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ON DIVISORS OF SUMS OF INTEGERS V
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Dedicated to Professor P. Erdόs on the occasion of his eightieth
birthday.

Let TV be a positive integer and let A and B be subsets
of {1,...,ΛΓ}. In this article we shall estimate both the
maximum and the average of ω(a -f 6), the number of dis-
tinct prime factors of a -f 6, where a and b are from A and
B respectively.

1. Introduct ion. For any set X let \X\ denote its cardinality
and for any integer n larger than one let ω(n) denote the number
of distinct prime factors of n. Let I be an integer larger than one
and let 6 be a positive real number. Let 2 = Pi 5P2,..- be the
sequence of prime numbers in increasing order and let m be that
positive integer for which p x -pm < N < p\ p m +i. In [3], Erdόs,
Pomerance, Sarkozy and Stewart proved that there exist positive
numbers Co and CΊ which are effectively computable in terms of e,
such that if N exceeds Co and A and B are subsets of {1, . . . , N}
with d^HBI)1/2 > eN then there exist integers a from A and b from
B for which

ω(a + b) > m —

They also showed that there is a positive real number e, with e < 1,
and an effectively computable positive number C<ι such that for each
positive integer N there is a subset A of {1, . . . , N} with \A\> eN
for which

/ /x C2y/rn
max ω(a + a) < m —-—-—.
a,a'eA logm

Notice by the prime number theorem that

m = ( l + o(l))(logJV)/(loglogΛΓ).
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In this article we shall study both the maximum of ω(a + b) and
the average of ω(a + b) as a and b run over A and B respectively
where A and B are subsets of {1,.. . ,7V} for which (I^Hi?!)1/2 is
much smaller than eN. Our principal tool will be the large sieve
inequality.

T H E O R E M 1. Let θ be a real number with 1/2 < θ < 1 and let
N be a positive integer. There exists a positive number C$, which
is effectively computable in terms of θ, such thet if A and B are
subsets of {1, . . . , N} with N greater than C% and

(1) {\A\\B\y2 > N9,

then there exists an integer a from A and an integer b from B for
which

(2) ω ( α + 6 ) > i ( 0 _ I ) (logΛO/loglogΛΓ.

In [6] Pomerance, Sarkozy and Stewart showed that if A and B
are sufficiently dense sets then there is a sum a + b which is divisible
by a small prime factor. In particular they proved the following
result. Let β be a positive real number. There is a positive number
C4, which is effectively computable in terms of /?, such that if A and
B are subsets of {1, . . . , JV} with (lAH^I)1/2 > CAN

1'2 then there
is a prime number p with β < p < C4(iV/(|i4||-B|)1/2), an integer a
from A and an integer b from B such that p divides a + b. As a
byproduct of our proof of Theorem 1 we are able to improve upon
this result.

THEOREM 2. Let N be a positive integer and let θ and β be real
numbers with 1/2 < θ < 1. There is a positive number C5, which
is effectively computable in terms of θ and β, such that if A and B
are subsets of {1,. . . , N} with

(3) (\A\\B\)1'* > N*,

and N exceeds C$ then there is a prime number p with

1 / ( 2 ' - I >
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such that every residue class modulo p contains a member of A + B.

It follows from the work of Elliott and Sarkόzy [1], see also Erdδs,
Maier and Sarkozy [2] and Tenenbaum [7], that if A and B are
subsets of {1,. . . , N} with

(4) {\A\\B\)1'2 = ΛΓ/expKOoglog^^logloglogJV))

and iV is sufficiently large then a theorem of Erdόs-Kac type holds
for ω(a + b). In particular for A and B satisfying (4) we have

(5) ΈΈω(a + b)~ log log iV.
aeAbeB

Let δ be a positive real number. If A and B are subsets of {1, . . . , N}
with \A\ ~ \B\ ~ iVexp(—ί log log log iV), then (5) need not hold.
For instance we may take A and B to be the subset of {1, . . . , N}
consisting of the multiples of ΠP<*iogiogMogiogiogΛrP Then for N
sufficiently large the average of ω(a+b) is at least (1+5/2) log log N.
On the other hand we conjecture that if A and B are subsets of
{1,.. .,N} with

(6) mhi(\Al\B\)>exp((logN)1+«%

6 is a positive real number and N is sufficiently large in terms of e
then

(7) ΠTΓRT Σ Σ 4 + ̂ ) > ( 1 - e) loglogTV.

On taking A and B to be positive integers up to exp((logΛ^)1~€) we
see that condition (6) cannot be weakened substantially. Further-
more, we conjecture that if we let iV tend to infinity and A and B
run over subsets of { 1 , . . . , N} with

log log iV

then

}
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While we have not been able to establish (7) for all subsets A
and B satisfying (6), we have been able to determine the average
order for the number of large prime divisors of the sums a + b for
sufficiently dense sets A and B. As a consequence we are able to
establish (7) for such sets.

THEOREM 3. There exists an effectively computable positive con-
stant Cβ such that if T and N are positive integers with T < y/2N
and A and B are non-empty subsets of {1, . . . , N} then

l-( loglogJV-loglog(3T))
T<paeA,beB,p\{a+b)

3iV

We now take T = N/{\A\\B\)ιl2 in Theorem 3 to obtain the
following result.

COROLLARY 1. There exists an effectively computable positive
constant Cγ such that if N is a positive integer and A and B are
subsets of {I,..., N} with \A\\B\ > N then

Σ Σ i-(log log*

- loglogN(\A\\B\y/2) <C7.

Therefore (7) holds for N sufficiently large provided that A and
B are subsets of {1,. . . , N} with

2. Prel iminary Lemmas. For any real number x let e(x) =
e27Γl and let ||x|| denote the distance from x to the nearest integer.
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Let M and N be integers with N positive and let αΛf+i,..., aM+N
be complex numbers. Define S{x) by

M+N

(8) S(x) = £ ane(nx).
M+l

Let X be a set of real numbers which are distinct modulo 1 and
define δ by

(9) δ= min llx-x'! ! .

The analytical form of the large sieve inequality, (see Theorem 1 of
[5]), is required for the proof of Theorem 3 and it is given below.

LEMMA 1. Let S(x) andδ be as in (8) and (9), respectively. Then

M+N

ΣlSixtfKiN + δ-1) ]£
x€X n=M+l

| α n | 2 .

We shall also make use of the following result, see Theorem 1 of
[6], which was deduced with the aid of the arithmetical form of the
large sieve inequality.

LEMMA 2. Let N be a positive integer and let A and B be non-
empty subsets of {1,. . . , N}. Let S be a set of prime numbers, let
Q be a positive integer and let J denote the number of square-free
positive integers up to Q all of whose prime factors are from S. If

(10) J{\A\\B\)ιl2>N + Q\

then there is a prime p in S such that each residue class modulo p
contains a member of the sum set A + B.

Finally, to prove Theorems 1 and 2 we shall require the next
result.

LEMMA 3. Let a and β be real numbers with a > 1 and let N be
a positive integer. Let T be the set of prime numbers p which satisfy
β < p < (\ogN)a and let S be a subset of T consisting of all but
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at most 2 log TV elements ofT. Let R denote the set of square-free
positive integers less than or equal to TV all of whose prime factors
are from S. There exists a real number C%, which is effectively
computable in terms of a and β, such that

\R\ > 20TV1"1/α,

whenever TV is greater then C%.

Proof. CgjCio and C\\ will denote positive numbers which are
effectively computable in terms of a and β. By the prime number
theorem with error term,

(11) > τr((logΛ0Q) - π{β) - 2 log TV >
(log TV)-

a log log TV'

provided that TV is greater than C9. For any real number x let [x]
denote the greatest integer less than or equal to x. We now count
the number of distinct ways of choosing [logTV/(αloglogTV)] primes
from S. Each choice gives rise to a distinct square-free integer,
given by the product of the primes, which does not exceed TV and
is composed only of primes from S. Then \R\ > ω where

ω =
\s\

logN

Thus

\s\-
ω >

a log log iVj

logiV

a log log N\

\
[a log log TV J

and so, by (11) and Stirling's formula,

1,
j '

ω >

(
\a log log N \

eαloglogTV
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for N > C 1 0 . Since log(l - x) > -2x for 0 < x < 1/2, we find that,
for N > Cii,

ω _

hence
ω

as required. D

3. Proof of Theorem 1. Let θλ = (0 + l/2)/2 and define G
and Ϊ; by

G = (logΛ01/ ί2έ>1"1),

and

respectively.
Put Ao = i4, J50 = 5 and Wo = 0. We shall construct inductively

sets Ai, . . . , Ay, B\,.. ,BV and W\,...,WV with the following prop-
erties. First, Wi is a set of i primes q satisfying 10 < q < G, A C
Aj_i and B^ C B^i for z = 1,. . . , v. Secondly every element of the
sum set Ai + Bi is divisible by each prime in Wi for i = 1,. . . , v.
Finally,

(13) | 4 | > ^ [ and |B,| > M

for ΐ = 1,..., v. Note that this suffices to prove our result since Aυ

and Bυ are both non-empty and on taking a from Aυ and 6 from Bv

we find that a + 6 is divisible by the t; primes from Wυ and so (2)
follows from (12).

Suppose that i is an integer with 0 < i < v and that Aiy Bi and
Wi have been constructed with the above properties. We shall now
show how to construct Ai+U JB Ϊ + 1 and Wf+i First, for each prime p
with 10 < p < G let α x , . . . , a^v) be representatives for those residue
classes modulo p which are occupied by fewer than |i4j|/p3 terms of
Ai. For each prime p with 10 < p < G we remove from Ai those
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terms of Ai which are congruent to one of α i , . . . , dj(p) modulo p.
We are left with a subset A[ of Ai with

and such that for each prime p with 10 < p < G and each α' in A[,
the number of terms of Ai which are congruent to a! modulo p is at
least |Aΐ|/p3. Similarly, we produce a subset B[ of B{ with

(15) |3| >
10

and such that for each prime p with 10 < p < G and each residue
class modulo p which contains an element of B\ the number of terms
of Bi in the residue class is at least \Bi\/ps.

The number of terms in Wi is i which is less than v and, by (12),
is at most log TV. Thus we may apply Lemma 3 with β = 10 and
a — l/(2#i — 1) to conclude that there is a real number CΊ2, which
is effectively computable in terms of θ, such that if N exceeds C12
then the number of square-free positive integers less than or equal
to N1/2 all of whose prime factors p satisfy 10 < p < G and p &Wi
is greater than

(16) 2

By our inductive assumption (13) and by (1) and (12), we obtain

(17) (\Λi\\Bi\)1/2 > (\A\\B\)ι/2G-si > JV<\

Thus, by (14), (15) and (17),

Nθl

(is) (l4M 1 / 2>-^-.

We now apply Lemma 2 with A = A , B = B\, Q = N1/2 and
S the set of primes p with 10 < p < G and p 0 Wi. Then J, the
number of square-free integers up to Q divisible only by primes from
5, is greater than 20JV1"*1 by (16), for N > C12 and so, by (18),
inequality (10) holds. Thus there is a prime g ί + 1 in 5, an element
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a1 in A[ and an element b1 in B[ such that qi+χ divides a! + &'. We
put

J4 < + 1 = {ae Ai : a ΞΞ a' (mod φ+i)},

J5 i + 1 = {6GBi : b~bf (mod g i + 1)},

and

Wi+1 = WiU{ f t + 1 } .

By our construction every element of Ai+\ +Bi+1 is divisible by each
prime in W»+i. Further, we have, by (13),

and

- (J3(i+1)'

as required. Our result now follows.

4. Proof of Theorem 2. Let S be the set of primes p which
satisfy β < p < (logiN1/2))1^26"1^. Put a = 1/(20-1) and observe
that a is a real number greater than one since 1/2 < θ < 1. Next
let J denote the number of square-free positive integer less than or
equal to AT1/2 all of whose prime factors are from S. By Lemma 3
there exists a positive number C i 3 , which is effectively computable
in terms of #, such that if N exceeds C13, then

(19) J > 20(iV1/2)i-(2*-i) = 20ΛΓ1"

We now apply Lemma 2 with Q = iV1//2 and with J and S as above.
From (3) and (19) we obtain (10) and so our result follows from
Lemma 2.

5. Proof of Theorem 3. Put R = j\/2ΪV]. We have

^ v Σ i-ΣΣ Σ 1
beB T<p,p\a+b aeA beB T<p<Rφ\a+b

ΣΣ Σ
aeA beB R<p<2N,p\a+b aeA beB

\A\\B\.
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We define, for each real number a,

F(a) = Σ e(aa) a n d G(a) = Σ e(ba)
aeA beB

Then

(2i) Σ Σ Σ i= Σ
aeA beB T<p<R,p\a+b

Further there is an effectively computable positive constant Cu such
that

(22)
1

T<p<RP

see Theorem 427 of [4]. Put

--(loglo gi2-loglog(3T)) <c14,

Σ Σ Σ i - μp|(iogiogiv - iogiog(3Γ))
aeA beB T<p,p\a+b

H =

By (20), (21) and (22),

H<C15\A\\B\ + F (H\ G (V
T<p~<RP h=l

For all real numbers u and υ, \u\\v\ < (\u\2 + |f | 2)/2 and thus

—1 / / \ 1/2

ΓΊ-> -. ^ T J 1 / I i \ \ | •*!• I /

1 <p<R Γ fι=l \ \ι I /

(23)

\B\)

Put

S(n) = Σ Σ
p<nh=l
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Then by Lemma 1, for n < J?,

Sin) <(N + n2)\A\ <3N\A\.

Thus we obtain

(24)
iP-l

Σ -Σ
T<P<RP h=i

n=T+l

S(n)-S(n-l)

n

S { R )

R

= Σ

and similarly

(25)
iP-l

Σ -
3N\B\

Γ + Γ

Our result follows from (23), (24) and (25).
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