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U ESTIMATES FOR OPERATORS ASSOCIATED TO
FLAT CURVES WITHOUT THE FOURIER

TRANSFORM

ANTHONY CARBERY, JAMES VANCE, STEPHEN WAINGER,

DAVID WATSON AND JAMES WRIGHT

The purpose of this paper is to provide new proofs to
known theorems on the Lp boundedness of the maximal
function and Hubert transform corresponding to curves
in Rn which are "infinitely flat" at the origin. The old
proofs use the Fourier transform in a crucial way. The
present proofs avoid the Fourier transform and hence at
least have the potential of being used in more general
situations.

1. Introduction. For each x e Rn let Γ(x,t) = Γx(t) be a
smooth curve in Rn with Γ(z, 0) = x. For / e C^(Rn) we define

MΓf(x)= sup - Γ\f(Γ{z,t))\dt,
0<r<] V JO

and
r1 df

HΓf(x) = J_ιf(Γ(x,t))j.

In recent years there has been much attention devoted to the
study of Lp bounds for MΓ and HΓ. In particular positive results
have been obtained under a hypothesis that a certain type of cur-
vature does not vanish to infinite order. See [Cl] and [CNSW]. In
the case that Γ(.r, ί) = x + 7(ί), the condition means that the vec-
tors 7 ;(0),7 / ;(0),..., span Rn. More recently, a great deal of effort
has been directed towards obtaining Lp bounds in the special case
that Γ(:/;,ί) = x + 7(ί), but where the curvature condition is not
satisfied. The proofs of these results depend heavily on the Fourier
transform.

The use of the Fourier transform is not viable in the general set-
ting i.e. where Γ(;/;,ί) is not of the special form x + j(t). Thus it
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244 A. CARBERY ET AL

seems that the first step in obtaining results for general Γ(x,t) in
the case that the curvature condition is violated is to find proofs of
positive results in the setting that Γ(x,t) — x + dt without using
the Fourier transform.

In this paper we give a new proof of Theorem 5.2 in [CVWW]
which does not use the Fourier transform. Our present proof uses
the UTT*" method. This method depends upon the fact that if dμ
is a measure supported on a piece of a curve, then dμ*... *dμ might
have an L1 density with some smoothness. This idea was used by
Stein and Fefferman in studying the restriction problem. See [F].
In the context of Hubert transforms and maximal functions related
to curves, this idea first appears in [NSW1].

This "smoothing" principle was first shown to be applicable in
great generality by Christ [C2]. See also [RS], [Cl], and [CNSW].
Our proof here follows the general ideas of [C2] in combination with
the dilations introduced in [CCVWW] and [CVWW].

The setting of Theorem 5.2 in [CVWW] is as follows. Let Γ(ί) =
(ί, 72 ( ί ) , . . . , 7n(ί)) : M —> Mn be an odd curve of class Cn and
Γ(0) = 0. The condition imposed on Γ(ί) are expressed in terms of
Dj(i) and N3(t), 1 < j < n, where for ί > 0,

(I

0
D3(t) = d e t

and
it

1

0

Set

3

whore D0(t) = 1.

THEOREM [CVWW]. Suppose

Dj(t) > 0, 1 <j < n, t > 0,
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and

^ Φ , 2 < j < n , ί > 0Λ;(ί)>c

for some e > 0. T/ien

p p p K p < o o

and

| | ^ r / | | p < C p | | / | | p ι K p < o o .

We will prove the theorem for the maximal function first. The
proof of the theorem for the Hubert transform is similar. After the
study of the maximal function, we will indicate the modification
needed for the Hubert transform. As in [CVWW], our proof will
use certain dilations and a Littlewood- Paley decomposition. We
need to recall from [NVWW], Lemma 2, that Dj(t) > 0 implies
that hj(t) > 0, 1 < j < n, and hence h'j(t) is positive. The dila-
tions that we need are defined in terms of the following differential
operators. For 1 < j < n, set

h'3(tγ

Note that these operators are well-defined by the above remarks.
The dilations are given by

δ(t) = (Γ(ί), i?iΓ(ί), . . . , Rn-χRn-2 . . . ΛlΓ(ί)).

δ(t) are lower triangular matrices and the jih diagonal entry is hj(t).
Furthermore for s > ί, we have

(1) \\δ'\

for some e > 0. This is the content of Proposition 4.2 in [CVWW].
The Littlewood-Paley decomposition is defined in terms of the

family of invertible matrices

where λ > 1 is chosen so large that
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for some o iiiclo])oiidoiit of j £ Z. This easily follows from (1). Next
choose v e C?°(Rn) sucli that ]'κ<n ψ = 1 and -0(.7;) = φ(—x). Set

dot ,4J + l dot Aj

The following Littlewood-Paley inequalities can be found in
[CVWW], Theorem 2.1.

(3)

and

(4)

Σ *; * / =
:iez

1/2

Σl φ i*/I 2 p, 1 < p < oo.

The sum in (3) converges in Lp, 1 < p < oo.
The proof of (3) in [CVWW] uses the Fourier transform, but it is

easy to modify the argument so as not to use the Fourier transform.
The proof of (4) in [CVWW] uses the Fourier transform only to
show that (4) is valid for p — 2. However this argument can be
replaced by applying the Cotlar-Stein lemma. In fact the estimate

(5) /||2 < for some t > 0

is a special case of Lemma 5 below. (5) together with the Cotlar-
Stein lemma implies (4) for p = 2.

2. The main estimate. The heart of our argument for the V
boundedness of Mγ is the following L°° estimate.

LEMMA 1. Let

Q = {y = (yi,- - ,yn)eRn\i<yk<X, i<k<n}

and Γj (ί) = Afr{\-H). Also let

φ3(y) = ΓVfa) - ΓjOfe) + + (-

in. \
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Set

h(.f){x) = I [f(x + h + Ψj(y)) - f{x + Ψ]{y))}dy.
-' Q

Then

(6) l|4(/)l|oo<C|^IΊi/||oo

for some e > 0.

Proof. Let Z = {y = (yu ... , yn) e Mn|% = yk for some j / k}
and consider a Whitney decomposition of

Q\Z=

where Qιm is a cube such that

diameter((5/m) = ^frι2~ι « distance((3/m, ^)

Let {ψim} be a partition of unity with respect to {Qιm} such that

(7) Wd^tmWoo < Ca2^1, Vα.

See [S, pp. 167-170]. Thus

h(f){x)= Σ ί Φim(y)[f(x + h
l>0 JQlm

- f{x + ψj(y))]dy.

We will need an estimate on the Jacobian of φ3,

Jψj = det(Γ; ( y i ) , - Γ ; ( y 2 ) , . . . , (- l)» + 1 Γ;.(y n )) .

Set

Ωfc(y) = ( ( - l ) f c + 1 ω l f c ( y ) , (-l)k+2ω2k(y),..., {-iyk

where ω~ι.(v) denotes the (r. k) minor of the matrix
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and note that for each k = 1,2,... ,n, Jψj = (—l)k+ιΓj(yk)
Ωk(y). The following estimate is a corollary of results obtained
in [CVWW]. There is an e > 0 such that for each k = 1, 2,. . . , n
and y £ Qιm,

(8) K

In fact suppose that

Qim = {(yu> • ,2/n) G Mn |αp < 2/p < 6p, p = 1,... ,n}.

For a fixed y = (yi,... ,yk-Uyk+u . . . ,ι/n) where αp < r/p < 6p,
p φ k, set /(ί) = Γj (ί) ω where α; = (-l)/ c + 1ΩA :(^) and note that
(8) can be written as

for dk < s < bk. The interval [l,λ] can be divided into a bounded
number of subintervals such that on each subinterval, we have the
estimate

for some e > 0. (10) is implicitly contained in the proof of Proposi-
tion 3.1 of [CVWW].

Furthermore f'(t) has at most n — 1 zeros and f"(t) has at most
n — 2 zeros. This is the content of Lemma 3 of [NVWW]. However
we know that fr(s) — 0 when s = yp, p φ k and so / ' has exactly
n — 1 zeros. Therefore / has exactly n — 2 zeros. Since Qιm is a
Whitney cube, the zeros of / ' are at least a distance of 2~ι from the
interval [α*?^]- Also the monotonicity of / ' changes exactly once
between two consecutive zeros of/'. Thus for a fixed 5, ak < s < &*.,
there is a closest zero yp of / ' to s such that the monotonicity of / '
does not change between yp and s. Therefore we may apply (10) on
certain subintervals [c, d] (there are only a bounded number of such
subintervals on which (10) applies) between yp and s to obtain

\f'(s)\ = \f'(s)-f'(yp)\>\f'(c)-f'(d)\
e\c-d\ n-ι ω\.
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Since \s — yp\ > 2~~\ there is at least one such subinterval [c, d] such
that \d — c\ > e2~ι for some e > 0. This implies (9) and thus (8).

From the fact that Jφ. never vanishes on Qιm, we see that ψj is
1 — 1 on Qim In fact note that for any two distinct points x =
(xux2,... ,%n) and y = (2/1,2/2,... ,2/n) in Q i m ,

- Ψj(y) =

Suppose that z*. 7̂  yjt for all fc = 1, 2,. . . , n. The general case will
then follow from an induction argument. Note that

" • • ' υ n ) = Λ ' " L d e t ( Γ^ ( ί l ) '
- r j ( ί 2 ) , . . . > ( - i r + 1 r ; ( ί n ) ) d ί 1 . .dίn

rxn rxi
/ / <-*Ψi 1^1, ' * 5 "ft) QJZ\ ' * * don

Jyn Jyi

In U) dt
Q

where Q is some subset of Qιm of positive measure and the choice of
± depends on the number of changes of sign of {xk — yk}Tk=\ Thus
det(τ;i,... , *un) Φ 0 and vSO

/
Qlm

vk Φ 0.
Λ : = l

For a fixed (/,m), / > 0 and 1 < m < C2(n~])l, consider

(?/)) ~ ί\x + Ψj(y))] dy

= / vim(y)f(χ + /ι + ψj{y)) dv
•'Qln,

- / 'ΦiiΛy)f{χ -
>Qlrn

and note that

Σ
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We will make the change of variables x = h + ψj(y) in the first inte-
gral and x = ψj(y) in the second integral. The change of variables
is justified since ψj is 1 - 1 on Qim. Thus

= ί Φlm°ψ -1/™
Φlmθψj\x)

\JΨ]oφ-\χ)\\
dx

and so

(11)

where k(x)

estimates:

(12)

and

(13)

- k(x)\

= fτ

lrn°φZ^xl. We will show that the following two

\k(x + h) - k(x)\ dx < C2

I \k(x + h) - k{x)\ dx < C\h\.

' n l

(12) is clear from the definition of k(x) and the fact that | supp(^/m)|
< C2~nl. For (13), consider // = /R n \Vk(x)\dx. We will again
make the change of variables x — ψ3{y) in // but first let us
observe that Vxk — (φ*)~ιVyk where V^ = (^-, , gf^) and
x = (xi, . . . , xn). Note that

1

where C(y) is the matrix of cofactors of ψ'3(y), C(y) = ( ( — i y + k -
ωjk{y)). Therefore

/ / = / \Vxk{x)\dx=f \C(y)Vyk(y)\dy
JRn JRn

. ,dk ,
<

r,.s=l

dy.
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For a fixed r and 5, note that

JRn

d k

ω"{y)9is

JRn Hv)dijs

Ψim{y)

dy

Jφj(y)
dy

dy

From (7) and (8), we see that

(14) Λ < C 2 ( n

For B, we will assume without loss of generality that 5 = 1. Again
suppose that

and let

... ,2/n) eRn\ak<yk <bk, fc = l , 2 , . . . ,n

n-ι\ak<yk<bk, A: = 2 , . . . , n } .

In B integrate with respect to yx first, dividing up the yx integral

where -^f- vanishes.

Recall that for a fixed (yi,... , yn), -βf2- has exactly n — 2 zeros.

Since for each r = 1, 2,.. . , n, u)r\(y) is independent of yi,

B < \ωrl(y)\dy2 .. dyn

d ί l

N

<Σ

Qlr, yn)

JXh

where N < n — 2 and αi < yi = 1/1(2/2, • • • ,Vn) < ί>i is a point
where \Jψj (2/1,2/2, , 2/n)| takes on its minimum value in [α l 5 61] as
a function of y\ ((y2, • • • , yn) being fixed). Therefore by (8), we have

(15) B < < C.
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Hence from (14) and (15), we have

// = / |VA (.r)| dx <C

and so

|A (./: + //) - k{:r)\ dx < C\h\ I \Vk{x)\ dx < C\h\

which gives (13). Together, (12) and (13) imply that for 0 < e < 1,

S l i p Ϊ7Ί7 /

From (11), we then have

<

for ( X e < 1. Since

we see that

So for e > 0 small enough, we have (6) and this completes the proof
of the lemma. D

3. Boundedness of Mγ For the Lp boundedness of MΓ, note
that it is sufficient to estimate the maximal operator

Mf{x) = sup\Mkf{x)\
kez

where

MJ(x) = ̂ -j fj+ί f(x - Γ(ί)) dt.

(Recall that A > 1 was introduced in (2).) In fact we have the
pointwise estimate

Mr/Or) < CMf(x)
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for / > 0. The Lp boundedness of Ai will follow from a well- known
bootstrap argument contained in the following three lemmas, see
[NSW2].

LEMMA 2. Λ4 is bowided in L2.

LEMMA 3. Suppose that

1/2

Σ <
Pa

1/2

Σ IΛI2

for some po < 2. Then

\\Mf\\p<Cp\\f\\p,Ih)<p<2.

LEMMA 4. If \\M.f\\P0 < C}

1/2

<CP

P o l 1./ l l p o

Σ IΛ

for som,e po < 2, then

1/2

The proof of Lemma 4 follows from a standard interpolation ar-
gument since the operators Mk are positive and uniformly bounded
in Lp, 1 < p < oo. See [NSW2]. To prove Lemmas 2 and 3, let
φ > 0 G C0°°(IRn) such that /Rn φ = 1 and set

, , * 1

Then as shown in [CCVWW], sup j €Z | Φ j * / | is bounded in
1 < p < oo. Therefore if

Mf(x) < sup |Φfc * f(x)\ + sup |iV,/(x)|
then

and so to prove the Lp estimates for Λ4 in Lemmas 2 and 3, it
suffices to prove the Lp estimates for

sup|iV,/(x)|.
kez
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For these Lp estimates, note that from (3) we may write

lez

and so

1/2

\kez

We will momentarily prove

(16)

for some δ > 0. (16) implies the conclusion of Lemma 2.
For the proof of Lemma 3, note that

1/2

Σ
1/2

ΣIΛI
<kez

, p> 1.

In fact one can easily see that Lemmas 2, 3, and 4 are true when
the operators M^ are replaced by convolution with Φ .̂ Therefore
under the assumption of Lemma 3, we see that

(17)

Thus

(18)

1/2

Σ <cP0

1/2

ΣIΛI
u ez

\\G,,f\\P0 =

<CPn

1/2

1/2

uez
Po

<Cn Pol 1./ Mpo
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The last inequality follows from (4). Interpolating the estimates
(16) and (18) gives us

p < C 2 - ' ' ' " | | / | | p , e p > 0

for po < p < 2. Therefore sup \Nkf\ and hence Λ4 is bounded in IΛ
Po < P < 2 and this will then complete the proof of Lemma 3.

It remains to establish (16). Write

Tif(x) =t Φfc+; * Nkf(x)

and set SLf(x) = Σ ^ Z ^ / G T ) . We will show that

(19) \\Tι

k(T^*f\\2 < C2- ί l ' l2- £ | j - f c | | | / | | 2

for some δ, e > 0. Since T'k and (Tj)* commute, we will also have

(20) ^

The Cotlar-Stein lemma then implies

which in turn implies (16) by a standard Rademacher function ar-
gument. Note that it suffices to prove (19) when 6 = 0 and then
when 6 = 0.

We will first establish (19) when δ = 0 by proving the following
lemma.

L E M M A 5 . | | Φ f c + / * Φ 7 + / * f\\2 < C2-(\J'k\\\f\\2 f o r s o m e e > ().

Proof. It suffices to show
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Without loss of generality, assume j > k. Since ^k+ι has mean
value zero, we have

dx \jjpkM{x - y) - Φ*+ί(a:)]ΦJ+ί(i/) dy

<ί \*J+ι{y)\ dy I —-j \φ(A-k

ι

+ι+ι{x - y))
mn JRn αet Ak+ι+ι

- φ(A-kl,+ι(x))\ dx

-φ{Ak

x

+ι{x))\dx

= 1 + 11.

Changing variables in /, we see that

1 = I \^j+t(y)\ dy / n \Ψ(X ~ Aklι+iV) ~Ψ(x)\ dx

+ ll^ίίi+i^ +ill] <

for some e > 0. The last inequality follows from (1). The same
estimate for // follows similarly. Therefore

for some e > 0 and this completes the proof of the lemma.
Next we will prove (19) when e = 0. We will divide the argument

into two cases.
Case 1. / > 0. Write

Tlf(x) = B{f(x) - Q[f(x)

where

RιJ(x) = Φfe+ί * (tMkf(x))
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and

We will prove the estimates for Rk and Qι

k separately. In fact for
Rι

k, we will show the stronger estimate

(21)

for some δ > 0. Since \\Rι

k\\2

op = | | # ί U β D i U (\\R\\op denotes the op-
erator norm of R) and convolution with Φ^+/ is uniformly bounded
in Z/2, it suffices to estimate W^k+i * (MkMk)\\op. Iterating this ob-
servation n times, we see that (21) follows from the estimate

(22)

where

Tf(x) =MkM*kMk---M*J(x)
n times

χnkχnk p

\ Λ ι ) J j = l 2 n

= [f(Ak[A?x-<pk(y)])dy.
JQ

(22) in turn follows from the L°° estimate

(23) ||Φ*+/*T/||00<C2-Λ

In fact since {^k+i * T} is uniformly bounded in L1, then interpo-
lation with (23) gives (22). Note that

Tf(x -y)- Tf(x) = IA-,y(fk)(Ak

ιx)

where fk{x) = f{Akx). By Lemma 1, we see that

\Tf(x-y)-Tf(x)\<C\A-k

ιy\^
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for some e > 0 and so since ΦA +/ has mean \ralue zero,

l>k+l(y){Tf(x-y)-Tf(x)}dy

/

A^Ak+ιy\(\φ(y)\dy

for some δ > 0. The last inequality follows from (1) since / > 0.
This gives us (23). A similar but easier argument gives us

for some δ > 0. Thus (19) holds when e = 0 and / > 0.

Case 2. I < 0. To prove (19) when t — 0, it is sufficient to show that

(24) \\Nk(^k+ι)(x)\U<C2Sί

for some δ > 0. Note that

Nk(*k+ι)(x) =-^~ I" W <Hk+ί(x - Γ(ί)) dt
A - 1 iλ-A-

- / Φk(y)Ψk+ι(x-y) dy

l ^ w i ? n ) ) - yk+ι{x)] dt

Φk(y)[Φk+ι{x - y ) - Vk+ι(x)} dy

We will prove (24) for I(x). The L1 estimate for II(x) is somewhat
easier. For I(x), write

= f1 VΦ fc+/(x - sT(λ'k+1t)) • Γ(\-k+1t) ds
Jo

A*k^V^k+ι{x - sΓ(λ-h+H)) • Γfc_!(ί) ds.
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Therefore

(25) / \*k+ι(x-Γ(λ-k+H))-i&k+ι(x)\dx

ds jί\Al_xV*k + ι(x - sΓ(λ'k+H))\ dx

But

where
(6sr) = A ^ / + 1 and (csr) =

Thus the pih component of A*k_λ VΦA;+/(^) is

detAi

1 " dφ . Λ ! "

where (α r p) = Ak-ι And so

δί

<cx
for some <5 > 0. The last inequality follows from (1) since / < 0.
Therefore from (25), we have

dt • | I ^ ^ V Φ ^ ^ ) ! dx

δί ί |Γ*_i(ί)| dt < Cλδί

Jl/λ
Cλ

Jl/λ



260 A. CARBERY ET AL

for some δ > 0. The last inequality follows from (1). In fact for
t > 0, Γ(ί) = δ(t)e where e = (1,0,... , 0) and so by (1),

< iir1^-**1)^-**1*)!! < c

when t < 1. This establishes (24) and thus finishes the proof of
(19) and hence (20) when e = 0. This completes the proof of the LP
boundedness of Λ4 and hence J\dγ. D

The proof of the theorem for the Hubert transform, i?τ, is similar.
Write

/•A-J + 1 rjf

Hjf(x)= . f(x-Γ(t))- = f*dσj(x)
J λ 3 T>

(recall that λ > 1 was introduced in (2)) and note that

j i m

ΣΣ
l,m j

where

j

As in (16) and (18), it suffices to show

(26) Ikm/Hp < C\\f\\p, Kp<oo

and
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for some e > 0. To show (26), take w G L9' and note that

* Φ;+* * dx

• J JJΛ.

1/2

<cp

<cp

<cp

1/2

We will show (27) by the Cotlar-Stein lemma. We have to show

\\9j+m * Φj+i * dσj * Φ f c + m * Φ f c +i * dσk * / | | 2

Suppose for example |/| > \m\. Then

* Φ i + / * rfσ^ * Φ f e + m * Φ f e + / * rfσfc *
< C | | Φ , + i * dσj * Φ f c + ί * dσk * f\\2

as in (19) and (20), where we have used the fact that Φj+m * Φfc+m

has uniformly bounded L1 norm.
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