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PERIODICITY, GENERA AND ALEXANDER
POLYNOMIALS OF KNOTS

SWATEE NAIK

For knots in S3 criteria for periodicity are obtained in
terms of the homology groups of cyclic branched covers of
S 3 and the Alexander polynomial. Also the relationship
between the genus of a periodic knot and the Alexander
polynomial is studied. As an application it is shown that
no eleven crossing knot has a period greater than 5.

1. Introduction. A knot K in 5 3 is said to be periodic if there
exists an integer q > 1 and an orientation preserving diffeomorphism
f : S3 -ϊ S3 such that f(K) — K, order(/) = g, and the fixed point
set of / is a circle disjoint from K. Any such q is called a period of
K, and any such /, a corresponding periodic transformation.

A natural question is how to determine whether a knot is periodic
with a given period. R. Fox [8] conjectured in 1962 that a nontriv-
ial knot has only finitely many periods. This was first proved by
E. Flapan [7] in 1983 and an explicit bound for the possible periods
of a knot, in terms of its genus, was given by A. Edmonds [6] in
1984.

In 1971, K. Murasugi [13] showed that the Alexander polynomial
of a period q knot has to satisfy certain conditions. Several other
techniques to determine the possible periods for a given knot have
been developed since then. The more recent results include criteria
involving other polynomial invariants (see [14, 16, 18, 19, 20, 21])
and hyperbolic structures on knot complements [1]. The efficacy of
the Murasugi conditions lies in the simplicity of these conditions,
the computability of the Alexander polynomial, and the fact that an
Alexander polynomial occurs as the polynomial of an infinite collec-
tion of knots, thereby making the results applicable to a large class.
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What makes the Alexander polynomial results even more interest-
ing, is the recent "converse" obtained by J. Davis and C. Livingston
[5]. They show that with some additional restrictions, the Mura-
sugi conditions on a polynomial guarantee the existence of a periodic
knot with that as its Alexander polynomial.

In this paper we effectively utilize the lifting of the periodic action
to the finite cyclic covers of S3 branched over a periodic knot to
obtain conditions on the homology groups of these covers. Our
results provide simple and useful criteria for periodicity of a knot.
More important, they bring out an interplay between the genus of
a periodic knot and the Alexander polynomial. We show that a
purely algebraic hypothesis on the polynomial gives us fairly large
lower bounds on the genus of any periodic knot with that as its
Alexander polynomial. As a quick example, consider the polynomial
7ί6 - 13ί3 + 7. By [5], it follows that this is the polynomial of a
period 7 knot. Our results show that any period 7 knot with this
polynomial has genus at least as big as 21, and this will be seen to
imply that such a knot has at least 44 crossings.

We also observe that results of [6] can be sharpened using the
Murasugi conditions and these new results give powerful tools to
determine the possible periods higher than the genus of the knot.
As an application, we can easily show that out of the 552 knots with
11 crossings, only 3 may have period 5, and no 11-crossing knot has
a period greater than 5. These remaining difficult cases of possible
period 5 can be ruled out with more subtle techniques.

The paper is organized as follows.
In Section 2 we obtain conditions on the torsion submodules of

the homology modules of the finite cyclic covers of S 3 branched
over a periodic knot and also give criteria for periodicity in terms
of the Alexander polynomial. In particular, for any prime / such
that there is no /-torsion in the homology of the cyclic cover of
5 3 branched over the quotient knot, Theorem 2.6 gives an explicit
characterization of the Z-Sylow subgroup of the torsion group of the
periodic knot. The result of 2.6 is shown to be independent of the
Murasugi conditions through the following example.

The Alexander polynomial of the knot 103 satisfies the Murasugi
conditions for period 3 (see 4.1). The first homology group of the
2-fold cyclic cover of S3 branched over 103 is the cyclic group of
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order 25. We will show that this contradicts 2.6, thereby proving
that IO3 does not have period 3. Note that this was shown before
in [18] using the skein polynomial.

In Section 3 we discuss the genus of a periodic knot with a given
Alexander polynomial.

In Section 4 we combine results of [6] with the Murasugi condi-
tions to obtain better criteria for periods higher than the genus of
a knot.

Finally, in Section 5, we consider various examples of 10- and
11- crossing knots, where by applying the results of the previous
sections, we give a short proof of previously known results in the
case of 10- crossing knots and prove new results for 11- crossing
knots.

Thanks are due to James F. Davis, Sudhir R. Ghorpade, and
Charles Livingston for all their help.

2. Cyclic Covers of S3 branched over a periodic knot- Let
K C S3 be a periodic knot with a period q and / : S3 ~> S3 be
the corresponding periodic transformation. We have fq = ids3 φ
/ n , for 1 < n < q. Let (Mk,θ) be the A -fold cyclic cover of 5 3

branched over K. We will first show that the map / can be lifted
to an order q homeomorphism of M* onto itself. To this end, let us
briefly recall the construction of Mk

Take a tubular neighborhood T of K in S3 such that f(T) = T.
The existence of such a neighborhood T follows from the Equivariant
Tubular Neighborhood Theorem (see Chapter VI, Theorem 2.2 of
[2]). Let X = S3 - int(T), and let (Xk, θ) be the fc-fold cyclic cover
of X. The boundary dXk is a torus that covers dX by wrapping the
meridian of dXk around the meridian of Γ, k-times. The branched
cover Mk is obtained by attaching a solid torus D2 x Sι to X*, along
dXk, in such a way that dD2 x {pt } is identified with the meridian
of dXk> The covering projection θ : Xk —> X clearly extends to
the desired branched covering Mk —> S3, which we may also denote
by θ. In the following lemma we show that f\χ can be lifted to an
order q homeomorphism of the unbranched cover Xk-

LEMMA 2.1. There exists an order q homeomorphism f :
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Xk such that θ o f = f o θ.

Proof. Let the restriction of / to X also be denoted by /. Choose
a base point s for τri(-Y) in the fixed point set of /, and a base point
s for τri(Xfc) in θ~ι(s). Note that πi{θ)(πι{Xk)) is the only normal
subgroup of τri(X) of index k with a cyclic quotient. It follows that
it is a characteristic subgroup. Now, since / is a homeomorphism,
τri(/) is an automorphism of τri(X), and thus

Consequently, there exists a map / : Xk —> Xk, which fixes s and
lifts / o 0, i.e., θ o f = f o θ. By induction, θ o (/)* = /» o 0,
for i > 1. Since / has order 9, (f)1 φ idχfc for 1 < i < q and
θ°(f)Q = θ. Thus (/)ρ is a covering transformation, which fixes the
point 5, and therefore (f)q — i d ^ . It follows that / is an order q
homeomorphism. D

It is easy to see that f\axk can be extended to an order q self-
homeomorphism of D2 x S1. As a consequence, we have the follow-
ing.

PROPOSITION 2.2. There exists an order q homeomorphism f :
Mk -» Mk such that θ o / = / o θ.

REMARK 2.3. It can easily be seen that the lifting / is, in fact, a
diffeomorphism with respect to the induced differentiable structure
on the covering space.

In the remainder of this section, we obtain necessary conditions
which the homology modules of the branched covers, and conse-
quently the Alexander polynomial, must satisfy in order that the
corresponding knot is periodic with a period q. Note that the map
/ defines an action of Cq, the cyclic group of q elements, on Mk.
This action induces an action of the group ring Z[Cq] on Hi{Mk).
Let I be a prime and let H\(Mk)ι [resp: Hι(Mk/Cq)ι] denote the sub-
group of Hι(Mk) [resp: Hι(Mk/Cq)] consisting of the elements of
order a power of/. Clearly, Z[Cq] acts on Hι(Mk)ι. Let {Hι{Mk)ι)Cq

denote the set of fixed points of the action.

PROPOSITION 2.4. If q is a prime, then Hι{Mk)ι/ (Hι(Mk)ι)Cq
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is a Z[ζq]-module. Here ζq is a primitive q-th root of unity.

Proof. Let t be a generator of Cq and let σ be the element 1 +

* + ••• + tq~ι of Z[Cq). Since q is a prime, Z[Cq]/{σ) ** Z[ζq]. Also,

σa e (H^M^i)0" for all a e Hι(Mk)ι. The result follows. D

PROPOSITION 2.5. If the prime I is relatively prime to q, then

Proof Let π* : Hι(Mk)fq -> Hι(Mk/Cq)ι be the restriction of the
map induced by the quotient Mk -* Mk/Cq, and let
μ* : Hι(Mk/Cq)ι —> Hι(Mk)ιq be the transfer map. It is easy to see
that the composite maps π* o μ+ and μ* o TΓ* are multiplications by
q on the respective modules. Since q and / are relatively prime, we
have the result. (Compare the proof of Theorem 2.4, Chapter III of
[2].) D

NOTATION. For distinct primes / and g, let fq(l) denote the
multiplicative order of / (mod </), i.e., the least positive integer such
that /ΛW = 1 (mod q).

THEOREM 2.6. Let K be a periodic knot with a prime period q
and let Hι(Mk/Cq)ι = 0 for some prime I φ q. Then there exist
nonnegative integers ί, αχ3 , at such that

Hx{Mk)ι = (C«)α i Λ ( / ) Θ ( C / 2 ) a ^ » Θ Θ (C

Proof From 2.4 and 2.5 we see that Hι(Mk)ι is a Z[ζρ]-module.
We have

s

where Λ = Z[C?L ^i? * * * ? ^5 &re prime ideals of Λ, and rii, , n
are positive integers (see [10]). Using standard results from Alge-
braic Number Theory it can be seen that / is unramified in Λ, and
if L is a prime ideal in Λ such that LΠ Z = IZ, then
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This gives the desired isomorphism. (Also see the characterization
of Z[Cρ]-modules, as given in Theorem 2.5 of [4]. It may be noted
that this result in [4] is misstated. In the notation of (2.5) of [4],
Gι should be defined as the set of elements of G of order a power of
/ instead of those of order divisible by ί; with this modification the
proof given in [4] is correct.) D

It is easy to see that MkjCq is the A -fold cyclic cover of Ss

branched over the quotient knot K/Cq. This makes the above the-
orem more easily applicable to examples as illustrated below.

EXAMPLE. Consider the knot 103 listed as having a possible
period 3 in [3]. We have, Hι(M2) = C25, and if this knot had period
3, the quotient knot would be trivial (to prove this, use Theorem 3.2
of the next section along with the fact that 103 has genus 1). Thus,
Hι(M2/Cs) would be trivial, and since /s(5) = 2, Theorem 2.6 is
contradicted. Thus IO3 does not have period 3. (See also [18].)

In 2.7 below, we obtain a quick corollary to Theorem 2.6. For a
finitely generated abelian group G, let |G| denote the order of its
torsion subgroup.

COROLLARY 2.7. Let K be a periodic knot with a prime period q
and let K be the image of K in Sz/Cq. Let Mk and Mk be the k-
fold cyclic covers of Ss branched over K and K, respectively. Then
for each prime factor I φ q of \Hι(Mk)\, which does not divide

Note that (see Section 5 of [9]), if ζk is a primitive k-ih root of
unity, we have

k

\Hi(Mk)\ = and Π
2 = 1

Using the factorization of Alexander polynomials of periodic knots
obtained in [13], we can, in fact, prove a stronger statement than
2.7. Note that the Alexander polynomial is well defined only up to
multiplication by units in Zfίjt""1]; we normalize it so that it has a
nonzero constant term and it contains no negative powers of t.

THEOREM 2.8. Let K be a periodic knot with a prime period q,
let Δ and Δ be the Alexander polynomials of K and of its quotient
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knot, respectively. Let I be a prime such that I φ q, let fq(l) denote
the multiplicative order of I mod q, and for a positive integer m,
let ζm denote a primitive m-th root of unity. Then the following
statements are true.

(i) IfaβZandl] (Δ/Λ) (α), then /Λ(0| ( Δ / Δ ) (a).

(ii) Ifk > 2 and l\ Π?=i(Δ/Δ)(C[), then /ΛW| Πti(Δ/Δ)(ζJ).

It was shown in [13] (see also (14.21) of [3]) that A di-
vides Δ in Z[t] and Δ/Δ = ΠϊZi D(t,ζ*), where D is a polyno-
mial in 2 variables with integer coefficients. Note that D(α, ζ ) and

Πj=Ϊ£(Cib,Ci) a r e i n Z[C9], for α G Z, i > 1, k > 2. Now, since
/ φ q^ we have, /Z[C?] = L1L2' - - Lg, where Li, L2, , Z^ are
distinct prime ideals of Z[ζq] which are permuted transitively by
Gal(Q(C9)/Q), and g = (q - l)/fq{l) (see Theorems 23 and 26 of
[12]). The result follows. D

EXAMPLE. For the knot 11 4 3 2 of [15], Δ - ( l + ί - 3 ΐ 2 + ί 3 + ί 4 ) ( l -
t + ί 2 ) 2 , and it follows from the Murasugi conditions that if it had
period 3, then A = 1 - t + t 2 (see 4.1). In that case (Δ/Δ)(2) = 5 x 9
and since /3(5) > 1, Theorem 2.8,(i) is contradicted. It follows that
II432 does not have period 3.

3. The genus of periodic knots with a prescribed Alexan-
der polynomial. Let us call a polynomial Δ G Z[t] a knot poly-
nomial if Δ(l) = ± 1 and Δ(ί) = ί d e s Δ Δ ( r 1 ) . A classical result
of H. Seifert [17] states that for any knot polynomial Δ, there ex-
ists a knot K with g{K) = | d e g Δ and with Aκ, the Alexander
polynomial of K, equal to Δ. Note that the genus g{K) of a knot
K is, by definition, the minimum of the genera of Seifert surfaces
bounded by K. Recently, J. Davis and C. Livingston showed that if
a knot polynomial Δ satisfies certain conditions, then there exists a
periodic knot K with Δ # = Δ; as a particular case of their results,
we have Theorem 3.1.

NOTATION. For polynomials / and g in Z[ί], by f=g (mod q) we
mean

/ = ±tng (mod q), for some n G Z.
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THEOREM 3.1. (Corollary 1.2 of [5]). If A is a knot polynomial

such that A(t)=l (mod q) for some integer q > 1, then there exists

a period q knot with A as its Alexander polynomial.

Using the results of the previous section, we now show that for
certain knot polynomials Δ with Δ Ξ I (mod q) for some q > 1, the
genus of any period q knot K with Aκ — Δ has to be fairly high.
We need the following result which is an immediate consequence
of the last equation in the proof of Corollary 5 of [6], and may be
thought of as the Riemann-Hurwitz Formula for periodic knots.

THEOREM 3.2. Let K be a period q knot with genus g and let g
be the genus of the quotient knot. Let m be the number of points
of intersection of the fixed set of the Cq action and an equivariant
Seifert surface F of genus g bounded by K. Then g = q- g(F/Cq) +

In particular, g > qg.

THEOREM 3.3. Let A be a nontrivial knot polynomial, and let q
be a prime. Suppose that for each knot polynomial f different from
A and dividing Δ ; there exists an integer a = a(f) and a prime
I = /(/) satisfying the following three conditions.

(i)lφq, (ii)

Then for any period q knot K with Δ # = Δ7 we have: g(K) >

Proof Let K be any period q knot with Δ # = Δ. Let K = K/Cq

and Δ be the Alexander polynomial of K. If Δ φ Δ, then by
applying 2.8 with a = α(Δ) and I = Z(Δ), we see that lf^ι)\A(a).
But this contradicts our hypothesis. Now, by 3.2, g(K) > qg(K),
and since g(K) > | d e g Δ , we get the desired inequality. D

EXAMPLE 1. Let Δ = 7ί6 - 13ί3 + 7. Clearly Δ is the Alexander
polynomial of some knot. It is easy to see that Δ does not have any
proper factors which are knot polynomials, and Δ(—1) = 27. Since
/7(3) = 6, the hypothesis of 3.3 is clearly satisfied if we take q — Ί,
a = — 1, and / = 3. It follows that the genus of any period 7 knot
with Δ as its Alexander polynomial, is at least 21.
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EXAMPLE 2. The knot 10i62 has the Alexander polynomial Δ =
3ί4 - 9ί3 + lit2 - 9ί + 3. By 3.1, there exists a period 3 knot with
this Alexander polynomial. It is easy to see that Δ is an irreducible
polynomial. Moreover, Δ(—1) = 35, which is divisible by 5, and not
by 5Λ(5) = 25. Thus by 3.3, we see that any period 3 knot with Δ as
its Alexander polynomial must have genus > 6. Now the genus of a
10-crossing knot is at most 4 (this follows from 4.5 in the following
section). So 10χ62 cannot have period 3. Note that this has been
shown before by using hyperbolic structures on knot complements
(see [1]).

EXAMPLE 3. One can easily give examples of infinite families
of "periodic polynomials" where the genera of the corresponding
periodic knots are necessarily quite high. Let, for instance, n and
k be powers of 3 and let Δ = (5ΐ2n - l l ί n + 5)(10ί2* - 19tk +
10). By 3.1, there exists a period 5 knot with Δ as its Alexander
polynomial. Note that / = 5ί2 n - lit71 + 5 and g = 10ί2* - 19t* +10
are irreducible in Z[ί] (apply Eisenstein's criterion to f(t — 1) and
g(t — 1), respectively). By letting a = —1, 1(1) = /(/) = 13 and
l(g) = 7, and applying 3.3, we see that the genus of any period 5
knot with this Alexander polynomial is at least 5(n + k).

4. Periods higher t h a n t h e genus of a knot . Let K be a
nontrivial periodic knot with a period q and K = K/Cq be the
quotient knot. Let B be the fixed set of the Cq action. Let Δ and
g (resp: Δ and g) be the Alexander polynomial and the genus of K
(resp: K). In this section we obtain some simple criteria for periods
greater than the genus of the knot.

For convenience, let us restate some known results in 4.1 and 4.2
below, the proofs of which can be found in [13] and [6], respectively.

THEOREM 4.1 MURASUGI CONDITIONS.

(4.1.1) Δ divides Δ.
(4.1.2) Let q be a power of a prime p, and let λ be the linking

number lk(B, K) of B andK. Then

A= (A)" (l + t + • • • + 1 * - 1 ) 9 ' 1 (mod p).

Moreover, λ is relatively prime to q.

THEOREM 4.2 EDMONDS' THEOREM.
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(4.2.1) q<2g + l.
(4.2.2) Ifq>g andm is the number of points of intersection

of B and an equiυariant Seifert surface F of genus g bounded by K,
then exactly one of the following possibilities holds:

(i) q = g + 1, g = 0, and m = S.
(ii) q = 2g + 1, g = 0 ; and m = 2.

Both the above results have been very useful in determining the
possible periods of a knot. Surprisingly, except in a few examples
in Chapter 7 of [11], no attempt has been made so far of applying
these together. When combined, these results give highly efficient
criteria for periods higher than the genus of the knot, as observed
in 4.3 below.

PROPOSITION 4.3. Suppose q is a power of a prime p, and q > g.
Then g = 0 and exactly one of the following holds:

(i) q = g + l7 λ = 1, and Δ Ξ I (mod p).

(ii) q = g + 1, λ = 3 ; degΔ = 2(q - 1), and Δ = ( l + t +
ΐ 2 ) * " 1 (mod p).

(iii) q = 2g + l, λ = 2, degΔ = g - l , andΔΞΞ(l+t)q~ι (mod p).

Proof. Let λ be as in 4.1 and F be as in 4.2. Let Pi, , Pm be the
points of intersection of B and F. Note that λ equals tχ-\ h em,
for some €i, , em 6 {1, —1}. It follows that λ < m and λ = m
(mod 2). By (4.2.2), g = 0, and so if is trivial. In particular, Δ = 1.
The result now follows from (4.1.2) and (4.2.2). D

For prime power periods, using the above proposition, we get the
following sharpened version of Corollary 6 in [6].

COROLLARY 4.4. Suppose q is a power of a prime p, and

ΔΞΞI (mod p). Then q < g + 1.

To make these results more easily applicable to examples, it is
useful to make a few observations regarding the relationship between
the minimum number of crossings and the genus of a knot, which
we will do in the remainder of this section.

Let n be the minimum number of crossings of K, i.e., the least
number among the number of crossings in all diagrams representing
K. For a real number x, let [x] denote the greatest integer < x.
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LEMMA 4.5. Suppose K is not the (n,2)-torus knot.
Theng< [n/2] - 1.

Proof. Let s be the number of the Seifert circles in an n- crossing
diagram for K. Then the Euler characteristic of the corresponding
Seifert surface F, is — n + s, i.e., 1 — 2g(F) = — n + s, where g(F) is
the genus of the surface F. The nontriviality of the knot K, implies
that s > 2. If n is even, s has to be odd, and so s > 3. On the
other hand, if n is odd, s = 2 iff K is the (n, 2)-torus knot, and so
s > 4. As g < g(F), the result follows. D

The following two propositions follow from (4.2.1), 4.3 and 4.5.

PROPOSITION 4.6. Withn as above, we haveq < n—1. Moreover,
ifn is odd and K is not the (n, 2) torus knot, then q < n — 2.

PROPOSITION 4.7. If q is a power of a prime p, K is not the
(n, 2)-torus knot, and [n/2] < q, then g = 0 and exactly one of the
following possibilities holds.

(i) q = g + 1 = [n/2] , and ΔΞΞl(mod)p.

(π) q = g + I = [n/2], degΔ = 2(q - 1), and ΔΞΞ(1 + t +

(iii) q = 2g + 1, degΔ = q- 1, and Δ Ξ ( 1 + t)q~1(modp).

5. Applications to 10- and 11-Crossing Knots. The crite-
ria for periodicity obtained in the previous sections can yield, when
combined appropriately, an efficient procedure to determine the pos-
sible periods of knots. We illustrate it here in the case of 10- and 11-
crossing knots. Note that the periods of 10-crossing knots have been
determined before (see [1, 3, 5, 13, 14, 16, 19, 20, 21]), whereas
only a few specific examples of 11-crossing knots have been dealt
with (see [16]). Here we obtain a unified proof for some of these
known results for 10-crossing knots, and obtain new results in case
of 11-crossing knots. In the discussion below, we follow the knot
tables in [3] and [15] for the notation and information concerning
the 10- and 11-crossing knots.
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PROPOSITION 5.1.

(i) No 10-crossing knot has a period greater than 5.

(ii) At most four 10-crossing knots can have period 5; these are:

10 10 and 10i 3 7.

PROPOSITION 5.2.

(i) The only possible periods for an 11-crossing knot are: 2, 3,
4, 5, and 11.

(ii) There is exactly one 11-crossing knot of period 11, namely

Hi.

(iii) At most three 11-crossing knots can have period 5; these

are: II224, H471; and II473.

In order to prove the above assertions, suppose that K is an n-
crossing knot of period q, where n £ {10,11}. Let Δ,#, Δ, and g
be as in Section 4. Note that the torus knot H i is periodic with
periods 2 and 11 and has no other periods (see Corollary 6 of [13]).
Hereafter, assume that K φ llχ. We first observe the following.

LEMMA 5.3.

(i) 9 < 4.
(ϋ) q<9.

(iii) ^ { 6 , 8 } .

(iv) // q = 9 , then g = 4, Δ = 1, degΔ = 8, and Δ = ( l +
ί ) 8 (mod 3).

(v) // q = 7, then g = 3, A = 1, degΔ = 6, and Δ = ( l +
ί) 6 (mod 7).

(vi) Ifq = 5, then Δ = 1 and exactly one of the following holds:

(a) g = 4 and Δ Ξ I (mod 5).

(b) p = 4, degΔ - 8, and Δ = ( l + £ + ί 2 ) 4 (mod 5).

(c) 5 = 2, degΔ = 4, and Δ = ( l + ί ) 4 (mod 5).

Proof. Assertions (i) and (ii) follow from 4.5 and 4.6 respectively,
whereas (iii) follows from (i) and (4.2.2). The rest follows directly
from 4.7. D

In view of the above observations, it is clear that the only periods
possible for K are 2, 3, 4, 5, 7, and 9. We now deal separately with
the 10- and 11-crossing knots.
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First, observe that out of the total 165 knots with 10 crossings,
only 26 have a degree 8 Alexander polynomial, none of which satis-
fies the congruence in (iv) of 5.3. Hence no 10-crossing knot has pe-
riod 9. Now, there are 93 10-crossing knots with a degree 6 Alexan-
der polynomial and only one of them satisfies the congruence in (v)
of 5.3. So just one 10-crossing knot, viz., lOios, m a Y have period 7.
Furthermore, for Δ = Δ 1 0 l 0 5 = t6 - 8ί5 + 22t4 - 29ί3_+ 22t2 - 8t + 1,
we have, Δ(—1) = 13 x 7, and if lOios had period 7, Δ would have to
be 1; now, since /γ(13) > 1, we find that 2.8 is contradicted. Conse-
quently, lOios cannot have period 7. Next, consider the congruences
and degree conditions in (vi) of 5.3. We see that just 2 of the 26
degree 8 polynomials (viz., those of IO123 and IO124) satisfy (b), only
4 out of the 44 degree 4 polynomials (viz., those of lOis, IO24, IO132
and IO137) satisfy (c), and finally, only one polynomial (viz., that of
IO55) is trivial modulo 5. Moreover, for the knots lOis and IO24, we
have Δ = 4ί4 - 14ί3 + 19ί2 - 14ί + 4, so Δ(2) = 4, and for 1055, we
have Δ = 5ί4 - 15ί3 + 21ί2 - 15* + 5, so Δ(2) - 19. Since /5(2) > 2
and /δ(19) > 1, applying (2.8) we see that 10i8, 1024,and 1055 do
not have period 5. This completes the proof of (5.1).

Applying (5.3) to the 552 knots with 11 crossings, we see that
there are at most 2 of period 9 (viz., II432, H52β)j 1 °f period 7
(viz., II519), and 13 of period 5 (viz., 112, II5, H42, H 5 5 , 118 9,
II105, Ili763 H181, H224, 11401, Il47i? H473 and 11486). Any

periodic knot with period 9, also has period 3. In the example
following Theorem 2.8 we showed that II432 does not have period 3.
Also II528 has an irreducible Alexander polynomial, which does not
satisfy the Murasugi conditions 4.1 for period 3. Thus both II432
and II528 cannot have period 9. Now we check, as in the above
paragraph, if the remaining 15 knots satisfy the criterion in 2.8,(i)).
By looking at the prime factors of the polynomial evaluated at —1,
we find that II519 cannot have period 7, and only II2245 H4715 H473
can possibly have period 5. It may be noted that II471 and II473
have the trivial Alexander polynomial. This completes the proof of
5.2.

REMARK 5.4. It may be noted that, in [1], the knots 10i32 and
IO137 are shown not to have period 5 , which we have been unable to
show. Also using the skein polynomial results of [20], it can be seen
that II224, H471, and II473 do not have period 5. In the notation
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of [20], P0(ll224) = 3 + 4/2 + 2/4, and P0(ll47i) =

REMARK 5.5. Weeks' program (see [1]) computes the isometry
group for a hyperbolic knot complement if the canonical ideal cell
division is a triangulation. This gives an alternative way of finding
periods of knots which satisfy this condition. In [1], the orders of
these isometry groups are listed for links with less than 11 crossings.
Clearly this could be done for 11-crossing knots as well; however,
when the cell division is not a triangulation, Weeks' program fails
to give any information regarding periodicity. The knot IO123 is an
example where the program does not compute the symmetries, but
using the Alexander polynomial and genus results, we can show that
the only periods this knot can have are 2, 4 and 5. It is easy to see
that, in fact, it does have period 5. By 5.1 it follows that it does not
have a period greater than 5. Period 3 can be ruled out by using
the fact that it has genus 4, and then applying 3.2 and (4.1.2).
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