ON DIVISORS OF SUMS OF INTEGERS V

A. SÁrközy and C. L. Stewart

Dedicated to Professor P. Erdős on the occasion of his eightieth birthday.

Let N be a positive integer and let A and B be subsets of $\{1, \ldots, N\}$. In this article we shall estimate both the maximum and the average of $\omega(a+b)$, the number of distinct prime factors of $a+b$, where a and b are from A and B respectively.

1. Introduction. For any set X let $|X|$ denote its cardinality and for any integer n larger than one let $\omega(n)$ denote the number of distinct prime factors of n. Let I be an integer larger than one and let ϵ be a positive real number. Let $2=p_{1}, p_{2}, \ldots$ be the sequence of prime numbers in increasing order and let m be that positive integer for which $p_{1} \cdots p_{m} \leq N \leq p_{1} \cdots p_{m+1}$. In [3], Erdős, Pomerance, Sárközy and Stewart proved that there exist positive numbers C_{0} and C_{1} which are effectively computable in terms of ϵ, such that if N exceeds C_{0} and A and B are subsets of $\{1, \ldots, N\}$ with $(|A||B|)^{1 / 2}>\epsilon N$ then there exist integers a from A and b from B for which

$$
\omega(a+b)>m-C_{1} \sqrt{m} .
$$

They also showed that there is a positive real number ϵ, with $\epsilon<1$, and an effectively computable positive number C_{2} such that for each positive integer N there is a subset A of $\{1, \ldots, N\}$ with $|A| \geq \epsilon N$ for which

$$
\max _{a, a^{\prime} \in A} \omega\left(a+a^{\prime}\right)<m-\frac{C_{2} \sqrt{m}}{\log m} .
$$

Notice by the prime number theorem that

$$
m=(1+o(1))(\log N) /(\log \log N)
$$

In this article we shall study both the maximum of $\omega(a+b)$ and the average of $\omega(a+b)$ as a and b run over A and B respectively where A and B are subsets of $\{1, \ldots, N\}$ for which $(|A||B|)^{1 / 2}$ is much smaller than ϵN. Our principal tool will be the large sieve inequality.

Theorem 1. Let θ be a real number with $1 / 2<\theta \leq 1$ and let N be a positive integer. There exists a positive number C_{3}, which is effectively computable in terms of θ, such thet if A and B are subsets of $\{1, \ldots, N\}$ with N greater than C_{3} and

$$
\begin{equation*}
(|A||B|)^{1 / 2} \geq N^{\theta} \tag{1}
\end{equation*}
$$

then there exists an integer a from A and an integer bfrom B for which

$$
\begin{equation*}
\omega(a+b)>\frac{1}{6}\left(\theta-\frac{1}{2}\right)^{2}(\log N) / \log \log N \tag{2}
\end{equation*}
$$

In [6] Pomerance, Sárközy and Stewart showed that if A and B are sufficiently dense sets then there is a sum $a+b$ which is divisible by a small prime factor. In particular they proved the following result. Let β be a positive real number. There is a positive number C_{4}, which is effectively computable in terms of β, such that if A and B are subsets of $\{1, \ldots, N\}$ with $(|A||B|)^{1 / 2}>C_{4} N^{1 / 2}$ then there is a prime number p with $\beta<p<C_{4}\left(N /(|A||B|)^{1 / 2}\right)$, an integer a from A and an integer b from B such that p divides $a+b$. As a byproduct of our proof of Theorem 1 we are able to improve upon this result.

Theorem 2. Let N be a positive integer and let θ and β be real numbers with $1 / 2<\theta<1$. There is a positive number C_{5}, which is effectively computable in terms of θ and β, such that if A and B are subsets of $\{1, \ldots, N\}$ with

$$
\begin{equation*}
(|A \| B|)^{1 / 2} \geq N^{\theta} \tag{3}
\end{equation*}
$$

and N exceeds C_{5} then there is a prime number p with

$$
\beta<p \leq\left(\frac{\log N}{2}\right)^{1 /(2 \theta-1)}
$$

such that every residue class modulo p contains a member of $A+B$.
It follows from the work of Elliott and Sárközy [1], see also Erdős, Maier and Sárközy [2] and Tenenbaum [7], that if A and B are subsets of $\{1, \ldots, N\}$ with

$$
\begin{equation*}
(|A||B|)^{1 / 2}=N / \exp \left(o\left((\log \log N)^{1 / 2} \log \log \log N\right)\right) \tag{4}
\end{equation*}
$$

and N is sufficiently large then a theorem of Erdős-Kac type holds for $\omega(a+b)$. In particular for A and B satisfying (4) we have

$$
\begin{equation*}
\frac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} \omega(a+b) \sim \log \log N \tag{5}
\end{equation*}
$$

Let δ be a positive real number. If A and B are subsets of $\{1, \ldots, N\}$ with $|A| \sim|B| \sim N \exp (-\delta \log \log \log N)$, then (5) need not hold. For instance we may take A and B to be the subset of $\{1, \ldots, N\}$ consisting of the multiples of $\prod_{p<\delta \log \log N \log \log \log N} p$. Then for N sufficiently large the average of $\omega(a+b)$ is at least $(1+\delta / 2) \log \log N$. On the other hand we conjecture that if A and B are subsets of $\{1, \ldots, N\}$ with

$$
\begin{equation*}
\min (|A|,|B|)>\exp \left((\log N)^{1+o(1)}\right) \tag{6}
\end{equation*}
$$

ϵ is a positive real number and N is sufficiently large in terms of ϵ then

$$
\begin{equation*}
\frac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} \omega(a+b)>(1-\epsilon) \log \log N \tag{7}
\end{equation*}
$$

On taking A and B to be positive integers up to $\exp \left((\log N)^{1-\epsilon}\right)$ we see that condition (6) cannot be weakened substantially. Furthermore, we conjecture that if we let N tend to infinity and A and B run over subsets of $\{1, \ldots, N\}$ with

$$
\frac{\log (\min (|A|,|B|))}{\log \log N} \rightarrow \infty
$$

then

$$
\frac{1}{|A||B|} \sum_{a \in A} \sum_{b \in B} \omega(a+b) \rightarrow \infty
$$

While we have not been able to establish (7) for all subsets A and B satisfying (6), we have been able to determine the average order for the number of large prime divisors of the sums $a+b$ for sufficiently dense sets A and B. As a consequence we are able to establish (7) for such sets.

Theorem 3. There exists an effectively computable positive constant C_{6} such that if T and N are positive integers with $T \leq \sqrt{2 N}$ and A and B are non-empty subsets of $\{1, \ldots, N\}$ then

$$
\begin{aligned}
\left\lvert\, \frac{1}{|A||B|} \sum_{T<p} \sum_{a \in A, b \in B, p \mid(a+b)} 1-(\log \log N-\right. & \log \log (3 T)) \mid \\
& <C_{6}+\frac{3 N}{(|A||B|)^{1 / 2} T} .
\end{aligned}
$$

We now take $T=N /(|A \| B|)^{1 / 2}$ in Theorem 3 to obtain the following result.

Corollary 1. There exists an effectively computable positive constant C_{7} such that if N is a positive integer and A and B are subsets of $\{1, \ldots, N\}$ with $|A||B|>N$ then

$$
\begin{aligned}
\left\lvert\, \frac{1}{|A||B|} \sum_{p>N(|A \| B|)^{-1 / 2}} \sum_{a \in A, b \in B, p \mid(a+b)}\right. & 1-(\log \log N \\
& \left.-\log \log N(|A||B|)^{1 / 2}\right) \mid<C_{7} .
\end{aligned}
$$

Therefore (7) holds for N sufficiently large provided that A and B are subsets of $\{1, \ldots, N\}$ with

$$
(|A||B|)^{1 / 2}=N \exp \left((\log N)^{o(1)}\right) .
$$

2. Preliminary Lemmas. For any real number x let $e(x)=$ $e^{2 \pi i}$ and let $\|x\|$ denote the distance from x to the nearest integer.

Let M and N be integers with N positive and let a_{M+1}, \ldots, a_{M+N} be complex numbers. Define $S(x)$ by

$$
\begin{equation*}
S(x)=\sum_{M+1}^{M+N} a_{n} e(n x) \tag{8}
\end{equation*}
$$

Let X be a set of real numbers which are distinct modulo 1 and define δ by

$$
\begin{equation*}
\delta=\min _{x, x^{\prime} \in X, x \neq x^{\prime}}\left\|x-x^{\prime}\right\| \tag{9}
\end{equation*}
$$

The analytical form of the large sieve inequality, (see Theorem 1 of [5]), is required for the proof of Theorem 3 and it is given below.

Lemma 1. Let $S(x)$ and δ be as in (8) and (9), respectively. Then

$$
\sum_{x \in X}|S(x)|^{2} \leq\left(N+\delta^{-1}\right) \sum_{n=M+1}^{M+N}\left|a_{n}\right|^{2} .
$$

We shall also make use of the following result, see Theorem 1 of [6], which was deduced with the aid of the arithmetical form of the large sieve inequality.

Lemma 2. Let N be a positive integer and let A and B be nonempty subsets of $\{1, \ldots, N\}$. Let S be a set of prime numbers, let Q be a positive integer and let J denote the number of square-free positive integers up to Q all of whose prime factors are from S. If

$$
\begin{equation*}
J(|A||B|)^{1 / 2}>N+Q^{2} \tag{10}
\end{equation*}
$$

then there is a prime p in S such that each residue class modulo p contains a member of the sum set $A+B$.

Finally, to prove Theorems 1 and 2 we shall require the next result.

Lemma 3. Let α and β be real numbers with $\alpha>1$ and let N be a positive integer. Let T be the set of prime numbers p which satisfy $\beta<p \leq(\log N)^{\alpha}$ and let S be a subset of T consisting of all but
at most $2 \log N$ elements of T. Let R denote the set of square-free positive integers less than or equal to N all of whose prime factors are from S. There exists a real number C_{8}, which is effectively computable in terms of α and β, such that

$$
|R|>20 N^{1-1 / \alpha},
$$

whenever N is greater then C_{8}.
Proof. C_{9}, C_{10} and C_{11} will denote positive numbers which are effectively computable in terms of α and β. By the prime number theorem with error term,

$$
\begin{equation*}
|S| \geq \pi\left((\log N)^{\alpha}\right)-\pi(\beta)-2 \log N>\frac{(\log N)^{\alpha}}{\alpha \log \log N} \tag{11}
\end{equation*}
$$

provided that N is greater than C_{9}. For any real number x let $[x]$ denote the greatest integer less than or equal to x. We now count the number of distinct ways of choosing $[\log N /(\alpha \log \log N)]$ primes from S. Each choice gives rise to a distinct square-free integer, given by the product of the primes, which does not exceed N and is composed only of primes from S. Then $|R| \geq \omega$ where

$$
\left.\omega=\left(\begin{array}{c}
|S| \\
{\left[\frac{\log N}{\alpha \log \log N}\right.}
\end{array}\right]\right)
$$

Thus

$$
\omega \geq \frac{\left(|S|-\left[\frac{\log N}{\alpha \log \log N}\right]\right)^{\frac{\log N}{\alpha \log \log N}-1}}{\left[\frac{\log N}{\alpha \log \log N}\right]!}
$$

and so, by (11) and Stirling's formula,

$$
\omega \geq \frac{\left(\frac{(\log N)^{\alpha}}{\alpha \log \log N}\left(1-\frac{1}{(\log N)^{\alpha-1}}\right)\right)^{\frac{\log N}{\alpha \log \log N}}}{(\log N)^{\alpha+1}\left(\frac{\log N}{e \alpha \log \log N}\right)^{\frac{\log N}{\alpha \log \log N}}}
$$

for $N>C_{10}$. Since $\log (1-x)>-2 x$ for $0<x<1 / 2$, we find that, for $N>C_{11}$,

$$
\left.\omega \geq N^{1-1 / \alpha} e^{\left(\frac{\log N}{\alpha \log \log N}-\frac{2(\log N)^{2-\alpha}}{\alpha \log \log N}\right.}\right)(\log N)^{-\alpha-1},
$$

hence

$$
\omega>20 N^{1-1 / \alpha},
$$

as required.
3. Proof of Theorem 1. Let $\theta_{1}=(\theta+1 / 2) / 2$ and define G and v by

$$
G=(\log N)^{1 /\left(2 \theta_{1}-1\right)},
$$

and

$$
\begin{equation*}
v=\left[\frac{1}{6}\left(\theta-\frac{1}{2}\right)^{2} \frac{\log N}{\log \log N}\right]+1 \tag{12}
\end{equation*}
$$

respectively.
Put $A_{0}=A, B_{0}=B$ and $W_{0}=\emptyset$. We shall construct inductively sets $A_{1}, \ldots, A_{v}, B_{1}, \ldots, B_{v}$ and W_{1}, \ldots, W_{v} with the following properties. First, W_{i} is a set of i primes q satisfying $10<q \leq G, A_{i} \subseteq$ A_{i-1} and $B_{i} \subseteq B_{i-1}$ for $i=1, \ldots, v$. Secondly every element of the sum set $A_{i}+B_{i}$ is divisible by each prime in W_{i} for $i=1, \ldots, v$. Finally,

$$
\begin{equation*}
\left|A_{i}\right| \geq \frac{|A|}{G^{3 i}} \quad \text { and } \quad\left|B_{i}\right| \geq \frac{|B|}{G^{3 i}}, \tag{13}
\end{equation*}
$$

for $i=1, \ldots, v$. Note that this suffices to prove our result since A_{v} and B_{v} are both non-empty and on taking a from A_{v} and b from B_{v} we find that $a+b$ is divisible by the v primes from W_{v} and so (2) follows from (12).

Suppose that i is an integer with $0 \leq i<v$ and that A_{i}, B_{i} and W_{i} have been constructed with the above properties. We shall now show how to construct A_{i+1}, B_{i+1} and W_{i+1}. First, for each prime p with $10<p \leq G$ let $a_{1}, \ldots, a_{j(p)}$ be representatives for those residue classes modulo p which are occupied by fewer than $\left|A_{i}\right| / p^{3}$ terms of A_{i}. For each prime p with $10<p \leq G$ we remove from A_{i} those
terms of A_{i} which are congruent to one of $a_{1}, \ldots, a_{j(p)}$ modulo p. We are left with a subset A_{i}^{\prime} of A_{i} with

$$
\begin{equation*}
\left|A_{i}^{\prime}\right| \geq\left|A_{i}\right|\left(1-\sum_{10<p \leq G} \frac{j(p)}{p^{3}}\right) \geq\left|A_{i}\right|\left(1-\sum_{10<p} \frac{1}{p^{2}}\right) \geq \frac{\left|A_{i}\right|}{10} \tag{14}
\end{equation*}
$$

and such that for each prime p with $10<p \leq G$ and each a^{\prime} in A_{i}^{\prime}, the number of terms of A_{i} which are congruent to a^{\prime} modulo p is at least $\left|A_{i}\right| / p^{3}$. Similarly, we produce a subset B_{i}^{\prime} of B_{i} with

$$
\begin{equation*}
\left|B_{i}^{\prime}\right| \geq \frac{\left|B_{i}\right|}{10} \tag{15}
\end{equation*}
$$

and such that for each prime p with $10<p \leq G$ and each residue class modulo p which contains an element of B_{i}^{\prime} the number of terms of B_{i} in the residue class is at least $\left|B_{i}\right| / p^{3}$.

The number of terms in W_{i} is i which is less than v and, by (12), is at most $\log N$. Thus we may apply Lemma 3 with $\beta=10$ and $\alpha=1 /\left(2 \theta_{1}-1\right)$ to conclude that there is a real number C_{12}, which is effectively computable in terms of θ, such that if N exceeds C_{12} then the number of square-free positive integers less than or equal to $N^{1 / 2}$ all of whose prime factors p satisfy $10<p \leq G$ and $p \notin W_{i}$ is greater than

$$
\begin{equation*}
20 N^{\frac{1}{2}\left(1-\left(2 \theta_{1}-1\right)\right)}=20 N^{1-\theta_{1}} . \tag{16}
\end{equation*}
$$

By our inductive assumption (13) and by (1) and (12), we obtain

$$
\begin{equation*}
\left(\left|A_{i}\right|\left|B_{i}\right|\right)^{1 / 2} \geq(|A||B|)^{1 / 2} G^{-3 i} \geq N^{\theta_{1}} \tag{17}
\end{equation*}
$$

Thus, by (14), (15) and (17),

$$
\begin{equation*}
\left(\left|A_{i}^{\prime}\right|\left|B_{i}^{\prime}\right|\right)^{1 / 2} \geq \frac{N^{\theta_{1}}}{10} \tag{18}
\end{equation*}
$$

We now apply Lemma 2 with $A=A_{i}^{\prime}, B=B_{i}^{\prime}, Q=N^{1 / 2}$ and S the set of primes p with $10<p \leq G$ and $p \notin W_{i}$. Then J, the number of square-free integers up to Q divisible only by primes from S, is greater than $20 N^{1-\theta_{1}}$ by (16), for $N>C_{12}$ and so, by (18), inequality (10) holds. Thus there is a prime q_{i+1} in S, an element
a^{\prime} in A_{i}^{\prime} and an element b^{\prime} in B_{i}^{\prime} such that q_{i+1} divides $a^{\prime}+b^{\prime}$. We put

$$
\begin{aligned}
A_{i+1} & =\left\{a \in A_{i}: a \equiv a^{\prime}\left(\bmod q_{i+1}\right)\right\}, \\
B_{i+1} & =\left\{b \in B_{i}: b \equiv b^{\prime}\left(\bmod q_{i+1}\right)\right\},
\end{aligned}
$$

and

$$
W_{i+1}=W_{i} \cup\left\{q_{i+1}\right\} .
$$

By our construction every element of $A_{i+1}+B_{i+1}$ is divisible by each prime in W_{i+1}. Further, we have, by (13),

$$
\left|A_{i+1}\right| \geq \frac{\left|A_{i}\right|}{q_{i+1}^{3}} \geq \frac{\left|A_{i}\right|}{G^{3}} \geq \frac{|A|}{G^{3(i+1)}},
$$

and

$$
\left|B_{i+1}\right| \geq \frac{|B|}{G^{3(i+1)}},
$$

as required. Our result now follows.
4. Proof of Theorem 2. Let S be the set of primes p which satisfy $\beta<p \leq\left(\log \left(N^{1 / 2}\right)\right)^{1 /(2 \theta-1)}$. Put $\alpha=1 /(2 \theta-1)$ and observe that α is a real number greater than one since $1 / 2<\theta<1$. Next let J denote the number of square-free positive integer less than or equal to $N^{1 / 2}$ all of whose prime factors are from S. By Lemma 3 there exists a positive number C_{13}, which is effectively computable in terms of θ, such that if N exceeds C_{13}, then

$$
\begin{equation*}
J>20\left(N^{1 / 2}\right)^{1-(2 \theta-1)}=20 N^{1-\theta} . \tag{19}
\end{equation*}
$$

We now apply Lemma 2 with $Q=N^{1 / 2}$ and with J and S as above. From (3) and (19) we obtain (10) and so our result follows from Lemma 2.
5. Proof of Theorem 3. Put $R=[\sqrt{2 N}]$. We have

$$
\begin{aligned}
\left|\sum_{a \in A} \sum_{b \in B} \sum_{T<p, p \mid a+b} 1-\sum_{a \in A} \sum_{b \in B} \sum_{T<p \leq R, p \mid a+b} 1\right| \\
=\left|\sum_{a \in A} \sum_{b \in B} \sum_{R<p \leq 2 N, p \mid a+b} 1\right| \leq\left|\sum_{a \in A} \sum_{b \in B} 1\right|=|A||B| .
\end{aligned}
$$

We define, for each real number α,

$$
F(\alpha)=\sum_{a \in A} e(a \alpha) \quad \text { and } \quad G(\alpha)=\sum_{b \in B} e(b \alpha) .
$$

Then

$$
\begin{align*}
\sum_{a \in A} & \sum_{b \in B} \sum_{T<p \leq R, p \mid a+b} 1=\sum_{T<p \leq R} \frac{1}{p} \sum_{h=0}^{p-1} F\left(\frac{h}{p}\right) G\left(\frac{h}{p}\right) \tag{21}\\
& =\sum_{T<p \leq R} \frac{1}{p}\left(|A||B|+\sum_{h=0}^{p-1} F\left(\frac{h}{p}\right) G\left(\frac{h}{p}\right)\right) .
\end{align*}
$$

Further there is an effectively computable positive constant C_{14} such that

$$
\begin{equation*}
\left|\sum_{T<p \leq R} \frac{1}{p}-(\log \log R-\log \log (3 T))\right|<C_{14} \tag{22}
\end{equation*}
$$

see Theorem 427 of [4]. Put

$$
H=\left|\sum_{a \in A} \sum_{b \in B} \sum_{T<p, p \mid a+b} 1-|A|\right| B|(\log \log N-\log \log (3 T))| .
$$

By (20), (21) and (22),

$$
H \leq C_{15}|A||B|+\sum_{T<p \leq R} \frac{1}{p} \sum_{h=1}^{p-1}\left|F\left(\frac{h}{p}\right) G\left(\frac{h}{p}\right)\right| .
$$

For all real numbers u and $v,|u||v| \leq\left(|u|^{2}+|v|^{2}\right) / 2$ and thus

$$
\begin{align*}
& H \leq C_{15}|A||B|+\frac{1}{2} \sum_{T<p \leq R} \frac{1}{p} \sum_{h=1}^{p-1}\left(\left(\frac{|B|}{|A|}\right)^{1 / 2}\left|F\left(\frac{h}{p}\right)\right|^{2}\right. \tag{23}\\
&\left.+\left(\frac{|A|}{|B|}\right)^{1 / 2}\left|G\left(\frac{h}{p}\right)\right|^{2}\right)
\end{align*}
$$

Put

$$
S(n)=\sum_{p<n} \sum_{h=1}^{p-1}\left|F\left(\frac{h}{p}\right)\right|^{2} .
$$

Then by Lemma 1 , for $n \leq R$,

$$
S(n) \leq\left(N+n^{2}\right)|A| \leq 3 N|A| .
$$

Thus we obtain

$$
\begin{align*}
\sum_{T<p \leq R} \frac{1}{p} & \sum_{h=1}^{p-1}\left|F\left(\frac{h}{p}\right)\right|^{2} \tag{24}\\
& =\sum_{n=T+1}^{R} \frac{S(n)-S(n-1)}{n} \\
& =\sum_{n=T+1}^{R} S(n)\left(\frac{1}{n}-\frac{1}{n+1}\right)-\frac{S(T)}{T+1}+\frac{S(R)}{R+1} \\
& =\sum_{n=T+1}^{R} 3 N|A|\left(\frac{1}{n}-\frac{1}{n+1}\right)+\frac{3 N|A|}{R+1}=\frac{3 N|A|}{T+1}
\end{align*}
$$

and similarly

$$
\begin{equation*}
\sum_{T<p \leq R} \frac{1}{p} \sum_{h=1}^{p-1}\left|G\left(\frac{h}{p}\right)\right|^{2} \leq \frac{3 N|B|}{T+1} \tag{25}
\end{equation*}
$$

Our result follows from (23), (24) and (25).

References

[1] P.D.T.A. Elliott, A. Sárközy, The distribution of the number of prime divisors of sums $a+b$, J. Number Theory, 29 (1988), 94-99.
[2] P. Erdős, H. Maier, A. Sárközy, On the distribution of the number of prime factors of sums $a+b$, Trans. Amer. Math. Soc., 302 (1987), 269-280.
[3] P. Erdős, C. Pomerance, A. Sárközy, C.L. Stewart, On elements of sumsets with many prime factors, J. Number Theory, 44 (1993), 93-104.
[4] G.H. Hardy, E.M. Wright, An introduction to the theory of numbers, 5-th ed., Oxford, 1979.
[5] H.L. Montgomery, R.C. Vaughan, The large seive, Mathematika, 20 (1973), 119-134.
[6] C. Pomerance, A. Sárközy, C.L. Stewart, On divisors of sums of integers, III, Pacific J. Math., 133 (1988), 363-379.
[7] G. Tenenbaum, Facteurs premiers de sommes d'entiers, Proc. Amer. Math. Soc., 106 (1989), 287-296.

Received September 9, 1991, and accepted for publication July 29, 1993.
The research of the second author was supported in part by a Killam Research Fellowship and by Grant A3528 from the Natural Sciences and Engineering Research Council of Canada.

The University of Waterloo
Waterloo, Ontario, Canada N2L 3G1
E-mail address: cstewart@watserv1.uwaterloo.ca

Permanent address of A. Sárközy:
Mathematical Institute
of the Hungarian Academy of Sciences
REÁltanoda U. 13-15,
Budapest, Hungary, H-1053

