
PACIFIC JOURNAL OF MATHEMATICS

Vol. 167, No. 2, 1995

GENERATION OF INTEGRAL ORTHOGONAL
GROUPS OVER DYADIC LOCAL FIELDS

FEI XU

In this paper, we introduce the minimal norm Jordan
splittings of quadratic lattices over dyadic local fields. By
using these splittings, we prove that orthogonal groups
over dyadic local fields are generated by the symmetries
and the Eichler transformations of the lattices unless the
spinor norms of these groups are entire multiplicative
groups of underlying fields.

The generation problem of integral orthogonal groups over local
fields was first studied by Kneser (see references in [K]). He obtained
that orthogonal groups of lattices over nondyadic local fields are
generated by the symmetries of the lattices. This can be regarded
as an analogy of Cartan- Dieudonne's theorem about generation of
orthogonal groups on spaces (see [L] or [O]). In [OP1] and [OP2],
O'Meara and Pollak studied these integral orthogonal groups over
dyadic local fields and obtained that these groups are generated
by the symmetries and the Eichler transformations of the lattices
when the lattices are modular or 2 is unramified. One of the appli-
cations of these results is to study the spinor genus theory of integral
quadratic forms over number fields, which essentially depends on the
knowledge of the spinor norms of these integral orthogonal groups
at each local completion. By using these good generators, Kneser
[K] was able to determine the spinor norms of integral orthogonal
groups over nondyadic local fields explicitly and Hsia [H] deter-
mined the spinor norms of integral orthogonal groups over dyadic
local fields explicitly when the lattices are modular, and Earnest
and Hsia [EH] computed the spinor norms of integral orthogonal
groups explicitly over the dyadic fields in which 2 is unramified.

In this paper we will extend O'Meara-Pollak's results to arbi-
trary dyadic local fields. More precisely, our main result (Theorem
2.1) shows that orthogonal groups of the lattices are still generated
by the symmetries and the Eichler transformations of the lattices
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unless the integral spinor norms of these groups are the entire mul-
tiplicative groups of underlying fields. Therefore, for the purpose
of determining the integral spinor norms over arbitrary dyadic local
fields, we have solved this generation problem. Some results will
also be used in [HSX] which gives a full answer to representations
by spinor genera over number fields. Our approach is first to mod-
ify the local structures by introducing the notion of "minimal norm
Jordan splittings" over a dyadic local field and then to combine the
techniques from [OP2] and [X] to obtain the desired results.

NOTATION AND TERMINOLOGY. All unexplained notation and
terminology will be from [O], [X] and [OP2]. In particular, F de-
notes a dyadic local field, ϋ the ring of integers in F, p the maximal
ideal of $, U the group of units in $, e = ord 2 the ramification
index of 2 in F. π a fixed prime element in F, D( , ) the quadratic
defect function, Δ a fixed unit of quadratic defect 4$, V a regular
quadratic space over F associated symmetric bilinear form B(x, y),
L a lattice on V, dL the determinant of L, sL the scale of L, nL the
norm of L, O(L) the integral orthogonal group of L, X(L) the sub-
group generated by the symmetries and Eichler transformations of
L, and θ( , ) the spinor norm function. We use [α, 6,... ] to denote
spaces.

1. Minimal norm Jordan splittings. Since the Jordan split-
tings of lattices in dyadic local fields are not unique, O. T. O'Meara
in [Ol] obtained a saturated Jordan splitting of which the norm of
every Jordan component is maximal. In this section, we establish
a Jordan splitting of which the norm of every Jordan component is
minimal and hyperbolic components are as much as possible. This
kind of splitting plays important role in solving the generation prob-
lem of O(L). We call 7rrA(0,0) a hyperbolic plane and H is denoted
as an orthogonal sum of hyperbolic planes (which may sometimes
have different scales).

LEMMA 1.1. Suppose L = L\ JL L2 where L\ is unimodular with
oτdnLi — U\ and L2 is pr-modular with oτdnL2 = u2, and r > 1.

(1) // there is a vector x2 E L2 such that oτdQ(x2) = nχmod2
and oτdQ(x2) < u\, then L = L\ _L L2 where L2 is pr-modular with
nL2 = nL2 and L\ is unimodular with nL\ C nL\ or L\ = H.

(2) If there is a vector z\ € L\ such that ord Q(zι) = ΐz2mod2 and
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(zι) < (u2 — 2r), then L — L\ _L L2 where L\ is unimodular
with nLi — nL\ and L2 is pr -modular with nL2 C nL2 or L2 = H.

Proof. (1) Without loss of generality, we assume rankLi = 2
Write L\ = A(a,— a~1δ), adapted to a basis {xι,y\} where a is a
norm generator of L1? D(l + δ) = δΰ and — aΓιδ G ωL\. Let k —
{uλ -ordQ(x2))/2, so -Q{xι)/Q{πkx2) G U. Put -Q(xi)/Q(πkx2)
— ζ2 + σ 7 r r f with ξ and σ G [/, d > 1. Consider a unimodular lattice
Li = i9(x! + ξπhx2) + #2/1 which splits L, we obtain L — L\ !_ L2

(i) When ui < e, then ord(—α - 1ί) > u\ and nLi C nL\.

(ii) When wx = e and Lx = A(2, 2p), then -dZ7 G t/2 and 17 =

^ _ __
Since nL\ C nLi C nί/2 and nLi +nL2 = nL\ +nL2 = nL, we have
nL2 = nL2 = nL.

(2) It follows from applying (1) to (Lψr. D

The following proposition strengthen [O, 91:9 Th.(2)].

PROPOSITION 1.1. Suppose L = L\ JL L2 _L J_ Lt is a Jordan
splitting of L with sL{ = s^ i = 1 , . . . , ί. If nLSίo D n i S ί o + 1 and

nLSίo D (nL)(5^0,s^1_1)
2 /or 5ome 1 < Zo < t ; then for any Jordan

splitting of L, L = i^i _L K2 ± _L K ί ; i/ e /iat e nKi0 = nLi0.

Proof. It is obvious that Lj C Ls^, so nLj C nLSj for any 1 < j <
t. Since nL5ίo 3 n i S ι o + 1 D D nL 5 ί, we have nLSίo D nL7 for all
j > io- Consider

< = ( β ί o ^ L ! ) 2 ^ . C K s Γ i . O ^ n L ) C

for all j < io. Note

LSϊo = Li10 ± • JL L2°_! J- L20 JL L z o + 1 ±

So

and L5io is independent of the Jordan splitting of L. D

REMARK 1.1. When sLio = nL i o, it can be easily checked that
nLSio D nLSιo+1 and nLSio D (^ S i °" 1 )( 5 ίo 5 ^-i) 2 The converse
statement is usually not true.
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LEMMA 1.2. Suppose L is a unimodular lattice with nL D 2sL.
Then there exist two sublattices J and M such that L = J _L M
with nL = nL D nM. Furthermore rank J = 1 when rank L is
odd, and rank J — 2 uΛen rank L is even.

Proof. It follows from [O, 93:18]. D

THEOREM 1.1. There exists a Jordan splitting L = Lγ JL _t_ Lt

such that for any Jordan splitting L — K\ J_ J_ Ktj we have
nK{ D nLτ for alll<i<t, and if Kτ = H, then Li = H.

Proof Put Ax = {(Ku... , Kt)\L = Kx ± I. Kt be a Jordan
splitting of L, and ^ ^ H}.

If this set is empty, we put A\ = {{Ku . . . , Kt)\L — K\ _L ±
iί^ be a Jordan splitting of L7 and nK\ is the smallest }.

Put A2 = {(Ku . . .,*:*)<= AxlAΓa - /?} C A1.
If this set is empty, we put

A2 ={(JF£Γi,... , Kt) e A1\nK2} is the smallest C Aλ.

By induction, put At = {(Ki,... , Kt) G A t-i|ϋίt = H}.
If this set is empty, we put

At = {(-KΊ,... , UΓt) E At-ι\nKt is the smallest}.

Let (Li, . . . , Lt) G At, so L = Lγ _L _L Lt is a Jordan splitting.
By Lemma 1.1, we have if ord nLi = ord nLj mod 2 for some i < j ,
then ord nLi < ord nLj < 2(rj — r^)+ ord nLi or L; = H when ord
nLi > ord nLj or Zy = H when ord nL^ > ord nLi + 2(r7 — r^).
Here r^ = ord s^ and s^ = βLjt for 1 < A: < t.

Suppose there is a Jordan splitting of L = Kγ J_ _L Kt with
nKio C nLio for some 1 < iQ < t. By [O, 91:9 Th.(2)], sLio D
nLio D 2sLio and rank Li0 is even. By Lemma 1.2, Lio = J ± M
with nLio — nJ D nM and rank J = 2. Write J = ϋx + Λr
where Q(a ) is a norm generator of J, ord Q(x) < ord Q(x) and ord
B(x, x) = Γi0. Put x = Σ * = 1

 αz2/z where y2- is a maximal vector of i ^
and α̂  G ΰ for z = 1,... , t. Note

t

sio = J5(x, L) = ^ 5(α^i , AΓi) D B{a{yu K{)
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for all 1 < z < ί, so ord a{ > rio - r{ when z0 > z by [O, 82:17]. Put
x — Σ * = 1 cayi where yι is a maximal vector of Ki and άi G ΰ. So
ord άi > ri0 — Ti for all z < zo by the same reason. Note

ord B(μiyi, άiyi) > r2o + (r20 — r, ) > r̂ 0

for all 2 < z0, and ord B^aiyi, aiyi) > T{ > rio for all i > z0. Consider
rio = ord £(:r,z) = ord B(aioyio,aioyio) > ord aio + ord α io + rio.
Therefore ord â 0 = ord άi0 = 0, ord B(yio,yiQ) = r2o and ord
B(yio,x) — Ti0. Put ŷ 0 = Σi=i δ^i where ^ is a maximal vector of
Li, and δi G ί9. So ord bi > T{0 — r* for all z < io and ord 6i0 = 0 by
the same argument as above. Let bi0Zi0 = cx + dx + w with c, oί € ϋ
and w e M] note

r ί o = ord B(yio,x) = ord B(biozio,x)

= ord B(cx + dx, ϊ ) = ord (cB(x, x) + dQ(x))

and ord Q(ί) > ord Q(x) > r ί o. So r i o = ord (αB(a;,x)) =
odr (c) + rio. Therefore ord (c) = 0 and ord Q{biozio) = ord
(Q(ca; + dί) + Q(w)) — ord Q(x). Suppose all the vectors in
{biZi\i φiQ, 1 < i < t} which satisfy ord Q{bχZi) < ord Q(biozio) are

When ifc > io then nLik D nL^ D 2sLi0 D 2sLik. So L{k φ H
and ord nLik+ ord nLi0 = 1 mod 2 by Lemma 1.1.

When ik < z0, then

ord nLijfc + 2(r ίo - n J < ord

< ord Q(biozio) = ord Q(a ) = ord nLi0 < ord 2sLio.

That is ord nLik < ord 2 + (rik — r i o) + r t fc < ord 2sLik. So Lifc ^ H
and ord nLik+ ord nL i o = 1 mod 2 by Lemma 1.1. Put N =
LJ! -L ± J J_ _L Liz, for any k\ < k2] we have ord nLikι =
ord nLik2 = ord n J + 1 mod 2, and ord nL ί fc i < ord nLik2 <
2(rik — rik )+ ord nL^ and ord nJ > ord nL^ for all 1 < k < I.
Since nKio C nLiθJ ord <5(^0) > ord nKio > ord nL t 0 = ord Q(x).
Note Qd/io) = ΣLi Q(biZi). So ord Q(x) = ord Q(biozio) = ord
(ΣLi Q ( ^ ϋ ) . Write -Q(x)/ ΣLi Q(^^J = t2 + ™d with £
σ G C/ and c? > 1, then
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and

ord Q ( x + ξ V bikzik I = ord Q(x) + d> ord Q(x).
V k=i J

Put J = ϋ(x + ξΣk=ι bikZik) + ϋx which is ^-modular. Since ord
bik = ord £&ifc > r ί o — r^ for all ik < i0, J splits JV. So we obtain
another Jordan splitting of iV, N = Liχ ± _L J _L _L Liχ.

Since we can check nNSik — nLik for all 1 < k < /, n7V5ί* D
nNSik+ι and niVβ<* D (nNSik-1)(siks^k

1_1)
2 for all 1 < k < I. We

have nLik = nL f̂c for all 1 < A; < / by the above proposition, but
n J C n J. Corresponding to this Jordan splitting of TV, we obtain
another Jordan splitting of L which contradicts our choice of the
Jordan splitting of L.

If Kio = H but Lio φ H, then nLio = 2sLio by the above ar-
gument. By [O, 93:14] we can assume Lio = πr°A(2,2ρ) adapted
to a basis {u,ΰ} and Ki0 = τrr°^4(0,0) adapted to a basis {v,v}.
Write v = £ * = 1 Q% where % is a maximal vector of Li and a G ι9,
so ord Q > (r ίo — r») for all i < io and ord ( Q 0 ) = 0. Thus ord
Q(cioQio) — rio + e — o r d Q( u ) by Riehm Domination Principle [R].
By the similar arguments as above, we can obtain an new Jordan
splitting of L which contradicts our choice of the Jordan splitting
ofL. D

The Jordan splittings which enjoy the property of Theorem 1.1
are called minimal norm Jordan splittings.

COROLLARY 1.1. L can be splitted as L = Lo J_ H such that
Lo cannot be splitted by any hyperbolic plane and Lo is determined
uniquely by L up to isometry.

Proof. Suppose L has another splitting L = Lo _L ΐl where Lo
cannot be splitted by any hyperbolic plane, and the type of Jordan
splitting of Lo is different from that of Lo Without loss of generality,
we assume that the rank of io Jordan component of Lo is greater
than that of Lo for some 1 < IQ < t and H does not contain any
io hyperbolic component by Cancellation Theorem [O, 93:14]. So
we can choose a Jordan splitting Lo = J\ J- J- Jt such that
Jio = M _L JV with nJio = nM D nN, rank M < 2, rank JV = 2,
and nN is the smallest. Furthermore we assume the Jordan splitting
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R = J\ _L JL Jio-ι 1 M 1 Jio+ι -1 -L Jt is the minimal norm
Jordan splitting.

Comparing the Jordan splitting of Lo with that of L O J there is a
hyperbolic plane Hi0 = ΰu + ϋu C L with sHi0 — sJi0 and Q(u) =
Q(ΰ) = 0 and B(u,ΰ)ΰ = sff<0. So w = Σ ; = i ^ > ΰ = Σ U M i
where zι and 2? are the maximal vectors of each Jordan component
for the Jordan splitting L = Lo -L H with 1 < i < t. So ord 6j >
(π 0 ~ r*)> o r ( i δ« > (ΓJ0 — Γi) for all i < ZQ, and ord &i0 = ord bi0 — 0.
Here r̂  = ord sJz for all 1 < i < t. Write Zi = Pi+qi with pi G Jz and
% 6 ίfz where if; is a suitable hyperbolic component with sHi = s J2

or 0 for all i, then ord Q(6ift) > 2 ord 6; + e + r* > e + r i o for all
i φ io Consider 2t 0 = vio + tι;l0 and z~ = ^~ + ^}~ where vio and
ΰ~ e M, wio and w~ e N, then at least one of Q(υio), Q{ΰ^); or
Q(wi0)i Qi^ϊo) is a norm generator.

If Q(vi0) is a norm generator of M, then ord Q(bioZio) — ord
Q(v, 0) < ord Q(wio) < e + rio, and ord Q(v io) = ord Q(Σi^i0 bjPi)
by Q(u) = 0. So we can get the new splitting R = J\ J_ _L M ±
• - ± Jt with nM C nM. That is a contradiction.

If Q(wio) is a norm generator of M, then ord Q(wio) < e + rio and
ord Q(wi0) = ord_Q(Σi^0 &»Pi + 3 0 ) J ^e can get thenew splitting
Z^ = Ύγ J_ _L Tt with J^" = M ± N such that nN C nΛ .̂ This
contradicts our choice.

Therefore LQ and Lo have the same type of Jordan splitting and
Lo = TQ by Cancellation Theorem [O, 93:14]. D

2. Generation and spinor norms of O(L). Suppose L =
Li _L L2 J- -L Lt is a minimal norm Jordan splitting over a
dyadic local field F with T{ — ord sL^ uι ~ ord nLi, for i = 1,... , i.
Q(xi) = ε^π^ is a norm generator of Ẑ  where ε* G E7 and Xi £ Li,
for 1 < i < ί.

LEMMA 2.1. Suppose all the Jordan components are one dimen-
sion and there exists i and j with 1 < i < j < n such that r^—ri < 2e
andD(—EiSj) — ps with 1 < s < e—(r^—r^)/2. f/0 < |rfc — r |̂ < 2e
or 0 < |rib - rj\ < 2e for some \ < k < n , then Θ(O+(L)) = F.

Proof. Because of [X, Theorem 3.1] we can assume that rj — r^
Γfc — rj and r^ — r̂  are even. Suppose r{ < rj < r^. The other cases
can be done by taking the same arguments.
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So 0 < rk - Γj < 2e and #(O+(tfzi J_ tfa;,)) = Q[l,eiSj] by
[X, Prop. 2.3]. By [H, Lemma 3] there exists η in U such that
(η, -ειε]) = - 1 and D(η) = p2e~s. Note D ( - l ) = pΛ with h > e
and (2e - s) + h > e + (n - Tj)/2 + e > 2e. So (77, -1) = 1 by
[X, Remark 1]. Therefore (77, —ειεk) = 1 or (77, —εjεk) = 1.

When (77, — εj εfc) = 1, write D(-εjεk) = p*.
If 1 < ί < e - (rk - Tj)/2, then η e e(O+(uXj i . fefc)) by

[X, Prop. 2.3]. If (3e - (rΛ - r i)/2)/2 > ΐ > e - (rfc - r^/2, note
2e - s > e + (ΓJ - Γi)/2 > ί - e + (rfc - rά)/2. Then 77 € ^ ( O + ( ^ ±

))

lit > (3e-(rk-rj)/2)/2,note2e-s > e + (rj-rι)/2 > e-[e/2-
{rk - rj)/4]. Then η e θ(O+{ϋxj ± ϋxk)). Therefore Θ(O+(L)) =
θ(O+(ϋxi ± ϋXj))θ{O+(ΰx3 ± ϋxk)) = F.

When (77, — Sjβfc) = 1, the result follows from the same arguments
as above if rk — ΓJ < 2e. So we assume 4e > rk — ΓJ > 2e. Write
D(-ε f cε t) = pd.

If 1 < d < 2e - (rk - rt)/2, then

2e - s > e + {rj - r t )/2 > (rfc - rO/2 > (rfc - r<) - 2e + d.

So 77 € θ(O+(ϋXi J. i9a;fc)).
If d > 2e - (rfc - Γj)/2, note 2e - s > (rk - τ\)/2; then 77 e

^(O+(fe z J. ΰa fc)). Therefore Θ(O+(L)) = θ(O+(ΰxi ± ^ ) ) ^ ( O + (
i9xi ± i9xfc)) = F. D

LEMMA 2.2. J/L i o ^ 7rΓ o>4(εio7ru<o-r oJ -ε^1π-"<o+'-Ό(5ί o) adapted
to a basis {xi0, yi0} with D(l + δ{0) = δioΰ for some 1 < %Q < t.

(1) When ord6j0 < uio + e — rio, and uk + Mj0 = 0mod2, and
uk + ord Q(yi0) — 2rk < 2e + 1 with some k < io or uk + ord Q(yi0) —
2rio < 2e + 1 «πί/ι 5ome A; > i0, then Θ(O+{L)) = F .

(2) WTien u ΐo + uk = Imod2, uk + Ui0 — 2ri0 < 2e + 1 w«ί/i
some k > i0 or uk + ul0 — 2rk < 2e + 1 with some k < ΪQ, then
Θ(O+(L)) = F.

(3) When uio + uk = 0mod2, L ίo ^ π n o^(0,0), £>(-ε ίoε fe) =
P*) t < e — (uk + Ui0 — 2rjo)/2 with some k > io or t < e — (itfc +
Ui0 — 2rk)/2 with some k < io, then Θ(O+(L)) = F.

Proof. (1) Put K = ϋyl0 _L 1?^. Since ord Q(xk)+ ord g(j/io) = 1,
it can be checked that τz G 0(1/^ J_ Lj0) C O(L) for any maximal
vector 2 of K. Therefore Θ(O+(L)) D Q[l,έioεkπ] which does not
contain Δ, but Δ is in θ(0+(Lio)) by [H]. Thus Θ{O+{L)) = F.
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(2) It follows from the same arguments as the above case (1).
(3) Without loss of generality, we assume k > %Q. By Lemma 1.1,

we know uk — 2r^ + 2rj0 < Uj0 < uk. Put K = ϋxι0 ± ΰxk. Since
1 < t < e, we have D(-εioεk) = D(εioεk) and uk + uio - 2rio < 2e.
It can be checked that τ2 € O(Li0 _L Lk) C O(L) for any maximal
vector z oϊK. Therefore Θ(O+(L)) D Q[l,έioεk]. By [H, Lemma 3]
there exists η in U such that (77, —εjoεjk) = — 1 with D{η) = p2e~l.

(i) If ord δio > uio + e - rio, then 2e - t > e + (uk + uio -
2rio)/2. So η e θ{O+(LiJ)) by [H, Prop. B], [X, Remark 1]
and [H, Lemma 2]. Thus Θ{O+(L)) = F.

(ii) If ord δio < uio + e — rio, we only need to consider uk+ ord
Q(yio) - 2rio > 2e + 1 with k > i0. Note

2e - t+uio - riQ + ord Q(yio) - rio

>e + (uk + ordQ(yio) - 2r£o)/2

+ ui0/2 + uio + ord Q(yio)/2 - 2rio

>e + e + uio/2 + uio + uio/2 - 2rio > 2e.

Then η G θ(0+(Lio)) by [X, Remark 1]. Thus Θ{O+{L)) = F.

LEMMA 2.3. 7/rankL^ > 3 and ordnLj + oxάwLi = 1 mod 2
/or some 1 < i < t, then Θ(O+(L)) = F.

Proof. It follows from [H, Prop. A]. D

LEMMA 2.4. //rankLi = rankL^ = 1 and rankLfe = 2 for some
i > j andk, 0 < Ui—Uj < 2e+l andui — Uj is odd, thenθ(O+(L)) =
F.

Proof. Since Δ is not in θ(O+(Li _L Lj)) = Q ^ ^ T Γ ] by
[X, Prop. 2.2 i] and [X, Prop. 2.3 i] and Δ e θ(O+(Lk)) by [H];
therefore Θ(O+{L)) = F. D

LEMMA 2.5. Suppose rankLj = rankL,- = 1 and for some i > j
with 0 < U{ — Uj < 2e and Ui — Uj is even and D(-εiεj) = pt with
t<e-(ui- Uj)/2. If there is Lk = πrkA(εkπ

Uk~rk, -εlιττ-Uk+rkδk)
with ordόfc > uk — rk + e for some 1 < k <t, then Θ(O+(L)) = F.

Proof. By [H, Lemma 3] and [X, Prop. 2.3], there exists ηeθ(O+

{Li ± Lj)) = Q[\,iiEj] with D{η) = p2e~ι and 2e - t > e + {ui -
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Uj)/2 > e + 1. So η e θ{O+(Lk)) by [H, Prop. B], [X, Remark 1]
and [H, Lemma 2]. Therefore Θ(O+(L)) = F. D

LEMMA 2.6. 7/rankLz = rankZ^ = 1 and rankle = 2, 0 <
Uj — Ui<2e and Uj — Ui is even for some k > j > i, D(—SiSj) = pι

with t < e — (UJ — Ui)/2, and uk — Ui < 2e, then Θ(O*(L)) = F.

Proof Put Lk ^ πr"A(εkπ
Uk-rk,-ε];ιπ-Uk+rkδk). By Lemma 2.2

and Lemma 2.5, we can assume uk—uι is even and ord δk < uk—rk+e
and ord δk + 2rk — uk — Uj > 2e + 1. So rk — Ui > rk — Uj >

e + 1. It can be checked that any τz e O($Xj _L ΰxk) is also in
O(Lj JL Lk). So O(ΰxj ± ϋxk) C O(L7 JL L^). By the same reason,
O(βxi ± ΰxk) CO(Li±Lk). By the proof of Lemma 2.1, we obtain
θ(O+(ΰxi ± ΰxj))θ(O+(ΰxi JL ΰxkWiO+ίΰxj ± ϋxk)) = F. Thus
Θ(O+(L)) = F. D

Before obtaining our main result, we first establish the following
Witt- type result.

PROPOSITION 2.1. Suppose L cannot be splitted by any hyperbolic
plane and Θ(O+(L)) φ F. If σL\ C L for some σ e O(V), then
there is r a product of symmetries in O(L) such that τσ|^ 1 = 1.

Proof When e = 1, it has been done in [OP1]. We assume
e > 1 and rx = 0. By Lemma 2.3 and [O, 93:18], we know all the
Jordan components are one or two dimensions and none of them is
hyperbolic plane. D

When rank Lλ = 2, write Zq = A(ε1π
u\ -ε^ιττ~uiδι) adapted to

a basis {xχ,yι\ with D(l + δ\) = δ\ϋ. Put σxγ = ax\ + byi + z
where a and b are in $, z € L2 _L _L Lt.

(1) ord Q(Vl) > e.
When uk + u\ = 1 mod 2 for some 2 < k < ί, then

uk - ui > 2e + 3 - 2uι > 3, rk > uk - e > e - ux + 3 > 3

by Lemma 2.2(2).
When uk + u\ = 0 mod 2 for some 2 < A: < ί, then ^ > u\ + 2

and rk > (uk — u\)/2 > 1 by Lemma 1.1.
So ord Q(z)~ ord Q(x1) > 2. Note Q(x1) = α2Q(xi) + 2ab +

+ Q(z), Q(σXι - Xl) = 2((1 - α)Q(*i) - 6).
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If ord 6 = 0 and ord Q{x\) — ord Q(yι) = e, then τ σ a ; i _ X l G
O(L). Otherwise, a = 1 mod p and we assume ord 6 < 1 because
we can consider τπ[(e-uι)/2]xi+yiσ(xι) instead of σx\ if necessary and
rπ[(e-u1)/2]Xl+yi G O(L).

(i) ux > 1 or ord 6 = 0. Then τσXl-Xl G O(L).

(ii) u\ — 0 and ord b = 1 and 1/2 > 3. Since uk > u2 > 3 for all
A; > 3 by Lemma 1.1 and Lemma 2.2(2), ord Q(z) > 3 and ord
(1 - a2) > 3. Therefore ord (1 - a) > 2 and τσXl_Xl G O(L).

(iii) IAI = 0 and ord b — 1 and U2 = 2. By the above arguments
we only need to consider e is odd and ord (1 — a) — 1. Note
D(-ειε2) = p* with ί > e - (ux + u2)/2 by Lemma 2.2(3).
Write a — 1 + Iπ with Z G ί7 and - ε i ε 2 = ξ2 + λπ* with
ξ, λ G U.

Let

ry = ξ + TΓ^

We have εiε2 + ε2r72 = ^TΓ6"1 and τε27ΓXι+rjX2 is in O(L). Write
^2^1+77x2σχι — a'χι + b'yi + ^ with α' = α(l - 2^2<s^~e5~^) mod
p 2 and z7 G L2 _L J_ Lt. Note ord (1 - a1) > 2 by a direct
computation. Therefore rσ/:ci_:ci G O(L) with σ ; = τε 2 7 r α ; i +ηX2σ by
the same argument as above.

(2) ord Q(yi) < e.
When u\ + Uk = 1 mod 2 for some 2 < A; < ί, then ui+u^ > 2e + 3

by Lemma 2.2(2) and rk > Uk — e > e + 3 — Uι.
When ni+Ufc = 0 mod 2 for some 2 < A: < ί, then ord Q(yι)+uk >

2e + 3 by Lemma 2.2(1) and r^ > u/, — e > e + 3— ord Q(yι)
So ord Q(z) > 2e+3— ord Q(y\) and α = 1 mod p. We can assume

ord b < e— ord Q(yi) because we consider T2Xl+yiσ(xι) instead of
σx\ if necessary and τ2xi+yi G O(L). We claim ord b — e— ord
Q(yi). If ord 6 < e - ord Q(yι), then ord (b2Q(yι)) < ord 2αδ < ord
Q(z) and ord ((1 - α2)Q(xχ)) = ord {b2Q(yι)) < 2e. Therefore ord
(1 - α) = ord (1 + a) < e and ord Q(x\) = ord Q(τ/i) mod 2. It is a
contradiction since ord Q(yι) < e. So we have ord ((1 — a2)Q{xι)) =
ord (2ab + b2Q(yi) + Q{z)) > 2e- ord Q(yi).

If ord (1 — a) < e, then ord (1 + a) = ord (1 — a) and

ord((l - a)Q{xλ)) > e - (ordQ(j/i) - ordQ(xi))/2 > e - oτdQ(yi)
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and

ord(l - a) > e - (ordQ(yι) + ordQ(a;i))/2 > e -

Therefore τσXl-Xl eO{L).
If ord (1 — a) > e, then τσxl-Xl G O(L).
Now we can assume σx\ — x\, σy\ — ax\ + βy\ + w by the

above arguments. Here α, β G $, w G L2 _L _L Lt. So we have
1 - aQ(xλ) + β and Q{σyx - yι) = 2α(Q(^i)Q(?/i) - 1).

If ord a < r2, then rσyi__yi 6 O(L).
If ord α > r2 and ̂ i + u2 > 2e, then r2 > u2 — e > e — U\. Put

u = Xi-Q(xi)2/i, sor u(xi) = xx and τuσ(yι) = α/xi+/3/2/i + ^ / with
ord α' = e - ux < r 2 and τu eO(L). Therefore τTuσyi-yi G O(L).

If ord α > r 2 and U\ + u2 < 2e, then ui = t^2 mod 2 and
£K-εiε 2) = P* w i t h ί > β - (^2 + ^i)2 by Lemma 2.2(3). Write
-ειs2 = ^ 2 + λπ* with ξ, λ eU and

77 = ξ + 7Γ[e/2-(u1+U2)/4] G ^^

5 = ε 2 (l + 2ξτr-[ e / 2- ( w i + l ί 2 ) / 4 ] - A^- 2 [ e / 2~ ( ? i l + W 2 ) / 4 ]) G U.

So ε i ε 2 + ε2r?2 = δπ2^2'^^^. Put

^U2'Uι)l2e2Q{xι)yι + ηx2 G L.

Then ru G O(L) whenever ord Q(yι) > e; or ord Q(yi) < e but
ord Q(yi) > 2e + 1 by Lemma 2.2(1). Note τuxx — xu τuσyι =
α'xi + β'y\ + t/;' with

ord a' = e + u2-uι- (u2 + 2[e/2 - (ui

1 < r 2

by Lemma 1.1 and ty; G L2 -L _L Lt. Therefore τTuσyi-yi G O(L).

We have τσyi-mσ\Ll = 1 or r T l t σ y i - y i r t t σ | L l = 1.
When rank Li = 1, write σ^i = 0x1 + 2: with a E ΰ and 2 G L2 _L

• JL Lt. So Q(σxi±a:i) = 2{l±a)Q(xι). Since ( l+α) + ( l - α ) = 2,
ord (1 - a) < e or ord (1 + a) < e. Note τ σ a ; i ± a; 1 G O(L) whenever
ord (1+α) < r2 We only need to consider the following cases by
Lemma 2.2.

(1) u2 = 1 mod 2 and u2 < e and rank L2 = 1.
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By Lemma 2.4 and [X, Theorem 3.1], we have rank L3 = 1 and
3̂ = ^3 > 2e. Write σx\ — ax\ + bx2 + w with b G ΰ and w G L3 _L

* _L Lt. We can assume ord b + u2 < e. So ord (1 — a2) = 2 ord
b + u2 < 2e. Therefore ord (1 - a) = ord (1 + α) = ord 6 + ?x2/2 <
ord b + u2 <r3 and τ σ X l _ x l 6 O(L).

(2) u2 = 0 mod 2 and £>(—εiε2) = p* with ί > e — u2/2 and
ord (1 — a) > r2. Write — E\S2 = ξ2 + λπ* with ξ, λ e U and η =

[ / / ] [ / / ^ [ / / ]

So εiε^ + ε2τ72 = δπ2^2~U2^l Put u = πn 2/ 2ε 2xi + ̂ 2 e L; then
τ n 6 O(L). Consider τuσx\ = α;xχ + z' with

α ' = a - 2ε1ε
2αJ-1τr-2te/2-W2/4ί - 2ηε2δ~1B(x2, ^ ) π

and y G L2 JL ± Lt. Note ord (1 - a') = e - 2[e/2 -
^2/2 + 1 < r2 by Lemma 1.1. So τTu(7X1-Xl G O(L).

(3) U2ΞΞ0 mod 2 and D(-εiε2) = V1 with ί < e - u2/2.
By Lemma 2.2, we have rank L2 — 1. Write σxi = αxi + bx2 + m

with lϋ G L3 ± J_ Lu we only need to consider ord b + u2 < e.
If Uk + u2 = mod 2 for some 3 < fc < ί, then u^ — u2 > 2e + 1 by

[X, Theorem 3.1] and Lemma 2.2(2) and r^ > Uk — e > e + 1 + u2.
If Uk + u2 = 0 mod 2 for some 3 < k < ί, then ^ > 2e by Lemma
2.1 and Lemma 2.6 and r^ > Uk — e > e.

Since ord (1 — a2) = 2 ord b + u2 < 2e,

ord(l — α) = ord(l + α) = ord6 + ΐ/2/2 < ord b + u2 < e < r^.

for A; = 3, . . . , t Therefore rσrEl_Xl G O(L).

COROLLARY 2.1. // σx\ e L for some σ G O(V), then there is r
a product of symmetries in O(L) such that τσx\ — X\.

Proof. It follows from the proof of Proposition 2.1. D

REMARK 2.1. The assumptions in Proposition 2.1 cannot be
removed.

THEOREM 2.1. Ifθ(O+{L)) φ F, then O(L) = X(L).

Proof It follows from Proposition 2.1 and [OP2, 2.5] and induc-
tion on rank L. D
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REMARK 2.2. In fact we have proved a slightly stronger result.
If L does not satisfy the hypotheses of the above lemmas (Lemma
2.1, 2.2, 2.3, 2.4, 2.5, 2.6) and [X, Theorem 3.1], then Proposition
2.1 and Corollary 2.1 and Theorem 2.1 are still true.

REMARK 2.3. [EH1, Prop. 2.1] can follow from Remark 2.2.
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