DESINGULARIZATIONS OF SOME UNSTABLE ORBIT CLOSURES

Mark Reeder

Let σ be a semisimple automorphism of a connected reductive group G, and let G_{σ} be the fixed points of σ . We consider the G_{σ} -orbits on the space of nilpotent elements in an eigenspace of $d\sigma$. We give a desingularization of the orbit closures and relate the G_{σ} -orbits to the G-orbits. Along the way, we describe the fixed points of σ on a flag variety G/P where P is a σ -stable parabolic subgroup of G.

I. Introduction. In this note we observe some consequences of Richardson's theorems on orbits of reductive groups, in the following situation. Let G be a simply-connected reductive algebraic group over an algebraically closed field F whose characteristic is either zero or sufficiently large (as specified below). Let \mathfrak{g} be the Lie algebra of G, and let \mathcal{N} be the variety of nilpotent elements in \mathfrak{g} . Let σ be a semisimple automorphism of G, fix a nonzero element $q \in F^{\times}$, and consider the variety

$$\mathcal{N}_{\sigma,q} = \{ x \in \mathcal{N} : d\sigma(x) = qx \}.$$

If q is not a root of unity then $\mathcal{N}_{\sigma,q}$ is the whole q-eigenspace of $d\sigma$, hence is a linear subspace of \mathfrak{g} . If q is a root of unity, the variety $\mathcal{N}_{\sigma,q}$ may even be reducible.

It was shown by Steinberg that the group of σ -fixed points G_{σ} is also a connected reductive F-group ([S]). The adjoint action of G_{σ} preserves each eigenspace of $d\sigma$, and $\mathcal{N}_{\sigma,q}$ consists of those G_{σ} -orbits in the q-eigenspace of $d\sigma$ which are "unstable", in the sense of geometric invariant theory ([H2]). According to a theorem of Kac and Richardson ([Ri3]), the G_{σ} -orbits on $\mathcal{N}_{\sigma,q}$ are exactly the irreducible components of sets of the form $\mathcal{N}_{\sigma,q} \cap \tilde{\mathcal{O}}$, where $\tilde{\mathcal{O}}$ is a nilpotent G orbit. Richardson also proved (with our assumptions on the characteristic of F, see [Ri1]) that there are only finitely many

nilpotent G-orbits, hence there are only finitely many G_{σ} -orbits in $\mathcal{N}_{\sigma,\sigma}$.

Let $\mathcal{O} \subseteq \mathcal{N}_{\sigma,q}$ be one such G_{σ} -orbit. Then the Zariski closure $\overline{\mathcal{O}}$ of \mathcal{O} in $\mathcal{N}_{\sigma,q}$ is an affine variety which is generally singular. The main purpose of this note is to resolve the singularities of \mathcal{O} (Prop. (3.2)). More precisely, we construct a vector bundle E over a partial flag variety of G_{σ} , and define a closed morphism $\pi: E \longrightarrow \overline{\mathcal{O}}$ such that $\pi:\pi^{-1}(\mathcal{O})\longrightarrow\mathcal{O}$ is an isomorphism. The idea is simply that (σ, q^{-1}) acts on the known resolution of the closure of $G \cdot \mathcal{O}$, the nilpotent G-orbit containing \mathcal{O} . The desired resolution of $\overline{\mathcal{O}}$ is then found by taking fixed points under (σ, q^{-1}) . Moreover these fixed points separate the various G_{σ} -orbits in $\mathcal{N}_{\sigma,q} \cap G \cdot \mathcal{O}$, as described in Prop. (4.1) below. For example if σ is induced by an automorphism of the Dynkin diagram, (4.1) implies that every nilpotent G-orbit meets $\mathcal{N}_{\sigma,q}$ in at most one G_{σ} -orbit. Taking q=1, we recover the well-known fact that nilpotent orbits in $\mathfrak{so}(2n+1)$ and $\mathfrak{sp}(n)$ are determined by elementary divisors.

The method requires a precise description (Prop. (2.3)) of the fixed points of σ in a flag variety G/P where P is a σ -stable parabolic subgroup of G. Richardson ([**Ri3**]) has already proven that there are finitely many orbits and they are all closed. Here we count and describe the orbits explicitly, using Steinberg's work in [S].

Hesselink ([H2]) has constructed desingularizations of closures of "strata" for more general group actions. Each stratum is a union of orbits, and in the case of nilpotent G-orbits, Kraft proved that the strata and orbits coincide. For our varieties $\mathcal{N}_{\sigma,q}$ it is not known if the orbits are strata, and even if they are (it is an interesting question), the proof is likely to be a more difficult route to a desingularization than the one taken here.

The group action $(G_{\sigma}, \mathcal{N}_{\sigma,q}, Ad)$ arises in many settings. Suppose that q is not a root of unity, so that $\mathcal{N}_{\sigma,q}$ is a linear space, and in particular an irreducible variety. There is a unique Zariski dense orbit in $\mathcal{N}_{\sigma,q}$, so by definition, the triple $(G_{\sigma}, \mathcal{N}_{\sigma,q}, Ad)$ is a "prehomogeneous vector space", hereafter abbreviated as PV. The complex PV's which are also irreducible representations were classified by Sato and Kimura ([S-K]). The PV's occuring as some $(G_{\sigma}, \mathcal{N}_{\sigma,q}, Ad)$ are called "PV's of parabolic type" ([Ru]), because they also arise as subspaces of nilradicals of parabolic subalgebras which are in-

variant under a Levi subgroup. (G_{σ} is a Levi subgroup in some reductive subgroup H < G whose Lie algebra contains $\mathcal{N}_{\sigma,q}$.) Most irreducible PV's with finitely many orbits are of parabolic type. However, parabolic PV's can easily be reducible, and there seems to be no classification of reducible PV's.* We remark that the big group G is not to be discarded, as it greatly clarifies the structure of $(G_{\sigma}, \mathcal{N}_{\sigma,q}, Ad)$.

Suppose now that $q \in F^{\times}$ is arbitrary, but that σ either has finite order or is conjugation by some element in a one-parameter subgroup of G. Then \mathfrak{g} has a grading $\mathfrak{g} = \oplus \mathfrak{g}_i$ such that G_{σ} has Lie algebra \mathfrak{g}_0 and V is the set of nilpotent elements in \mathfrak{g}_1 . These spaces were initially studied by Vinberg ([V]), who proposed a scheme for classifying the orbits.

My initial interest in such orbit closures $\overline{\mathcal{O}}$ came from the representation theory of p-adic groups ([K-L]). In this setting, G is a complex group (the "Langlands dual group"), σ is inner, and q is the cardinality of the residue field, hence not a root of unity. The intersection cohomology of $\overline{\mathcal{O}}$ is apparently related to multiplicities in unramified principal series representations of the p-adic group dual to G, just as with Schubert varieties and Verma modules (see $[\mathbf{G}]$, $[\mathbf{R}]$, $[\mathbf{Z}]$). In this context, Zelevinsky found desingularizations of $\overline{\mathcal{O}}$ for $G = GL_n$ and used them to compute the intersection cohomology of some special $\overline{\mathcal{O}}$'s, for which his resolution was "small" in the sense of $[\mathbf{G}\mathbf{-M}]$. The resolutions constructed in this paper are not always small.

An earlier version of this paper had σ being inner, as above. However, in addition to other helpful comments, the referee pointed out Sekiguchi's paper [Se], which discusses $\mathcal{N}_{\sigma,-1}$ when σ is an involution. Among other results, Sekiguchi gives a resolution of the orbit closures of maximal dimension in $\mathcal{N}_{\sigma,-1}$, so following the referee's suggestion, I modified this paper to include semisimple automorphisms, thus extending that part of Sekiguchi's work. In this setting, the G_{σ} -orbits in $\mathcal{N}_{\sigma,-1}$ are of interest in the representation theory of real Lie groups (see [Vo]).

Thanks are due to Gary Seitz, for telling me about Richardson's paper [Ri3].

^{*}Added in proof: See Kasei-Kimura-Yasukura, Amer. J. Math., **108** (1986), 643-692.

II. Fixed point varieties in flag manifolds. Here we use some of Steinberg's results in [S] to describe the fixed point subvariety of a flag manifold under the action of a semisimple automorphism. In this section there is no restriction on the characteristic of the ground field F.

Let G be a connected, simply-connected and semisimple algebraic group over an algebraically closed field F, and let σ be a semisimple automorphism of G. That is, σ is an automorphism of G whose differential $d\sigma$ acts diagonalizably on the Lie algebra \mathfrak{g} of G. We say a subgroup $H \subseteq G$ is " σ -stable" if $\sigma H = H$. If $K \subseteq H \subseteq G$ are closed σ -stable subgroups of G, then σ acts on the variety H/Kby the rule $\sigma(hK) = (\sigma h)K$, for $h \in H$. We write $(H/K)_{\sigma}$ for the fixed points of σ in H/K. According to [S, (8.2)], G_{σ} is a connected reductive group. By [S, (7.5)], there exists a σ -stable Borel subgroup $B \subseteq G$, and a σ -stable maximal torus $T \subseteq B$. Let U be the unipotent radical of B, and let $\mathfrak{t} \subseteq \mathfrak{t} \oplus \mathfrak{u} = \mathfrak{b}$ be the corresponding Lie algebras. Let Δ , Δ^+ , Σ be the roots of t in \mathfrak{g} , \mathfrak{u} and $\mathfrak{u}/[\mathfrak{u},\mathfrak{u}]$, respectively. Since σ preserves T and B, it acts on Δ , preserving Σ and Δ^+ , and on the normalizer N of T in G, and hence on the Weyl group W = N/T. Let $W_{\sigma}^{1} = N_{\sigma}/T_{\sigma}$. This is the subgroup of W_{σ} consisting of elements which can be represented in N_{σ} .

Let $V \subset \mathfrak{t}^*$ be the real span of the roots in Δ , and let V_{σ} be the fixed points of σ in V. For any root α , let $\bar{\alpha}$ denote its orthogonal projection into V_{σ} , with respect to a W-invariant inner product on V. Then W_{σ} preserves and acts faithfully on V_{σ} ([S, (1.32)]). Let $\overline{W_{\sigma}}$ and $\overline{W_{\sigma}^1}$ denote the restrictions of W_{σ} and W_{σ}^1 to V_{σ} . We have $\overline{W_{\sigma}} \simeq W_{\sigma}$ as abstract groups, but the latter is a reflection group with respect to a new root system. We describe this more precisely.

The projections of all roots form a non-reduced root system in V_{σ} . We get a reduced root system as follows ([S, §1]). Let S_{α} be the collection of positive roots whose projection to V_{σ} is proportional to $\bar{\alpha}$. There are two possibilities for S_{α} ([S, (8.2)]):

- (1) $S_{\alpha} = \{\alpha, \sigma\alpha, \sigma^2\alpha, \dots\}$ no two of which sum to a root, or
- (2) $S_{\alpha} = \{\alpha, \sigma\alpha, \beta = \alpha + \sigma\alpha\}$ is a σ -stable positive system of type A_{2} .

For $\alpha \in \Delta^+$, let $[\alpha] \in V_{\sigma}$ be the longest projection to V_{σ} of a root in S_{α} . Likewise, for any subset $J \subseteq \Delta^+$, let $[J] = \{ [\alpha] : \alpha \in J \}$.

Set $[\Delta] := W_{\sigma}[\Sigma]$. Then by $[\mathbf{S}, (1.32)], [\Delta]$ is a root system in V_{σ} with base $[\Sigma]$, positive roots $[\Delta]^+ = [\Delta^+]$ and Weyl group $\overline{W_{\sigma}}$. (The root system of G_{σ} turns out to be a subsystem of $[\Delta]$.) According to $[\mathbf{S}, (8.2)]$, the reflection $s_{[\alpha]} \in \overline{W_{\sigma}}$ corresponding to $[\alpha] \in [\Delta^+]$ is given by

- (1) $s_{[\alpha]} = s_{\alpha} s_{\sigma \alpha} \cdots |_{V_{\sigma}}$ or
- $(2) \quad s_{[\alpha]} = s_{\beta}|_{V_{\sigma}},$

according to the two cases for S_{α} described above.

All of this is related to the structure of fixed point group G_{σ} in the following way. For each positive root α , let $U_{\alpha} \subseteq U$ be the corresponding root subgroup. We have $\sigma U_{\alpha} = U_{\sigma\alpha}$. Consider the product $\prod_{\beta \in S_{\alpha}} U_{\beta}$. In the two cases for S_{α} , either the root groups in the product commute (case (1)), or the whole product is the three dimensional Heisenberg group (case (2)). Hence the product is a group. Since $\sigma S_{\alpha} = S_{\alpha}$, the product is also invariant under σ , and we set

$$U[\alpha] = \left(\prod_{\beta \in S_{\alpha}} U_{\beta}\right)_{\sigma}.$$

By [S, (8.2)] again, $U[\alpha]$ is either trivial, or a one-parameter group. Finally, [S, (8.2)(4)-(7)] combine to give

LEMMA 2.1. $U[\alpha]$ is nontrivial if and only if the reflection $s_{[\alpha]}$ belongs to $\overline{W_{\sigma}^1}$. Moreover, $\overline{W_{\sigma}^1}$ is generated by such reflections.

This allows us to prove

LEMMA 2.2. There exists a set $Y(\sigma)$ of coset representatives for $W^1_{\sigma}\backslash W_{\sigma}$ such that if $n_w\in N$ represents $w\in Y(\sigma)$, then

$$n_w^{-1}B_\sigma n_w \subseteq B.$$

Proof. Since U_{σ} is the product of the $U[\alpha]$'s, this amounts to having $n_w^{-1}U[\alpha]n_w \subseteq U$ for all $\alpha \in \Delta^+$. Since

$$n_w^{-1}U[\alpha]n_w \subseteq \prod_{\beta \in S_\alpha} U_{w^{-1}\beta},$$

it is enough to find coset representatives $w \in W_{\sigma}$ such that $w^{-1}S_{\alpha} \subseteq \Delta^+$ whenever $U[\alpha]$ is nontrivial. Let < be the Bruhat order on the

Weyl group $\overline{W_{\sigma}}$, with respect to the positive system $[\Delta^{+}]$ of $[\Delta]$. This satisfies the rule ([J, (2.19)])

$$s_{[\alpha]}\bar{w} > \bar{w} \Leftrightarrow \bar{w}^{-1}[\alpha] \in [\Delta^+].$$

In each coset in $\overline{W_{\sigma}^1}\backslash \overline{W_{\sigma}}$, choose one element $\bar{w} \in \overline{W_{\sigma}}$ which is not < any other member of its coset $\overline{W_{\sigma}^1}\bar{w}$. Let $w \in W_{\sigma}$ be the unique element whose restriction to V_{σ} is \bar{w} , and let $Y(\sigma)$ be the collection of w's so obtained. Then $Y(\sigma)$ is a set of coset representatives for $W_{\sigma}^1\backslash W_{\sigma}$.

For any $x \in W_{\sigma}$, we have $x\sigma = \sigma x$, as automorphisms of Δ . Let $\alpha \in \Delta^+$. Since σ preserves Δ^+ and S_{α} is spanned over the positive integers by the σ -translates of one of its members, we have either $xS_{\alpha} \subseteq \Delta^+$ or $xS_{\alpha} \subseteq -\Delta^+$. Moreover, the former possibility holds if and only if $\bar{x}[\alpha] \in [\Delta]^+$. Now take $x = w^{-1}$, where $w \in Y(\sigma)$. By (2.1) and the Bruhat-minimality of w, we have $x[\alpha] \in [\Delta]^+$ whenever $U[\alpha]$ is nontrivial, so w has the required properties.

Now let P be a σ -stable parabolic subgroup of G. By [S, (7.5)], there is a maximal torus T and a Borel subgroup B, both σ -stable, such that $T \subseteq B \subseteq P$. With notation and results as above, P corresponds to a σ -stable subset of $\Sigma_P \subseteq \Sigma$. More precisely, Σ_P consists of those simple roots which are roots of \mathfrak{t} in the Lie algebra of the unique Levi subgroup L of P containing T. Since $\sigma T = T$ and $\sigma P = P$, we also have $\sigma L = L$, so Σ_P is indeed σ -stable. Let W_P be the subgroup of W generated by the reflections in Σ_P . Then W_P is also preserved by σ . The following result may be viewed as the determination of all σ -stable parabolic subgroups in the G-conjugacy class of P.

Proposition 2.3. Let G be a semisimple simply connected algebraic group. Let σ be a semisimple automorphism of G, and let P be a σ -stable parabolic subgroup of G. Then with notation as above,

- (1) $(G/P)_{\sigma} = \coprod_{w \in W_{\sigma}^1 \backslash W_{\sigma}/(W_P)_{\sigma}} G_{\sigma}wP/P$ (disjoint union). In particular, each connected component of $(G/P)_{\sigma}$ is a G_{σ} -orbit.
- (2) Each double coset $W^1_{\sigma}w(W_P)_{\sigma}$ meets $Y(\sigma)$ (see (2.2)).
- (3) Each G_{σ} -orbit in $(G/P)_{\sigma}$ is complete. In other words, the group of σ -fixed points in any σ -stable parabolic subgroup of G is parabolic in G_{σ} .

(4) If P = B is a σ -stable Borel subgroup and $y \in Y(\sigma)$, then $(yBy^{-1})_{\sigma} = B_{\sigma}$, so $(G/B)_{\sigma}$ is a disjoint union of $[W_{\sigma} : W_{\sigma}^{1}]$ copies of the flag variety G_{σ}/B_{σ} .

Proof. Assertion (2) follows immediately from (2.2). For (1) we recall the Bruhat decomposition. For each $w \in W$, let U_w be the product, taken in some fixed order, of the root groups U_α with $w^{-1}\alpha \in -\Delta^+$. Let W^P be the set of $w \in W$ such that $w\Sigma_P \subseteq \Delta^+$. Then every point in G/P may be uniquely written as uwP for some $w \in W^P$, $u \in U_w$. Since Σ_P and Δ^+ are σ -stable, so are W^P and U_w . It follows that

$$(G/P)_{\sigma} = \bigcup_{w \in W^{P}} (U_{w}wP/P)_{\sigma} \subseteq \bigcup_{w \in W_{\sigma}} U_{\sigma}wP/P \subseteq \bigcup_{w \in W_{\sigma}} G_{\sigma}wP/P.$$

Let $n \in N$ represent some $w \in W_{\sigma}$. Then $\sigma(n) = nt$ for some $t \in T$, so $\sigma(wP) = \sigma(n)P = ntP = nP = wP$. Hence $w \in W_{\sigma}$ implies $G_{\sigma}wP/P \subseteq (G/P)_{\sigma}$, so we have

$$(G/P)_{\sigma} = \bigcup_{w \in W_{\sigma}} G_{\sigma} w P / P = \bigcup_{y \in Y(\sigma)} G_{\sigma} y P / P,$$

where $Y(\sigma)$ is as in (2.2).

We next show disjointness. Since $G = UNB = \coprod_{w \in W} UwB$, we have

$$G_{\sigma} = U_{\sigma} N_{\sigma} B_{\sigma} = \coprod_{x \in W_{\sigma}^1} U_{\sigma} x B_{\sigma}.$$

Let $y \in Y(\sigma)$ and consider the orbit $G_{\sigma}yP/P$ in $(G/P)_{\sigma}$. By (2.2) we have

$$G_{\sigma}yP/P = \bigcup_{x \in W^1_{\sigma}} U_{\sigma}xB_{\sigma}yP/P = \bigcup_{x \in W^1_{\sigma}} U_{\sigma}xyP/P.$$

It follows that for two elements $y, y' \in Y(\sigma)$ we have $G_{\sigma}yP/P = G_{\sigma}y'P/P$ if and only if we have equality of double cosets

$$W_{\sigma}^1 y W_P = W_{\sigma}^1 y' W_P.$$

Since $Y(\sigma) \subseteq W_{\sigma}$, this is the same as

$$W_{\sigma}^1 y(W_P)_{\sigma} = W_{\sigma}^1 y'(W_P)_{\sigma},$$

proving (1).

Now $(G/P)_{\sigma}$, being closed in G/P, is complete. Hence each connected component of $(G/P)_{\sigma}$ is complete, proving (3).

Finally, let $y \in Y(\sigma)$. Then $y^{-1}B_{\sigma}y \subseteq B$, so $B_{\sigma} \subseteq (yBy^{-1})_{\sigma}$. Both sides are solvable, and are parabolic subgroups of G_{σ} by (3). Hence they are Borel subgroups of G_{σ} , and must be equal.

- 2.5. Remarks. (1) Simple examples (eg. [Ri3, 3.3]) show that (2.3)(4) fails for nonminimal parabolic subgroups. See also (2.6) below.
- (2) We could have given a more conceptual, though less explicit, construction of $Y(\sigma)$ by invoking [**Ri3**, 10.2.1] (our (2.3)(3)) at the outset. For, if $w \in W_{\sigma}$ and B is a σ -stable Borel subgroup of G, then by [**Ri3**, 10.2.1], B_{σ} and $(wBw^{-1})_{\sigma}$ are Borel subgroups of G_{σ} containing the same maximal torus T_{σ} , so there exists $x \in W_{\sigma}^{1}$ such that $x^{-1}(B_{\sigma})x = (wBw^{-1})_{\sigma}$, from which it follows that $(xw)^{-1}B_{\sigma}(xw) \subseteq B$.
- (3) Matsuki (over \mathbb{C} , [M]) and Springer $(char(F) \neq 2, [\mathbf{Sp}])$ have described all of the G_{σ} -orbits in G/B when σ is an involution. They prove in particular that $(G/B)_{\sigma}$ is exactly the union of the closed G_{σ} -orbits in G/B. Let P be a parabolic subgroup containing B, and let $\pi: G/B \longrightarrow G/P$ be the natural projection. If Y is a closed G_{σ} -orbit in G/P, then $Y = \pi(Y')$ for any closed G_{σ} -orbit $Y' \subseteq \pi^{-1}(Y)$. Hence the result of Matsuki and Springer implies that $(G/P)_{\sigma}$ is the union of the closed G_{σ} -orbits. The same assertion holds when σ is inner but not necessarily involutive. Indeed, σ is then conjugation by some element of a torus $S \subseteq G_{\sigma}$. Let $Y \subseteq G/P$ be a closed G_{σ} -orbit as above. By Borel's fixed-point theorem $[\mathbf{B}, (10.4)]$, the fixed point set Y_S of S in Y is nonempty, so Y meets $(G/P)_{\sigma}$, hence $Y \subseteq (G/P)_{\sigma}$.
- 2.6. EXAMPLES. There are two extreme cases of (2.3). If σ is conjugation by an element $s \in T$, then $W_{\sigma} = W$ and W_{σ}^{1} is generated by the reflections about roots which are trivial on s. On the other hand if σ is induced by an automorphism ρ of the Dynkin diagram, then $W_{\sigma}^{1} = W_{\sigma}$ ([S, (8.2)(5)]), so $(G/P)_{\sigma}$ is connected.

Here is an example of a mixed case. Take $G = E_6$ (simply connected version), and let σ be the involution of G whose fixed point set has type C_4 . Explicitly, take ρ to be the automorphism of E_6

induced by the nontrivial diagram symmetry as in the previous paragraph, and let $s = \check{\alpha}_0(-1)$, where α_0 is the highest root and $\check{\alpha}_0(t)$ is the corresponding one parameter subgroup of T. We can take $\sigma = i_s \rho$, where i_s is conjugation by s. Then W_{σ} , which only depends on ρ , has type F_4 . Meanwhile W_{σ}^1 , being the Weyl group of G_{σ} , has type C_4 . Hence $[W_{\sigma}:W_{\sigma}^1]=3$. We compute $Y(\sigma)$. Number the simple roots of E_6 as follows:

Using [S, (8.2)], one gets explicit conditions for each $U[\alpha]$ to be nontrivial, and the simple roots of T_{σ} in B_{σ} are then found to be

$$[\alpha_2 + \alpha_3 + \alpha_6] \quad [\alpha_1] \quad [\alpha_2] \quad [\alpha_3]$$

If $w \in Y(\sigma)$, we must have $w^{-1}\alpha > 0$ for $\alpha = \alpha_1, \alpha_2, \alpha_3, \alpha_2 + \alpha_3 + \alpha_6$. (See the proof of (2.2).) Since w is σ -invariant, we must also have $w^{-1}\alpha_4 > 0$ and $w^{-1}\alpha_5 > 0$. It is now easy to see that w can only be one of $\{1, s_6, s_6 s_1\}$, where $s_i \in W$ is the simple reflection about α_i . Hence this set must be $Y(\sigma)$. Using (2.3), we find that $(G/P)_{\sigma}$ has $3 - |\Sigma_P \cap \{\alpha_1, \alpha_6\}|$ connected components. The components are not isomorphic in general. For example, let P be a σ -stable parabolic subgroup with Levi component of type A_5 . Then P_{σ} has Levi of type C_3 , while $(s_6 P s_6^{-1})_{\sigma}$ has Levi of type A_3 , so $(G/P)_{\sigma}$ has two components: $G_{\sigma}/P_{\sigma} \simeq \mathbb{P}^7$ and $G_{\sigma}/(s_6 P s_6^{-1})_{\sigma}$, which is the variety of Lagrangian 4-planes in F^8 .

III. The desingularization. We retain the notation and hypotheses of the previous section, except we now assume that the characteristic of the ground field F is either zero or $p > 2\kappa$, where κ is the maximum of the Coxeter numbers of the simple factors of G. For any variety S on which σ or $d\sigma$ acts, S_{σ} denotes the fixed points. If H is any σ -stable subgroup of G with Lie algebra \mathfrak{h} , it

follows from [B, III.9.1] that the Lie algebra of H_{σ} is \mathfrak{h}_{σ} . We abbreviate the adjoint action of G by $g \cdot Y := Ad(g)Y$ for $g \in G$ and any subset $Y \subseteq \mathfrak{g}$. Let \mathcal{N} be the variety of nilpotent elements in the Lie algebra \mathfrak{g} of G. Fix $g \in F^{\times}$, and set

$$\mathcal{N}_{\sigma,q} = \{ x \in \mathcal{N} : d\sigma(x) = qx \}.$$

We need the analogue of a normal \mathfrak{sl}_2 -triple ([K-R, (I.2)]).

LEMMA 3.1. Let $e \in \mathcal{N}_{\sigma,q}$. Then there exists $h \in \mathfrak{g}_{\sigma}$, $f \in \mathfrak{g}$ such that

$$[h, e] = 2e, \quad [h, f] = -2f, \quad [e, f] = h.$$

Proof. The proof is a straightforward modification of ([K-R, Prop. 4]). By the version of the Jacobson-Morozov theorem given in [Ca, p. 152], there exists a triple (e, h', f') satisfying the above relations. Write $h' = \sum h'_{\lambda}$ where $d\sigma(h'_{\lambda}) = \lambda h'_{\lambda}$, $\lambda \in F^{\times}$. Then $2e = [h', e] = \sum [h'_{\lambda}, e]$. Comparing $d\sigma$ eigenvalues, we get $2e = [h'_1, e]$. Likewise, we write $f' = \sum f'_{\lambda}$, and the relation [e, f'] = h' implies $h'_1 = [e, f'_{q^{-1}}] \in [e, \mathfrak{g}]$. Set $h = h'_1$. By [Ko, Cor. 3.5] (which is shown in [Ca, p. 141] to apply when char $(F) > 2\kappa$), there exists f such that (e, h, f) satisfy the above relations.

Let $e \in \mathcal{N}_{\sigma,q}$ and fix a triple (e, h, f) as in (3.1). We have a grading $\mathfrak{g} = \bigoplus_i \mathfrak{g}(i)$, where $\mathfrak{g}(i) = \{x \in \mathfrak{g} : [hx] = ix\}$. Each $\mathfrak{g}(i)$ is also $d\sigma$ -stable, since $\mathrm{ad}(h)$ and $d\sigma$ commute. Hence the parabolic subalgebra

$$\mathfrak{p} = \bigoplus_{i \geq 0} \mathfrak{g}(i)$$

is $d\sigma$ -stable, so the corresponding parabolic subgroup P of G is σ -stable, and we are in the situation of (2.3). In particular, P_{σ} is a parabolic subgroup of the connected reductive group G_{σ} , and the Lie algebra of P_{σ} is

$$\mathfrak{p}_{\sigma} = \bigoplus_{i > 0} \mathfrak{g}(i)_{\sigma}.$$

We next set

$$\mathfrak{p}^2 = igoplus_{i \geq 2} \mathfrak{g}(i), \quad \mathfrak{q} = \mathcal{N}_{\sigma,q} \cap \mathfrak{p}^2.$$

The latter is an $Ad(P_{\sigma})$ -invariant linear subspace of $\mathcal{N}_{\sigma,q}$, even if q is a root of unity, because \mathfrak{p}^2 consists of nilpotent elements. Let

$$\mathfrak{p}_0^2\subset\mathfrak{p}^2$$

be the *P*-orbit of *e*. By [Ca, 5.7.3], \mathfrak{p}_0^2 is the unique open dense *P*-orbit in \mathfrak{p}^2 . It follows that \mathfrak{p}_0^2 and hence $G \cdot e$ are $d\sigma$ stable.

Define the incidence variety

$$E = \{ (gP_{\sigma}, x) \in G_{\sigma}/P_{\sigma} \times \mathfrak{g} : x \in g \cdot \mathfrak{q} \}.$$

This is a vector bundle over G_{σ}/P_{σ} via projection onto the first factor. One could view E as the fiber product $G_{\sigma} \times_{R_{\sigma}} \mathfrak{q}$, but the former picture is more convenient here. Let

$$\pi: E \longrightarrow \mathcal{N}_{\sigma,a}$$

be projection onto the second factor. Then π is G_{σ} -equivariant, and closed since G_{σ}/P_{σ} is complete, by (2.3)(3).

PROPOSITION 3.2. Let \mathcal{O} be the G_{σ} -orbit of $e \in \mathcal{N}_{\sigma,q}$. Then the image of π is $\overline{\mathcal{O}}$ and $E \xrightarrow{\pi} \overline{\mathcal{O}}$ is a resolution of singularities.

Proof. We first show that the P_{σ} -orbit of e is dense in \mathfrak{q} . From the representation theory of SL_2 ([Ca, 5.4]) we see that the map

$$ad(e): \mathfrak{g}(i) \longrightarrow \mathfrak{g}(i+2)$$

is surjective for $i \geq 0$. Hence, given $x \in \mathfrak{q}$, there exists $y \in \mathfrak{p}$ with [y,e]=x. We can write $y=\Sigma y^{\lambda}$ where $y^{\lambda}\in\mathfrak{p}$ and $d\sigma(y^{\lambda})=\lambda y^{\lambda}$ for $\lambda\in F^{\times}$. Comparing eigenvalues of $d\sigma$, we get $x=[y^1,e]$, and $y^1\in\mathfrak{p}_{\sigma}$. This shows that $\mathrm{ad}(e):\mathfrak{p}_{\sigma}\longrightarrow\mathfrak{q}$ is surjective, so $P_{\sigma}\cdot e$ is open and dense in \mathfrak{q} .

From this it follows easily that the image of π is $\overline{\mathcal{O}}$. Indeed, since the image of π is closed and contains e, we have $\overline{\mathcal{O}} \subseteq \pi(E)$. On the other hand,

$$q = \overline{P_{\sigma} \cdot e} \subseteq \overline{\mathcal{O}}.$$

Since $\pi(E) = G_{\sigma} \cdot \mathfrak{q}$ and $\overline{\mathcal{O}}$ is preserved by G_{σ} , we have the other containment.

We next show that π is bijective over \mathcal{O} . We recall the well-known resolution of $\overline{G \cdot e}$ (c.f. [H, p. 108]). Consider the vector bundle

$$\tilde{E} = \{ (gP, x) \in G/P \times \mathfrak{g} : x \in g \cdot \mathfrak{p}^2 \}.$$

Then the map

$$\tilde{E} \xrightarrow{\tilde{\pi}} \mathfrak{g}$$

given by projection onto the second factor is G-equivariant, closed, has image $\overline{G \cdot e}$, and is bijective over $G \cdot e$.

We define an automorphism σ_q of \tilde{E} by

$$\sigma_q(gP,x) = (\sigma(g)P, q^{-1}d\sigma(x)).$$

The fixed point space of σ_q is

$$\tilde{E}_{\sigma_q} = \{ (gP, x) \in (G/P)_{\sigma} \times \mathfrak{g} : x \in \mathcal{N}_{\sigma,q} \cap g \cdot \mathfrak{p}^2 \}.$$

This is a disjoint union of vector bundles over the connected components of $(G/P)_{\sigma}$. In the notation of (2.3) these components are given by

$$(G/P)_{\sigma} = \coprod_{w \in W_{\sigma}^1 \backslash W_{\sigma}/(W_P)_{\sigma}} G_{\sigma} w P/P,$$

and each component is a flag variety for G_{σ} .

The component of \tilde{E}_{σ_q} lying over $G_{\sigma}P/P$ is

$$\{(gP,x)\in G_{\sigma}P/P\times\mathfrak{g}:\ x\in\mathcal{N}_{\sigma,q}\cap g\cdot\mathfrak{p}^2\}.$$

Since $G_{\sigma}/P_{\sigma} = G_{\sigma}P/P$ and for $g \in G_{\sigma}$, we have $\mathcal{N}_{\sigma,q} \cap g \cdot \mathfrak{p}^2 = g \cdot (\mathcal{N}_{\sigma,q} \cap \mathfrak{p}^2) = g \cdot \mathfrak{q}$, this component is none other than E.

Note that $\tilde{\pi}$ restricted to E is just our original $\pi: E \longrightarrow \overline{\mathcal{O}}$. Since the fibers of $\tilde{\pi}$ over $G \cdot e$ are singletons, the same must be true of the fibers of π over \mathcal{O} . The proof of (3.2) is now complete if the characteristic of F is zero.

In sufficiently large characteristic, we use an argument from [Ri1] to prove that π is separable. The assumption that F has characteristic $p > 2\kappa$ is, by a wide margin, enough to ensure (see [Ri1, §5]) that the orbit maps under the adjoint action of G are separable. Hence the tangent space to $G \cdot e$ is $T_e G \cdot e = [\mathfrak{g}, e]$. Decompose $\mathfrak{g} = \oplus \mathfrak{g}^{\lambda}$ into $d\sigma$ -eigenspaces, so $\mathcal{O} \subseteq \mathfrak{g}^q$. Then $T_e \mathcal{O} \subseteq \mathfrak{g}^q \cap T_e G e = \mathfrak{g}^q \cap \oplus_{\lambda} [\mathfrak{g}^{\lambda}, e] = [\mathfrak{g}_{\sigma}, e]$. It follows that the differential of π at $(P_{\sigma}, e) \in E$ is surjective, so π is separable by [B, p. 41]. Hence $\pi : \pi^{-1}(\mathcal{O}) \longrightarrow \mathcal{O}$ is an isomorphism by Zariski's Main Theorem.

Corollary 3.3.

(1) $\dim \mathcal{O} = \dim G_{\sigma} - \dim P_{\sigma} + \dim \mathfrak{q}$.

- (2) $C_{G_{\sigma}}(e) = C_{P_{\sigma}}(e)$, where $C_{H}(e)$ denotes centralizer in H of e.
- (3) $\mathcal{O} \cap \mathfrak{q}$ is exactly the dense P_{σ} -orbit on \mathfrak{q} . (See the proof of (3.2).)

Proof. The first two assertions are immediate from (3.2). We use them to compute

$$\dim P_{\sigma} \cdot e = \dim P_{\sigma} - \dim C_{P_{\sigma}}(e)$$

$$= \dim P_{\sigma} - \dim C_{G_{\sigma}}(e)$$

$$= \dim P_{\sigma} + \dim \mathcal{O} - \dim G_{\sigma}$$

$$= \dim P_{\sigma} + [\dim G_{\sigma} + \dim \mathfrak{q} - \dim P_{\sigma}] - \dim G_{\sigma}$$

$$= \dim \mathfrak{q}.$$

It follows that $P_{\sigma} \cdot e$ contains an open subset of \mathfrak{q} which must meet, hence equal, the dense P_{σ} orbit on \mathfrak{q} .

According to [K], a result like (3.2) has the following consequence in characteristic zero. Let \mathcal{O} be an G_{σ} -orbit in $\mathcal{N}_{\sigma,q}$, and let E be the bundle over G_{σ}/P_{σ} as in (3.2). Let $S^d\check{\mathcal{E}}$ be the graded sheaf of sections of the d^{th} symmetric power of the dual bundle of E. Then $\bigoplus_{d\geq 0} S^d\check{\mathcal{E}}$ is the structure sheaf \mathcal{O}_E of E, and the global sections $H^0(G_{\sigma}/P_{\sigma}, S^d\check{\mathcal{E}})$ are the regular functions on E which are polynomial of degree d on each fiber. Let $F[\overline{\mathcal{O}}]$ be the coordinate ring of the affine variety $\overline{\mathcal{O}}$. The map π induces an injection of G_{σ} -modules

$$\pi^*: F[\overline{\mathcal{O}}] \hookrightarrow \bigoplus_{d>0} H^0(G_{\sigma}/P_{\sigma}, S^d \check{\mathcal{E}})$$

given by $\pi^*(f)(mP_{\sigma}) = f|_{m \cdot \mathfrak{q}}$.

COROLLARY 3.4. Assume the characteristic of F is zero and that \mathfrak{q} is a completely reducible P_{σ} -module. Then

- (1) π^* is an isomorphism of G_{σ} -modules.
- (2) $\overline{\mathcal{O}}$ is a normal variety.
- (3) $H^{i}(E, \mathcal{O}_{E}) = 0$ for i > 0. (One says that $\overline{\mathcal{O}}$ has "rational singularities").

The proof of the analogous result for nilpotent orbits in $[\mathbf{H}]$ carries over without change. Note that \mathfrak{q} is a completely reducible P_{σ} -module if and only if the unipotent radical of P_{σ} acts trivially on \mathfrak{q} .

IV. From G-orbits to G_{σ} -orbits. We retain the notation from the proof of (3.2), and investigate the other components of $\tilde{E}_{\sigma_q} = (G \times_P \mathfrak{p}^2)_{\sigma_q}$ occurring there. For $w \in W_{\sigma}$, we put

$$\mathfrak{q}_w = \mathcal{N}_{\sigma,q} \cap w \cdot \mathfrak{p}^2,$$

so $\mathfrak{q} = \mathfrak{q}_1$. Note that \mathfrak{q}_w is an $\mathrm{Ad}(wPw^{-1})_{\sigma}$ -invariant linear subspace of $\mathcal{N}_{\sigma,q}$. It follows from (2.3) that for each $w \in W^1_{\sigma} \backslash W_{\sigma} / (W_P)_{\sigma}$ we have a component

$$E_w = \{ (gwP, x) \in G_{\sigma}wP/P \times \mathfrak{g} : x \in g \cdot \mathfrak{q}_w \},$$

and

$$\tilde{E}_{\sigma_q} = \coprod_{w \in W^1_\sigma \setminus W_\sigma / (W_P)_\sigma} E_w.$$

One could also view E_w as the fiber product

$$E_w = G_{\sigma} \times_{P_{\sigma}} \mathfrak{q}_w.$$

Since E_w is a vector bundle over a smooth variety and $\tilde{\pi}$ is G_{σ} -equivariant and closed, we see that $\pi(E_w) = G_{\sigma} \cdot \mathfrak{q}_w$ is an G_{σ} -stable, closed, irreducible subvariety of $\mathcal{N}_{\sigma,q} \cap \overline{G \cdot e}$. Hence $\pi(E_w) = \overline{\mathcal{O}_w}$ for a unique G_{σ} -orbit $\mathcal{O}_w \subseteq G \cdot e$. Note that $\pi(E_w)$ meets $G \cdot e$ if and only if $\mathcal{N}_{\sigma,q} \cap w \cdot \mathfrak{p}_0^2 \neq \emptyset$. (Recall that $\mathfrak{p}_0^2 = \mathfrak{p}^2 \cap G \cdot e$ is the unique dense P-orbit in \mathfrak{p}^2 .) By [Ri3] the G_{σ} -orbits in $\mathcal{N}_{\sigma,q} \cap G \cdot e$ are exactly the irreducible components of $\mathcal{N}_{\sigma,q} \cap G \cdot e$. Thus, the closure of each such G_{σ} -orbit is an irreducible component of $\mathcal{N}_{\sigma,q} \cap \overline{G \cdot e}$. The main result in this section ties these considerations together and, in tandem with (2.3), reduces the computation of the G_{σ} -orbits in $G \cdot e$ to knowing the dense orbit in the prehomogeneous vector space $(P, \mathfrak{p}^2, \mathrm{Ad})$. We note that for each G there are only finitely many of the latter to consider.

Proposition 4.1. (1) The map $w \mapsto \mathcal{O}_w$ described above is a bijection from

$$\{w \in W^1_{\sigma} \backslash W_{\sigma} / (W_P)_{\sigma} : \mathcal{N}_{\sigma,\sigma} \cap w \cdot \mathfrak{p}_0^2 \neq \emptyset \}$$

to the set of G_{σ} -orbits in $\mathcal{N}_{\sigma,q} \cap G \cdot e$. The inverse of this bijection sends a G_{σ} -orbit $\mathcal{O} \subseteq G \cdot e$ to the $w \in W_{\sigma}^1 \backslash W_{\sigma}/(W_P)_{\sigma}$ such that E_w

is the unique component of \tilde{E}_{σ_q} meeting a $\tilde{\pi}$ -fiber over some point in \mathcal{O} .

- (2) The map $\pi: E_w \longrightarrow \overline{\mathcal{O}_w}$ is a desingularization of $\overline{\mathcal{O}_w}$.
- (3) If $\mathcal{N}_{\sigma,q} \cap w \cdot \mathfrak{p}_0^2$ is nonempty, then $\mathcal{O}_w = G_{\sigma} \cdot (\mathcal{N}_{\sigma,q} \cap w \cdot \mathfrak{p}_0^2) = \overline{\mathcal{O}_w} \cap G \cdot e$.

Proof. Since $\tilde{\pi}$ is bijective over $G \cdot e$, it is clear that any G_{σ} -orbit in $\mathcal{N}_{\sigma,q} \cap G \cdot e$ can meet $\pi(E_w)$ for at most one $w \in W^1_{\sigma} \backslash W_{\sigma} / (W_P)_{\sigma}$. Hence $w \mapsto \mathcal{O}_w$ is injective.

Take $x \in \mathcal{N}_{\sigma,q} \cap G \cdot e$, and look at the fiber $\tilde{\pi}^{-1}(x) = \{(gP,x)\}$, where $x \in g \cdot \mathfrak{p}^2$. We have $qx = d\sigma(x) \in d\sigma(g \cdot \mathfrak{p}^2) = \sigma(g) \cdot \mathfrak{p}^2$, so $x \in \sigma(g) \cdot \mathfrak{p}^2$. But then $(\sigma(g)P,x) \in \tilde{\pi}^{-1}(x)$, so $gP \in (G/P)_{\sigma}$. This shows that $\mathcal{N}_{\sigma,q} \cap G \cdot e$ is contained in the union of the $\pi(E_w)$'s. Now consider a G_{σ} -orbit $\mathcal{O}_0 \subseteq \mathcal{N}_{\sigma,q} \cap G \cdot e$, and suppose \mathcal{O}_0 meets $\pi(E_w)$. Then $\mathcal{O}_0 \subseteq \pi(E_w)$ so $\overline{\mathcal{O}_0} \subseteq \pi(E_w)$ since the latter is closed. Recall however, that $\overline{\mathcal{O}_0}$ is an irreducible component of $\mathcal{N}_{\sigma,q} \cap \overline{G \cdot e}$, so we must have $\overline{\mathcal{O}_0} = \pi(E_w)$, since the latter is also irreducible.

Assertion (2) follows from the birationality of $\tilde{\pi}$, as we have argued before.

Let $x \in \overline{\mathcal{O}_w} \cap Ge = G_\sigma \mathfrak{q}_w \cap Ge$. Then there exist $m \in G_\sigma$, $g \in G$ and $v \in \mathfrak{p}^2$ such that $x = mw \cdot v = g \cdot e$, so $v = (mw)^{-1}g \cdot e \in \mathfrak{p}^2 \cap G \cdot e = \mathfrak{p}_0^2$. Hence $x \in \mathcal{N}_{\sigma,q} \cap mw \cdot \mathfrak{p}_0^2$. This proves the second equality in (3), the other direction there being trivial.

We now know $\mathcal{O}_w \subseteq G_{\sigma} \cdot (\mathcal{N}_{\sigma,q} \cap w \cdot \mathfrak{p}_0^2) = \overline{\mathcal{O}_w} \cap G \cdot e$. Moreover, $\mathcal{N}_{\sigma,q} \cap w \cdot \mathfrak{p}_0^2$, being open in the linear space $\mathcal{N}_{\sigma,q} \cap w \cdot \mathfrak{p}^2$, is irreducible. It follows that $G_{\sigma} \cdot (\mathcal{N}_{\sigma,q} \cap w \cdot \mathfrak{p}_0^2)$ is an irreducible subset of $\mathcal{N}_{\sigma,q} \cap G \cdot e$ containing the irreducible component \mathcal{O}_w of $\mathcal{N}_{\sigma,q} \cap G \cdot e$. Hence $\mathcal{O}_w = G_{\sigma} \cdot (\mathcal{N}_{\sigma,q} \cap w \cdot \mathfrak{p}_0^2)$.

COROLLARY 4.2. Let $\tilde{\mathcal{O}} \subset \mathfrak{g}$ be a nilpotent G-orbit. Then $\tilde{\mathcal{O}} \cap \mathcal{N}_{\sigma,q}$ is a union of at most $|W_{\sigma}^1 \backslash W_{\sigma} / (W_P)_{\sigma}|$ orbits under G_{σ} .

COROLLARY 4.3. Assume σ is induced by a symmetry of the Dynkin diagram of G. Let $\tilde{\mathcal{O}} \subset \mathfrak{g}$ be a nilpotent G-orbit. Then $\tilde{\mathcal{O}}$ meets $\mathcal{N}_{\sigma,g}$ in at most one G_{σ} -orbit.

Proof. In this situation, $W_{\sigma}^{1} = W_{\sigma}$ as remarked in (2.6), so the result is a special case of (4.3).

When q=1, we are counting the number of nilpotent G_{σ} -orbits in \mathfrak{g}_{σ} which are contained in a single G-orbit. It is well-known that

nilpotent orbits in $\mathfrak{so}(2n+1)$ and $\mathfrak{sp}(n)$ are determined by elementary divisors. The above results say this is due to the connectedness of the varieties $(G/P)_{\sigma}$, which is in turn deduced from the equality $W_{\sigma}^1 = W_{\sigma}$. Likewise, every \mathfrak{e}_6 nilpotent orbit meets \mathfrak{f}_4 in at most one F_4 -orbit, and similarly for $G_2 \subset Spin(8)$. In the case G = SL(2n), $G_{\sigma} = SO(2n)$, one checks that $|Y(\sigma)| = 2$, so (4.2) reduces to the well-known result that at most two nilpotent orbits in $\mathfrak{so}(2n)$ have the same elementary divisors, and these orbits are conjugate in O(2n).

REFERENCES

- [B] A. Borel, Linear Algebraic Groups, Springer-Verlag, 1991.
- [Ca] R. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complexe Characters, Wiley, 1985.
- [G-M] M. Goresky and R. MacPherson, Intersection homology II, Invent. Math., 72 (1983), 77-129.
 - [G] V. Ginsburg, Proof of Deligne-Langlands conjecture, Doklady, **35** (1987), 304-308.
 - [H] W. Hesselink, The normality of closures of orbits in a Lie algebra, Comment. Math. Helv., 54 (1979), 105-110.
 - [H2] _____, Desingularizations of varieties of nullforms, Invent. Math., 55 (1979), 141-163.
 - [J] J. C. Janzten, *Moduln mit Einem Höchsten Gewicht*, vol. 750, Springer-Verlag.
- [K-L] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., 87 (1987), 153-215.
 - [K] G. Kempf, On the collapsing of homogeneous bundles, Invent. Math., 37 (1976), 229-239.
- [Ko] B. Kostant, The principal three dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), 973-1032.
- [K-R] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809.
 - [M] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.
 - [R] M. Reeder, Whittaker functions, prehomogeneous vector spaces and standard representations of p-adic groups, J. reine angew. Math., (1994), 83-121.
- [Ri1] R. W. Richardson, Conjugacy classes in Lie algebras and algebraic groups, Ann. Math., 86 (1967), 1-15.
- [Ri2] _____, Conjugacy classes in parabolic subgroups of semisimple algebraic

- groups, Bull. London Math. Soc., 6 (1974), 21-24.
- [Ri3] _____, On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc., 25 (1982), 1-28.
- [Ru] H. Rubenthaler, Espaces vectoriels préhomogènes, sous-groupes paraboliques et sl₂-triplets, C.R. Acad. Sci. Paris, Sér. A, **209** (1980), 127-129.
- [S-K] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1-155.
 - [Se] J. Sekiguchi, The nilpotent subvariety of the vector space associated to a symmetric pair, Publ. RIMS, Kyoto Univ., 20 (1984), 155-212.
- [Sp] T. A. Springer, Some results on algebraic groups with involutions, Adv. Stud. Pure Math., vol. 6, Kinokuniya, North-Holland, 1985, 525-543.
 - [S] R. Steinberg, *Endomorphisms of algebraic groups*, Mem. Amer. Math. Soc., **80** (1968).
- [V] E. B. Vinberg, On the classification of nilpotent elements in graded Lie algebras, Doklady, 16 (1975), 1517-1520.
- [Vo] D. Vogan, Associated Varieties and Unipotent Representations, Representations of reductive groups, Birkhauser 1991.
- [Z2] A.V. Zelevinsky, A p-adic analogue of the Kazhdan-Lusztig conjecture, Funktsional. Anal. i Prilozhen., 15 (1981), 9-21.

Received September 17, 1992 and in revised form January 12, 1993. Research partially supported by NSF grant DMS-9104183.

UNIVERSITY OF OKLAHOMA NORMAN, OKLAHOMA 73019

E-mail address: mreeder@nsfuvax.math.uoknor.edu