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HARDY SPACES AND OSCILLATORY SINGULAR
INTEGRALS: II

YIBIAO PAN

We consider oscillatory singular integral operators with
real-analytic phases. The uniform boundedness from H^ -»
L1 of such operators is proved, where H^ is a variant of
the standard Hardy space H1. The result is false for gen-
eral C°° phases. This work is a continuation of earlier
work by Phong and Stein (on bilinear phases) and the
author (on polynomial phases).

1. Introduction. In [8], Phong and Stein established an H1

theory for oscillatory singular integral operators with bilinear phase
functions. Their H1 boundedness result, together with the L2 es-
timate for such operators, led to the IP boundedness of oscillatory
singular integral operators with bilinear phases, via interpolation.

Ricci and Stein considered oscillatory singular integral operators
with polynomial phases. They showed that such operators are
bounded on IP for 1 < p < oo, and the bound for the operator
norm depends only on the degree of the polynomial, not its coeffi-
cients ([9]). In [1], Chanillo and Christ proved that such operators
are of weak-type (1,1).

In an earlier paper, we extended Phong-Stein's Hι theory for
operators with bilinear phases to operators with polynomial phases.
Let x,y G Mn, K(x,y) be a Calderόn-Zygmund kernel, P(x,y) be a
real-valued polynomial in x and y. Define T:

(1.1) Tf(x) = p. v. jf n e
iP^K(x, y)f(y)dy.

The following theorem is proved in [4].

THEOREM A. The operator T is bounded from H^ to Lι, and the
bound for \\T\\ depends only on the degree of P, not its coefficients.

The space H\ in Theorem A depends on P and is an variant of
the standard Hardy space H1. The precise definition for H\ will be
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given later. As we mentioned above, Theorem A was first proved
by Phong and Stein in the case where P(x,y) is assumed to be a
bilinear form. The space E\ was introduced as a substitute for the
ordinary H1 space, since in general the operators T defined in (1.1)
do not map ordinary Hι to ZΛ IP boundedness can be obtained by
using Hβ —>> L1 estimate, L2 —>• L2 estimate, and interpolation (for
details, see [8]).

The H1 boundedness for operators with general translation invari-
ant phase functions was considered in [7]. But, the problem seems
to be considerably harder if the phase functions are not assumed
to be of the form Φ(x — y). In this paper, we consider oscillatory
singular integrals with real-analytic (non-convolution type) phase
functions and we shall restrict our attention to dimension one. Let
x,y G R, φ{x,y) € CQ°(R X R), and Φ(x,y) be real-analytic on
supp(^). For λ G R, we define Γλ:

(1.2) Txf(x) = p. v. ̂  e * λ Φ ^ ( s , y)φ(x, y)f(y)dy,

where k(x,y) is a Calderόn-Zygmund kernel, i.e. k(x,y) is C1 away
from {(x, y) \ x — ?/}, and satisfies

(1.3)
\k{x,y)\ < A\x-y\~ι, \Vk(x,y)\ < A\x - y\~2, for some A > 0;

(1.4) The operator / -> ί k(x, y)f(y)dy

extends as a bounded operator on L2(R).

The uniform boundedness of T\ on IP is obtained in [6]. The fact
that T\ are uniformly bounded from L1 to L1*00 is proved in [5].

For fixed λ and Φ, let E = (λ,Φ). A function a(x) is called an
Hβ atom if there is an interval I C R, which is centered at x/, such
that

(1.5) supp(α) C /;

(1-6) Halloo < pj;
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(1.7) [eiX^x"^a(y)dy = 0.
JI

A function / is said to be in H\ if / G L1, and / can be written
as

(1.8) / = Σ # %
3

for some βj G R and atoms a,j (X) . The H\ norm of / is given by

We have the following theorem on the uniform boundedness of T\
from H\ to Lι.

THEOREM B. Let Φ be real-analytic, T\ be given as above. Then
there is a constant C > 0 such that

(1-10) Pλ/||i

for f G H^. The constant C is independent of X.

The result in [4] implies that Theorem B holds if Φ is a polyno-
mial. It should be pointed out that the theorem becomes false if
the phase function is assumed to be merely smooth (see Section 4).

2. Some preliminary estimates. Let P(x, y) be a real-valued
polynomial, k(x,y) be given as in Section 1. The following L2

boundedness result follows from Ricci-Stein's theorem in [9],

PROPOSITION 2.1. Let

(2.1) Tf{x) = p. v. / eιP^k{x, y)f{y)dy.

Then, T is bounded on L2(W), and ||T||2,2 is bounded above by a
constant which depends only on deg(P) and A.

Next we state a result which deals with L2 estimates for operators
with real-analytic phases.
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PROPOSITION 2.2. Let φ e C£°(R x R), / c R be a closed in-

terval Suppose Φ(x,y,ί) is real-analytic in supp(0) x /. Define

Tχ,t:

(2.2) Tλ,tf(x) = p. v. jf <*«***> k(x, y)φ(x, y)f(y)dy.

Then, there is a constant C > 0 such that

(2-3) | | T λ i t / | | 2 < C | | / | | 2 ,

for λ e l , t G /. The constant C is independent of λ and t.

Proof Since k(x, y) is smooth away from the diagonal Δ = {x =
y}, we may assume that the support of φ(x, y) is contained in a small
square which is centered at a certain point in Δ (by a partition of
unity, if necessary). Without loss of generality, we may assume that
φ(x, y) is supported in a small square centered at the origin.

For fixed ί0? h £ I, the uniform boundedness of ||Tλ>ίo||2,2 in λ is
proved in [6] (Corollary 1, p. 210). The proof consists of two parts.
One part deals with things that are close to the singularity, where
Proposition 2.1 is used. The other part (away from the singularity)
uses the fact that d2Φ/dxdy does not vanish of infinite order. To
prove Proposition 2.2, it suffices to prove that, for given to G /,
there are d > 0, C > 0, such that

(2-4) | |rA ) i | |2 ) 2 < C,

for \t — ίo| < rf? λ G R There are several cases.

Case I. If there are j 0 , A o > 1 such that

o)
= Cn > U,

then, we may choose d small such that

ί) . co
~ 2 '

for \t — to I < d. A quick examination of the proof of Theorem 2 in
[6] shows that (2.3) holds uniformly in λ G R, t G (ίo — d, ί0 + d).

Case II. If a j + / cΦ(0,0, to)/dxjdyk = 0 for all j > 1, k > 1, then

(2.7)
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II(a): Suppose that the function d2Φ(x,y,t)/dxdy is not identi-
cally zero. Then, there exists a positive integer m, such that

where F(x, y, ί0) is not identically zero. We let

Φ(rr, y, t) = ζ QΓ F(u, v, ί)dv) A*

and write

(2.9)

, y, t) = (λ(ί - ίo)
m)Φ(z, 2/, *) + λ(WΊ(x, t)

for suitable functions W\ and W2. The desired result now follows
from the arguments in case I.

II(b): Suppose that the function d2Φ(x,y,t)/dxdy is identically
zero, then we have

and (2.3) follows from (1.4). D

3. Main estimates. Let d > 0, / = [—d, d]. Suppose that
Φ(x, y, t) is real-analytic on / x / x /, φ G CQ°(MX R) and snpp(φ) C
IxL Let k(x,y) be given as in Section 1, Tχit be defined as in (2.2).
We have

LEMMA 3.1. Suppose Φ(0,y,ί) = 0. Then, there is a constant
C > 0 such that

(3.1) UTVll! < C,

for every function a(x) which satisfies

(3.2) supp(α)c [-<*,<$];

(3.3) | |α|U
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(3.4) J a(y)dy = O.

The constant C is independent of λ and t.

We begin by describing and proving several facts, and once this
is done we will be ready to prove Lemma 3.1.

LEMMA 3.2 (van der Corput, [10, 12]). Suppose φ and φ are
smooth in [α, b] and φ is real-valued. If \φ^(x)\ > 1, then

(3.5) If* eiXφix)φ(x)dx

holds when

(i) * > 2
(ii) or k = 1, if in addition it is assumed that φf(x) is monotonic.

LEMMA 3.3 (Ricci-Stein, [9]). Let P(x) = Σ^=oaj^j be a real-
valued polynomial of degree d. Suppose ε < 1/d, then

(3.6) /
7 N

The constant Aε is independent of the coefficients {%}.

LEMMA 3.4 ([7]). Let Φ e C°°(R), φ G C£°(R) and k be a pos-
itive integer. Assume that |Φ^(x) | < B < M for all x £ supp(/0)
DefineV = {x | dist(α;,supp(^)) < B}. LetA = s u p ^ v |φ(*+1)(a;)|.
Then, there exists a constant C, which depends only on A, M, k and
φ, such that

(3.7) I / eiX*Wφ(x)dx < C\-ε'k ( \¥k\x)\-ε{1+1/k)dx
\m Jv

holds for ε e [0,1].

PROPOSITION 3.5. Let m > I, P(x) be a real-valued polynomial
such that P(0) = 0, and a(x) be given as in Lemma 3.1. Let R(x, y)
be a function which satisfies dmR(x, y)/dym = 0. Let

(3.8) Zof(x) = fc(s, 0) / eiR^φ(x, y)f{y)dy;
•/JR.
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(3.9) Zf(x) = k(x, 0) x, v)f(v)dy.

Assume that

(3.10) / \Zoa(x)\dx < Co
J\x\>2δ

for some constant Co Then there is a constant C > 0 such that

(3.11) / \Za(x)\dx<C.
J\x\>2δ

The constant C may depend on Co and dep(P), but is independent
of the coefficients of P .

Proof We use induction on deg(P). Since a similar argument was
used in [4], we shall present a sketch of the proof only (see also the
proof of Proposition 3.6).

For deg(P) = 0, (3.11) follows from (3.10). Assume that (3.11)
holds for deg(P) < k — 1, i.e.

(3.12)
x\>2δ

k(x,0) ί ei^x^+Q^y^φ(x,y)a
JR

dx<C

for all Q with Q(ti) = 0, deg(Q) < k - 1. Now we prove (3.11) for
deg(P) = k. Suppose

where A φ 0, Pfc_i(0) = 0 and deg(Pfc_i) < k - 1. Let Δ =
yχlk,28). By (3.12), we have

x, 0) / J
JR

(3.13)

J2δ<\x\<A

J2δ<\x\<A

/2δ<\x\<A

'\x\<A

fa y)a(y)dydx

^ L ,, Λ *(*'°) L\eiAχkym

+ ί k(x,0) ί ei^x^+Pk-^x)ymU(x,y)a
J2δ<\x\<A JR

< C\A\δm [ \x\k~ιdx + C<C.
J\x\<A

dx

dx
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For j e Z , define Sj by

Sjf(χ) = xpp+Φ) f eί^
J — δ

By considering SjSj and using the fact that dmR(x,y)/dym = 0,
one can show that (see [4])

<

Hence

(3-14)

/ |Jfe(ar,O) I ei

\x\>A JR

dx

.__ I I
C.

By combining (3.13) and (3.14), we see that Proposition 3.5 is
proved. D

PROPOSITION 3.6. Let a(x) be given by (3.2) - (3.4). Suppose
that qo(x, ί ) , . . . , qm(#> t) are real-analytic on I xl, and qj(O, t) = 0
for j = 0,1 , . . . , m. TTien, ίΛere is α constant C > 0 snc/i ί/iαί

k(x, y)φ(x, y)a(y)dy(3.15)

for λ 6 R, te I.

Proof. Let

(3.16)

Tκtf(x)=p.v.

By Holder's inequality and Proposition 2.2, there is a C > 0 such
that

(3.17) f
J\x \<Mδ

< (2M«5) 1/ 2 | |T λ ) tα|| 2 <
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where M > 0, C is independent of λ and ί.
In view of (3.17) and the fact that supp(Tλί ία) C /, we may

assume that δ is extremely small throughout the proof. Without
loss of generality, we will also assume that d is small (see section 4).

We now use induction on m to prove (3.15). For m = 0, (3.15)
follows from the usual theory of singular integrals. Suppose (3.15)
holds for m — 1, i.e.

(3.18) <α
To prove (3.15), we assume that qm{x, t) is not identically zero (oth-
erwise there is nothing to prove). For fixed ί0 £ I> there is an integer
s > 0 such that

(3.19) qm(χ,t) = (t-to)
sq(x,t),

where diq(0,t0)/dxi φ 0, for some i > 1. Let / be the smallest such
i. Set σ = max{(£m |λ(ί - ί o ) * ! ) " 1 7 ' ^ } . For |a;| > 2δ, \y\ < δ, we
have

(3.20)

Hence

(3.21)

:|>2ί

|*(s,y)-*(*,0)|<C|»||αr|-2.

dx

^ U\a(y)y\dy \<C.

In view of (3.17) and (3.21), to prove (3.15), it suffices to show that

(3.22)

χ\>2δ
dx<C.

First we treat the integral over {25 < \x\ < σ}. To this end, we
write

(3.23)
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where |Q(x,t)| < C\x ι. Then we have

(3.24)

J2δ<\x\<σ
k(X)O) 1 e >> j~° 3 ' *φ(x,y)cί{y)dy

JR

~ J2δ<\x\<σ

' / *
JR

k(x,0)

dx

φ(x,y)a(y)dy dx

+ ί \k(x,0)\ ί |e*λ«-Ό)sQ(*,%'
J2δ<\x\<σ JR

<C + C\λ(t - to)s\δm Γ xι~ιdx < C,
Jo

where we used (3.18), (3.19), (3.21)( for m - 1), (3.23) and Propo-
sition 3.5. Next we treat the integral over {|rr| > σ}.

Choose ηλ,η2 G C£°(R) such that

(x) = l for

and

η2(x) = 1 for |a;| < 1.

Let 2~J < d and define the operator Pj by

(3.25)

Pjf(x)=rh(2-ix) ί eiX(Σ^°qj(x't)y3)φ(
JR

The kernel of PjPf, denoted by Lj(x,y), can be written as

(3.26)

f
By van der Corput's lemma, we get

(3.27)

= C\λ(t - to)
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On the other hand, we have the following trivial estimate

(3.28) \L3(x,y)\ < C\m(2^x)m(2^y)\ f \η2(z/δ)\2dz
JR

By applying the Malgrange Preparation Theorem ([2]) to q{x,t) —
q(y, t) at the point (0,0, ίo)? we can find functions bo(y,t),... , δι-i(y, i)
and c(x, y, ί), which are smooth in a neighborhood of (0,0, ίo)> such
that

(3.29) q(x, t) - q(y, t) = φ , y, t) [xι + , t)xΛ ,
i/=0

6o(O,ίo) = *•• = 6/-i(O,ίo) = 0 and c(0,0,t0) Φ 0. Since d is
assumed to be small, we may assume that c(x, y, ί) > Co > 0, and
(3.29) holds for x y G /, t being close to ίo From (3.27) and (3.28)
we get

(3.30) \Lj{x,y)\<

/ / I I L-l Jb I 11\

For fixed y, by Lemma 3.3, we find

(3.31) ί \q{x,t)

< C ί 2jluι + Y" bΛv, ϊ)2?vuv 2Jdu
J\u\<l

< C2j2~j/2m.

(3.30) and (3.31) implies that

(3.32)

sup / \Lj(x,y)\dx < , \s\-l/2ml
— to) I '

Similar estimate holds for sup^ JR \Lj(x, y)\dy. Hence we have

(3.33)

< < - t0γ\-ι/4ml.
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By Holder's inequality, we find

(3.34)
x\>σ

k{x,0)
R

dx

f

2j $) \\PA\2M\2
2J>σ

- ί o) 5Γ 1 / 4 m / Σ 2~j/4m ^ c-
23 >σ

By (3.17), (3.24) and (3.34), the proposition is proved. D

We are now ready to prove Lemma 3.1.

Proof. We use ideas that are similar to those used in the proof of
Proposition 3.6.

If d2Φ(x, y, t)/dxdy is identically zero, we have

By Φ(0,ί/,ί) = 0, we find that W2(y,t) = -Wi(0,ί), and (3.1)
follows from standard argument.

Now we assume that d2Φ(x, y, t)/dxdy is not identically zero, and
write

Φ(x, y, t) = (t- *o) s Φ(*, 2/, t) + Φ(x, 0, ί) ,

where 92Φ(α;, y, to)/dxdy is not identically zero (see (2.8) and (2.9)).
Define Pj by

(3.35) Pjfix) = m(2-jx) ί eiXΦ^φ(x,y)η2(y/δ)f(y)dy.

Then, the kernel of PjPf is given by

(3.36)

Lj(x,y)=ηι{2-ix)η1(2-Jy)

• ί eiX^x'z^-φ^z'^φ(x,z)φ(y,z)\η2(z/δ)\2dz.
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Let k > 1 be an integer such that dk+1ty(x,O,to)/dxdyk is not
identically zero (as a function of x). By Lemma 3.4, we find

(3.37)

1 dzk dzk

for ε € [0,1]. We note that, although the function

9x,y(z) = φ(x,z)φ(y,z)\η2(z/δ)\'2

depends on £, the constant C in (3.37) can be taken to be inde-
pendent of δ, since \\g\\oo a n d \W\\ι a r e finite and independent of
δ.

Let

F(x, j/, 2:, t) =

It is easy to check that F(0,0,0, ί0) = 0 and

djF

Let / > 1 be the smallest integer such that dlF(0,0,0,tQ)/dxl ψ 0.
By using the Malgrange Preparation Theorem, we get

(3.38) F(x, y, z, t) = c{x, y, z, t) (xι + ^ bυ(y, z, t)xu) .

for x,y G /, t being close to to, and \c(x,y, z,t)\ > c0 > 0 (see
also the argument in the proof of Proposition 3.6). By taking ε =
k/2l(k + 1) in (3.37) and using (3.38) and Lemma 3.3, we find

(3.39) sup / \LΛx, y)\dx < C\X(t - ί o )
y JR

A similar estimate holds for supx JR \Lj(x, y)\dy. Hence we have

(3.40) 11̂ 112,2 < C\λ(t - ΐo)
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Let σ = max{δ-2\λ(t - ί o ) Ί " 1 / l ( f c + 1 ) , 2ί}, we find

(3.41)
x\>σ

k(x, 0) / ei , y)α{y)dy dx

O r2j+ι dτ\

2J x I

1/2

2J

(3.42) < c\\{t - c

dx

It remains for us to show that

(3.43) / k(x, 0) / e^vΰφlx, y)a{y)dy
J2δ<\x\<σ JR

If σ < 2δ, (3.43) holds automatically. Now suppose σ > 2δ, we have

(3.44) |λ(ί - t0γ\δ3l(k+1) < 1.

Let ho = Sl(k + 1) and write

k0

Φ(ar, y, ί) = Σ ^ ( ^ ^ ^ + Q(x> V> *)»

where^(α .t) = (l/j\)djV(x,0,t)/dyj, \Q(x,y,t)\ < C|y|*0+1. Since
Φ(0,?/,ί) Ξ 0, we have qj{O,t) = 0 for all j . By (3.21), Proposition
3.6 and (3.44), we find

(3.45)

J2δ<\x\<σ

'2δ<\x\<σ

*;(a;,0) f ei

JR

dx

< ί k(x,0) ί eiX{t-to)S^°=o^x't^φ(χ,y)α(y)d
J2δ<\x\<σ JR

C\λ(t-toγ\ί ±-f \y\k^\α(y)\dydx<C,
J2δ<\x\<d \X\ J-δJ2δ<\x\<d

which completes the proof of Lemma 3.1. D

REMARK. The proofs of Proposition 3.5, 3.6 and Lemma 3.1 are
similar in nature. They are proved in the order Proposition 3.5 —>
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Proposition 3.6 —» Lemma 3.1, to make the approximation part of
the proof work. In the L2 part of the proof of Lemma 3.1, Lemma 3.4
plays an important role, because one cannot use van der Corput's
lemma there. The L2 estimates obtained by using Lemma 3.4 are
not as precise as what one gets in the case of polynomial phase
( where one may use van der Corput's lemma). This difficulty is
overcome by first proving Proposition 3.6.

4. Conclusion. Here we shall prove Theorem B. Let Tχ be given
as in (1.2). It suffices to prove that

(4.1) \\Txa\U < C

for every function a{x) which satisfies (1.5)-(1.7). Since k(x,y) is
integrable away from the diagonal Δ, we may assume that φ is
supported in a small neighborhood of Δ. By using a partition of
unity, we can further assume that supp(^) is contained in [XQ—d, XQ+
d] x [x0 — d, xo + d], for some XQ and a certain small number d. We
may assume that xo = 0 (as we did in the proof of Proposition 2.2).
We also assume that Φ(x, y) is real-analytic in [—4d, 4d] x [—4d, Ad}.

Let / = [xj — δ,xr + <$], a(x) be a function which satisfies (i)
supp(α) C /; (ii) N ^ < (2δ)~1

] (iii) Jeiλφ^^a{y)dy = 0. To
prove (4.1), it suffices to consider small δ's, say, δ < d (see (3.17)).
Hence we have either \xτ\ < 2d or Tχa = 0. Let Iλ — [—2d, 2d\,
Φ(x,τ/,ί) = Φ(z + t,2/ + t)--Φ(ί,2/ + t), kt(x,y) = k(x + t,y + t) and
φt{x,y) = φ(x + t,y + t). If we let t = xr, ao(x) = eiλφ(χi>y+xi)a(x +
a?/), then

(4.2) Tλa(x + XJ)= f eιX^x'^kt(x,y)φt(x,y)ao(y)dy.

We observe that Φ(0,y,ί) = 0 and ao(x) satisfies (3.2)-(3.4). By
Lemma 3.1, there is a constant C > 0, which is independent of λ,
xι and δ such that

holds. It should be noted that the dependence of kt and φt on t does
not cause any trouble here. The proof is now complete.

REMARK. Theorem B becomes false if the assumption on the
real-analyticity of Φ is dropped. This can be shown by using a C°°
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function constructed by Nagel and Wainger in [3]. We also refer the
reader to [7], where the same issue in the translation invariant case
was discussed. The phase function Φ(x — y) used in [7] (where Φ
is the function due to Nagel and Wainger) cannot be used in the
current situation. But, if we replace Φ(x — y) by Φ'(x)Φ(x — ?/), then
the argument in [7, p. 290] can be adapted to show that Theorem
B cannot hold for general C°° phase functions.
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