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EXISTENCE OF SHORTEST DIRECTED NETWORKS
IN K2

MANUEL ALFARO

This paper establishes the existence of a shortest di-
rected network connecting a given set of points. In such
networks, up to six segments sometimes meet at a point.

1. Introduction. The standard Steincr problem considers short-
est undirected networks, and at most three segments meet at a point
([CR, pp. 354-361], [BG], [Ml], [M2]).

1.1. Definitions. A directed network is a finite system of one-way
roads (oriented straight line segments) connecting all of a given set
of starting points to all of a given set of ending points. (See Fig-
ure 1.1.) We refer to the given starting and ending points as bound-
ary points. The nodes are any other points where the segments
meet. We require that boundary points and nodes occur only at the
endpoints of segments. Two segments meeting at a point count as
one node. For m > 3, m segments meeting at a point count as ra —2
nodes. When counting the number of edges meeting at a point, a
double edge (an edge with both orientations) counts once, although
its length counts twice. A region is the closure of a bounded com-
ponent of the complement of the network.

1.2. Existence of length-minimizing directed networks in
R2. The difficulty in demonstrating the existence of shortest directed
networks lies primarily in obtaining an upper bound on the number
of nodes in the network. In previous studies of networks in other
settings, the number of nodes in the networks could be easily esti-
mated since their minimizing networks obviously contained no cycles
[Ab], [A4], [L]. Unfortunately, shortest directed networks may con-
tain cycles. The number of cycles containing at least one boundary
point may be estimated by the number of boundary points. Since
shortest directed networks may have cycles containing no boundary
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FIGURE 1.1. A directed network connecting three starting
points (-) to two ending points (+) via three nodes.

points, we must first find an upper bound on the number of such
cycles in order to bound the number of nodes.

We consider regions bounded by polygons. It turns out that if
R is a region containing no boundary points, it is the only such
region not containing any boundary points in the network. We
prove this by first showing that R has interior angles of at most 120
degrees (Lemma 2.3). Then, by showing that R cannot share any
edges or nodes with any other region (Lemma 2.5), we prove that
it is the only region in the network containing no boundary points
(Theorem 2.6) and thus obtain an upper bound on the number of
regions in the network.

Given an upper bound on the number of regions in the network,
we may use standard graph theory arguments to bound the number
n of nodes in the network. Then standard compactness arguments
yield the existence of a shortest directed network (Theorems 2.1,
2.8).

It is an open question whether our results generalize to W1.

1.3. Structure of singularities of length-minimizing directed
networks in W1. It was known that segments in shortest directed
networks in the plane may meet in threes and fours but never in
sevens or more [A2, §3]. The argument of Lemma 2.7 actually
generalizes that result to W1. Moreover, one can show that short-
est directed networks can meet in fives and sixes, already in the
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FIGURE 1.3. A shortest network can contain an interior
cycle.

plane [Al]. This gives a complete characterization of singularities
in shortest directed networks.

Indeed, the network consisting of six rays from the origin to the
six vertices of a regular hexagon, alternately labeled + or —, is a
shortest directed network. Replacing the portion inside a disc about
the origin by a regular hexagon yields an equally short network and
demonstrates that a shortest directed network can contain a cycle
which does not pass through any of the given boundary points (see
Figure 1.3). I do not know of any different example of such cycles.

2. Existence. This chapter establishes the existence of length-
minimizing directed networks. Theorem 2.1 shows that it suffices
to bound the number of nodes (counting multiplicities as in 1.1).

THEOREM 2.1. Given a set of boundary points, if there exist
networks with at most n nodes, then there is a shortest one among
those with at most n nodes.

Proof. Let {iV/J be a sequence of networks with at most n nodes
and lengths approaching the infimum. We may assume that the
networks are connected and that they are contained in some large
ball B (since their length is bounded by some large positive number).
We may assume (by taking a subsequence) that the networks all
have exactly s < n nodes. Consider the sequence of s-tuples of
nodes in Bn. Since Bn is compact, we may assume the sequence
converges to nodes α i 5 ,α s . Since there are only finitely many
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ways to connect s nodes, we may assume (by taking a subsequence)
that all s-tuples of nodes are connected the same way. Hence, if
we connect the limit in the same way, the length of the limit is less
than or equal to the limit of the length, which equals the infimum.

To show that in the limit the number of nodes M(NOO) in TVQO is
less than or equal to s we let A be a node in the limit. Let U be a
small disc about A. (See Figures 2.1.1, 2.1.2.) In the limit, N^ΠU
looks like a wheel with s spokes. For k large, Nk ΓΊ U resembles
Λ̂ oo Π U except possibly in a small disc about A.

FIGURE 2.1.1. In the limit, N^ΠU looks like a wheel with
s spokes. Nk Π U resembles N^ Π U except possibly in a
small disc about A.

FIGURE 2.1.2. Wo do not know what is happening inside
the smaller disk.

If any connected component of N^ΠU spans less then 180° in the
limit, or spans exactly 180° and has another segment in between,
pushing this component out a bit yields a contradiction. (See Figure
2.1.3.)
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FIGURE 2.1.3. An angle less than 180° could be shortened.

This leaves two cases:

(i) Nk ΓΊ U is connected.

(ii) TVoo Π U is two spokes at a 180° angle (see Figure 2.1.4).

FIGURE 2.1.4. Two spokes meeting at 180°.

In case (ii), the network only has one node here, so we are done.
For case (i), denote the nodal points in N^ Π U as P 1 ? . . . , Pt. Let
their multiplicities be πij. Each Pj has at most rrij + 2 edges em-
anating from it. Since Nk Π U is connected, at least t — 1 edges
collapse in the limit. Hence, at most

2) - 2(ί - 1) = mJ - 2ί + 2

segments emanate from 4̂ in
at A

Π C/. Hence, the number of nodes



206 MANUEL ALFARO

Thus, the number of nodes does not increase in the limit. D

D

c

FIGURE 2.3.1. An angle greater than 120° would yield a
shorter network.

LEMMA 2.2. Suppose two segments AP and BP meet at a point
P at an angle of less than 120 degrees. Let O be a point a small
distance from P along the angle bisector. Then the length of Y =
AOUBOU OP is less than the length ofV = AP U BP.

Proof. Calculation, see [A4, §2]. •

LEMMA 2.3. Let N be a directed network, shortest among those
with at most n nodes. If R is a region in N containing no boundary
points, then N does not enter the interior of R and R is a polygonal
region with interior angles of at most 120 degrees.

Proof. First, the network does not enter the interior of R. If it
did, removing the edges in the interior of R would shorten the total
length of TV (the edges would be superfluous since R contains no
boundary points). The boundary β of i?, a polygon, can be oriented
to form a cycle (since starting points connected to β can still get to
all destinations by simply going around the cycle). If the hypothesis
of the lemma fails, at least one interior angle of β is greater than
120°, with at least one additional edge BC emanating from this
vertex B of β (see Figure 2.3.1). (Of course two segments could
meet only at 180°, but we are ignoring those angles.) So, one edge
AB of β and BC must form an angle less than 120°. By Lemma 2.2,
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replacing AB U BC by AB' U BBf U B'C where B1 is a point a small
distance from B along the bisector of ABC ( and replacing DBuBB'
by DB1 if BC is the only edge emanating from £?), and orienting
each of the segments such that TV remains connected would decrease
the total length of N without increasing the number of nodes. At
worst, the number of nodes remains constant. Therefore, a region
R in N containing no boundary points is a polygonal region with
interior angles of at most 120°. D

FIGURE 2.4.1. If two additional edges emanated from a
vertex, the network could be shortened.

COROLLARY 2.4. Let N be a shortest directed network among
those with at most n nodes. Let β be the boundary of a region R, in
N', containing no boundary points. Then if all the interior angles of
β are equal to 120° degrees, each of the vertices of β has precisely
one edge not in β emanating from it.

Proof. First, β has no double edges emanating from its vertices
(since replacing an edge DE from the double edge and an edge from
β adjacent to DE by the third side of the triangle they determine
would decrease the total length of N). Now, suppose a vertex B of
β has two or more additional edges emanating from it (see Figure
2.4.1). Since all the interior angles of β are precisely 120°, at least
one of these edges, BC (say), must form an angle of less than 120°
with a side BA of β adjacent to it. By Lemma 2.2, we can replace
ABC with AB'C U BBr, where B' is a small distance from B along
the bisector of ABCΊ without increasing the number of nodes or
disturbing connectedness. Orienting the new dR coherently keeps
N connected. The number of nodes remains constant (one fewer at
B, one more at B'). Therefore each vertex of β has precisely one
additional edge emanating from it. D
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LEMMA 2.5. Let N be a si wriest directed network among those
with at 'most n iwdcs. If R\ and, R2 are regions in N, and, if RΛ

contains no boundary points, then R\ and R2 are disjoint.

Proof. Suppose 7?i and R2 are not disjoint. Then one of the

following holds:

(i) R\ and R2 share only vertices,

(ii) 7?i and R2 share precisely one edge,

(iii) 7?i and R2 share precisely two edges, or

(iv) 7?i and R2 share three or more edges.
(i) R\ and R2 share only vertices (see Figure 2.5.1). Let A be

a vertex shared by the boundary of RΛ and R2. Let βγ and β2

be the boundaries of R\ and R2. Since the interior angles of RΛ

and R2 are less than 180, but greater than 0°, an edge DA of β\
and an edge CA of β2 meeting at A must form an angle less than
180°. Projecting .4 to A', where A' is a small distance along the
bisector of BAC, and connecting B to A'', C to A1', and all other
segments meeting at A falling in the region spanned by BAC to A1

(and reorienting the boundary of the new region, without loss of
generality, clockwise) would decrease the total length of TV without
disturbing connectedness. Further, the number of nodes (counting
multiplicities) would not increase.

(ii) If Rγ and R2 share precisely one edge (Figure 2.5.2), removing
the shared edge (and reorienting what is left of the boundaries of
i?i and R2l without loss of generality, clockwise) would decrease the
total length of N without disconnecting it or increasing the number

B

FIGURE 2.5.1. If two regions intersect in a point, the
network could be shortened.
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Ri R2

FIGURE 2.5.2. If the regions share one edge, the network
can be shortened.

of nodes, a contradiction.
(iii) Suppose Rγ and R2 share precisely two edges (Figure 2.5.3).

First, if one of the shared edges is shorter than the other, make the
shortest of the two a double edge and remove the other. Second,
replace a side of Rι (adjacent to the double edge) and an edge from
the double edge by the third side of the triangle they determine.
This decreases the total length of N. To insure that N is connected,
reorient the boundary of the new region, clockwise (say).
The number of nodes does not increase because the number of seg-
ments meeting at A and C remains constant, while the number of
segments meeting at B and D decreases by one (respectively), a
contradiction.

(iv) If Rι and R2 share three or more edges and R\ is a polygon
with five or fewer sides, then using an argument analogous to that
of cases (ii) and (iii) on the two edges of Rλ not shared with R2

yields a contradiction. By Lemma 2.3, R\ cannot have seven or
more sides. Finally, if R\ has six sides, then each of its vertices
has precisely one edge emanating from it (by 2.3 and 2.4). So,
if i?i and R2 share precisely three edges and R\ is a hexagon (see

D

B

Ri

C

R2

\

FIGURE 2.5.3. If the regions share two edges, the network
can be shortened.
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FIGURE 2.5.4. If the regions share three or more edges, the
network can be shortened.

Figure 2.5.4), removing the middle shared edge (and reorienting one
segment if necessary) would decrease the total length of TV without
disconnecting it or increasing the number of nodes. The number
of nodes remains constant since the removal of the edge leaves two
nodal points with multiplicity one.

Therefore, as cases (i)-(iv) yield contradictions, R\ and R2 must
be disjoint. D

THEOREM 2.6. If N is a shortest directed network among those
with at most n nodes, then N has at most one region containing no
boundary points.

Proof. Suppose TV has two regions R\ and R2 containing no bound-
ary points. Let 5 1 ? 5 2 ? . ., Sm be the segments emanating from the
vertices of R\. By Lemma 2.5, R\ and R2 are disjoint from each
other and from all other regions in N. Hence we may divide the
space around R\ into regions p\,..., pm by drawing dotted curves
emanating from the boundary of R\ between S\ and S2, S2 and
53, . . . , Sm and SΊ, as far as we like, without ever intersecting a
region having nodes or edges with R\. (See Figure 2.6.1.) Similarly,
the same holds for R2. Now at least two of the regions around R\
contain a starting point. Otherwise we could remove an edge from
Rι without disconnecting the network. Similarly, at least two re-
gions contain a destination point. The same holds for R2. We may
assume, without loss of generality, that starting points O\ and O2

and destination points D\ and D2 lie in the regions shown in Figure
2.6.1.
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FIGURE 2.6.1. There cannot be two regions disjoint from
the given boundary points.

Now, there exist paths Pi from O\ to D2 and P2 from O2 to D\.
But i?2 lies inside, say, p\. Hence P\ must go out of S\. Similarly,
P2 enters R\ through S\. This implies that S\ is, for at least a
bit, a double edge (an edge with both orientations). This yields
a contradiction since we can now improve N by moving the nodal
point out a bit (Lemma 2.2). This does not increase the number of
nodes in N or disturb connectedness (since we do not remove any
edges). Therefore shortest directed networks with at most n nodes
have at most one region containing no boundary points. D

LEMMA 2.7. Let N be a shortest directed network among those
with at most n nodes. Then at most six edges can meet at a point
in N.

Proof. Suppose four or more edges enter a point B. (See Figure
2.7.1.) Then two of the edges must form a "V" with an angle less
than 120 degrees. By Lemma 2.2, replacing this "V" with a "Y"
(orienting all segments of "Y" with the same orientation as the
segments of the "V" would decrease the length without increasing
the number of nodes (since removing the "V" reduces the number of
nodes by one, and adding the " Y" adds a node). (When counting the
nodes use the node counting convention defined in the introduction
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1.1.) It follows that at most three segments can enter a point.
Similarly, at most three segments can leave a point. Therefore at
most six segments can meet at a point in shortest directed networks.
(See Figure 2.7.2.) D

FIGURE 2.7.1. If four edges come into a point, the network
can be shortened.

FIGURE 2.7.2. At most six edges meet at a point.

THEOREM 2.8. Given b boundary points, there exists a, shortest
directed network connecting all origins to all destinations.

Proof. Fix 7/ > 52/; large enough to ensure there exists a network
with at most /? nodes connecting the given boundary points. By
Theorem 2.1. there is a connected directed network ΛΓ, shortest
among those with at most n nodes, connecting the boundary points.
We may assume then1 aro no nodes where just two segments meet,
since they would have to meet at 180 degrees and the node could be
removed. By Theorem 2.5, λr has at most one region containing no
boundary points. By Lemma 2.7, each boundary point is in at most
six regions. Hence, N has at most 6/;+l regions. Removing one edge
from each region yields a tree. A tree with /; leaves has at most b — 2
nodal points where 3 or more edges meet. In addition, where the
6/; + 1 edges were removed there are at most 2(6/; + 1) nodal points
whore 2 edges meet. Therefore :V has at most /;-2 + 2(6/;+1) = 13/;
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nodal points. Since by Lemma 2.7 at most six segments can meet
at a point, each nodal point counts as at most four nodes (see 1.1).
Therefore N has at most 526 nodes, a bound independent of the
initial n. It follows that TV is the desired shortest network. D
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