g\x) = g[{x) if x E Fk(l). Then g' can be extended as a C° metric
on JBI.

Proof Theorem 2.1 says that the diameter of a small geodesic
sphere around 0 is small. Hence 0 is the only possible singularity. To
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show that 0 is a removable singular point, let, for fixed N = 1,2,

C(p,N) = | x 6 M'\^ < d(x,0) < 2

By Theorem 4.2, a subsequence (Mk,gk) converges to M1 away
from 0. Thus for each />, 3k = k(p),3 a submanifold Ck(p,N) C
(Mk,gk),3yp 6 Ck{p,N) s.t. yP-*xPe C(p,N) (with
p), and such that

and

By (0.5),

l-C(p,N),x\-r-Ck{p,N),yk

/ \RM(g')\* dg'-> 0 as p -> 0.
JC(p,N)

Consequently,

as

Therefore, from the zero pinching theorem of [12], it follows that

(-Ck(P)N),yp) converges to a flat manifold DM in C1 'α-norm as

p —> 0. Thus ί-C(/7, N),Xp) converges to (Djγ,eN) in C1'α-norm.

The direct union of (D^^eiv) has to be (E/(0),e) where 0 is the

isolated singular point, e is a unit vector in \BbbRn, and f/(0) is a

simply connected flat manifold since -C(ρ,N) is the C1}Oί limit of

simply connected manifolds -Ck(p,N). Hence t/(0) = 5(2) - {0}.

Letting N —> oo have that ί-C(/),0),;rpJ converges to {5(2) —

{0},e} in C1'Λ-norm. It follows that g' can extend to a C° metric

on M ;, diffeomorphic to Bλ C Mn. D

REMARK. In the case (Mk,gk) G £7, we use Proposition 3.5 di-
rectly in place of Proposition 4.1 and Theorem 4.2. This, combined
with Theorem 4.3, proves Theorem (0.8).

REMARK. Let O be the set of compact orbifolds with finitely
many singular points, satisfying (0.3)-(0.6). Let Γ be the group
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acting on these orbifolds. We can lift a neighbourhood of each
singular point via Γ to Bn. It then follows from Theorem (0.7) that
O has the same compactness property.
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