DESINGULARIZATIONS OF SOME UNSTABLE ORBIT CLOSURES

Mark Reeder

Let σ be a semisimple automorphism of a connected reductive group G, and let G_{σ} be the fixed points of σ. We consider the G_{σ}-orbits on the space of nilpotent elements in an eigenspace of $d \sigma$. We give a desingularization of the orbit closures and relate the G_{σ}-orbits to the G-orbits. Along the way, we describe the fixed points of σ on a flag variety G / P where P is a σ-stable parabolic subgroup of G.
I. Introduction. In this note we observe some consequences of Richardson's theorems on orbits of reductive groups, in the following situation. Let G be a simply-connected reductive algebraic group over an algebraically closed field F whose characteristic is either zero or sufficiently large (as specified below). Let \mathfrak{g} be the Lie algebra of G, and let \mathcal{N} be the variety of nilpotent elements in \mathfrak{g}. Let σ be a semisimple automorphism of G, fix a nonzero element $q \in F^{\times}$, and consider the variety

$$
\mathcal{N}_{\sigma, q}=\{x \in \mathcal{N}: d \sigma(x)=q x\} .
$$

If q is not a root of unity then $\mathcal{N}_{\sigma, q}$ is the whole q-eigenspace of $d \sigma$, hence is a linear subspace of \mathfrak{g}. If q is a root of unity, the variety $\mathcal{N}_{\sigma, q}$ may even be reducible.

It was shown by Steinberg that the group of σ-fixed points G_{σ} is also a connected reductive F-group ($[\mathbf{S}]$). The adjoint action of G_{σ} preserves each eigenspace of $d \sigma$, and $\mathcal{N}_{\sigma, q}$ consists of those $G_{\sigma^{-}}$ orbits in the q-eigenspace of $d \sigma$ which are "unstable", in the sense of geometric invariant theory ([H2]). According to a theorem of Kac and Richardson ($[\mathbf{R i} 3]$), the G_{σ}-orbits on $\mathcal{N}_{\sigma, q}$ are exactly the irreducible components of sets of the form $\mathcal{N}_{\sigma, q} \cap \tilde{\mathcal{O}}$, where $\tilde{\mathcal{O}}$ is a nilpotent G orbit. Richardson also proved (with our assumptions on the characteristic of F, see $[\mathbf{R i} \mathbf{1}]$) that there are only finitely many
nilpotent G-orbits, hence there are only finitely many G_{σ}-orbits in $\mathcal{N}_{\sigma, q}$.

Let $\mathcal{O} \subseteq \mathcal{N}_{\sigma, q}$ be one such G_{σ}-orbit. Then the Zariski closure $\overline{\mathcal{O}}$ of \mathcal{O} in $\mathcal{N}_{\sigma, q}$ is an affine variety which is generally singular. The main purpose of this note is to resolve the singularities of $\overline{\mathcal{O}}$ (Prop. (3.2)). More precisely, we construct a vector bundle E over a partial flag variety of G_{σ}, and define a closed morphism $\pi: E \longrightarrow \overline{\mathcal{O}}$ such that $\pi: \pi^{-1}(\mathcal{O}) \longrightarrow \mathcal{O}$ is an isomorphism. The idea is simply that $\left(\sigma, q^{-1}\right) \quad$ acts on the known resolution of the closure of $G \cdot \mathcal{O}$, the nilpotent G-orbit containing \mathcal{O}. The desired resolution of $\overline{\mathcal{O}}$ is then found by taking fixed points under $\left(\sigma, q^{-1}\right)$. Moreover these fixed points separate the various G_{σ}-orbits in $\mathcal{N}_{\sigma, q} \cap G \cdot \mathcal{O}$, as described in Prop. (4.1) below. For example if σ is induced by an automorphism of the Dynkin diagram, (4.1) implies that every nilpotent G-orbit meets $\mathcal{N}_{\sigma, q}$ in at most one G_{σ}-orbit. Taking $q=1$, we recover the well-known fact that nilpotent orbits in $\mathfrak{s o}(2 n+1)$ and $\mathfrak{s p}(n)$ are determined by elementary divisors.

The method requires a precise description (Prop. (2.3)) of the fixed points of σ in a flag variety G / P where P is a σ-stable parabolic subgroup of G. Richardson ([Ri3]) has already proven that there are finitely many orbits and they are all closed. Here we count and describe the orbits explicitly, using Steinberg's work in [$\mathbf{S}]$.

Hesselink ([H2]) has constructed desingularizations of closures of "strata" for more general group actions. Each stratum is a union of orbits, and in the case of nilpotent G-orbits, Kraft proved that the strata and orbits coincide. For our varieties $\mathcal{N}_{\sigma, q}$ it is not known if the orbits are strata, and even if they are (it is an interesting question), the proof is likely to be a more difficult route to a desingularization than the one taken here.

The group action $\left(G_{\sigma}, \mathcal{N}_{\sigma, q}, A d\right)$ arises in many settings. Suppose that q is not a root of unity, so that $\mathcal{N}_{\sigma, q}$ is a linear space, and in particular an irreducible variety. There is a unique Zariski dense orbit in $\mathcal{N}_{\sigma, q}$, so by definition, the triple $\left(G_{\sigma}, \mathcal{N}_{\sigma, q}, A d\right)$ is a "prehomogeneous vector space", hereafter abbreviated as PV. The complex PV's which are also irreducible representations were classified by Sato and Kimura ($[\mathbf{S}-\mathbf{K}])$. The PV's occuring as some ($\left.G_{\sigma}, \mathcal{N}_{\sigma, q}, A d\right)$ are called "PV's of parabolic type" ([Ru]), because they also arise as subspaces of nilradicals of parabolic subalgebras which are in-
variant under a Levi subgroup. (G_{σ} is a Levi subgroup in some reductive subgroup $H<G$ whose Lie algebra contains $\mathcal{N}_{\sigma, q}$.) Most irreducible PV's with finitely many orbits are of parabolic type. However, parabolic PV's can easily be reducible, and there seems to be no classification of reducible PV's.* We remark that the big group G is not to be discarded, as it greatly clarifies the structure of $\left(G_{\sigma}, \mathcal{N}_{\sigma, q}, A d\right)$.

Suppose now that $q \in F^{\times}$is arbitrary, but that σ either has finite order or is conjugation by some element in a one-parameter subgroup of G. Then \mathfrak{g} has a grading $\mathfrak{g}=\oplus \mathfrak{g}_{2}$ such that G_{σ} has Lie algebra \mathfrak{g}_{0} and V is the set of nilpotent elements in \mathfrak{g}_{1}. These spaces were initially studied by Vinberg ([V]), who proposed a scheme for classifying the orbits.

My initial interest in such orbit closures $\overline{\mathcal{O}}$ came from the representation theory of p-adic groups ($[\mathbf{K}-\mathbf{L}]$). In this setting, G is a complex group (the "Langlands dual group"), σ is inner, and q is the cardinality of the residue field, hence not a root of unity. The intersection cohomology of $\overline{\mathcal{O}}$ is apparently related to multiplicities in unramified principal series representations of the p-adic group dual to G, just as with Schubert varieties and Verma modules (see $[\mathbf{G}],[\mathbf{R}],[\mathbf{Z}])$. In this context, Zelevinsky found desingularizations of $\overline{\mathcal{O}}$ for $G=G L_{n}$ and used them to compute the intersection cohomology of some special $\overline{\mathcal{O}}$'s, for which his resolution was "small" in the sense of $[\mathrm{G}-\mathrm{M}]$. The resolutions constructed in this paper are not always small.

An earlier version of this paper had σ being inner, as above. However, in addition to other helpful comments, the referee pointed out Sekiguchi's paper [Se], which discusses $\mathcal{N}_{\sigma,-1}$ when σ is an involution. Among other results, Sekiguchi gives a resolution of the orbit closures of maximal dimension in $\mathcal{N}_{\sigma,-1}$, so following the referee's suggestion, I modified this paper to include semisimple automorphisms, thus extending that part of Sekiguchi's work. In this setting, the G_{σ}-orbits in $\mathcal{N}_{\sigma,-1}$ are of interest in the representation theory of real Lie groups (see [Vo]).

Thanks are due to Gary Seitz, for telling me about Richardson's paper [$\mathbf{R i} \mathbf{3}]$.

[^0]II. Fixed point varieties in flag manifolds. Here we use some of Steinberg's results in $[\mathrm{S}]$ to describe the fixed point subvariety of a flag manifold under the action of a semisimple automorphism. In this section there is no restriction on the characteristic of the ground field F.

Let G be a connected, simply-connected and semisimple algebraic group over an algebraically closed field F, and let σ be a semisimple automorphism of G. That is, σ is an automorphism of G whose differential $d \sigma$ acts diagonalizably on the Lie algebra \mathfrak{g} of G. We say a subgroup $H \subseteq G$ is " σ-stable" if $\sigma H=H$. If $K \subseteq H \subseteq G$ are closed σ-stable subgroups of G, then σ acts on the variety H / K by the rule $\sigma(h K)=(\sigma h) K$, for $h \in H$. We write $(H / K)_{\sigma}$ for the fixed points of σ in H / K. According to $[\mathbf{S},(8.2)], G_{\sigma}$ is a connected reductive group. By $[\mathbf{S},(7.5)]$, there exists a σ-stable Borel subgroup $B \subseteq G$, and a σ-stable maximal torus $T \subseteq B$. Let U be the unipotent radical of B, and let $\mathfrak{t} \subseteq \mathfrak{t} \oplus \mathfrak{u}=\mathfrak{b}$ be the corresponding Lie algebras. Let $\Delta, \Delta^{+}, \Sigma$ be the roots of \mathfrak{t} in \mathfrak{g}, \mathfrak{u} and $\mathfrak{u} /[\mathfrak{u}, \mathfrak{u}]$, respectively. Since σ preserves T and B, it acts on Δ, preserving Σ and Δ^{+}, and on the normalizer N of T in G, and hence on the Weyl group $W=N / T$. Let $W_{\sigma}^{1}=N_{\sigma} / T_{\sigma}$. This is the subgroup of W_{σ} consisting of elements which can be represented in N_{σ}.

Let $V \subset \mathfrak{t}^{*}$ be the real span of the roots in Δ, and let V_{σ} be the fixed points of σ in V. For any root α, let $\bar{\alpha}$ denote its orthogonal projection into V_{σ}, with respect to a W-invariant inner product on V. Then W_{σ} preserves and acts faithfully on $V_{\sigma}([\mathbf{S},(1.32)])$. Let $\overline{W_{\sigma}}$ and $\overline{W_{\sigma}^{1}}$ denote the restrictions of W_{σ} and W_{σ}^{1} to V_{σ}. We have $\overline{W_{\sigma}} \simeq W_{\sigma}$ as abstract groups, but the latter is a reflection group with respect to a new root system. We describe this more precisely.

The projections of all roots form a non-reduced root system in V_{σ}. We get a reduced root system as follows $([\mathbf{S}, \S 1])$. Let S_{α} be the collection of positive roots whose projection to V_{σ} is proportional to $\bar{\alpha}$. There are two possibilities for $S_{\alpha}([\mathbf{S},(8.2)])$:
(1) $S_{\alpha}=\left\{\alpha, \sigma \alpha, \sigma^{2} \alpha, \ldots\right\}$ no two of which sum to a root, or
(2) $S_{\alpha}=\{\alpha, \sigma \alpha, \beta=\alpha+\sigma \alpha\}$ is a σ-stable positive system of type A_{2}.
For $\alpha \in \Delta^{+}$, let $[\alpha] \in V_{\sigma}$ be the longest projection to V_{σ} of a root in S_{α}. Likewise, for any subset $J \subseteq \Delta^{+}$, let $[J]=\{[\alpha]: \alpha \in J\}$.

Set $[\Delta]:=W_{\sigma}[\Sigma]$. Then by $[\mathbf{S},(1.32)],[\Delta]$ is a root system in V_{σ} with base $[\Sigma]$, positive roots $[\Delta]^{+}=\left[\Delta^{+}\right]$and Weyl group $\overline{W_{\sigma}}$. (The root system of G_{σ} turns out to be a subsystem of $[\Delta]$.) According to $[\mathbf{S},(8.2)]$, the reflection $s_{[\alpha]} \in \overline{W_{\sigma}}$ corresponding to $[\alpha] \in\left[\Delta^{+}\right]$is given by

$$
\begin{equation*}
s_{[\alpha]}=\left.s_{\alpha} s_{\sigma \alpha} \cdots\right|_{V_{\sigma}} \text { or } \tag{1}
\end{equation*}
$$

(2) $s_{[\alpha]}=\left.s_{\beta}\right|_{V_{\sigma}}$,
according to the two cases for S_{α} described above.
All of this is related to the structure of fixed point group G_{σ} in the following way. For each positive root α, let $U_{\alpha} \subseteq U$ be the corresponding root subgroup. We have $\sigma U_{\alpha}=U_{\sigma \alpha}$. Consider the product $\Pi_{\beta \in S_{\alpha}} U_{\beta}$. In the two cases for S_{α}, either the root groups in the product commute (case (1)), or the whole product is the three dimensional Heisenberg group (case (2)). Hence the product is a group. Since $\sigma S_{\alpha}=S_{\alpha}$, the product is also invariant under σ, and we set

$$
U[\alpha]=\left(\prod_{\beta \in S_{\alpha}} U_{\beta}\right)_{\sigma}
$$

By $[\mathbf{S},(8.2)]$ again, $U[\alpha]$ is either trivial, or a one-parameter group. Finally, $[\mathbf{S},(8.2)(4)-(7)]$ combine to give

Lemma 2.1. $U[\alpha]$ is nontrivial if and only if the reflection $s_{[\alpha]}$ belongs to $\overline{W_{\sigma}^{1}}$. Moreover, $\overline{W_{\sigma}^{1}}$ is generated by such reflections.

This allows us to prove
Lemma 2.2. There exists a set $Y(\sigma)$ of coset representatives for $W_{\sigma}^{1} \backslash W_{\sigma}$ such that if $n_{w} \in N$ represents $w \in Y(\sigma)$, then

$$
n_{w}^{-1} B_{\sigma} n_{w} \subseteq B .
$$

Proof. Since U_{σ} is the product of the $U[\alpha]$'s, this amounts to having $n_{w}^{-1} U[\alpha] n_{w} \subseteq U$ for all $\alpha \in \Delta^{+}$. Since

$$
n_{w}^{-1} U[\alpha] n_{w} \subseteq \prod_{\beta \in S_{\alpha}} U_{w^{-1} \beta}
$$

it is enough to find coset representatives $w \in W_{\sigma}$ such that $w^{-1} S_{\alpha} \subseteq$ Δ^{+}whenever $U[\alpha]$ is nontrivial. Let $<$ be the Bruhat order on the

Weyl group $\overline{W_{\sigma}}$, with respect to the positive system $\left[\Delta^{+}\right]$of $[\Delta]$. This satisfies the rule ([J, (2.19)])

$$
s_{[\alpha]} \bar{w}>\bar{w} \Leftrightarrow \bar{w}^{-1}[\alpha] \in\left[\Delta^{+}\right] .
$$

In each coset in $\overline{W_{\sigma}^{1}} \backslash \overline{W_{\sigma}}$, choose one element $\bar{w} \in \overline{W_{\sigma}}$ which is not $<$ any other member of its coset $\overline{W_{\sigma}^{1}} \bar{w}$. Let $w \in W_{\sigma}$ be the unique element whose restriction to V_{σ} is \bar{w}, and let $Y(\sigma)$ be the collection of w 's so obtained. Then $Y(\sigma)$ is a set of coset representatives for $W_{\sigma}^{1} \backslash W_{\sigma}$.

For any $x \in W_{\sigma}$, we have $x \sigma=\sigma x$, as automorphisms of Δ. Let $\alpha \in \Delta^{+}$. Since σ preserves Δ^{+}and S_{α} is spanned over the positive integers by the σ-translates of one of its members, we have either $x S_{\alpha} \subseteq \Delta^{+}$or $x S_{\alpha} \subseteq-\Delta^{+}$. Moreover, the former possibility holds if and only if $\bar{x}[\alpha] \in[\Delta]^{+}$. Now take $x=w^{-1}$, where $w \in Y(\sigma)$. By (2.1) and the Bruhat-minimality of w, we have $x[\alpha] \in[\Delta]^{+}$whenever $U[\alpha]$ is nontrivial, so w has the required properties.

Now let P be a σ-stable parabolic subgroup of G. By [$\mathbf{S},(7.5)]$, there is a maximal torus T and a Borel subgroup B, both σ-stable, such that $T \subseteq B \subseteq P$. With notation and results as above, P corresponds to a σ-stable subset of $\Sigma_{P} \subseteq \Sigma$. More precisely, Σ_{P} consists of those simple roots which are roots of \mathfrak{t} in the Lie algebra of the unique Levi subgroup L of P containing T. Since $\sigma T=T$ and $\sigma P=P$, we also have $\sigma L=L$, so Σ_{P} is indeed σ-stable. Let W_{P} be the subgroup of W generated by the reflections in Σ_{P}. Then W_{P} is also preserved by σ. The following result may be viewed as the determination of all σ-stable parabolic subgroups in the G conjugacy class of P.

Proposition 2.3. Let G be a semisimple simply connected algebraic group. Let σ be a semisimple automorphism of G, and let P be a σ-stable parabolic subgroup of G. Then with notation as above, (1) $(G / P)_{\sigma}=\coprod_{w \in W_{\sigma}^{W} \backslash W_{\sigma} /\left(W_{P}\right)_{\sigma}} G_{\sigma} w P / P$ (disjoint union). In particular, each connected component of $(G / P)_{\sigma}$ is a G_{σ}-orbit.
(2) Each double coset $W_{\sigma}^{1} w\left(W_{P}\right)_{\sigma}$ meets $Y(\sigma)$ (see (2.2)).
(3) Each G_{σ}-orbit in $(G / P)_{\sigma}$ is complete. In other words, the group of σ-fixed points in any σ-stable parabolic subgroup of G is parabolic in G_{σ}.
(4) If $P=B$ is a σ-stable Borel subgroup and $y \in Y(\sigma)$, then $\left(y B y^{-1}\right)_{\sigma}=B_{\sigma}$, so $(G / B)_{\sigma}$ is a disjoint union of $\left[W_{\sigma}: W_{\sigma}^{1}\right]$ copies of the flag variety G_{σ} / B_{σ}.

Proof. Assertion (2) follows immediately from (2.2). For (1) we recall the Bruhat decomposition. For each $w \in W$, let U_{w} be the product, taken in some fixed order, of the root groups U_{α} with $w^{-1} \alpha \in-\Delta^{+}$. Let W^{P} be the set of $w \in W$ such that $w \Sigma_{P} \subseteq \Delta^{+}$. Then every point in G / P may be uniquely written as $u w P$ for some $w \in W^{P}, u \in U_{w}$. Since Σ_{P} and Δ^{+}are σ-stable, so are W^{P} and U_{w}. It follows that

$$
(G / P)_{\sigma}=\bigcup_{w \in W^{P}}\left(U_{w} w P / P\right)_{\sigma} \subseteq \bigcup_{w \in W_{\sigma}} U_{\sigma} w P / P \subseteq \bigcup_{w \in W_{\sigma}} G_{\sigma} w P / P
$$

Let $n \in N$ represent some $w \in W_{\sigma}$. Then $\sigma(n)=n t$ for some $t \in T$, so $\sigma(w P)=\sigma(n) P=n t P=n P=w P$. Hence $w \in W_{\sigma}$ implies $G_{\sigma} w P / P \subseteq(G / P)_{\sigma}$, so we have

$$
(G / P)_{\sigma}=\bigcup_{w \in W_{\sigma}} G_{\sigma} w P / P=\bigcup_{y \in Y(\sigma)} G_{\sigma} y P / P
$$

where $Y(\sigma)$ is as in (2.2).
We next show disjointness. Since $G=U N B=\amalg_{w \in W} U w B$, we have

$$
G_{\sigma}=U_{\sigma} N_{\sigma} B_{\sigma}=\coprod_{x \in W_{\sigma}^{1}} U_{\sigma} x B_{\sigma} .
$$

Let $y \in Y(\sigma)$ and consider the orbit $G_{\sigma} y P / P$ in $(G / P)_{\sigma}$. By (2.2) we have

$$
G_{\sigma} y P / P=\bigcup_{x \in W_{\sigma}^{1}} U_{\sigma} x B_{\sigma} y P / P=\bigcup_{x \in W_{\sigma}^{1}} U_{\sigma} x y P / P
$$

It follows that for two elements $y, y^{\prime} \in Y(\sigma)$ we have $G_{\sigma} y P / P=$ $G_{\sigma} y^{\prime} P / P$ if and only if we have equality of double cosets

$$
W_{\sigma}^{1} y W_{P}=W_{\sigma}^{1} y^{\prime} W_{P}
$$

Since $Y(\sigma) \subseteq W_{\sigma}$, this is the same as

$$
W_{\sigma}^{1} y\left(W_{P}\right)_{\sigma}=W_{\sigma}^{1} y^{\prime}\left(W_{P}\right)_{\sigma},
$$

proving (1).
Now $(G / P)_{\sigma}$, being closed in G / P, is complete. Hence each connected component of $(G / P)_{\sigma}$ is complete, proving (3).

Finally, let $y \in Y(\sigma)$. Then $y^{-1} B_{\sigma} y \subseteq B$, so $B_{\sigma} \subseteq\left(y B y^{-1}\right)_{\sigma}$. Both sides are solvable, and are parabolic subgroups of G_{σ} by (3). Hence they are Borel subgroups of G_{σ}, and must be equal.
2.5. Remarks. (1) Simple examples (eg. [Ri3, 3.3]) show that (2.3)(4) fails for nonminimal parabolic subgroups. See also (2.6) below.
(2) We could have given a more conceptual, though less explicit, construction of $Y(\sigma)$ by invoking [$\mathbf{R i} 3,10.2 .1]$ (our (2.3)(3)) at the outset. For, if $w \in W_{\sigma}$ and B is a σ-stable Borel subgroup of G, then by $[\mathbf{R i} 3,10.2 .1], B_{\sigma}$ and $\left(w B w^{-1}\right)_{\sigma}$ are Borel subgroups of G_{σ} containing the same maximal torus T_{σ}, so there exists $x \in$ W_{σ}^{1} such that $x^{-1}\left(B_{\sigma}\right) x=\left(w B w^{-1}\right)_{\sigma}$, from which it follows that $(x w)^{-1} B_{\sigma}(x w) \subseteq B$.
(3) Matsuki (over $\mathbb{C},[\mathbf{M}])$ and Springer $(\operatorname{char}(F) \neq 2,[\mathbf{S p}])$ have described all of the G_{σ}-orbits in G / B when σ is an involution. They prove in particular that $(G / B)_{\sigma}$ is exactly the union of the closed G_{σ}-orbits in G / B. Let P be a parabolic subgroup containing B, and let $\pi: G / B \longrightarrow G / P$ be the natural projection. If Y is a closed $G_{\sigma^{-}}$ orbit in G / P, then $Y=\pi\left(Y^{\prime}\right)$ for any closed G_{σ}-orbit $Y^{\prime} \subseteq \pi^{-1}(Y)$. Hence the result of Matsuki and Springer implies that $(G / P)_{\sigma}$ is the union of the closed G_{σ}-orbits. The same assertion holds when σ is inner but not necessarily involutive. Indeed, σ is then conjugation by some element of a torus $S \subseteq G_{\sigma}$. Let $Y \subseteq G / P$ be a closed G_{σ}-orbit as above. By Borel's fixed-point theorem [B, (10.4)], the fixed point set Y_{S} of S in Y is nonempty, so Y meets $(G / P)_{\sigma}$, hence $Y \subseteq(G / P)_{\sigma}$.
2.6. Examples. There are two extreme cases of (2.3). If σ is conjugation by an element $s \in T$, then $W_{\sigma}=W$ and W_{σ}^{1} is generated by the reflections about roots which are trivial on s. On the other hand if σ is induced by an automorphism ρ of the Dynkin diagram, then $W_{\sigma}^{1}=W_{\sigma}([\mathbf{S},(8.2)(5)])$, so $(G / P)_{\sigma}$ is connected.

Here is an example of a mixed case. Take $G=E_{6}$ (simply connected version), and let σ be the involution of G whose fixed point set has type C_{4}. Explicitly, take ρ to be the automorphism of E_{6}
induced by the nontrivial diagram symmetry as in the previous paragraph, and let $s=\check{\alpha}_{0}(-1)$, where α_{0} is the highest root and $\check{\alpha}_{0}(t)$ is the corresponding one parameter subgroup of T. We can take $\sigma=i_{s} \rho$, where i_{s} is conjugation by s. Then W_{σ}, which only depends on ρ, has type F_{4}. Meanwhile W_{σ}^{1}, being the Weyl group of G_{σ}, has type C_{4}. Hence $\left[W_{\sigma}: W_{\sigma}^{1}\right]=3$. We compute $Y(\sigma)$. Number the simple roots of E_{6} as follows:

Using [$\mathbf{S},(8.2)]$, one gets explicit conditions for each $U[\alpha]$ to be nontrivial, and the simple roots of T_{σ} in B_{σ} are then found to be

If $w \in Y(\sigma)$, we must have $w^{-1} \alpha>0$ for $\alpha=\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{2}+\alpha_{3}+\alpha_{6}$. (See the proof of (2.2).) Since w is σ-invariant, we must also have $w^{-1} \alpha_{4}>0$ and $w^{-1} \alpha_{5}>0$. It is now easy to see that w can only be one of $\left\{1, s_{6}, s_{6} s_{1}\right\}$, where $s_{i} \in W$ is the simple reflection about α_{i}. Hence this set must be $Y(\sigma)$. Using (2.3), we find that $(G / P)_{\sigma}$ has $3-\left|\Sigma_{P} \cap\left\{\alpha_{1}, \alpha_{6}\right\}\right|$ connected components. The components are not isomorphic in general. For example, let P be a σ-stable parabolic subgroup with Levi component of type A_{5}. Then P_{σ} has Levi of type C_{3}, while $\left(s_{6} P s_{6}^{-1}\right)_{\sigma}$ has Levi of type A_{3}, so $(G / P)_{\sigma}$ has two components: $G_{\sigma} / P_{\sigma} \simeq \mathbb{P}^{7}$ and $G_{\sigma} /\left(s_{6} P s_{6}^{-1}\right)_{\sigma}$, which is the variety of Lagrangian 4-planes in F^{8}.
III. The desingularization. We retain the notation and hypotheses of the previous section, except we now assume that the characteristic of the ground field F is either zero or $p>2 \kappa$, where κ is the maximum of the Coxeter numbers of the simple factors of G. For any variety S on which σ or $d \sigma$ acts, S_{σ} denotes the fixed points. If H is any σ-stable subgroup of G with Lie algebra \mathfrak{h}, it
follows from [B, III.9.1] that the Lie algebra of H_{σ} is \mathfrak{h}_{σ}. We abbreviate the adjoint action of G by $g \cdot Y:=A d(g) Y$ for $g \in G$ and any subset $Y \subseteq \mathfrak{g}$. Let \mathcal{N} be the variety of nilpotent elements in the Lie algebra \mathfrak{g} of G. Fix $q \in F^{\times}$, and set

$$
\mathcal{N}_{\sigma, q}=\{x \in \mathcal{N}: d \sigma(x)=q x\} .
$$

We need the analogue of a normal $\mathfrak{s l}_{2}$-triple ([K-R, (I.2)]).
Lemma 3.1. Let $e \in \mathcal{N}_{\sigma, q}$. Then there exists $h \in \mathfrak{g}_{\sigma}, f \in \mathfrak{g}$ such that

$$
[h, e]=2 e, \quad[h, f]=-2 f, \quad[e, f]=h .
$$

Proof. The proof is a straightforward modification of ([K-R, Prop. 4]). By the version of the Jacobson-Morozov theorem given in [Ca, p. 152], there exists a triple $\left(e, h^{\prime}, f^{\prime}\right)$ satisfying the above relations. Write $h^{\prime}=\sum h_{\lambda}^{\prime}$ where $d \sigma\left(h_{\lambda}^{\prime}\right)=\lambda h_{\lambda}^{\prime}$, $\lambda \in F^{\times}$. Then $2 e=\left[h^{\prime}, e\right]=\sum\left[h_{\lambda}^{\prime}, e\right]$. Comparing $d \sigma$ eigenvalues, we get $2 e=\left[h_{1}^{\prime}, e\right]$. Likewise, we write $f^{\prime}=\sum f_{\lambda}^{\prime}$, and the relation $\left[e, f^{\prime}\right]=h^{\prime}$ implies $h_{1}^{\prime}=\left[e, f_{q^{-1}}^{\prime}\right] \in[e, \mathfrak{g}]$. Set $h=h_{1}^{\prime}$. By [Ko, Cor. 3.5] (which is shown in [Ca, p. 141] to apply when $\operatorname{char}(F)>2 \kappa)$, there exists f such that (e, h, f) satisfy the above relations.

Let $e \in \mathcal{N}_{\sigma, q}$ and fix a triple (e, h, f) as in (3.1). We have a grading $\mathfrak{g}=\oplus_{i} \mathfrak{g}(i)$, where $\mathfrak{g}(i)=\{x \in \mathfrak{g}: \quad[h x]=i x\}$. Each $\mathfrak{g}(i)$ is also $d \sigma$-stable, since $\operatorname{ad}(h)$ and $d \sigma$ commute. Hence the parabolic subalgebra

$$
\mathfrak{p}=\bigoplus_{i \geq 0} \mathfrak{g}(i)
$$

is $d \sigma$-stable, so the corresponding parabolic subgroup P of G is σ stable, and we are in the situation of (2.3). In particular, P_{σ} is a parabolic subgroup of the connected reductive group G_{σ}, and the Lie algebra of P_{σ} is

$$
\mathfrak{p}_{\sigma}=\bigoplus_{i \geq 0} \mathfrak{g}(i)_{\sigma} .
$$

We next set

$$
\mathfrak{p}^{2}=\bigoplus_{i \geq 2} \mathfrak{g}(i), \quad \mathfrak{q}=\mathcal{N}_{\sigma, q} \cap \mathfrak{p}^{2} .
$$

The latter is an $\operatorname{Ad}\left(P_{\sigma}\right)$-invariant linear subspace of $\mathcal{N}_{\sigma, q}$, even if q is a root of unity, because \mathfrak{p}^{2} consists of nilpotent elements. Let

$$
\mathfrak{p}_{0}^{2} \subset \mathfrak{p}^{2}
$$

be the P-orbit of e. By [Ca, 5.7.3], \mathfrak{p}_{0}^{2} is the unique open dense P-orbit in \mathfrak{p}^{2}. It follows that \mathfrak{p}_{0}^{2} and hence $G \cdot e$ are $d \sigma$ stable.

Define the incidence variety

$$
E=\left\{\left(g P_{\sigma}, x\right) \in G_{\sigma} / P_{\sigma} \times \mathfrak{g}: x \in g \cdot \mathfrak{q}\right\} .
$$

This is a vector bundle over G_{σ} / P_{σ} via projection onto the first factor. One could view E as the fiber product $G_{\sigma} \times_{P_{\sigma}} \mathfrak{q}$, but the former picture is more convenient here. Let

$$
\pi: E \longrightarrow \mathcal{N}_{\sigma, q}
$$

be projection onto the second factor. Then π is G_{σ}-equivariant, and closed since G_{σ} / P_{σ} is complete, by (2.3)(3).

Proposition 3.2. Let \mathcal{O} be the G_{σ}-orbit of $e \in \mathcal{N}_{\sigma, q}$. Then the image of π is $\overline{\mathcal{O}}$ and $E \xrightarrow{\pi} \overline{\mathcal{O}}$ is a resolution of singularities.

Proof. We first show that the P_{σ}-orbit of e is dense in \mathfrak{q}. From the representation theory of $S L_{2}([\mathbf{C a}, 5.4])$ we see that the map

$$
\operatorname{ad}(e): \mathfrak{g}(i) \longrightarrow \mathfrak{g}(i+2)
$$

is surjective for $i \geq 0$. Hence, given $x \in \mathfrak{q}$, there exists $y \in \mathfrak{p}$ with $[y, e]=x$. We can write $y=\Sigma y^{\lambda}$ where $y^{\lambda} \in \mathfrak{p}$ and $d \sigma\left(y^{\lambda}\right)=\lambda y^{\lambda}$ for $\lambda \in F^{\times}$. Comparing eigenvalues of $d \sigma$, we get $x=\left[y^{1}, e\right]$, and $y^{1} \in \mathfrak{p}_{\sigma}$. This shows that $\operatorname{ad}(e): \mathfrak{p}_{\sigma} \longrightarrow \mathfrak{q}$ is surjective, so $P_{\sigma} \cdot e$ is open and dense in \mathfrak{q}.

From this it follows easily that the image of π is $\overline{\mathcal{O}}$. Indeed, since the image of π is closed and contains e, we have $\overline{\mathcal{O}} \subseteq \pi(E)$. On the other hand,

$$
\mathfrak{q}=\overline{P_{\sigma} \cdot e} \subseteq \overline{\mathcal{O}}
$$

Since $\pi(E)=G_{\sigma} \cdot \mathfrak{q}$ and $\overline{\mathcal{O}}$ is preserved by G_{σ}, we have the other containment.
We next show that π is bijective over \mathcal{O}. We recall the well-known resolution of $\overline{G \cdot e}$ (c.f. [H, p. 108]). Consider the vector bundle

$$
\tilde{E}=\left\{(g P, x) \in G / P \times \mathfrak{g}: x \in g \cdot \mathfrak{p}^{2}\right\}
$$

Then the map

$$
\tilde{E} \xrightarrow{\tilde{\pi}} \mathfrak{g}
$$

given by projection onto the second factor is G-equivariant, closed, has image $\overline{G \cdot e}$, and is bijective over $G \cdot e$.
We define an automorphism σ_{q} of \tilde{E} by

$$
\sigma_{q}(g P, x)=\left(\sigma(g) P, q^{-1} d \sigma(x)\right)
$$

The fixed point space of σ_{q} is

$$
\tilde{E}_{\sigma_{q}}=\left\{(g P, x) \in(G / P)_{\sigma} \times \mathfrak{g}: x \in \mathcal{N}_{\sigma, q} \cap g \cdot \mathfrak{p}^{2}\right\} .
$$

This is a disjoint union of vector bundles over the connected components of $(G / P)_{\sigma}$. In the notation of (2.3) these components are given by

$$
(G / P)_{\sigma}=\coprod_{w \in W_{\sigma}^{1} \backslash W_{\sigma} /\left(W_{P}\right)_{\sigma}} G_{\sigma} w P / P
$$

and each component is a flag variety for G_{σ}.
The component of $\tilde{E}_{\sigma_{q}}$ lying over $G_{\sigma} P / P$ is

$$
\left\{(g P, x) \in G_{\sigma} P / P \times \mathfrak{g}: x \in \mathcal{N}_{\sigma, q} \cap g \cdot \mathfrak{p}^{2}\right\} .
$$

Since $G_{\sigma} / P_{\sigma}=G_{\sigma} P / P$ and for $g \in G_{\sigma}$, we have $\mathcal{N}_{\sigma, q} \cap g \cdot \mathfrak{p}^{2}=$ $g \cdot\left(\mathcal{N}_{\sigma, q} \cap \mathfrak{p}^{2}\right)=g \cdot \mathfrak{q}$, this component is none other than E.

Note that $\tilde{\pi}$ restricted to E is just our original $\pi: E \longrightarrow \overline{\mathcal{O}}$. Since the fibers of $\tilde{\pi}$ over $G \cdot e$ are singletons, the same must be true of the fibers of π over \mathcal{O}. The proof of (3.2) is now complete if the characteristic of F is zero.

In sufficiently large characteristic, we use an argument from [Ri1] to prove that π is separable. The assumption that F has characteristic $p>2 \kappa$ is, by a wide margin, enough to ensure (see $[\mathbf{R i 1}, \S 5]$) that the orbit maps under the adjoint action of G are separable. Hence the tangent space to $G \cdot e$ is $T_{e} G \cdot e=[\mathfrak{g}, e]$. Decompose $\mathfrak{g}=\oplus \mathfrak{g}^{\lambda}$ into $d \sigma$-eigenspaces, so $\mathcal{O} \subseteq \mathfrak{g}^{q}$. Then $T_{e} \mathcal{O} \subseteq \mathfrak{g}^{q} \cap T_{e} G e=\mathfrak{g}^{q} \cap \oplus_{\lambda}\left[\mathfrak{g}^{\lambda}, e\right]=$ [$\left.\mathfrak{g}_{\sigma}, e\right]$. It follows that the differential of π at $\left(P_{\sigma}, e\right) \in E$ is surjective, so π is separable by $[\mathbf{B}, \mathrm{p} .41]$. Hence $\pi: \pi^{-1}(\mathcal{O}) \longrightarrow \mathcal{O}$ is an isomorphism by Zariski's Main Theorem.

Corollary 3.3.
(1) $\operatorname{dim} \mathcal{O}=\operatorname{dim} G_{\sigma}-\operatorname{dim} P_{\sigma}+\operatorname{dim} \mathfrak{q}$.
(2) $C_{G_{\sigma}}(e)=C_{P_{\sigma}}(e)$, where $C_{H}(e)$ denotes centralizer in H of e.
(3) $\mathcal{O} \cap \mathfrak{q}$ is exactly the dense P_{σ}-orbit on \mathfrak{q}. (See the proof of (3.2).)

Proof. The first two assertions are immediate from (3.2). We use them to compute

$$
\begin{aligned}
\operatorname{dim} P_{\sigma} \cdot e & =\operatorname{dim} P_{\sigma}-\operatorname{dim} C_{P_{\sigma}}(e) \\
& =\operatorname{dim} P_{\sigma}-\operatorname{dim} C_{G_{\sigma}}(e) \\
& =\operatorname{dim} P_{\sigma}+\operatorname{dim} \mathcal{O}-\operatorname{dim} G_{\sigma} \\
& =\operatorname{dim} P_{\sigma}+\left[\operatorname{dim} G_{\sigma}+\operatorname{dim} \mathfrak{q}-\operatorname{dim} P_{\sigma}\right]-\operatorname{dim} G_{\sigma} \\
& =\operatorname{dim} \mathfrak{q} .
\end{aligned}
$$

It follows that $P_{\sigma} \cdot e$ contains an open subset of \mathfrak{q} which must meet, hence equal, the dense P_{σ} orbit on \mathfrak{q}.

According to $[\mathbf{K}]$, a result like (3.2) has the following consequence in characteristic zero. Let \mathcal{O} be an G_{σ}-orbit in $\mathcal{N}_{\sigma, q}$, and let E be the bundle over G_{σ} / P_{σ} as in (3.2). Let $S^{d} \check{\mathcal{E}}$ be the graded sheaf of sections of the $d^{\text {th }}$ symmetric power of the dual bundle of E. Then $\oplus_{d \geq 0} S^{d} \check{\mathcal{E}}$ is the structure sheaf \mathcal{O}_{E} of E, and the global sections $H^{0}\left(G_{\sigma} / P_{\sigma}, S^{d} \check{\mathcal{E}}\right)$ are the regular functions on E which are polynomial of degree d on each fiber. Let $F[\overline{\mathcal{O}}]$ be the coordinate ring of the affine variety $\overline{\mathcal{O}}$. The map π induces an injection of G_{σ}-modules

$$
\pi^{*}: F[\overline{\mathcal{O}}] \hookrightarrow \bigoplus_{d \geq 0} H^{0}\left(G_{\sigma} / P_{\sigma}, S^{d} \check{\mathcal{E}}\right)
$$

given by $\pi^{*}(f)\left(m P_{\sigma}\right)=\left.f\right|_{m \cdot q}$.
Corollary 3.4. Assume the characteristic of F is zero and that \mathfrak{q} is a completely reducible P_{σ}-module. Then
(1) π^{*} is an isomorphism of G_{σ}-modules.
(2) $\overline{\mathcal{O}}$ is a normal variety.
(3) $H^{i}\left(E, \mathcal{O}_{E}\right)=0$ for $i>0$. (One says that $\overline{\mathcal{O}}$ has "rational singularities").

The proof of the analogous result for nilpotent orbits in $[\mathbf{H}]$ carries over without change. Note that \mathfrak{q} is a completely reducible $P_{\sigma^{-}}$ module if and only if the unipotent radical of P_{σ} acts trivially on q.
IV. From G-orbits to G_{σ}-orbits. We retain the notation from the proof of (3.2), and investigate the other components of $\tilde{E}_{\sigma_{q}}=$ $\left(G \times_{P} \mathfrak{p}^{2}\right)_{\sigma_{q}}$ occurring there. For $w \in W_{\sigma}$, we put

$$
\mathfrak{q}_{w}=\mathcal{N}_{\sigma, q} \cap w \cdot \mathfrak{p}^{2},
$$

so $\mathfrak{q}=\mathfrak{q}_{1}$. Note that \mathfrak{q}_{w} is an $\operatorname{Ad}\left(w P w^{-1}\right)_{\sigma}$-invariant linear subspace of $\mathcal{N}_{\sigma, q}$. It follows from (2.3) that for each $w \in W_{\sigma}^{1} \backslash W_{\sigma} /\left(W_{P}\right)_{\sigma}$ we have a component

$$
E_{w}=\left\{(g w P, x) \in G_{\sigma} w P / P \times \mathfrak{g}: x \in g \cdot \mathfrak{q}_{w}\right\},
$$

and

$$
\tilde{E}_{\sigma_{q}}=\coprod_{w \in W_{\sigma}^{1} \backslash W_{\sigma} /\left(W_{P}\right)_{\sigma}} E_{w} .
$$

One could also view E_{w} as the fiber product

$$
E_{w}=G_{\sigma} \times_{P_{\sigma}} \mathfrak{q}_{w} .
$$

Since E_{w} is a vector bundle over a smooth variety and $\tilde{\pi}$ is $G_{\sigma^{-}}$ equivariant and closed, we see that $\pi\left(E_{w}\right)=G_{\sigma} \cdot \mathfrak{q}_{w}$ is an G_{σ}-stable, closed, irreducible subvariety of $\mathcal{N}_{\sigma, q} \cap \overline{G \cdot e}$. Hence $\pi\left(E_{w}\right)=\overline{\mathcal{O}_{w}}$ for a unique G_{σ}-orbit $\mathcal{O}_{w} \subseteq G \cdot e$. Note that $\pi\left(E_{w}\right)$ meets $G \cdot e$ if and only if $\mathcal{N}_{\sigma, q} \cap w \cdot \mathfrak{p}_{0}^{2} \neq \varnothing$. (Recall that $\mathfrak{p}_{0}^{2}=\mathfrak{p}^{2} \cap G \cdot e$ is the unique dense P-orbit in \mathfrak{p}^{2}.) By $[\mathbf{R i} 3]$ the G_{σ}-orbits in $\mathcal{N}_{\sigma, q} \cap G \cdot e$ are exactly the irreducible components of $\mathcal{N}_{\sigma, q} \cap$ Ge. Thus, the closure of each such G_{σ}-orbit is an irreducible component of $\mathcal{N}_{\sigma, q} \cap \overline{G \cdot e}$. The main result in this section ties these considerations together and, in tandem with (2.3), reduces the computation of the G_{σ}-orbits in $G \cdot e$ to knowing the dense orbit in the prehomogeneous vector space ($P, \mathfrak{p}^{2}, \mathrm{Ad}$). We note that for each G there are only finitely many of the latter to consider.

Proposition 4.1. (1) The map $w \mapsto \mathcal{O}_{w}$ described above is a bijection from

$$
\left\{w \in W_{\sigma}^{1} \backslash W_{\sigma} /\left(W_{P}\right)_{\sigma}: \mathcal{N}_{\sigma, q} \cap w \cdot \mathfrak{p}_{0}^{2} \neq \varnothing\right\}
$$

to the set of G_{σ}-orbits in $\mathcal{N}_{\sigma, q} \cap G \cdot e$. The inverse of this bijection sends a G_{σ}-orbit $\mathcal{O} \subseteq G \cdot e$ to the $w \in W_{\sigma}^{1} \backslash W_{\sigma} /\left(W_{P}\right)_{\sigma}$ such that E_{w}
is the unique component of $\tilde{E}_{\sigma_{q}}$ meeting a $\tilde{\pi}$-fiber over some point in \mathcal{O}.
(2) The map $\pi: E_{w} \longrightarrow \overline{\mathcal{O}_{w}}$ is a desingularization of $\overline{\mathcal{O}_{w}}$.
(3) If $\mathcal{N}_{\sigma, q} \cap w \cdot \mathfrak{p}_{0}^{2}$ is nonempty, then $\mathcal{O}_{w}=G_{\sigma} \cdot\left(\mathcal{N}_{\sigma, q} \cap w \cdot \mathfrak{p}_{0}^{2}\right)=$ $\overline{\mathcal{O}_{w}} \cap G \cdot e$.

Proof. Since $\tilde{\pi}$ is bijective over $G \cdot e$, it is clear that any G_{σ}-orbit in $\mathcal{N}_{\sigma, q} \cap G \cdot e$ can meet $\pi\left(E_{w}\right)$ for at most one $w \in W_{\sigma}^{1} \backslash W_{\sigma} /\left(W_{P}\right)_{\sigma}$. Hence $w \mapsto \mathcal{O}_{w}$ is injective.
Take $x \in \mathcal{N}_{\sigma, q} \cap G \cdot e$, and look at the fiber $\tilde{\pi}^{-1}(x)=\{(g P, x)\}$, where $x \in g \cdot \mathfrak{p}^{2}$. We have $q x=d \sigma(x) \in d \sigma\left(g \cdot \mathfrak{p}^{2}\right)=\sigma(g) \cdot \mathfrak{p}^{2}$, so $x \in \sigma(g) \cdot \mathfrak{p}^{2}$. But then $(\sigma(g) P, x) \in \tilde{\pi}^{-1}(x)$, so $g P \in(G / P)_{\sigma}$. This shows that $\mathcal{N}_{\sigma, q} \cap G \cdot e$ is contained in the union of the $\pi\left(E_{w}\right)$'s. Now consider a G_{σ}-orbit $\mathcal{O}_{0} \subseteq \mathcal{N}_{\sigma, q} \cap G \cdot e$, and suppose \mathcal{O}_{0} meets $\pi\left(E_{w}\right)$. Then $\mathcal{O}_{0} \subseteq \pi\left(E_{w}\right)$ so $\overline{\mathcal{O}_{0}} \subseteq \pi\left(E_{w}\right)$ since the latter is closed. Recall however, that $\overline{\mathcal{O}_{0}}$ is an irreducible component of $\mathcal{N}_{\sigma, q} \cap \overline{G \cdot e}$, so we must have $\overline{\mathcal{O}_{0}}=\pi\left(E_{w}\right)$, since the latter is also irreducible.

Assertion (2) follows from the birationality of $\tilde{\pi}$, as we have argued before.

Let $x \in \overline{\mathcal{O}_{w}} \cap G e=G_{\sigma} \mathfrak{q}_{w} \cap G e$. Then there exist $m \in G_{\sigma}, g \in G$ and $v \in \mathfrak{p}^{2}$ such that $x=m w \cdot v=g \cdot e$, so $v=(m w)^{-1} g \cdot e \in \mathfrak{p}^{2} \cap G \cdot e=\mathfrak{p}_{0}^{2}$. Hence $x \in \mathcal{N}_{\sigma, q} \cap m w \cdot \mathfrak{p}_{0}^{2}$. This proves the second equality in (3), the other direction there being trivial.

We now know $\mathcal{O}_{w} \subseteq G_{\sigma} \cdot\left(\mathcal{N}_{\sigma, q} \cap w \cdot \mathfrak{p}_{0}^{2}\right)=\overline{\mathcal{O}_{w}} \cap G \cdot e$. Moreover, $\mathcal{N}_{\sigma, q} \cap w \cdot \mathfrak{p}_{0}^{2}$, being open in the linear space $\mathcal{N}_{\sigma, q} \cap w \cdot \mathfrak{p}^{2}$, is irreducible. It follows that $G_{\sigma} \cdot\left(\mathcal{N}_{\sigma, q} \cap w \cdot \mathfrak{p}_{0}^{2}\right)$ is an irreducible subset of $\mathcal{N}_{\sigma, q} \cap G \cdot e$ containing the irreducible component \mathcal{O}_{w} of $\mathcal{N}_{\sigma, q} \cap G \cdot e$. Hence $\mathcal{O}_{w}=G_{\sigma} \cdot\left(\mathcal{N}_{\sigma, q} \cap w \cdot \mathfrak{p}_{0}^{2}\right)$.

Corollary 4.2. Let $\tilde{\mathcal{O}} \subset \mathfrak{g}$ be a nilpotent G-orbit. Then $\tilde{\mathcal{O}} \cap \mathcal{N}_{\sigma, q}$ is a union of at most $\left|W_{\sigma}^{1} \backslash W_{\sigma} /\left(W_{P}\right)_{\sigma}\right|$ orbits under G_{σ}.

Corollary 4.3. Assume σ is induced by a symmetry of the Dynkin diagram of G. Let $\tilde{\mathcal{O}} \subset \mathfrak{g}$ be a nilpotent G-orbit. Then $\tilde{\mathcal{O}}$ meets $\mathcal{N}_{\sigma, q}$ in at most one G_{σ}-orbit.

Proof. In this situation, $W_{\sigma}^{1}=W_{\sigma}$ as remarked in (2.6), so the result is a special case of (4.3).

When $q=1$, we are counting the number of nilpotent G_{σ}-orbits in \mathfrak{g}_{σ} which are contained in a single G-orbit. It is well-known that
nilpotent orbits in $\mathfrak{s o}(2 n+1)$ and $\mathfrak{s p}(n)$ are determined by elementary divisors. The above results say this is due to the connectedness of the varieties $(G / P)_{\sigma}$, which is in turn deduced from the equality $W_{\sigma}^{1}=W_{\sigma}$. Likewise, every \mathfrak{e}_{6} nilpotent orbit meets \mathfrak{f}_{4} in at most one F_{4}-orbit, and similarly for $G_{2} \subset \operatorname{Spin}(8)$. In the case $G=S L(2 n), G_{\sigma}=S O(2 n)$, one checks that $|Y(\sigma)|=2$, so (4.2) reduces to the well-known result that at most two nilpotent orbits in $\mathfrak{s o}(2 n)$ have the same elementary divisors, and these orbits are conjugate in $O(2 n)$.

References

[B] A. Borel, Linear Algebraic Groups, Springer-Verlag, 1991.
[Ca] R. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complexc Characters, Wiley, 1985.
[G-M] M. Goresky and R. MacPherson, Intersection homology II, Invent. Math., 72 (1983), 77-129.
[G] V. Ginsburg, Proof of Deligne-Langlands conjecture, Doklady, 35 (1987), 304-308.
[H] W. Hesselink, The normality of closures of orbits in a Lie algebra, Comment. Math. Helv., 54 (1979), 105-110.
[H2] _ Desingularizations of varieties of nullforms, Invent. Math., 55 (1979), 141-163.
[J] J. C. Janzten, Moduln mit Einem Höchsten Gewicht, vol. 750, SpringerVerlag.
[K-L] D. Kazhdan and G. Lusztig, Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., 87 (1987), 153-215.
[K] G. Kempf, On the collapsing of homogeneous bundles, Invent. Math., $\mathbf{3 7}$ (1976), 229-239.
[Ko] B. Kostant, The principal three dimensional subgroup and the Betti numbers of a complex simple Lie group, Amer. J. Math., 81 (1959), 973-1032.
[K-R] B. Kostant and S. Rallis, Orbits and representations associated with symmetric spaces, Amer. J. Math., 93 (1971), 753-809.
[M] T. Matsuki, The orbits of affine symmetric spaces under the action of minimal parabolic subgroups, J. Math. Soc. Japan, 31 (1979), 331-357.
[R] M. Reeder, Whittaker functions, prehomogeneous vector spaces and standard representations of p-adic groups, J. reine angew. Math., (1994), 83-121.
[Ri1] R. W. Richardson, Conjugacy classes in Lie algebras and algebraic groups, Ann. Math., 86 (1967), 1-15.
[Ri2] , Conjugacy classes in parabolic subgroups of semisimple algebraic
groups, Bull. London Math. Soc., 6 (1974), 21-24.
[Ri3] , On orbits of algebraic groups and Lie groups, Bull. Austral. Math. Soc., 25 (1982), 1-28.
[Ru] H. Rubenthaler, Espaces vectoriels préhomogènes, sous-groupes paraboliques et sl l_{2}-triplets, C.R. Acad. Sci. Paris, Sér. A, 209 (1980), 127-129.
[S-K] M. Sato and T. Kimura, A classification of irreducible prehomogeneous vector spaces and their relative invariants, Nagoya Math. J., 65 (1977), 1-155.
[Se] J. Sekiguchi, The nilpotent subvariety of the vector space associated to a symmetric pair, Publ. RIMS, Kyoto Univ., 20 (1984), 155-212.
$[\mathrm{Sp}]$ T. A. Springer, Some results on algebraic groups with involutions, Adv. Stud. Pure Math., vol. 6, Kinokuniya, North-Holland, 1985, 525-543.
[S] R. Steinberg, Endomorphisms of algebraic groups, Mem. Amer. Math. Soc., 80 (1968).
[V] E. B. Vinberg, On the classification of nilpotent elements in graded Lie algebras, Doklady, 16 (1975), 1517-1520.
[Vo] D. Vogan, Associated Varieties and Unipotent Representations, Representations of reductive groups, Birkhauser 1991.
[Z2] A.V. Zelevinsky, A p-adic analogue of the Kazhdan-Lusztig conjecture, Funktsional. Anal. i Prilozhen., 15 (1981), 9-21.

Received September 17, 1992 and in revised form January 12, 1993. Research partially supported by NSF grant DMS-9104183.

University of Oklahoma

Norman, Oklahoma 73019
E-mail address: mreeder@nsfuvax.math.uoknor.edu

[^0]: *Added in proof: See Kasei-Kimura-Yasukura, Amer. J. Math., 108 (1986), 643-692.

