GENERATION OF INTEGRAL ORTHOGONAL GROUPS OVER DYADIC LOCAL FIELDS

Fei Xu

Abstract

In this paper, we introduce the minimal norm Jordan splittings of quadratic lattices over dyadic local fields. By using these splittings, we prove that orthogonal groups over dyadic local fields are generated by the symmetries and the Eichler transformations of the lattices unless the spinor norms of these groups are entire multiplicative groups of underlying fields.

The generation problem of integral orthogonal groups over local fields was first studied by Kneser (see references in [K]). He obtained that orthogonal groups of lattices over nondyadic local fields are generated by the symmetries of the lattices. This can be regarded as an analogy of Cartan- Dieudonne's theorem about generation of orthogonal groups on spaces (see [L] or [O]). In [OP1] and [OP2], O'Meara and Pollak studied these integral orthogonal groups over dyadic local fields and obtained that these groups are generated by the symmetries and the Eichler transformations of the lattices when the lattices are modular or 2 is unramified. One of the applications of these results is to study the spinor genus theory of integral quadratic forms over number fields, which essentially depends on the knowledge of the spinor norms of these integral orthogonal groups at each local completion. By using these good generators, Kneser [K] was able to determine the spinor norms of integral orthogonal groups over nondyadic local fields explicitly and Hsia $[\mathbf{H}]$ determined the spinor norms of integral orthogonal groups over dyadic local fields explicitly when the lattices are modular, and Earnest and Hsia $[\mathrm{EH}]$ computed the spinor norms of integral orthogonal groups explicitly over the dyadic fields in which 2 is unramified.

In this paper we will extend O'Meara-Pollak's results to arbitrary dyadic local fields. More precisely, our main result (Theorem 2.1) shows that orthogonal groups of the lattices are still generated by the symmetries and the Eichler transformations of the lattices
unless the integral spinor norms of these groups are the entire multiplicative groups of underlying fields. Therefore, for the purpose of determining the integral spinor norms over arbitrary dyadic local fields, we have solved this generation problem. Some results will also be used in [HSX] which gives a full answer to representations by spinor genera over number fields. Our approach is first to modify the local structures by introducing the notion of "minimal norm Jordan splittings" over a dyadic local field and then to combine the techniques from [OP2] and $[\mathbf{X}]$ to obtain the desired results.

Notation and terminology. All unexplained notation and terminology will be from $[\mathbf{O}],[\mathbf{X}]$ and $[\mathbf{O P 2}]$. In particular, F denotes a dyadic local field, ϑ the ring of integers in F, p the maximal ideal of ϑ, U the group of units in $\vartheta, e=$ ord 2 the ramification index of 2 in F. π a fixed prime element in $F, D($,$) the quadratic$ defect function, Δ a fixed unit of quadratic defect $4 \vartheta, V$ a regular quadratic space over F associated symmetric bilinear form $B(x, y)$, L a lattice on $V, d L$ the determinant of $L, s L$ the scale of $L, n L$ the norm of $L, O(L)$ the integral orthogonal group of $L, X(L)$ the subgroup generated by the symmetries and Eichler transformations of L, and $\theta($,$) the spinor norm function. We use [a, b, \ldots]$ to denote spaces.

1. Minimal norm Jordan splittings. Since the Jordan splittings of lattices in dyadic local fields are not unique, O. T. O'Meara in [O1] obtained a saturated Jordan splitting of which the norm of every Jordan component is maximal. In this section, we establish a Jordan splitting of which the norm of every Jordan component is minimal and hyperbolic components are as much as possible. This kind of splitting plays important role in solving the generation problem of $O(L)$. We call $\pi^{r} A(0,0)$ a hyperbolic plane and H is denoted as an orthogonal sum of hyperbolic planes (which may sometimes have different scales).

Lemma 1.1. Suppose $L=L_{1} \perp L_{2}$ where L_{1} is unimodular with ord $n L_{1}=u_{1}$ and L_{2} is p^{r}-modular with ord $n L_{2}=u_{2}$, and $r \geq 1$.
(1) If there is a vector $x_{2} \in L_{2}$ such that ord $Q\left(x_{2}\right) \equiv u_{1} \bmod 2$ and ord $Q\left(x_{2}\right) \leq u_{1}$, then $L=\overline{L_{1}} \perp \overline{L_{2}}$ where $\overline{L_{2}}$ is p^{r}-modular with $n \overline{L_{2}}=n L_{2}$ and $\overline{L_{1}}$ is unimodular with $n \overline{L_{1}} \subset n L_{1}$ or $\overline{L_{1}} \cong H$.
(2) If there is a vector $z_{1} \in L_{1}$ such that $\operatorname{ord} Q\left(z_{1}\right) \equiv u_{2} \bmod 2$ and
ord $Q\left(z_{1}\right) \leq\left(u_{2}-2 r\right)$, then $L=\overline{L_{1}} \perp \overline{L_{2}}$ where $\overline{L_{1}}$ is unimodular with $n \overline{L_{1}}=n L_{1}$ and $\overline{L_{2}}$ is p^{r}-modular with $n \overline{L_{2}} \subset n L_{2}$ or $\overline{L_{2}} \cong H$.

Proof. (1) Without loss of generality, we assume $\operatorname{rank} L_{1}=2$ Write $L_{1} \cong A\left(a,-a^{-1} \delta\right)$, adapted to a basis $\left\{x_{1}, y_{1}\right\}$ where a is a norm generator of $L_{1}, D(1+\delta)=\delta \vartheta$ and $-a^{-1} \delta \in \omega L_{1}$. Let $k=$ $\left(u_{1}-\operatorname{ord} Q\left(x_{2}\right)\right) / 2$, so $-Q\left(x_{1}\right) / Q\left(\pi^{k} x_{2}\right) \in U$. Put $-Q\left(x_{1}\right) / Q\left(\pi^{k} x_{2}\right)$ $=\xi^{2}+\sigma \pi^{d}$ with ξ and $\sigma \in U, d \geq 1$. Consider a unimodular lattice $\overline{L_{1}}=\vartheta\left(x_{1}+\xi \pi^{k} x_{2}\right)+\vartheta y_{1}$ which splits L, we obtain $L=\overline{L_{1}} \perp \overline{L_{2}}$.
(i) When $u_{1}<e$, then $\operatorname{ord}\left(-a^{-1} \delta\right)>u_{1}$ and $n \overline{L_{1}} \subset n L_{1}$.
(ii) When $u_{1}=e$ and $L_{1} \cong A(2,2 \rho)$, then $-d \overline{L_{1}} \in U^{2}$ and $\overline{L_{1}} \cong$ $A(0,0)$.
Since $n \overline{L_{1}} \subseteq n L_{1} \subseteq n L_{2}$ and $n L_{1}+n L_{2}=n \overline{L_{1}}+n \overline{L_{2}}=n L$, we have $n \overline{L_{2}}=n L_{2}=n L$.
(2) It follows from applying (1) to $\left(L^{\sharp}\right)^{\pi^{r}}$.

The following proposition strengthen [O, 91:9 Th.(2)].
Proposition 1.1. Suppose $L=L_{1} \perp L_{2} \perp \cdots \perp L_{t}$ is a Jordan splitting of L with $s L_{i}=s_{i} ; i=1, \ldots, t$. If $n L^{s_{i_{0}}} \supset n L^{s_{c_{0}}+1}$ and $n L^{s_{i_{0}}} \supset(n L)\left(s_{i_{0}} s_{i_{0}-1}^{-1}\right)^{2}$ for some $1 \leq i_{0} \leq t$, then for any Jordan splitting of $L, L=K_{1} \perp K_{2} \perp \cdots \perp K_{t}$, we have $n K_{i_{0}}=n L_{i_{0}}$.

Proof. It is obvious that $L_{j} \subseteq L^{s_{j}}$, so $n L_{j} \subseteq n L^{s_{j}}$ for any $1 \leq j \leq$ t. Since $n L^{s_{i_{0}}} \supset n L^{s_{2_{0}}+1} \supseteq \cdots \supseteq n L^{s_{t}}$, we have $n L^{s_{i_{0}}} \supset n L_{j}$ for all $j>i_{0}$. Consider

$$
n L_{j}^{s_{i_{0}}}=\left(s_{i_{0}} s_{i_{0}-1}^{-1}\right)^{2} n L_{j} \subseteq\left(s_{i_{0}} s_{i_{0}-1}^{-1}\right)^{2}(n L) \subset n L^{s_{i_{0}}}
$$

for all $j<i_{0}$. Note

$$
L^{s_{2_{0}}}=L_{1}^{s_{i_{0}}} \perp \cdots \perp L_{i_{0}-1}^{s_{i_{0}}} \perp L_{i_{0}} \perp L_{i_{0}+1} \perp \cdots \perp L_{t}
$$

So

$$
n L^{s_{i}}=\sum_{j<i_{0}} n L_{j}^{s_{i_{0}}}+n L_{i_{0}}+\sum_{j>i_{0}} n L_{j}=n L_{i_{0}}
$$

and $L^{s_{i}}$ is independent of the Jordan splitting of L.
REMARK 1.1. When $s L_{i_{0}}=n L_{i_{0}}$, it can be easily checked that $n L^{s_{i_{0}}} \supset n L^{s_{i_{0}+1}}$ and $n L^{s_{i_{0}}} \supset\left(n L^{s_{i_{0}-1}}\right)\left(s_{i_{0}} s_{i_{0}-1}^{-1}\right)^{2}$. The converse statement is usually not true.

Lemma 1.2. Suppose L is a unimodular lattice with $n L \supset 2 s L$. Then there exist two sublattices J and M such that $L=J \perp M$ with $n L=n L \supset n M$. Furthermore rank $J=1$ when rank L is odd, and rank $J=2$ when rank L is even.

Proof. It follows from [O, 93:18].
Theorem 1.1. There exists a Jordan splitting $L=L_{1} \perp \cdots \perp L_{t}$ such that for any Jordan splitting $L=K_{1} \perp \cdots \perp K_{t}$, we have $n K_{i} \supseteq n L_{\imath}$ for all $1 \leq i \leq t$, and if $K_{\imath} \cong H$, then $L_{i} \cong H$.

Proof. Put $A_{1}=\left\{\left(K_{1}, \ldots, K_{t}\right) \mid L=K_{1} \perp \cdots \perp K_{t}\right.$ be a Jordan splitting of L, and $\left.K_{1} \cong H\right\}$.

If this set is empty, we put $A_{1}=\left\{\left(K_{1}, \ldots, K_{t}\right) \mid L=K_{1} \perp \cdots \perp\right.$ K_{t} be a Jordan splitting of L, and $n K_{1}$ is the smallest \}.

Put $A_{2}=\left\{\left(K_{1}, \ldots, K_{t}\right) \in A_{1} \mid K_{2} \cong H\right\} \subseteq A_{1}$.
If this set is empty, we put

$$
A_{2}=\left\{\left(K_{1}, \ldots, K_{t}\right) \in A_{1} \mid n K_{2}\right\} \text { is the smallest } \subseteq A_{1} .
$$

By induction, put $A_{t}=\left\{\left(K_{1}, \ldots, K_{t}\right) \in A_{t-1} \mid K_{t} \cong H\right\}$.
If this set is empty, we put

$$
A_{t}=\left\{\left(K_{1}, \ldots, K_{t}\right) \in A_{t-1} \mid n K_{t} \text { is the smallest }\right\}
$$

Let $\left(L_{1}, \ldots, L_{t}\right) \in A_{t}$, so $L=L_{1} \perp \cdots \perp L_{t}$ is a Jordan splitting. By Lemma 1.1, we have if ord $n L_{i} \equiv \operatorname{ord} n L_{j} \bmod 2$ for some $i<j$, then ord $n L_{i}<$ ord $n L_{j}<2\left(r_{j}-r_{i}\right)+$ ord $n L_{i}$ or $L_{i} \cong H$ when ord $n L_{i} \geq$ ord $n L_{j}$ or $L_{j} \cong H$ when ord $n L_{j} \geq$ ord $n L_{i}+2\left(r_{j}-r_{i}\right)$. Here $r_{k}=$ ord s_{k} and $s_{k}=s L_{k}$ for $1 \leq k \leq t$.

Suppose there is a Jordan splitting of $L=K_{1} \perp \cdots \perp K_{t}$ with $n K_{i_{0}} \subset n L_{i_{0}}$ for some $1 \leq i_{0} \leq t$. By [O, 91:9 Th.(2)], $s L_{i_{0}} \supset$ $n L_{i_{0}} \supset 2 s L_{i_{0}}$ and rank $L_{i_{0}}$ is even. By Lemma 1.2, $L_{i_{0}}=J \perp M$ with $n L_{i_{0}}=n J \supset n M$ and rank $J=2$. Write $J=\vartheta x+\vartheta \bar{x}$ where $Q(x)$ is a norm generator of J, ord $Q(x)<$ ord $Q(\bar{x})$ and ord $B(x, \bar{x})=r_{i_{0}}$. Put $x=\sum_{i=1}^{t} a_{i} y_{i}$ where y_{i} is a maximal vector of K_{i} and $a_{i} \in \vartheta$ for $i=1, \ldots, t$. Note

$$
s_{i_{0}}=B(x, L)=\sum_{i=1}^{t} B\left(a_{i} y_{i}, K_{i}\right) \supseteq B\left(a_{i} y_{i}, K_{i}\right)
$$

for all $1 \leq i \leq t$, so ord $a_{i} \geq r_{i_{0}}-r_{i}$ when $i_{0} \geq i$ by [$\left.\mathbf{O}, 82: 17\right]$. Put $\bar{x}=\sum_{i=1}^{t} \bar{a}_{i} \bar{y}_{i}$ where \bar{y}_{i} is a maximal vector of K_{i} and $\bar{a}_{i} \in \vartheta$. So ord $\bar{a}_{i} \geq r_{i_{0}}-r_{i}$ for all $i \leq i_{0}$ by the same reason. Note

$$
\operatorname{ord} B\left(a_{i} y_{i}, \bar{a}_{i} \bar{y}_{i}\right) \geq r_{i_{0}}+\left(r_{i_{0}}-r_{i}\right)>r_{i_{0}}
$$

for all $i<i_{0}$, and ord $B\left(a_{i} y_{i}, \bar{a}_{i} \bar{y}_{i}\right) \geq r_{i}>r_{i_{0}}$ for all $i>i_{0}$. Consider $r_{i_{0}}=\operatorname{ord} B(x, \bar{x})=\operatorname{ord} B\left(a_{i_{0}} y_{i_{0}}, \bar{a}_{i_{0}} \bar{y}_{i_{0}}\right) \geq$ ord $a_{i_{0}}+\operatorname{ord} \bar{a}_{i_{0}}+r_{i_{0}}$. Therefore ord $a_{i_{0}}=$ ord $\bar{a}_{i_{0}}=0$, ord $B\left(y_{i_{0}}, \bar{y}_{i_{0}}\right)=r_{i_{0}}$ and ord $B\left(y_{i_{0}}, \bar{x}\right)=r_{i_{0}}$. Put $y_{i_{0}}=\sum_{i=1}^{t} b_{i} z_{i}$ where z_{i} is a maximal vector of L_{i}, and $b_{i} \in \vartheta$. So ord $b_{i} \geq r_{i_{0}}-r_{i}$ for all $i<i_{0}$ and ord $b_{i_{0}}=0$ by the same argument as above. Let $b_{i_{0}} z_{i_{0}}=c x+d \bar{x}+w$ with $c, d \in \vartheta$ and $w \in M$; note

$$
\begin{aligned}
r_{i_{0}} & =\operatorname{ord} B\left(y_{i_{0}}, \bar{x}\right)=\operatorname{ord} B\left(b_{i_{0}} z_{i_{0}}, \bar{x}\right. \\
& =\operatorname{ord} B(c x+d \bar{x}, \bar{x})=\operatorname{ord}(c B(x, \bar{x})+d Q(\bar{x}))
\end{aligned}
$$

and ord $Q(\bar{x})>$ ord $Q(x)>r_{i_{0}}$. So $r_{i_{0}}=\operatorname{ord}(c B(x, \bar{x}))=$ odr $(c)+r_{i_{0}}$. Therefore ord $(c)=0$ and ord $Q\left(b_{i_{0}} z_{i_{0}}\right)=$ ord $(Q(c x+d \bar{x})+Q(w))=$ ord $Q(x)$. Suppose all the vectors in $\left\{b_{i} z_{i} \mid i \neq i_{0}, 1 \leq i \leq t\right\}$ which satisfy ord $Q\left(b_{i} z_{i}\right) \leq$ ord $Q\left(b_{i_{0}} z_{i_{0}}\right)$ are $b_{i_{1}} z_{i_{1}}, b_{i_{2}} z_{i_{2}}, \ldots, b_{i_{1}} z_{i_{l}}$.

When $i_{k}>i_{0}$ then $n L_{i_{k}} \supseteq n L_{i_{0}} \supset 2 s L_{i_{0}} \supset 2 s L_{i_{k}}$. So $L_{i_{k}} \neq H$ and ord $n L_{i_{k}}+\operatorname{ord} n L_{i_{0}} \equiv 1 \bmod 2$ by Lemma 1.1.

When $i_{k}<i_{0}$, then

$$
\begin{aligned}
& \operatorname{ord} n L_{i_{k}}+2\left(r_{i_{0}}-r_{i_{k}}\right) \leq \operatorname{ord} Q\left(b_{i_{k}} z_{i_{k}}\right) \\
& \quad \leq \operatorname{ord} Q\left(b_{i_{0}} z_{i_{0}}\right)=\operatorname{ord} Q(x)=\operatorname{ord} n L_{i_{0}}<\operatorname{ord} 2 s L_{i_{0}} .
\end{aligned}
$$

That is ord $n L_{i_{k}}<$ ord $2+\left(r_{i_{k}}-r_{i_{0}}\right)+r_{i_{k}}<$ ord $2 s L_{i_{k}}$. So $L_{i_{k}} \neq H$ and ord $n L_{i_{k}}+$ ord $n L_{i_{0}} \equiv 1 \bmod 2$ by Lemma 1.1. Put $N=$ $L_{i_{1}} \perp \cdots \perp J \perp \cdots \perp L_{i_{l}}$, for any $k_{1}<k_{2}$; we have ord $n L_{i_{k_{1}}} \equiv$ ord $n L_{i_{k_{2}}} \equiv$ ord $n J+1 \bmod 2$, and ord $n L_{i_{k_{1}}}<$ ord $n L_{i_{k_{2}}}<$ $2\left(r_{i_{k_{2}}}-r_{i_{k_{1}}}\right)+$ ord $n L_{i_{k_{1}}}$ and ord $n J>$ ord $n L_{i_{k}}$ for all $1 \leq k \leq l$. Since $n K_{i_{0}} \subset n L_{i_{0}}$, ord $Q\left(y_{i_{0}}\right) \geq$ ord $n K_{i_{0}}>$ ord $n L_{i_{0}}=$ ord $Q(x)$. Note $Q\left(y_{i_{0}}\right)=\sum_{i=1}^{t} Q\left(b_{i} z_{i}\right)$. So ord $Q(x)=$ ord $Q\left(b_{i_{0}} z_{i_{0}}\right)=$ ord $\left(\sum_{k=1}^{l} Q\left(b_{i_{k}} z_{i_{k}}\right)\right)$. Write $-Q(x) / \sum_{k=1}^{l} Q\left(b_{i_{k}} z_{i_{k}}\right)=\xi^{2}+\sigma \pi^{d}$ with ξ, $\sigma \in U$ and $d \geq 1$, then

$$
Q\left(x+\xi \sum_{k=1}^{l} b_{i_{k}} z_{i_{k}}\right)=-Q\left(\sum_{k=1}^{l} b_{i_{k}} z_{i_{k}}\right) \sigma \pi^{d}
$$

and

$$
\operatorname{ord} Q\left(x+\xi \sum_{k=1}^{l} b_{i_{k}} z_{i_{k}}\right)=\operatorname{ord} Q(x)+d>\operatorname{ord} Q(x)
$$

Put $\bar{J}=\vartheta\left(x+\xi \sum_{k=1}^{l} b_{i_{k}} z_{i_{k}}\right)+\vartheta \bar{x}$ which is $s_{i_{0}}$-modular. Since ord $b_{i_{k}}=$ ord $\xi b_{i_{k}} \geq r_{i_{0}}-r_{i_{k}}$ for all $i_{k}<i_{0}, \bar{J}$ splits N. So we obtain another Jordan splitting of $N, N=\overline{L_{i_{1}}} \perp \cdots \perp \bar{J} \perp \cdots \perp \overline{L_{i_{l}}}$.

Since we can check $n N^{s_{i_{k}}}=n L_{i_{k}}$ for all $1 \leq k \leq l, n N^{s_{i_{k}}} \supset$ $n N^{s_{i_{k+1}}}$ and $n N^{s_{i_{k}}} \supset\left(n N^{s_{i_{k-1}}}\right)\left(s_{i_{k}} s_{i_{k-1}}^{-1}\right)^{2}$ for all $1 \leq k \leq l$. We have $n L_{i_{k}}=n \overline{L_{i_{k}}}$ for all $1 \leq k \leq l$ by the above proposition, but $n \bar{J} \subset n J$. Corresponding to this Jordan splitting of N, we obtain another Jordan splitting of L which contradicts our choice of the Jordan splitting of L.

If $K_{i_{0}} \cong H$ but $L_{i_{0}} \neq H$, then $n L_{i_{0}}=2 s L_{i_{0}}$ by the above argument. By [O, 93:14] we can assume $L_{i_{0}} \cong \pi^{r_{0}} A(2,2 \rho)$ adapted to a basis $\{u, \bar{u}\}$ and $K_{i_{0}} \cong \pi^{r_{0}} A(0,0)$ adapted to a basis $\{v, \bar{v}\}$. Write $v=\sum_{i=1}^{t} c_{i} q_{i}$ where q_{i} is a maximal vector of L_{i} and $c_{i} \in \vartheta$, so ord $c_{i} \geq\left(r_{i_{0}}-r_{i}\right)$ for all $i<i_{0}$ and ord $\left(c_{i_{0}}\right)=0$. Thus ord $Q\left(c_{i_{0}} q_{i_{0}}\right)=r_{i_{0}}+e=$ ord $Q(u)$ by Riehm Domination Principle $[\mathbf{R}]$. By the similar arguments as above, we can obtain an new Jordan splitting of L which contradicts our choice of the Jordan splitting of L.

The Jordan splittings which enjoy the property of Theorem 1.1 are called minimal norm Jordan splittings.

Corollary 1.1. L can be splitted as $L=L_{0} \perp H$ such that L_{0} cannot be splitted by any hyperbolic plane and L_{0} is determined uniquely by L up to isometry.

Proof. Suppose L has another splitting $L=\overline{L_{0}} \perp \bar{H}$ where $\overline{L_{0}}$ cannot be splitted by any hyperbolic plane, and the type of Jordan splitting of $\overline{L_{0}}$ is different from that of L_{0}. Without loss of generality, we assume that the rank of i_{0} Jordan component of $\overline{L_{0}}$ is greater than that of L_{0} for some $1 \leq i_{0} \leq t$ and \bar{H} does not contain any i_{0} hyperbolic component by Cancellation Theorem [O, 93:14]. So we can choose a Jordan splitting $\overline{L_{0}}=J_{1} \perp \cdots \perp J_{t}$ such that $J_{i_{0}}=M \perp N$ with $n J_{i_{0}}=n M \supset n N, \operatorname{rank} M \leq 2$, rank $N=2$, and $n N$ is the smallest. Furthermore we assume the Jordan splitting
$R=J_{1} \perp \cdots \perp J_{i_{0}-1} \perp M \perp J_{i_{0}+1} \perp \cdots \perp J_{t}$. is the minimal norm Jordan splitting.

Comparing the Jordan splitting of $\overline{L_{0}}$ with that of L_{0}, there is a hyperbolic plane $H_{i_{0}}=\vartheta u+\vartheta \bar{u} \subseteq L$ with $s H_{i_{0}}=s J_{i_{0}}$ and $Q(u)=$ $Q(\bar{u})=0$ and $B(u, \bar{u}) \vartheta=s H_{i_{0}}$. So $u=\sum_{i=1}^{t} b_{i} z_{i}, \bar{u}=\sum_{i=1}^{t} \overline{b_{i}} \overline{z_{i}}$ where z_{i} and $\overline{z_{i}}$ are the maximal vectors of each Jordan component for the Jordan splitting $L=\overline{L_{0}} \perp H$ with $1 \leq i \leq t$. So ord $b_{i} \geq$ $\left(r_{i_{0}}-r_{i}\right)$, ord $\overline{b_{i}} \geq\left(r_{i_{0}}-r_{i}\right)$ for all $i<i_{0}$, and ord $b_{i_{0}}=$ ord $\overline{b_{i 0}}=0$. Here $r_{i}=$ ord $s J_{i}$ for all $1 \leq i \leq t$. Write $z_{i}=p_{i}+q_{i}$ with $p_{i} \in J_{i}$ and $q_{i} \in H_{i}$ where H_{i} is a suitable hyperbolic component with $s H_{i}=s J_{i}$ or 0 for all i, then ord $Q\left(b_{i} q_{i}\right) \geq 2$ ord $b_{i}+e+r_{i}>e+r_{i_{0}}$ for all $i \neq i_{0}$. Consider $z_{i_{0}}=v_{i_{0}}+w_{i_{0}}$ and $\overline{z_{i_{0}}}=\overline{v_{i_{0}}}+\overline{w_{i_{0}}}$ where $v_{i_{0}}$ and $\overline{v_{i_{0}}} \in M, w_{i_{0}}$ and $\overline{w_{i_{0}}} \in N$, then at least one of $Q\left(v_{i_{0}}\right), Q\left(\overline{v_{i_{0}}}\right)$; or $Q\left(w_{i_{0}}\right), Q\left(\overline{w_{i_{0}}}\right)$ is a norm generator.

If $Q\left(v_{i_{0}}\right)$ is a norm generator of M, then ord $Q\left(b_{i_{0}} z_{i_{0}}\right)=$ ord $Q\left(v_{i_{0}}\right)<\operatorname{ord} Q\left(w_{i_{0}}\right) \leq e+r_{i_{0}}$, and ord $Q\left(v_{i_{0}}\right)=\operatorname{ord} Q\left(\sum_{i \neq i_{0}} b_{i} p_{i}\right)$ by $Q(u)=0$. So we can get the new splitting $R=\overline{J_{1}} \perp \cdots \perp \bar{M} \perp$ $\cdots \perp \overline{J_{t}}$ with $n \bar{M} \subset n M$. That is a contradiction.

If $Q\left(w_{i_{0}}\right)$ is a norm generator of M, then ord $Q\left(w_{i_{0}}\right) \leq e+r_{i_{0}}$ and ord $Q\left(w_{i_{0}}\right)=$ ord $Q\left(\sum_{i \neq i_{0}} b_{i} p_{i}+v_{i_{0}}\right)$, we can get the new splitting $\overline{L_{0}}=\overline{J_{1}} \perp \cdots \perp \overline{J_{t}}$ with $\overline{J_{i_{0}}}=\bar{M} \perp \bar{N}$ such that $n \bar{N} \subset n N$. This contradicts our choice.

Therefore L_{0} and $\overline{L_{0}}$ have the same type of Jordan splitting and $L_{0} \cong \overline{L_{0}}$ by Cancellation Theorem [O, 93:14].
2. Generation and spinor norms of $O(L)$. Suppose $L=$ $L_{1} \perp L_{2} \perp \cdots \perp L_{t}$ is a minimal norm Jordan splitting over a dyadic local field F with $r_{i}=\operatorname{ord} s L_{i}, u_{i}=\operatorname{ord} n L_{i}$, for $i=1, \ldots, t$. $Q\left(x_{i}\right)=\varepsilon_{i} \pi^{u_{i}}$ is a norm generator of L_{i} where $\varepsilon_{i} \in U$ and $x_{i} \in L_{i}$, for $1 \leq i \leq t$.

Lemma 2.1. Suppose all the Jordan components are one dimension and there exists i and j with $1 \leq i<j \leq n$ such that $r_{j}-r_{i} \leq 2 e$ and $D\left(-\varepsilon_{i} \varepsilon_{j}\right)=p^{s}$ with $1 \leq s \leq e-\left(r_{j}-r_{i}\right) / 2$. If $0<\left|r_{k}-r_{i}\right| \leq 2 e$ or $0<\left|r_{k}-r_{j}\right| \leq 2 e$ for some $1 \leq k \leq n$, then $\theta\left(O^{+}(L)\right)=\dot{F}$.

Proof. Because of [\mathbf{X}, Theorem 3.1] we can assume that $r_{j}-r_{i}$, $r_{k}-r_{j}$ and $r_{k}-r_{i}$ are even. Suppose $r_{i}<r_{j}<r_{k}$. The other cases can be done by taking the same arguments.

So $0<r_{k}-r_{j} \leq 2 e$ and $\theta\left(O^{+}\left(\vartheta x_{i} \perp \vartheta x_{j}\right)\right)=Q\left[1, \varepsilon_{i} \varepsilon_{j}\right]$ by [X, Prop. 2.3]. By [H, Lemma 3] there exists η in U such that $\left(\eta,-\varepsilon_{2} \varepsilon_{\jmath}\right)=-1$ and $D(\eta)=p^{2 e-s}$. Note $D(-1)=p^{h}$ with $h \geq e$ and $(2 e-s)+h \geq e+\left(r_{i}-r_{j}\right) / 2+e>2 e$. So $(\eta,-1)=1$ by [\mathbf{X}, Remark 1]. Therefore $\left(\eta,-\varepsilon_{\imath} \varepsilon_{k}\right)=1$ or $\left(\eta,-\varepsilon_{j} \varepsilon_{k}\right)=1$.

When $\left(\eta,-\varepsilon_{j} \varepsilon_{k}\right)=1$, write $D\left(-\varepsilon_{j} \varepsilon_{k}\right)=p^{t}$.
If $1 \leq t \leq e-\left(r_{k}-r_{j}\right) / 2$, then $\eta \in \theta\left(O^{+}\left(\vartheta x_{\jmath} \perp \vartheta x_{k}\right)\right)$ by [X, Prop. 2.3]. If $\left(3 e-\left(r_{k}-r_{j}\right) / 2\right) / 2 \geq t>e-\left(r_{k}-r_{j}\right) / 2$, note $2 e-s \geq e+\left(r_{j}-r_{i}\right) / 2 \geq t-e+\left(r_{k}-r_{j}\right) / 2$. Then $\eta \in \theta\left(O^{+}\left(\vartheta x_{j} \perp\right.\right.$ $\left.\vartheta x_{k}\right)$).

If $t>\left(3 e-\left(r_{k}-r_{j}\right) / 2\right) / 2$, note $2 e-s \geq e+\left(r_{j}-r_{\imath}\right) / 2 \geq e-[e / 2-$ $\left.\left(r_{k}-r_{j}\right) / 4\right]$. Then $\eta \in \theta\left(O^{+}\left(\vartheta x_{j} \perp \vartheta x_{k}\right)\right)$. Therefore $\theta\left(O^{+}(L)\right)=$ $\theta\left(O^{+}\left(\vartheta x_{i} \perp \vartheta x_{j}\right)\right) \theta\left(O^{+}\left(\vartheta x_{j} \perp \vartheta x_{k}\right)\right)=\dot{F}$.

When $\left(\eta,-\varepsilon_{i} \varepsilon_{k}\right)=1$, the result follows from the same arguments as above if $r_{k}-r_{i} \leq 2 e$. So we assume $4 e \geq r_{k}-r_{i}>2 e$. Write $D\left(-\varepsilon_{k} \varepsilon_{i}\right)=p^{d}$.

If $1 \leq d \leq 2 e-\left(r_{k}-r_{\imath}\right) / 2$, then

$$
2 e-s \geq e+\left(r_{j}-r_{i}\right) / 2 \geq\left(r_{k}-r_{i}\right) / 2 \geq\left(r_{k}-r_{i}\right)-2 e+d
$$

So $\eta \in \theta\left(O^{+}\left(\vartheta x_{i} \perp \vartheta x_{k}\right)\right)$.
If $d>2 e-\left(r_{k}-r_{i}\right) / 2$, note $2 e-s \geq\left(r_{k}-r_{\imath}\right) / 2$; then $\eta \in$ $\theta\left(O^{+}\left(\vartheta x_{i} \perp \vartheta x_{k}\right)\right)$. Therefore $\theta\left(O^{+}(L)\right)=\theta\left(O^{+}\left(\vartheta x_{i} \perp \vartheta x_{j}\right)\right) \theta\left(O^{+}(\right.$ $\left.\left.\vartheta x_{i} \perp \vartheta x_{k}\right)\right)=\dot{F}$.

LEMMA 2.2. If $L_{i_{0}} \cong \pi^{r_{20}} A\left(\varepsilon_{i_{0}} \pi^{u_{i_{0}}-r_{i_{0}}},-\varepsilon_{i_{0}}^{-1} \pi^{-u_{i_{0}}+r_{2_{0}}} \delta_{i_{0}}\right)$ adapted to a basis $\left\{x_{i_{0}}, y_{i_{0}}\right\}$ with $D\left(1+\delta_{i_{0}}\right)=\delta_{i_{0}} \vartheta$ for some $1 \leq i_{0} \leq t$.
(1) When ord $\delta_{i_{0}}<u_{i_{0}}+e-r_{i_{0}}$, and $u_{k}+u_{i_{0}} \equiv 0 \bmod 2$, and $u_{k}+\operatorname{ord} Q\left(y_{i_{0}}\right)-2 r_{k} \leq 2 e+1$ with some $k<i_{0}$ or $u_{k}+\operatorname{ord} Q\left(y_{i_{0}}\right)-$ $2 r_{i_{0}} \leq 2 e+1$ with some $k>i_{0}$, then $\theta\left(O^{+}(L)\right)=\dot{F}$.
(2) When $u_{i_{0}}+u_{k} \equiv 1 \bmod 2, u_{k}+u_{i_{0}}-2 r_{i_{0}} \leq 2 e+1$ with some $k>i_{0}$ or $u_{k}+u_{\imath_{0}}-2 r_{k} \leq 2 e+1$ with some $k<i_{0}$, then $\theta\left(O^{+}(L)\right)=\dot{F}$.
(3) When $u_{i_{0}}+u_{k} \equiv 0 \bmod 2, L_{i_{0}} \neq \pi^{r_{2_{0}}} A(0,0), D\left(-\varepsilon_{i_{0}} \varepsilon_{k}\right)=$ $p^{t}, t \leq e-\left(u_{k}+u_{i_{0}}-2 r_{i_{0}}\right) / 2$ with some $k>i_{0}$ or $t \leq e-\left(u_{k}+\right.$ $\left.u_{i_{0}}-2 r_{k}\right) / 2$ with some $k<i_{0}$, then $\theta\left(O^{+}(L)\right)=\dot{F}$.

Proof. (1) Put $K=\vartheta y_{i_{0}} \perp \vartheta x_{k}$. Since ord $Q\left(x_{k}\right)+$ ord $Q\left(y_{i_{0}}\right) \equiv 1$, it can be checked that $\tau_{z} \in O\left(L_{k} \perp L_{i_{0}}\right) \subseteq O(L)$ for any maximal vector z of K. Therefore $\theta\left(O^{+}(L)\right) \supseteq Q\left[1, \dot{\varepsilon}_{i_{0}} \varepsilon_{k} \pi\right]$ which does not contain Δ, but Δ is in $\theta\left(O^{+}\left(L_{i_{0}}\right)\right)$ by $[\mathbf{H}]$. Thus $\theta\left(O^{+}(L)\right)=\dot{F}$.
(2) It follows from the same arguments as the above case (1).
(3) Without loss of generality, we assume $k>i_{0}$. By Lemma 1.1, we know $u_{k}-2 r_{k}+2 r_{i_{0}}<u_{i_{0}}<u_{k}$. Put $K=\vartheta x_{i_{0}} \perp \vartheta x_{k}$. Since $1 \leq t<e$, we have $D\left(-\varepsilon_{i_{0}} \varepsilon_{k}\right)=D\left(\varepsilon_{i_{0}} \varepsilon_{k}\right)$ and $u_{k}+u_{i_{0}}-2 r_{i_{0}} \leq 2 e$. It can be checked that $\tau_{z} \in O\left(L_{i_{0}} \perp L_{k}\right) \subseteq O(L)$ for any maximal vector z of K. Therefore $\theta\left(O^{+}(L)\right) \supseteq Q\left[1, \dot{\varepsilon}_{i_{0}} \varepsilon_{k}\right]$. By [H, Lemma 3] there exists η in U such that $\left(\eta,-\varepsilon_{i_{0}} \varepsilon_{k}\right)=-1$ with $D(\eta)=p^{2 e-t}$.
(i) If ord $\delta_{i_{0}} \geq u_{i_{0}}+e-r_{i_{0}}$, then $2 e-t \geq e+\left(u_{k}+u_{i_{0}}-\right.$ $\left.2 r_{i_{0}}\right) / 2$. So $\eta \in \theta\left(O^{+}\left(L_{i_{0}}\right)\right)$ by [H, Prop. B], [\mathbf{X}, Remark 1] and $\left[\mathbf{H}\right.$, Lemma 2]. Thus $\theta\left(O^{+}(L)\right)=F$.
(ii) If ord $\delta_{i_{0}}<u_{i_{0}}+e-r_{i_{0}}$, we only need to consider $u_{k}+$ ord $Q\left(y_{i_{0}}\right)-2 r_{i_{0}}>2 e+1$ with $k>i_{0}$. Note

$$
\begin{aligned}
& 2 e-t+u_{i_{0}}-r_{i_{0}}+\operatorname{ord} Q\left(y_{i_{0}}\right)-r_{i_{0}} \\
& \quad \geq e+\left(u_{k}+\operatorname{ord} Q\left(y_{i_{0}}\right)-2 r_{i_{0}}\right) / 2 \\
& \quad \quad+u_{i_{0}} / 2+u_{i_{0}}+\operatorname{ord} Q\left(y_{i_{0}}\right) / 2-2 r_{i_{0}} \\
& \quad>e+e+u_{i_{0}} / 2+u_{i_{0}}+u_{i_{0}} / 2-2 r_{i_{0}} \geq 2 e .
\end{aligned}
$$

Then $\eta \in \theta\left(O^{+}\left(L_{i_{0}}\right)\right)$ by $\left[\mathbf{X}\right.$, Remark 1]. Thus $\theta\left(O^{+}(L)\right)=\dot{F}$.

Lemma 2.3. If $\operatorname{rank} L_{i} \geq 3$ and $\operatorname{ord} n L_{i}+\operatorname{ord} w L_{i} \equiv 1 \bmod 2$ for some $1 \leq i \leq t$, then $\theta\left(O^{+}(L)\right)=\dot{F}$.

Proof. It follows from [H, Prop. A].
Lemma 2.4. If $\operatorname{rank} L_{i}=\operatorname{rank} L_{j}=1$ and $\operatorname{rank} L_{k}=2$ for some $i>j$ and $k, 0<u_{i}-u_{j} \leq 2 e+1$ and $u_{i}-u_{j}$ is odd, then $\theta\left(O^{+}(L)\right)=$ \dot{F}.

Proof. Since Δ is not in $\theta\left(O^{+}\left(L_{i} \perp L_{j}\right)\right)=Q\left[1, \dot{\varepsilon}_{i} \varepsilon_{j} \pi\right]$ by [\mathbf{X}, Prop. 2.2 i$]$ and $[\mathbf{X}$, Prop. 2.3 i $]$ and $\Delta \in \theta\left(O^{+}\left(L_{k}\right)\right)$ by [$\left.\mathbf{H}\right]$; therefore $\theta\left(O^{+}(L)\right)=\dot{F}$.

Lemma 2.5. Suppose $\operatorname{rank} L_{i}=\operatorname{rank} L_{j}=1$ and for some $i>j$ with $0<u_{i}-u_{j} \leq 2 e$ and $u_{i}-u_{j}$ is even and $D\left(-\varepsilon_{i} \varepsilon_{j}\right)=p^{t}$ with $t \leq e-\left(u_{i}-u_{j}\right) / 2$. If there is $L_{k} \cong \pi^{r_{k}} A\left(\varepsilon_{k} \pi^{u_{k}-r_{k}},-\varepsilon_{k}^{-1} \pi^{-u_{k}+r_{k}} \delta_{k}\right)$ with $\operatorname{ord} \delta_{k} \geq u_{k}-r_{k}+e$ for some $1 \leq k \leq t$, then $\theta\left(O^{+}(L)\right)=\dot{F}$.

Proof. By [H, Lemma 3] and [X, Prop. 2.3], there exists $\eta \bar{\in} \theta\left(O^{+}\right.$ $\left.\left(L_{i} \perp L_{j}\right)\right)=Q\left[1, \dot{\varepsilon}_{i} \varepsilon_{j}\right]$ with $D(\eta)=p^{2 e-t}$ and $2 e-t \geq e+\left(u_{i}-\right.$
$\left.u_{j}\right) / 2 \geq e+1$. So $\eta \in \theta\left(O^{+}\left(L_{k}\right)\right)$ by [\mathbf{H}, Prop. B], [X, Remark 1] and $\left[\mathbf{H}\right.$, Lemma 2]. Therefore $\theta\left(O^{+}(L)\right)=\dot{F}$.

LEMMA 2.6. If $\operatorname{rank} L_{i}=\operatorname{rank} L_{j}=1$ and $\operatorname{rank} L_{k}=2,0<$ $u_{j}-u_{i} \leq 2 e$ and $u_{j}-u_{i}$ is even for some $k>j>i, D\left(-\varepsilon_{i} \varepsilon_{j}\right)=p^{t}$ with $t \leq e-\left(u_{j}-u_{i}\right) / 2$, and $u_{k}-u_{i} \leq 2 e$, then $\theta\left(O^{+}(L)\right)=\dot{F}$.

Proof. Put $L_{k} \cong \pi^{r_{k}} A\left(\varepsilon_{k} \pi^{u_{k}-r_{k}},-\varepsilon_{k}^{-1} \pi^{-u_{k}+r_{k}} \delta_{k}\right)$. By Lemma 2.2 and Lemma 2.5, we can assume $u_{k}-u_{i}$ is even and ord $\delta_{k}<u_{k}-r_{k}+e$ and ord $\delta_{k}+2 r_{k}-u_{k}-u_{j}>2 e+1$. So $r_{k}-u_{i}>r_{k}-u_{j}>$ $e+1$. It can be checked that any $\tau_{z} \in O\left(\vartheta x_{j} \perp \vartheta x_{k}\right)$ is also in $O\left(L_{j} \perp L_{k}\right)$. So $O\left(\vartheta x_{j} \perp \vartheta x_{k}\right) \subseteq O\left(L_{j} \perp L_{k}\right)$. By the same reason, $O\left(\vartheta x_{i} \perp \vartheta x_{k}\right) \subseteq O\left(L_{i} \perp L_{k}\right)$. By the proof of Lemma 2.1, we obtain $\theta\left(O^{+}\left(\vartheta x_{i} \perp \vartheta x_{j}\right)\right) \theta\left(O^{+}\left(\vartheta x_{i} \perp \vartheta x_{k}\right)\right) \theta\left(O^{+}\left(\vartheta x_{j} \perp \vartheta x_{k}\right)\right)=\dot{F}$. Thus $\theta\left(O^{+}(L)\right)=\dot{F}$.

Before obtaining our main result, we first establish the following Witt- type result.

Proposition 2.1. Suppose L cannot be splitted by any hyperbolic plane and $\theta\left(O^{+}(L)\right) \neq \dot{F}$. If $\sigma L_{1} \subseteq L$ for some $\sigma \in O(V)$, then there is τ a product of symmetries in $O(L)$ such that $\left.\tau \sigma\right|_{L_{1}}=1$.

Proof. When $e=1$, it has been done in [OP1]. We assume $e>1$ and $r_{1}=0$. By Lemma 2.3 and [O, 93:18], we know all the Jordan components are one or two dimensions and none of them is hyperbolic plane.

When rank $L_{1}=2$, write $L_{1} \cong A\left(\varepsilon_{1} \pi^{u_{1}},-\varepsilon_{1}^{-1} \pi^{-u_{1}} \delta_{1}\right)$ adapted to a basis $\left\{x_{1}, y_{1}\right\}$ with $D\left(1+\delta_{1}\right)=\delta_{1} \vartheta$. Put $\sigma x_{1}=a x_{1}+b y_{1}+z$ where a and b are in $\vartheta, z \in L_{2} \perp \cdots \perp L_{t}$.
(1) ord $Q\left(y_{1}\right) \geq e$.

When $u_{k}+u_{1} \equiv 1 \bmod 2$ for some $2 \leq k \leq t$, then

$$
u_{k}-u_{1} \geq 2 e+3-2 u_{1} \geq 3, r_{k} \geq u_{k}-e \geq e-u_{1}+3 \geq 3
$$

by Lemma 2.2(2).
When $u_{k}+u_{1} \equiv 0 \bmod 2$ for some $2 \leq k \leq t$, then $u_{k} \geq u_{1}+2$ and $r_{k}>\left(u_{k}-u_{1}\right) / 2 \geq 1$ by Lemma 1.1.

So ord $Q(z)-$ ord $Q\left(x_{1}\right) \geq 2$. Note $Q\left(x_{1}\right)=a^{2} Q\left(x_{1}\right)+2 a b+$ $b^{2} Q\left(y_{1}\right)+Q(z), Q\left(\sigma x_{1}-x_{1}\right)=2\left((1-a) Q\left(x_{1}\right)-b\right)$.

If ord $b=0$ and ord $Q\left(x_{1}\right)=$ ord $Q\left(y_{1}\right)=e$, then $\tau_{\sigma x_{1}-x_{1}} \in$ $O(L)$. Otherwise, $a \equiv 1 \bmod p$ and we assume ord $b \leq 1$ because we can consider $\tau_{\pi}^{\left[\left(e-u_{1}\right) / 2\right] x_{1}+y_{1}} \sigma\left(x_{1}\right)$ instead of σx_{1} if necessary and $\tau_{\pi\left[\left(e-u_{1}\right) / 2\right] x_{1}+y_{1}} \in O(L)$.
(i) $u_{1} \geq 1$ or ord $b=0$. Then $\tau_{\sigma x_{1}-x_{1}} \in O(L)$.
(ii) $u_{1}=0$ and ord $b=1$ and $u_{2} \geq 3$. Since $u_{k} \geq u_{2} \geq 3$ for all $k \geq 3$ by Lemma 1.1 and Lemma 2.2(2), ord $Q(z) \geq 3$ and ord $\left(1-a^{2}\right) \geq 3$. Therefore ord $(1-a) \geq 2$ and $\tau_{\sigma x_{1}-x_{1}} \in O(L)$.
(iii) $u_{1}=0$ and ord $b=1$ and $u_{2}=2$. By the above arguments we only need to consider e is odd and ord $(1-a)=1$. Note $D\left(-\varepsilon_{1} \varepsilon_{2}\right)=p^{t}$ with $t>e-\left(u_{1}+u_{2}\right) / 2$ by Lemma 2.2(3). Write $a=1+l \pi$ with $l \in U$ and $-\varepsilon_{1} \varepsilon_{2}=\xi^{2}+\lambda \pi^{t}$ with $\xi, \lambda \in U$.

Let

$$
\eta=\xi+\pi^{(e-1) / 2} \in U, \delta=\varepsilon_{2}\left(h^{2}-\lambda \pi^{t-e+1}+2 \pi^{-e} \xi h \pi^{(e-1) / 2+1}\right) \in U .
$$

We have $\varepsilon_{1} \varepsilon_{2}^{2}+\varepsilon_{2} \eta^{2}=\delta \pi^{e-1}$ and $\tau_{\varepsilon_{2} \pi x_{1}+\eta x_{2}}$ is in $O(L)$. Write $\tau_{\varepsilon_{2} \pi x_{1}+\eta x_{2}} \sigma x_{1}=a^{\prime} x_{1}+b^{\prime} y_{1}+z^{\prime}$ with $a^{\prime} \equiv a\left(1-2 \varepsilon_{2}^{2} \varepsilon_{1} \pi^{-e} \delta^{-1} \pi\right) \bmod$ p^{2} and $z^{\prime} \in L_{2} \perp \cdots \perp L_{t}$. Note ord $\left(1-a^{\prime}\right) \geq 2$ by a direct computation. Therefore $\tau_{\sigma^{\prime} x_{1}-x_{1}} \in O(L)$ with $\sigma^{\prime}=\tau_{\varepsilon_{2} \pi x_{1}+\eta x_{2}} \sigma$ by the same argument as above.
(2) ord $Q\left(y_{1}\right)<e$.

When $u_{1}+u_{k} \equiv 1 \bmod 2$ for some $2 \leq k \leq t$, then $u_{1}+u_{k} \geq 2 e+3$ by Lemma 2.2(2) and $r_{k} \geq u_{k}-e \geq e+3-u_{1}$.

When $u_{1}+u_{k} \equiv 0 \bmod 2$ for some $2 \leq k \leq t$, then ord $Q\left(y_{1}\right)+u_{k} \geq$ $2 e+3$ by Lemma 2.2(1) and $r_{k} \geq u_{k}-e \geq e+3-$ ord $Q\left(y_{1}\right)$.

So ord $Q(z) \geq 2 e+3-$ ord $Q\left(y_{1}\right)$ and $a \equiv 1 \bmod p$. We can assume ord $b \leq e-$ ord $Q\left(y_{1}\right)$ because we consider $\tau_{2 x_{1}+y_{1}} \sigma\left(x_{1}\right)$ instead of σx_{1} if necessary and $\tau_{2 x_{1}+y_{1}} \in O(L)$. We claim ord $b=e-$ ord $Q\left(y_{1}\right)$. If ord $b<e-\operatorname{ord} Q\left(y_{1}\right)$, then ord $\left(b^{2} Q\left(y_{1}\right)\right)<$ ord $2 a b<$ ord $Q(z)$ and ord $\left(\left(1-a^{2}\right) Q\left(x_{1}\right)\right)=$ ord $\left(b^{2} Q\left(y_{1}\right)\right)<2 e$. Therefore ord $(1-a)=\operatorname{ord}(1+a)<e$ and ord $Q\left(x_{1}\right) \equiv \operatorname{ord} Q\left(y_{1}\right) \bmod 2$. It is a contradiction since ord $Q\left(y_{1}\right)<e$. So we have ord $\left(\left(1-a^{2}\right) Q\left(x_{1}\right)\right)=$ ord $\left(2 a b+b^{2} Q\left(y_{1}\right)+Q(z)\right) \geq 2 e-$ ord $Q\left(y_{1}\right)$.

If ord $(1-a)<e$, then ord $(1+a)=$ ord $(1-a)$ and
$\operatorname{ord}\left((1-a) Q\left(x_{1}\right)\right) \geq e-\left(\operatorname{ord} Q\left(y_{1}\right)-\operatorname{ord} Q\left(x_{1}\right)\right) / 2>e-\operatorname{ord} Q\left(y_{1}\right)$
and

$$
\operatorname{ord}(1-a) \geq e-\left(\operatorname{ord} Q\left(y_{1}\right)+\operatorname{ord} Q\left(x_{1}\right)\right) / 2>e-\operatorname{ord} Q\left(y_{1}\right) .
$$

Therefore $\tau_{\sigma x_{1}-x_{1}} \in O(L)$.
If ord $(1-a) \geq e$, then $\tau_{\sigma x_{1}-x_{1}} \in O(L)$.
Now we can assume $\sigma x_{1}=x_{1}, \sigma y_{1}=\alpha x_{1}+\beta y_{1}+w$ by the above arguments. Here $\alpha, \beta \in \vartheta, w \in L_{2} \perp \cdots \perp L_{t}$. So we have $1=\alpha Q\left(x_{1}\right)+\beta$ and $Q\left(\sigma y_{1}-y_{1}\right)=2 \alpha\left(Q\left(x_{1}\right) Q\left(y_{1}\right)-1\right)$.

If ord $\alpha \leq r_{2}$, then $\tau_{\sigma y_{1}-y_{1}} \in O(L)$.
If ord $\alpha>r_{2}$ and $u_{1}+u_{2} \geq 2 e$, then $r_{2} \geq u_{2}-e \geq e-u_{1}$. Put $u=x_{1}-Q\left(x_{1}\right) y_{1}$, so $\tau_{u}\left(x_{1}\right)=x_{1}$ and $\tau_{u} \sigma\left(y_{1}\right)=\alpha^{\prime} x_{1}+\beta^{\prime} y_{1}+w^{\prime}$ with ord $\alpha^{\prime}=e-u_{1}<r_{2}$ and $\tau_{u} \in O(L)$. Therefore $\tau_{\tau_{u} \sigma y_{1}-y_{1}} \in O(L)$.

If ord $\alpha>r_{2}$ and $u_{1}+u_{2}<2 e$, then $u_{1} \equiv u_{2} \bmod 2$ and $D\left(-\varepsilon_{1} \varepsilon_{2}\right)=p^{t}$ with $t>e-\left(u_{2}+u_{1}\right) 2$ by Lemma 2.2(3). Write $-\varepsilon_{1} \varepsilon_{2}=\xi^{2}+\lambda \pi^{t}$ with $\xi, \lambda \in U$ and

$$
\begin{aligned}
& \eta=\xi+\pi^{\left[e / 2-\left(u_{1}+u_{2}\right) / 4\right]} \in \vartheta \\
& \delta=\varepsilon_{2}\left(1+2 \xi \pi^{-\left[e / 2-\left(u_{1}+u_{2}\right) / 4\right]}-\lambda \pi^{t-2\left[e / 2-\left(u_{1}+u_{2}\right) / 4\right]}\right) \in U .
\end{aligned}
$$

So $\varepsilon_{1} \varepsilon_{2}^{2}+\varepsilon_{2} \eta^{2}=\delta \pi^{2\left[e / 2-\left(u_{1}+u_{2}\right) / 4\right]}$. Put

$$
u=\pi^{\left(u_{2}-u_{1}\right) / 2} \varepsilon_{2} x_{1}-\pi^{\left(u_{2}-u_{1}\right) / 2} \varepsilon_{2} Q\left(x_{1}\right) y_{1}+\eta x_{2} \in L .
$$

Then $\tau_{u} \in O(L)$ whenever ord $Q\left(y_{1}\right) \geq e$; or ord $Q\left(y_{1}\right)<e$ but $u_{2}+$ ord $Q\left(y_{1}\right)>2 e+1$ by Lemma 2.2(1). Note $\tau_{u} x_{1}=x_{1}, \tau_{u} \sigma y_{1}=$ $\alpha^{\prime} x_{1}+\beta^{\prime} y_{1}+w^{\prime}$ with

$$
\begin{aligned}
\operatorname{ord} \alpha^{\prime} & =e+u_{2}-u_{1}-\left(u_{2}+2\left[e / 2-\left(u_{1}+u_{2}\right) / 4\right]\right) \\
& \leq\left(u_{2}-u_{1}\right) / 2+1 \leq r_{2}
\end{aligned}
$$

by Lemma 1.1 and $w^{\prime} \in L_{2} \perp \cdots \perp L_{t}$. Therefore $\tau_{\tau_{u} \sigma y_{1}-y_{1}} \in O(L)$. We have $\left.\tau_{\sigma y_{1}-y_{1}} \sigma\right|_{L_{1}}=1$ or $\left.\tau_{\tau_{u} \sigma y_{1}-y_{1}} \tau_{u} \sigma\right|_{L_{1}}=1$.

When rank $L_{1}=1$, write $\sigma x_{1}=a x_{1}+z$ with $a \in \vartheta$ and $z \in L_{2} \perp$ $\cdots \perp L_{t}$. So $Q\left(\sigma x_{1} \pm x_{1}\right)=2(1 \pm a) Q\left(x_{1}\right)$. Since $(1+a)+(1-a)=2$, ord $(1-a) \leq e$ or ord $(1+a) \leq e$. Note $\tau_{\sigma x_{1} \pm x_{1}} \in O(L)$ whenever ord $\left(1_{+}^{-} a\right) \leq r_{2}$ We only need to consider the following cases by Lemma 2.2.
(1) $u_{2} \equiv 1 \bmod 2$ and $u_{2}<e$ and $\operatorname{rank} L_{2}=1$.

By Lemma 2.4 and [\mathbf{X}, Theorem 3.1], we have rank $L_{3}=1$ and $r_{3}=u_{3}>2 e$. Write $\sigma x_{1}=a x_{1}+b x_{2}+w$ with $b \in \vartheta$ and $w \in L_{3} \perp$ $\cdots \perp L_{t}$. We can assume ord $b+u_{2}<e$. So ord $\left(1-a^{2}\right)=2$ ord $b+u_{2}<2 e$. Therefore ord $(1-a)=\operatorname{ord}(1+a)=\operatorname{ord} b+u_{2} / 2<$ ord $b+u_{2}<r_{3}$ and $\tau_{\sigma x_{1}-x_{1}} \in O(L)$.
(2) $u_{2} \equiv 0 \bmod 2$ and $D\left(-\varepsilon_{1} \varepsilon_{2}\right)=p^{t}$ with $t>e-u_{2} / 2$ and ord $(1-a)>r_{2}$. Write $-\varepsilon_{1} \varepsilon_{2}=\xi^{2}+\lambda \pi^{t}$ with $\xi, \lambda \in U$ and $\eta=$ $\xi+\pi^{\left[e / 2-u_{2} / 4\right]} \in \vartheta$ and $\delta=\varepsilon_{2}\left(1+2 \xi \pi^{-\left[e / 2-u_{2} / 4\right]}-\lambda \pi^{t-2\left[e / 2-u_{2} / 4\right]}\right) \in U$.

So $\varepsilon_{1} \varepsilon_{2}^{2}+\varepsilon_{2} \eta^{2}=\delta \pi^{2\left[e / 2-u_{2} / 4\right]}$. Put $u=\pi^{u_{2} / 2} \varepsilon_{2} x_{1}+\eta x_{2} \in L$; then $\tau_{u} \in O(L)$. Consider $\tau_{u} \sigma x_{1}=a^{\prime} x_{1}+z^{\prime}$ with

$$
a^{\prime}=a-2 \varepsilon_{1} \varepsilon_{2}^{2} a \delta^{-1} \pi^{-2\left[e / 2-u_{2} / 4\right]}-2 \eta \varepsilon_{2} \delta^{-1} B\left(x_{2}, z\right) \pi^{-u_{2} / 2-2\left[e / 2-u_{2} / 4\right]}
$$

and $z^{\prime} \in L_{2} \perp \cdots \perp L_{t}$. Note ord $\left(1-a^{\prime}\right)=e-2\left[e / 2-u_{2} / 4\right] \leq$ $u_{2} / 2+1 \leq r_{2}$ by Lemma 1.1. So $\tau_{\tau_{u} \sigma x_{1}-x_{1}} \in O(L)$.
(3) $u_{2} \equiv 0 \bmod 2$ and $D\left(-\varepsilon_{1} \varepsilon_{2}\right)=p^{t}$ with $t \leq e-u_{2} / 2$.

By Lemma 2.2, we have rank $L_{2}=1$. Write $\sigma x_{1}=a x_{1}+b x_{2}+w$ with $w \in L_{3} \perp \cdots \perp L_{t}$, we only need to consider ord $b+u_{2}<e$.

If $u_{k}+u_{2} \equiv \bmod 2$ for some $3 \leq k \leq t$, then $u_{k}-u_{2}>2 e+1$ by [\mathbf{X}, Theorem 3.1] and Lemma 2.2(2) and $r_{k} \geq u_{k}-e>e+1+u_{2}$. If $u_{k}+u_{2} \equiv 0 \bmod 2$ for some $3 \leq k \leq t$, then $u_{k}>2 e$ by Lemma 2.1 and Lemma 2.6 and $r_{k} \geq u_{k}-e>e$.

Since ord $\left(1-a^{2}\right)=2$ ord $b+u_{2}<2 e$,

$$
\operatorname{ord}(1-a)=\operatorname{ord}(1+a)=\operatorname{ord} b+u_{2} / 2<\operatorname{ord} b+u_{2}<e<r_{k} .
$$

for $k=3, \ldots, t$. Therefore $\tau_{\sigma x_{1}-x_{1}} \in O(L)$.
Corollary 2.1. If $\sigma x_{1} \in L$ for some $\sigma \in O(V)$, then there is τ a product of symmetries in $O(L)$ such that $\tau \sigma x_{1}=x_{1}$.

Proof. It follows from the proof of Proposition 2.1.

Remark 2.1. The assumptions in Proposition 2.1 cannot be removed.

Theorem 2.1. If $\theta\left(O^{+}(L)\right) \neq \dot{F}$, then $O(L)=X(L)$.
Proof. It follows from Proposition 2.1 and [OP2, 2.5] and induction on rank L.

REMARK 2.2. In fact we have proved a slightly stronger result. If L does not satisfy the hypotheses of the above lemmas (Lemma $2.1,2.2,2.3,2.4,2.5,2.6)$ and $[\mathbf{X}$, Theorem 3.1], then Proposition 2.1 and Corollary 2.1 and Theorem 2.1 are still true.

Remark 2.3. [EH1, Prop. 2.1] can follow from Remark 2.2.
Acknowledgment. I would like to thank Prof. L. J. Gerstein for helpful conversations and I also wish to thank Prof. J. S. Hsia who gave me a lot of help to improve the exposition of this paper.

References

[EH] A.G. Earnest and J.S. Hsia, Spinor norms of local integral rotations, II, Pacific J. Math., 61 (1975), 71-86, (see also ibid. 115 (1984), 493-494).
[EH1] , Spinor genera under field extensions, II : 2 unramified in bottom field, Amer. J. Math., 100 (1978), 523-537.
[H] J.S. Hsia, Spinor norms of local integral rotations, I, Pacififc J. Math., 57 (1975), 199-206.
[HSX] J.S. Hsia, Y.Y. Shao and F. Xu, Representations by spinor genera, II, in prepapration.
[K] M.Kneser, Klassenzahlen indefiniter quadratischer formen in drei oder mehr veranderlichen, Arch. Math., 7 (1956), 323-332.
[L] T.Y. Lam, Algebraic theory of quadratic forms, Benjamin (1973).
[O] O.T. O'Meara, Introduction to quadratic forms, Springer, New-York, 1963.
[O1] , Integral equivalence of quadratic forms in ramified local fields, Amer. J. Math., 79 (1957), 157-186.
[OP1] O.T. O'Meara and B. Pollack, Generation of local integral orthogonal groups, I, Math. Z., 87 (1965), 385-400.
[OP2] , Generation of local integral orthogonal groups, II, Math. Z., 93 (1966), 171-188.
[R] C. Riehm, On the integral representations of quadratic forms over local fields, Amer. J. Math., 86 (1964), 25-62.
[X] F. Xu, Integral spinor norms in dyadic local fields, I, Pacific J. Math., 157 (1993), 179-200.

Received July 10, 1992.
University of Science and Technology of China
Hefei, Anhui 230026
People's Republic of China

