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FOURIER COEFFICIENTS OF AN ORTHOGONAL
EISENSTEIN SERIES

JERRY SHURMAN

This paper defines a nonholomorphic Eisenstein series
for a totally real algebraic number field F' and the spe-
cial orthogonal group with respect to a bilinear form
S = (T 0-1), where T € My(F) and its embedded im-
ages TV € M,(R) under archimedean places v of F have
signature (1,n —1). This group has an associated product
of tube domains #* = [] ., H,, the product taken over
archimedean places of F and each H, C C*. The series is
denoted E(z,s;k,,b) or simply E(z,s), with z € H%, s€ C
a complex parameter, k € Z the weight, 1 a Hecke char-
acter on the ideles of F, and the level b an integral ideal
in F. E has the Fourier expansion

E(z,5) = (—=1)%24+29) 3" g(h,y, 5)e (Z T”(:c,,,h,,)) ,

heL'’ vEa

where d = [F : Q], L' is the lattice dual to o} under T,
e(z) = ¥, and z = (2, + iYv)veca € H®. The Fourier
coefficient a(h,y,s) is the product (N?)~%aa(h,y,s)as(h,s)
with N? the norm of the different of F over Q. The
archimedean factor is aa(h,y,5) = [[,cq (Wv; hos K + 5,5, T%)
with £ a certain confluent hypergeometric function stud-
ied by Shimura. The nonarchimedean factor a;(h,s) is
essentially a product and quotient of Hecke L-functions,
depending on the parity of n and the nature of h. Spe-
cializing to s = 0 gives holomorphic and in special cases
nearly holomorphic behavior.

1. Introduction and notation.

Introduction. This paper defines an Eisenstein series E(z, s) of
weight k£ for z in a tube domain and s a complex parameter, and
computes its Fourier expansion explicitly. The series is of interest
as a special case of the nearly holomorphic functions studied by
Shimura and Bluher.
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346 JERRY SHURMAN

Section 2 describes the action of a subgroup of the adelization
of a certain orthogonal group on an associated complex domain.
A tube domain # is associated to a bilinear form S of signature
(2,n) on R"*2 and the identity component of SO(S, R), the special
orthogonal group over R with respect to S, acts on H. Take a
totally real algebraic number field F', a symmetric matrix S all of
whose embedded images S” in M, ;2(R) under archimedean places
v of F have signature (2,7n), and the algebraic group G = SO(S, F).
Then G, a suitable subgroup of the adelization of G, acts on H?,
a product of tube domains #H, over the archimedean places v of F.

Section 3 defines an Eisenstein series E(z,s) for z € H* and
s € C, and shows that it has a Fourier expansion. The series agrees
with a series studied by Indik in the case F' = Q. E(z,s) has an
associated series E(y,s) for y in a certain subset of Gay. Har-
monic analysis gives a Fourier expansion of F(y, s) with coefficients
b(h, wy, s), where h runs through a lattice in /™ and w, depends on
y = Im(2). This transforms back to a Fourier expansion of E(z, s).

Section 4 expresses the global Fourier coefficient a(h,y,s) of
E(z,s) as a simple factor multiplied by a product of local coeffi-
cents a,(h,y, s), the product being taken over all places of F'. For
archimedean v, a,(h,y, s) is equal to a certain confluent hypergeo-
metric function ¢ studied by Shimura.

Section 5 continues to study the local coefficients of F(z,s). The
coefficients at finite places v dividing b (where b, an integral ideal
of F, is the level of E(z, s)) are equal to 1. The coefficients at finite
places v not dividing b are power series o, (hy, X) = 35 Sy (), hy) X?
evaluated at certain values of X, where the coefficients S, (A, h,) are
sums of exponentials.

Section 6 expresses the power series a,(h,, X) as a simple rational
expression of Euler factors of Hecke L-functions, which depend on
the v-adic nature of the lattice vector h. In some cases a,(hy, X)
is not expressed precisely, but then it is a polynomial of bounded
degree. Taking the product of a,(hy, X) over finite places v not di-
viding b expresses the finite part of a(h, y, s) as essentially a product
and quotient of Hecke L-functions. Thus the Fourier coefficients of
E(z, s) are explicit expressions in well understood functions, up to
some polynomial factors. The methods in this section are from In-
dik.
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Section 7 specializes the Eisenstein series to s = 0 to obtain holo-
morphic and in special cases nearly holomorphic behavior. Also, for
certain values of k and s, E(z, s) is either finite or exhibits a simple
pole with residue that is holomorphic up to a factor.

My warmest thanks to Goro Shimura for suggesting this problem
as a Ph.D thesis and for all his generous help as my advisor.

Notation. Z, Q, R, C, and T denote the integers, the rational,
real and complex numbers, and the unit circle {z € C: |z| =1}.
For an associative ring A with identity, A* denotes the group of in-
vertible elements of A. When A is commutative, M,,(A) denotes the
ring of n-by-n matrices with entries in A, GL,(R) means M, (R)*,
and SL,(R) denotes the elements of GL,(R) with determinant 1.
(——) denotes the Jacobi symbol, and for z € R, |z] denotes the

greatest integer n such that n < z.

2. Archimedean and adelic preliminaries.

The quadratic forms 7 and S and the complex domain
H.Let n > 2 be an integer, and let T, a symmetric element of
M, (R), define a quadratic form of signature (1,n —1) on R*. Write
T(z,y) =*'zTy and T[z] = T(z, z) for z,y € C*. Set

T

(2.1) S = 0-1],
-1 0

defining a quadratic form of signature (2,n) on R"*2 and write
S(z,y) ='zSy, S[z] = S(z, ) for z,y € C**2.
Fix ¢ € R* such that T[e] = 1. Define a set P of “positive”
elements in R” by
P={yeR":T[y]>0and T(y,e) >0}
and a complex domain H by

H={z=z+iyeC"':yeP}.

P and H are connected.
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The action of SO(S,R)° on #. Let G = SO(S, R)°, where “°”
denotes the identity component and

SO(S,R) = { @ € SLn42(R) : 'aSa =S }.

Thus for z,y € C**? and a € G, S(az,ay) = S(z,y) and S[az] =
S|x].
z
For z € C*, define w(z) = (%T[z]) XS € C**2. Any S-isotropic
1
w € C"*? with bottom entry 1 is of this form. If 2 € H and «a €
G then { Re(aw(z)),Im(aw(z)) } forms an orthogonal basis { u, v }
(with S[u] = S[v]) of a subspace in R"*? where S is positive definite.
Set j(a, z) = aw(2z)p+2, which is nonzero, and define a(z) € C* by

(2.2) w(a(z)) = j(a, 2) Low(z).

Since j(a, 2) 'aw(z) is S-isotropic and has bottom entry 1, such an
a(z) indeed exists.

To show that a(z) € H, first note that 0 < T[Im(a(z))] =
S[Im(w(a(z)))] follows from (2.2) and the properties of {u,v}.
Also, T(Im(c(z)),e) > 0: because T(Im(c(z)),€) can not vanish
as T is negative definite on {z € R* : T'(z,e) = 0} but positive at
Im(a(z)), it suffices to show T'(Im(a(z)),e) > 0 for one a from the
connected group G, and taking o = I,,;» completes the proof.

Not all of SO(S,R) acts on H because while G fixes H and —H,
the other component interchanges them. Taking a = (I" I ), o)
that a(z) = —z, shows this. From (2.2), the action of G on H
is associative and j is a factor of automorphy. The action is well
known to be transitive.

The field F and the group G. Let F' denote a totally real
algebraic number field of degree d, or the ring of algebraic integers
in F,and @ = {vy,...,v4 } the set of archimedean places of F. Each
v € a is an embedding v : F' — R. Take T a symmetric element of
M, (oF) such that T defines a form of signature (1,n—1) on R" for
each v € a. Define S as in (2.1), so that the S” for all v € a define
forms of signature (2,n). For each v € a take an €, € R" such that
T"[e,) = 1. Set

G =80(S,F) = {a € SLnsa(F) : ‘aSa =S } .
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The action of G5, on #H*. Let f and a denote the set of nonar-
chimedean and archimedean places of F', respectively. For v € fUa
denote by F, the v-completion of F' and, if v € f, by o, the v-closure
of or in F,; if v € a, identify F, with R. Denote the adeles and
ideles of F' as Fs and F; and identify F' with its embedded images
in Fa and F, for any v. Fy denotes the adeles (ay)yecfua such that
a, =0forv ¢ f, F, is defined similarly, and o5 denotes the elements
of Fy such that a, € 0, forallv € f; F, 7, Fy and o} are the similarly
defined subgroups of F;. The image of or in R? under z — (2°)yea
is a lattice A of volume (N)z, where N denotes the norm from F
to Q and 0 denotes the different of F' over Q.

Define G, to be the v-completion of G for v € f Ua. Thus if
v € a, G, can be identified with SO(S”,R). Take the adelization
Ga of G; put Gy = [,y Go N Ga, Ga = [lyca Go- Identify G with
its embedded image in G and the same convention holds for other
groups defined below. For z € G4 define 25 € G and z, € G, by
T = TyT,. Define

Gatr ={z€Ga:2,€S0(S",R)° forallvea}

and Gy =GaNGay, Gy =GNGay.

For each v € a, let H, be the complex domain of the previous
section associated to T and €,. Denote [],co H, as H® and define
the action of G, on H® componentwise. The action extends to
G+ by defining z € G to act as z,.

3. The Eisenstein series E(z, s;k,1,b) and its Fourier ex-
pansion.

The series E on H°®. Fix an integer k. Take a Hecke char-
acter ¥ : Fx — T (¢(F*) = 1) with ¢(a) = [Iycasgn(a,)* for
a € F}; let ¢ denote the finite part of its conductor, 1, the v-
component of 1, and %, = [],, ¥, for any integral ideal .. Let
b C F be an integral ideal divisible by ¢, by 2, and by detT.
Define Y = {u€ F™?:S[u] =0}, and for u € U, z € H®, set

S(u,w(z)) = Iyeca S”(uy, wy(2)), where w,(z) = (%Tiizu]) Our
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Eisenstein series is defined as follows:
E(z,s;k,9,b)
= Y cltu)y(®) S (u, w(2) S (u, w(2))| 7

(u,t)GleF;/~
for z € H® and s € C, where (u,t) ~ (v/,t') means that for some
be F* u' =bu and t'op = b~'tor (so that t' = eb;lt with e € 0}).
Here ¢ : Fjt? — C is the locally constant function

o(z) = Yo(Tnt2), ifzf € o?“ and T,y is prime to b
0, otherwise.

This series is also denoted simply F(z) or E(z, s).

E is readily seen to be well-defined. The series converges for
sufficiently large Re(s) and has an analytic continuation, as shown
in [Sh80]. In the special case F' = Q, E reduces to the series studied
by Indik in [In].

Transformation of E. Define subgroups of G by

* * %
Py=47€Gas:y=| *x| p;
00

SO(S, 0,) ifvef,
stabilizer of ie, if v € a;

* k%
D={~vyeC:y=| % x| (modb) ;;
00d,

and [y(b) C G4 by
[o(b) =GN DG,

* %k >k
=0 v€ G, NSO(S,0p):y=| * x| (modb) ;.
00d,

C =[] Cs, where C, = {

For v € Ga4 and z € H® define
J(v,2) = (v, 2)1i (v, 2)**  where j(v,2) = [[ i(70> 20),

Ju (7, 2) = e(dy) I (v, 2).
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The relation J(af,z2) = J(a, 82)J(B, 2) holds for all o, 3 € Ga,,
and the same relation holds for J, when o, f € DG,..
For v € T'y(b) and z € H* one easily verifies that

E(v(2)) = Jy(7,2) E(2).
If, in particular,
v € Ty(b) N N, whereN = {( gi’) beFm},

then b € o, v(z) = 2+ b, and Jy (v, 2) = 1. Thus, E(z +b) = E(z)
for b € of.

The series E on G, DG,.. Define E(y, s) for y € G4 DG,y and
s € C by
E(y,s) = E(z(ie), 8)Jy(z,i€)7"
for y = ax with a € G,z € DG,,.

Here i means (i€y)vea € H°. E(y, s) is well defined. Denote this
series also E(y). Then

E(oyw) = E(y)Jy(w,ie) Hor a € Gy, y € G4DGay, w € D.
To write E explicitly, first note that
S(u, w(zx(i€))) = j(z,ie) 1S (z ™ u, w(ic)).
So for a € G, x € DG,,,

E(az)
= (Zt) c(tu)p(t) Tt J (2, ie) S (™ u, w(ie)) "
S (z 7w, w(ie)) |72 Iy (z, ie) 7
=" hp(dp-1)c(tu)yp(t) P S (7 u, w(ie))
IS(:c u, w(ic))| 7
- Z ltu 1‘t|k+2sS(l‘ 1’u, w(w)) —k
|S(z~ 1u,w(ze:))] %,
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The Fourier expansions of £ and E.Let V = F™ and V =
Fpx. For z,y € Vj define a complex number x(T'(z,y)):

x(T(z,9)= I e(T(zv,90))

vEfUa
= H, ep(T7F, 10, (T (%, v))) I;I (T (T, ),

where v | p, €,(t) = e(the fractional part of — t) for ¢t € Q,, and
e(s) = €™ for s € C. Define

T('U) = (; g ;) € G+DGa+fOI"U € VA(T(’U) € G+DG3+

since v = v' +w with v' € V, w € [[fo} x F7), and fix a Haar
measure p on Va so that u(Va/V) = 1.

Consider E(7(v)w) with v € V4 and w € G4, as a function on
Va. Then for u € V, E(r(v + v)w) = E(r(u)r(v)w) = E(r(v)w),
so E is a function on V,/V. This gives the expansion

E(r(v)w, s) = > b(h,w,s)x(T(v,h)) for v € Va,w € Gay,
heV

where
b(h, w, ) = / o B(r(v)w, s)x(~T(v, h))du(v) for h € V.

Define lattices L = o C V and L, = oy C V, for v € f. For
u € Ly, E(r(v+u)w) = E(r(v)wr(u)) = E(T(U)W)Jap(f(u) €)™l =
E(T(v)w) Hence b(h,w,s) = Soevasv E('r(v + w)w, s)x(—=T(v +
u, h))du(v) = x(=T(u, h))b(h,w, s); this shows that b(h,w,s) # 0
only when x(—=T'(u,h)) = 1, i.e., when h € L' with L' = the dual
lattice to L under T, defined by L' = {he V :T(h,L) C 07!},
where 0 is the different of F' over Q. Thus,
E(r(v)w,s) = > b(h,w, s)x(T (v, h))for v € Va,w € Gay-
heL’!

To express this on H?® for z = (2,)vea With 2, = z, + 1y, put

wy = (Wy, )vea With

Ay
Wy, = \/T[yv] |
VT ys]
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where A,e, = y,/\/T?[y] and T?(Ayz, Ayy) = TV (z,y) for z,y €
R”, so that wy, (ic,) = iy, and hence w,(ic) = iy. Then

E(z,s) = E(T(z)wy, 8)Jy(T(z)wy, i)
= E(1(x)wy, 5)J (w,, ic),

‘SO

E(z,s) = J(wy,1€) Y b(h, wy,s)e(z T“(x,,,h,,)).

heL’ vEa

4. Fourier coeflicients of E: reduction to the local case.

The coeflicient b(h,wy,s). For h € L' and z + 1y € H* we
have b(h, wy, 5) = [,ev, ;v E(T(v)wy, $)x(=T (v, h))du(v). Choosing
representatives v of V4 /V such that 7(v) € DG, gives

“b(h, wy, s)

> c((rwywy) Mu)e (o) e

veVA/V { (wt)EUXF} [~
S ((r(wyw,) ™, wiie)) ™
[ ((rtoy) M) =T, ) o)

If upio = 0 then ((7(z)wy) Hu)ns2 = 0 at f since (7(z)wy)s € Pa.
So normalize u, 42 = 1 and sum over { (w(v'),t) :v' €V, t € Ff/o} }
This gives
b(h1 Wy, 8)

—k

> S((r(v)wy) M w(v'), wic))

vEVA/V {v’GV
S ((r()wy) M w(w'), wiie)) |
> c((r(v)wy)"ltw(v'))

teF; /o}

() (- T, h))}du(v)
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N /uevA/v { v% S (wy (0! ), w(ie))

—2s

: lS(wy‘lw(v' —v), w(z’a))
-y c(twy_lw(v’ - v))zb(t)_lltlk”s

tGFf* /o}

X(=T(o -, h))}du(v)

—2s

= /veVA {S(w;lw(v),w(i€)>_k }S(w;lw(v),w(is))
Y C(tw(v))w(t)‘lItl’“”’x(T(v,h))}du(v)

tEF;/o}

= [, {500t icrutan) 5w, s i)

—2s

S b)) (T ) )

tEF; /o}

= J(wy,i€) ! /UGVA {S(w(u),w(z’y))—lC ’S(w(v),w(z’y)) 2
-y c(tw(v))¢(t)"1|t]’°+2sx(T(v,h))}du(v).
tGF;/o}

LemMA. S(w(v),w(iy)) = (—%)dTa[—v + 1y], where d = [F : Q]
and T,[z]) = [yea T[] for z € Va.

Proof. Immediate from

T WYy
S(w(v), w(iy)) =[] (‘v,, 3T (v 1) ( 0 —-1) (%T”[iyv]) :
véa 10 1
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This gives
b(h, wy, s)
— J(’wy,i&‘)_l(—l)dk2d(k+28)
| T+ iy T+ iyl o (o, X(T (0, )dp()
vEVA
— J(wy,is)_l(—l)dkzd(k+2s)
[ Talo+ il ™ Tl + i)l 00, 9)x(=T (v, b)) duv),
vEVA
where
o(z,8)= > c(tw(z))y(t) " t|*+**for z € V4, s € C.
teF} /o

The sum o(z,s). For £ € Vj and v € f define a local ideal
to(Ty) C 0y by ty(zy) = p(® where p, is the maximal ideal of
0, and i,(z) = — minjci<pto { vo(w(z);) } with v, the normalized
v-adic valuation on F,. t,(z,) is integral since w(z,)n42 = 1, and
ty(zy) = 0, for almost all v. _

The product ideal +(z) = [I,ef to(2y) C 0y is such that tw(zr) €
o}‘+2 for t € Ff if and only if ¢t € «(z). Thus c(tw(z)) # 0 if
and only if ¢ € «(z) and (tw(z))n+2 = t is prime to b, in which case
c(tw(z)) = 1y(t) and the summand of o(z, 5) is [Tves ¥ (ty) ~|ts|F 2.

vib

Thus

o(z,s) = > [T v ol 5+
{ t:Hvef piv ()t } tﬁ({
vfb

=TT (p) " polst?)”.
t v
(The sum is empty if ¢(z) is nontrivial at b.) This has the Euler
product expansion o(z, 5) = [I,ef 0v (T, 8), where
Ou(Zy, 3)

_ J0u(z0), ifv|b
(1 = (po) "2 polE+2) L (9 (Py) 2Py K%)= if v § b.

Here 6,(z,) = 1 if z € L, (so that ¢,(z,) = 0,), 0if z, ¢ L, (so that
ty(Zy) # 0y).
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The local coefficient a,(h,y,s). We now have for z = (z,) =
(zy + iyy) € H®,

B(z,8) = (~1)%216429 3 o hy,s)e(zT"(zu,h»),

heL! veEa

where

a(h,y, s)

= [, Tele+ ] (Tl + ]l ™ o(a, s)x(~T(z, b)) duz),
with
Talz +1y] = [[ T*[zv + i), o(z,s) = l—g 0y(Ty, 8),
véa ve
x(=T(z,h)) H eu(—T (v, hv)), du(z) = cul;lduu(wv),

where u(Va/V) =1, p = ¢, Il vy po(Ly) =1 for v € f, and p, is
Euclidean measure on R"* for v € a; these determine ¢, = N /2,
So
a(h,y,s) = No~™/? [T au(h,y,s),
v

where for v € a,
ay(h,y, 5)
= [ Tl T + i) 7 e(=T" (@, hy))d ()
TEVY

= T’[z + iy, ) * T [z — iy) " e(=T"(x, hy))dpy(z)

€V,
= f(yva hv; k + S, S5 Tv)7

with £ the confluent hypergeometric function studied by Shimura
in [Sh82]. For v € f, the local coefficient does not depend on y
and so may be denoted a,(h,s). Setting g, = |p,|;" and X,(s) =

P(p,) g, 7 gives
ay(h, s)

= eV O'U(.’L', 3) ev(_T(za hv))dﬂv (.’L‘)

- /zeV,, 80(20) €0 (=T (2, b)) dpro(z) ifv|b
(1— X,(s))™" / X, ()@ e,(=T(z, hy))dpo(z) ifv1b.

IAA
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5. Local Fourier coefficients of E.

The archimedean coefficient £(yy, hy; k + s, 5;T7). In [Sh82],
Shimura defines the functions

£y, hie, B;T) = /zekn Tz +iy] Tz — iy] ™ e(—T(z, h))dz,

where y € P, h € R*, (a, 8) € C?, T defines a form of signature
(1,n—1) on R*; and

77*(?/, h; a, ,B; T)
= T[y]**’~% / Tz + h]* 3Tz — h)P~ 3 e TW)dg,
z€Q(h)

where Q(h) = {z € R* : z + h € P }. Both integrals converge when
Re(a) > n/2 —1, Re(B) > n/2 — 1. He defines

w(y, b0, 3;T) =0 (y, b; o, B; T)

(272, ()76 (hy) 2, heP
22T, (a) 8(hy) 37, —heP
| det T|2272*~%T(a — 252)711'(8 — 232)~!
84 (hy) 1=+ T8 () 1-prag, T[h] <0
| det T)22722-28T (o + B — 1F(,6‘ n-2)-1
§(hy)%~e, T[] =0,
T(e,h) >0
|det T|7272*"2PT(a + f — 2)~'[(a — %52)"!
0(hy)2 ", T[h] = 0,
T(e,h) <0
Dula+p-3)7, h=0,

where ¢ is as in section 2 and

Ta(s) = |det T| 32223710 (s)T (s -2+ 1) ,
0. (hy) = the product of all positive roots to
A% — 2T (y, k)X + T[y]T[h] = 0,
o-(hy) = 6.((=h)y),  8(hy) = 6+(hy)s_(hy);
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and proves the relation

(56.1)
&y, h;k+s,8;,T)

= | det Tl_%(—1)’“2"”2’“”48T[y]%“k"%w(%ry, h;k+s,s;T)

92k 425417 2k42541=8 (| 4 §) 10 (k + 5 + 1 — )71
04 (hy)kts—% heP
92s+1 2s+1—— ( ) 1F(3 +1-— ) 15_ (hy)s—— -hep
Qk+2s+5+1 - k+2s+1- %P(k + s) 11‘\(3) -1
8 (hy)F+71 =5 (hy) T[h) <0
- Qktst2H 3 ks t2-8 (K 4 95 — 2T (k+s)” -1 T(e,h) >0
T(s)"'Tk+s+1-12)" 15, (hy)k+e—z, T[h] = 0,
2523 2= 5T (k + 25 — 2)['(k + 5) ™ T(e,h) <0
T(s)7'0(s + 1 - 2)716_(hy)™ %, T(h] = 0,
2T (k + 25 — T(k+2s+1—-n)l(k+ s)7!
T(s) ' T(k+s+1-2)"I'(s+1-%)71  h=0.

The main result of [Sh82] is that w can be continued as a holomor-
phic function in (o, 8) to C2. Thus, zeros and poles of £ can be read
off from the previous equation.

The next result will be used in Section 7.

PROPOSITION 5.1. (a) w(27y, h; @, 0;T) = 27" e(T'(¢y, h)) if h €
P;
(b) w(2my, h; ,0;T) = w(2my, h;n/2, B) = 271~ "a"/2~1 e(T (iy, b))
if TIh] =0, T(h,&) > 0;
(c) w(2my,0;0, 5;T) = 1

Proof. (a) and part of (b) are shown in [Sh82, 4.35.IV]. The
remainder of (b) follows from [Sh82, 4.12.1V, 4.29, 3.15|, where m,
n there are n, n — 2 here, respectively. (c) is [Sh82, 4.9]. O

The finite coefficient a,(h,s) for v | b. For v | b,
aulhys) = [ 6(z) eu(~T(w, ho))dps(z)
IEVv

= e,(=T(z, hy))du,(z) = / dp,(z) = 1.

TELy Z€Ly
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Thus
ay(h,s)=1 ifv]|b.
The finite coefficient a,(h,s) for vt b. For v {b,

ay(h, s) = (1 - X,(s))"! / o X, ()@ ey (=T (x, hy))dpso ().

Since the integrand is invariant under z — x + [ for [ € L,, this is

ahi) = (1= X,(s)7 3 X(s)"en(~T(e, )
IEGVU/L'U
=<1—Xv<s>)-1§ > Ko el T, )
A_O:l,f(‘j)/:ll;
= (1- X,(s))™* z_: X, (s)? 2; e,(—T(z, hy)).
R 6

Now sum by by parts, Y5_, axbx = Y525 Ax(ba—bas1)+A,b,, where
Ay = Z =0 Qj- Lettlng a) = Zze%/Lv ev( (III,hv)), by = X,,(S)'\

1y (T)=A
gives
Av= > e(-T(z,hy))
-TGV'U/L’U
1y (z)<A

= Y e(-T(z,h) E Sy(\ hy)
EEVv/Lv
w(z)ep”‘ n+2

and by — byy1 = (1 — X,(s))X,(s)*. Hence

XV:X,,(S)/\ Z ev(_T(x7 h’v))

A=0 ZEVy /Ly
iu(z)=A

v—-1
= (1 - X,(s)) (Z Xv(s)’\S,,(/\,hv)) + X (8)"Sy(v, hy).
A=0
The last term goes to 0 as ¥ — oo when Re(k + 2s) > n, giving

ay(h, 3) = ay(hy, Xu(8)) ifvth

where a,(h,, X) is the power series

aty(hy, X) = ZS (\, hy)
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The exponential sum S,(), h,). Let 7, generate the maximal
ideal p, of 0,, and let y = 7m)z. Summing over y’s, the set of
summation for S, (A, h,) becomes

Tty
y € Vy/paLy : | 317 PTly] | € p; opt?
1

1
= {y € Lv/p;}Lv : '2‘T[y] € pﬁ} .

Since 2 | b and v { b the 1 is irrelevant, so the sum is

S R ]

YELv/py Ly 7r',’\
Tlylep)

This is independent of the choice of 7, since the set being summed
over is stable under multiplication by units.

6. The power series a,(hy, X).

Definitions. The methods in this section are from Indik [In].

From now on all work is local at a fixed place v { b (so that
v{2detT), and v’s will be suppressed in the notation; for example,
F,V, L, o, pand 0 now denote the local objects F,, V,, L,, 0y, Py
and 9, (the local different of F, over Q,). Locally T~ is integral;
so fory € V, v(Ty) = v(y) and hence L' = 01 L. To study the sum
S(A, h), begin with some definitions.

Extend the v-adic valuation v on F' to a function also called v on
V by

v(z) = lrgléln {v(z) }, forz e V.

For A > 0 and a € o define the sets
o(Aa) = {yeL:T[y]Ea (mod p)‘)},
o'(Ma)={y€o(da):v(y) =0},
o(Xa)={ye L/p*L:Tly| = a (mod p) },
o'(\a) ={y € o(},a) : v(y) = 0}.

When a = 0, write o(A) for o(A,a) and so on. We will sometimes
use the sets o(), a), ... defined as above but for forms R other than
T, in which case they are denoted og(}, a), etc.
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Extend the definition of S to

Zj%(—T@W» if he L'

)
S(\ h) = yea(n [
0 ifhe L,
and define
S'ANh)y= > e (_T(y;‘h)) forhe L',
yea'(A) i

i.e., just sum over primitive vectors.
Recall that ¢ = |p|™! = #(o/p).

PROPOSITION 6.1. For symmetric R € M,(o/p) defining a non-
degenerate bilinear form on (o/p)",

- gt (g —1) ((___l)j_de_t]i) if n is even
#or(l) — " = p
0 if n is odd.
Proof. This is a standard textbook exercise. O

Recurrence formula for #o0'(),a). Fix A > 1 and a € o, and
recall that v 1 2.

LEMMA. For § € o'()\a), there exists d € L such that
T(§,d) = 3.

Proof. (Ty); € o* for some i, so take d; = 3(T'y); ' and d; = 0 for
j#i. 0

LEMMA. Forv € o'(A+ 1,a), #{l € L/pL : T(v,l) e p} =¢" .

Proof. (Ty); € o* for some i; consequently T'(v,!) € p if and only
if I; = (Tw);* (- £;(Tv);l;) + k with k € p. This determines the
value of {; (mod p) once the [; for j # ¢ have been chosen. O

PROPOSITION 6.2. #0'(A+1,a) = ¢"'#0'(\,a). Conse-
quently, #0'(\,a) = ¢ VOV445'(1,a) for A > 1, and this value
depends only on a (mod p).

Proof. Let m3*! : L/p**'L — L/p*L be the natural map. We will
show that m3*! : 0/(A + 1,a) — o’(), a) is surjective with multiplic-
ity ¢g" L.
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Construct a function ¢ : ¢/(\,a) = o’(A + 1, a) as follows: Choose
any lifting, denoted ~, from L/p*L to L. Given y € o’(), a), there
exists d € L such that T(§,d) = 3, by the first lemma. Take
¢(y) = §+(a—Ty])d (mod p**'L). Then T[p(y)] = a (mod p**!)

A

+1
is easy to check. Thus o’(),a) -2 o'(A + 1, a) 2= o/(}, a), and the
composite is the identity since ¢(y) = y (mod p*L). This shows
that my ™! : /(A + 1,a) — o’(), a) is surjective.

For v € o'(A+1,a) and v' € L/p*'L, my™'(v') = m*ti(v) if
and only if v' = v + 7] for some | € L/pL, in which case T[v'] =
a+ 27T (v,l) (mod p**?!). This shows that v’ € o’(\ + 1,a) if and
only if T'(v,l) € p. The number of [ satisfying this is ¢"~! by the
second lemma, so 737! : o/(A+1,a) — o’(),a) has multiplicity
q"~!, proving the proposition. O

Recurrence formula for S(), h).
LEMMA. 0(A\) = 0'(A) Upa(A —2) for A > 2, a disjoint union.

Proof. o(X) D ¢'(A) and o(X\) D po(A — 2) are clear, as is dis-
jointness. Let y € o(\) — 0'(A). Then y = nz for some z € L,
and 7*T[z] = T[y] € p* shows that T[z] € p*72, i.e., z € o(\ —
2). 0

PROPOSITION 6.3. S(A,h) = S (A, h)+q*S(A—2,h/7) for A > 2
and he L.

Proof.
SR =SB+ T e, (—T(y;h)>
yEpo(A—2) T
(mod p*L)

by the lemma, so we need to evaluate this last sum, which is equal

to T( h)
Yy, call
Yoo ey (——w'\“l ) = 6.

yE€o(A—2)
(mod p*—1L)

The set o(A — 2) (mod p*~!L) is stable under translation by any-
72 € p*2L. So

T(y+ 72, h
S= 3 e (— v e )) = e, (=T, h/m)) S.
yEa(A—2)
(mod p*—1L)
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If E € L' then
T

S= > e,,( M) ¢"S(\ —2,h/T).

A—2
yea(A—2) 4
(mod p*—1L)

f — ¢ L' then T(L,h/m) ¢ 07!, so for some | € L we have

Tr(T(l h/7)) ¢ Z,, giving e,(=T(l,h/m)) # 1, whence S =
Thus S(\, k) = S'(\, h) +¢"S(A — 2,h/7) in all cases. |

COROLLARY 6.4. S(A,0) —¢"S(A - 2,0) = gDO-1) —(_) for

A > 2. Equivalently, #0(\) — ¢"#o(\ — 2) = ¢~ DO-Dq'(1).
Proof.
S(A,0) — g"S(A - 2,0) = S'(A,0) = #o'(N) = " VA Vo!(1)
by the previous proposition. O
The value of a(h, X) when h = 0.

PROPOSITION 6.5.
1+ (#0(1) - ¢" )X - "' X?
(1-¢"X*)(1-¢"'X)

a(0,X) =

Proof. Since S(,0) —g"S(A—2,0) = ¢ DO-Dq'(1) for A > 2,

(1-q¢"X? i S(A0)X*

A=0
A=2
=1+ #o(1 X+Zq(" DO-Das (1) X
A=2

and since #0(1) =1 + #0'(1), this is

=1+ X+ E q("_l)(’\_l)#al(l)X/\
A=1
#o'(1)X

=1+ X+ —L
+ X+ o
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The result follows easily. O

DEFINITION.  For n even, define a quadratic character 8 by

o(p) = ((—1)"2;detT)'

This gives for n even #o(1) — ¢" ! = ¢%~!(¢ — 1)4(p), so in the
proposition the numerator becomes (1 +¢z8(p)X)(1 —¢7~16(p)X),
and the denominator, (1+¢26(p)X)(1—q28(p)X)(1 —¢" 1 X). For
n odd, #0(1) — ¢"~! = 0. Thus,

1—¢77'0(p)X
— 3 n-—l
oth, ) = | T TR~ %)

1-¢"X*)(1-¢""X)

Formula for S.

if h =0, n even

if h =0, n odd.

DEFINITION. Let 1, = v(9), the valuation of the different.
PROPOSITION 6.6. For a set ¢ C L/p*L such that uoc = o for all
u € 0%,

Do (—T(y’h)> =#{yeo:v(T(y,h) > A-w}

A
yeo n

1
_.q__l#{yEJ:V(T(y,h))=/\~Va"1}-

Proof. We may assume A > 1. Let Uy = o*/p* = o/p* — p/p?,
with #Uy = ¢* — ¢* ! = ¢*1(¢ — 1). Then

q“(q-l)zeu( Tl ) > >e (T—(%{—l)

yeo u€elU, y€o

‘ZZ ( uy,h))
—z{z (). 5 o (-Teil,

u€o/p> u€o/pr—1

Since the sums over o/p* and o/p*~! are character sums over finite
T (uy, h)

€ 0! for all u if and only if »(T'(y, h)) >

groups, and since
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A — v, the inner sums yield
0 if v(T(y,h))<A—1p—-1

—g*! if v(T(y,h)=A—1v,—1
¢ = i y(T(y, k) 2 A -,

S0
A=1¢, __T(ya h)
P a0 E e (-742)
= - #{yeo:v(T(y,h) 2 A -n}
~¢'#{y€o:v(T(yh)=r-wn-1},
giving the result. O

This shows that the coefficients of the power series a,(h, X) are
elements of Q.

The value of a(h, X) when T[h] = 0. Now assume that T'[h] =
0, h #0.

DEFINITION. Given a nonzero h € L', define v, € Zand h' € L
by h = n*»h', where v, = v(h) > —1, and v(h') = 0. Further define
Vpp =VUp+ vy > 0.

There is an 2o € L such that T'(zg, ') = 1; then setting z = o —
3T [zo] gives T[z] = T[W'] =0, T(z,h') = 1, and L = oh’'+oz+W,
where W = {w € L: T(w,h') = T(w,z) =0}. Define T = T|w.

PROPOSITION 6.7. For a nonzero h € L' such that T[h] =0,

1+ (#or(1) — " )gX — ¢" ' X?

h,X)= Gho(X),

a( ) ) 1 _ an2 h, ( )
where X Vho n_1X ; 1-— (qn—lX)th+1
Gh,v( ) - g(q ) - 1- qn-—IX :

Proof. For y = ah' + bz + w € L, T[y] = 2ab + T(w], so y € a(})
if and only if T[w] = —2ab (mod p*). Given w € W/p*W and
b € o/p*, there is an a € o/p* such that T[w] = —2ab (mod p*) if
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and only if v(T[w]) > v(b), in which case there are g™**®) guch
values a. Proposition 6.6 says,

SO, 7 ) =#{y € o) : v(T(y, K)) = A — vio }

(6.1)

_ﬁ#{yeW:V(T(y,h’))=/\—th“1}'

Setting M = max(0, A — vp) one finds that the first term of (6.1) is

Py #{beo/p*:v(d) =m}#{or(m) (mod p’L) } g™

where

Z ™ (g = 1)gm IO o (m)g™ + #or (N

A-1
Z q)\q(n—2)()\—m)#o_T, (m) _ E q/\—lq(n—2)(/\—m)#o_Tl (m)
m=M m=M
A
A Z q(n—2)()\—m)#aT’(m)
m=M
A ————————————
_ q/\ q—-lq(n-2)(/\—m+1)#o.Tl (m _ 1)
m=M+1
A
qA Z q(n—2)(A~m)A(m) + qu(n—2)(A—M)#0.T’(M)
m=M+1
( A
'Y

3
I}

g AO"MA(m) + g™ i A < vy
A

< n— —
qA Z q( 2)(A m)A(m)

m=A—vpp+1

+qu(n—2)vha #UT’(/\ — Vho) if A > vp,
A(m) = #op(m) — ¢"3#0r(m —1). The second term of

\

(6.1) is 0 when A < vy, and is

A—vpo—1

q

P #{beo/p* :v(b) =X—vn—1}

#{or (A = vho = 1) (mod p*L) }
qA—UhD—l

= _(}—_Tfl”’“’(q = 1)gDm Do (X = vho — 1)

q)\q(n 2)vpo n—3#O'T/()\ — Upp — 1)
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when A > vp,. So
(6.2)

A
quan)\m)A )+qq("2))‘ if A <upp
S\ Rr)={ ™
A Z q(”“z)(’\_m)A(m) if A > vpe.

q
m=A—vpy

Now, A(m) satisfies

A(m +2) — ¢"2A(m)
= (#op(m +2) — " *#op (m))
~¢"(#op (m +1) — ¢"*#op (m 1))
= #of(m +2) — ¢" o (m + 1)
=0,

by Corollary 6.4 and Proposition 6.2 with 7" in place of T. This
shows that for A > v,

S(OA+2,k) — ¢"S()\, h)
A+2
— qA+2 Z q(n——2)(/\+2—m)A(m)

m=A—vpp+2

A
_ qA Z qnq(n—2)(A—m)A(m)

m=A—vp,p

A
— q)\+2 Z q(n—2)()\—m) (A(m + 2) _ qn—2A(m))

m=)‘—uha
=0.
So for vy =0,
(1-¢"X%) Y S(A, h) X
A=0

X+Z (A h) — *S() — 2, h)) X

+ (#or (1) - qn 3)‘1X + (¢P#or (2) — ¢" '#or (1) — 1) X3,
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giving the result in this case, as the relations #o1 (2) = ¢" 2#07:(0)

+¢"*#0% (1) and #or (1) = #04 (1) + 1 show that the coefficient
of X2 is —g"™~!. Also when vy, = 0, (6.2) shows that

> S(E) =1+ Y- (aX)"A(m),

A=0 m=1
so that
< 1+ (#or (1) — ¢"°)gX — g" ' X?
1 X)m = .
For general vp, the same formula gives
(6.3)
Vho A
alh, X) =1+ (¢X)* (Z g A A(m) + q("‘z)*)
A=1 m=1
o) A
+ Y (@X) Y ¢ACTMA(m)
A=vpp+1 m=A—Vpp
Vho Vho A
— Z(qn—lX)A + Z(qX)/\ Z q(n—2)()\—m)A(m)
A=0 A=1 m=1
(o) A
+ Y @X) Y ¢AT™Am).
A=vpp+1 m=A—Vpp
_ (n—1 Vpo+1
The first sum in (6.3) is 1 l(q— qn{(l)Xh . The second sum is
Vho 9 Vho 1 A
> g™ PAMm) Y (' X)
m=1 A=m
Vho 5 3 1— (q"“lX)th+1—m
— m(n—2) n—1y\m
3 e am)qxm—
Vho 1— (qn—lx)u,w+l—m

=3 Am@)" oy

The third sum is

Vho 0 m+Vpp 1 N
> g AAm) Y (¢¢TX)
m=1 A=vpp+1

m+vpp

+ i g™ DAm) Y (" X),

m=vpy+1 A=m
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which splits into

Vho 1-— ( n—lx)m
—-m(n—2) n—1 Vpo+1
> g A Am) (X )

Vho n— 1X)Vha+1—m _ (qn-lX)thH-l
= -m(n-2) A n—1y\m (q

poy (m)(¢"'X) iy
R m (L= (@ IX)meH 1 (g Xt
- 3 Ay (AR L L

m=1

and

m(n— e ml__ qn—lX Vho+1
> gmemdagm eSS

m=vpp+1

B 00 ml _ (qn—lX)uh°+1
= Y Am@O" T Sy

m:l/hu-l-l

The total is thus

)= (£ amexr) ()

1+(#on(1)—q" X — ¢" ' X?
1-q"X?

Gh,v(X)a

which completes the proof of the proposition. O

For n even, observe that since

(=1)z7'det T')

det T = —det T, 8(p) = ( 5

and the first factor becomes
14+¢77%(g—1)0(p)gX —g" ' X 1—¢27'9(p)X
(1+¢20(p)X)(1 — q260(p)X) 1—q26(p)X

1y2
For n odd the first factor becomes ——9—2(2— Thus,

1— q5"10( )X

a(h, X)={ 1—2*0p)X

n—1
1—_‘1——X?§— Gho(X)  ifT[h] =0, n odd.

Ghy(X) if T[h] =0, n even
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The value of a(h, X) when v(T[h']) = 0.

PROPOSITION 6.8. For h € L' such that v(T[h']) = 0, a(h,X)
is a polynomial Hy, ,(X) € Q[X] of degree < 2(vpo + 1). If vpp =0
then

ah,X)=1+

— (a#or D - %) - (o) - ") X,

where T" =T\|w, with W ={w e L:T(w,h) =0}.
Proof. We will compute S’()\, h) for all values of A\. For A < v,

S'(A,h) = #0'()) is clear. Suppose now that A > vp, + 1. Any

T(y,h
y € o()) takes the form y = ah’' + w, where a = -—:g—?[—;l—,]—l, weW,

T[w] = —a?T[W] (mod p*), and v(y) = 0 if and only if v(w) = 0.
For 1 > 0,!=v(T(y,h)) = v(T(ah',7m**h')) = v(a) + v, if and only
if v(a) = I — v,. Thus by Proposition 6.6,

(6.4)
Sk =#{yed): v(Ty,h) > r-n}

- #{y T v ) = A - w1}

= > #{wedn(\=TW])}
aco/p*
v(a)>A—vpo
1
-— Y #{wedu(=aTH])}.
qg—1 A
a€o/p
v(a)=A—vpp—1

Since A > vpp + 1, v(a?) > 0 in both sums. By Proposition 6.2, the
set cardinalities depend only on a?T[h’] (mod p), which is 0, so for
A> Vpp + ].,

S0, = #5 0(# {a € o/ v(0) 2 A= v}

—q_%#{aeo/p*:v(a)z)\—z/m,—l}>

1
= #opn(X) (qy"" - 5:—1(4"’“‘“ - qu'”’))

= 0.
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This bounds the degree, for if A > 2vp, + 2 then

Vho
S(AR)=>_¢"S'(A—2r,m7"h)
r=0
by repeated application of Proposition 6.3, and the summand is
always zero since A > 2up, + 1 implies A — 21 > Vy-rpp + 1 for
T—_—-O,...,Vha.
The remaining case is A = vpp + 1. In this instance (6.4) becomes

S'(vho + 1, h) = g™ #ogn (Vho + 1)
1
_——— Z #U’Tn (Vhb + 1, _a2T[h’]).

g—1 A

a€o/p

v(a)=0

To simplify this expression, note that

#0'(vho + 1) = ¢ #0l (Vho + 1)

+ Y #opu(vwe +1,—a?T[]),

aco/p>
v(a)=0

obtained from #0'(vpy + 1) = S’ (vno +1,0) and analysis of S’ (v +
1,0) similar to the argument above. Combining these gives

SI(Uho -+ 1, h)
1
= =1 (q"h"“#a}” (Vho + 1) — #0' (Vo + 1))
1 —_— -
- P (tha+1q(n—2)Vha#ar}”(1) - q(n—l)"hb#al(l)) )

The expression for vy, = 0 follows since in this case the formulae
for S'(\, h) give

a(h,X)=S(0,h) + X + S'(1,h) X

1
=14 X+ (a#tor (D) - #o'(M)) X

=1+ — (a1 + #o7(D) - (1 + #TD) X

=1+ — (o#7r D) - #70) X,



372 JERRY SHURMAN

which completes the proof. (Il

DEFINITION. For n odd and h such that v(T[h']) = 0, define a
(=1)* 5 T[h'] det T
p

-1 !
Since det 7" = T[r']"'detT and (T—[%]—) = (@), when

Unp = 0 we get

quadratic character 6, by 6,(p) =

a(h, X)

1+¢2719(p)X if v(T[R']) = 0, n even
— 1— qn—lXZ ) ,

1+¢" 7 0,(p)X = if v(T[h']) = 0, n odd.

1—q"7 Ou(p) X
The value of a(h, X) when v(T[K]) > 0.

LEMMA. Fory € L, h € L', u € Z, the following equivalence
holds:

Th = aTy (mod p*0~'L) for some a € 07!
& (T(d,y) € p* = T(d, h) € p*o™" for alld € L).

Proof. =: If Th = aTy (mod p*d~'L) then T(d,h) = aT(d,y)
(mod p#0~!) for all d € L, hence T(d,y) € p* = aT(d,y) €
p“o~! = T(d,h) e p*o~ ! for all d € L.

<: If (Ty); € p* then setting d = e; (the i*! basis vector) gives

T(d,y) = (Ty); € p*, so T(d,h) = (Th); € p*0~L. At such 1,
(Th); = a(Ty); =0 (mod p*d~*) holds for any a € 071,
If (T'y); ¢ p*, setting d = w+(T¥)ie; gives

T(d,y) = ,n-#—"(Ty)i(Ty)i € p*,
so T(d, h) = m#~*T9):(Th); € p*0~ 1, showing v(Th); > v(Ty); — ve.
We may assume that (T'y); has the smallest valuation among the
(Ty); and define a = (Th) € 07L. (Th); = a(Ty): (mod p*o~?)

(Ty):
certainly holds. For ¢ # 1 such that (T'y); ¢ p*, set

d =TV ((Ty)T'er — (Ty); 'es) € L.




ORTHOGONAL EEISENSTEIN SERIES 373
T(d,y) =0 € p*, hence
T(d, h) — ,n.l/(Ty)i (a (Th) ) pua_

(Ty):

SO
ﬂ”(Ty)i

(Ty)

ie., (Th); = a(Ty); (mod p*o~1).
The relation now holds at all 7, showing that

a/TYig =

(Th); (mod p¥o7'),

Th = aTy (mod p¥o~'L). O
LEMMA.
T(y,h
SO =3 e (— @, )),
yer(Ah) 7T
where

T(A,h)={y€mlv(Th—aTy)Z 13] —VaforsomeaED‘l}.

Proof. Let,u—[ | and ¥ = A — p so that 2v > A. Foranyye

o(A) andd € L we have Tly+n"d] = 27T (y,d) (mod p*), showing
that a( )={y+n"d:y€o(}),de LT(y,d) € p*}. Projecting
mod p*, o) = {y+7*d : y € o(N),d € L/p*, T(y,d) € p*/p*}.
To avoid redundancy, take only y € o()A) (mod p“L). So

s = ¥, (-TUETA)

A
y€a(A) (mod p”L)
deL/p*
T(y.d)ep* /p*

- ()2 ()

d

The sum over d vanishes if there exists some d € L such that

T(y,d) € p* and ev( M) # 1, since it is then a nontrivial
character sum over a finite group. Such d exists if and only if
T(y,d) € p* # T(d,h) € p*0~'. So by the previous lemma, we
may sum only over y such that Th = aTy (mod p*0~1L) for some
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a € 07}, thus:
SOLK) = 5 . (_T(y+7; d,h))
y+n¥d: ™

y€o(A) (mod p¥L)
deL (mod p*)
T(y,d)€pH /p*
Th=aTy (mod p*0o~'L)
(for some a€d~1)

- 5 ().

y€T(Ah)

O

ProprosITION 6.9. If v(T[h]) > 0, a(h,X) is a polynomial
Kny(X) € QX] of degree less than 2(v' + 1 + 2upy + 1), where
V' = v(T[H]).

Proof. We will prove 7(A, h) is empty for A > 2(v' + 1 + 2vp +
V). Suppose y € 7()\,h). Then for some a € 07!, Th — aTy €
plzlo-1L c pW+420) [ je. Th = aTy (mod p*+1+2» ). Multi-
plying by 7! gives also h = ay (mod p*'+'*?» L), so 72+ T[h'] =
T[h] = a®T[y] (mod p”'+1*+2»). But since y € 7(\, k), a®*T[y] €
p o2 C pHVH1+2m) ¢ pY'+1+%m  giving the contradiction T[R'] €
pu’+l+2ua. 0O

Summary. We gather the results of this chapter.

THEOREM 6.10. For n even,

oy (hy, X)
(-6 0(p)) (1 - al0(p)X)
(1—-gr1x)~? if by = 0
(1 - ¢} 0 %) (1 - a20(p.)X)
= Gho(X) if Tlhy] =0
(1-df"00.)x) TR =0, o =0
Hh,v(X) Zf I/(T[hz)]) =0,vp, >0
| Kn,o(X) if v(T[h.]) > 0.
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For n odd,

oy (hy, X)

((1-gy7'X?)(1 - gpX*)~"

(1-gg7'X)™! if hy =0
(1-g'X?)(1- XQ) 'Ghp(X ) if T[hy] =0

(1= X% (1= a7 u(po) X ) if V(T[R,)) = 0, vy = 0
Hyo(X) if (TTR.]) = 0, vo > 0
| K (X) if v(T[R,)) > 0.

Recalling that a,(hy,s) = ay(hy, Xu(s)) for v € f, v 1 b, where
from before X,(s) = v(p,)"'q,*2, and taking the product over
such v gives,

THEOREM 6.11. For z = (2z,) = (zy + iy) € H®,

Bz 83k, , B) = (~1)%246+2) 3 g,y ) (ZTU )

heL’ vEa

with

a(h,y,s) = No™*2a4(h,y, s) ag(h, s),
where

aa(h,y,s) = [] E(Wos hos k + 5,5, T7);

veEa

for n even,
(6.5a)

-1

ag(h, s) = Ly (k +25+1— ‘723 9¢—1)

(Lo (& + 25— g,ow-l Lo(k+2s—n+1,97Y)  ifh=0
Ly (k+ 25— g By I  Gru(Xu(s) ifT[h =0
vtbivy (h)+vy, (0)>0
» Hpo(Xo(s))
51,
oy (T, =0, (1 — @& 0(py) Xy (5))
vy (h)+vy (0)>0 (X ( ))
K U v S .
B N A _h_l if T[h] #0
\ (1o o) X(9))
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and for n odd,

(6.5b)
as(h,s) = Le(2(k +25) —n+1,%7%)!
(Lo(2(k +25) —n, 9 ) Ly(k+2s —n+1,97")  fh=0
Lk+20)-ny?) I GholXuls) ifTIh =0
1 v{bivy (h)+vy (9)>0

1011.1)[)—1)

)
v+ (@)>0 (1 q:} 12? )(59)2)

.Hv{b:uv(T[hfv]po i 3_1 X, (5)7) if T[h] # 0.

.<Lbb(k+28—n

\

Here b = [lufow, (Tih,))=0, Po [ofow (iry >0 P, 0 and On are the quad-
vy (h)+vy(0)>0
ratic characters defined in this chapter, and Gy, ,, Hpy and Ky, are

the polynomials from Propositions 6.7,6.8 and 6.9.

7. E(z,s) at special values of s.

The order of a(h,y,s) at s = 0. For a discussion of near holo-
morphy and arithmeticity of a class of functions containing E(z, s)
the reader is referred to [Sh86], [Sh87], [B190], [Blpp]. As a special
case, we exhibit the Fourier expansion of E(z,s) at s = 0.

DEFINITION. For h € L' such that T'[h] # 0, define
ph=#{vea: h,eP,},
an=#{v€a:-h, €P},
rn=#{vea:Th,) <0}.

For nonzero h € L' with T[h] = 0, define
sh=#{vea:T"hye,) >0},

th=#{vea:T"hye,) <0}.

Defineb=#{vef:v|b}
Observe that p, + g + 7, = s, + tp = d, where d = [F' : Q], and
that b > 0.
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PROPOSITION 7.1. Forn even and k > n/2, Ly(k +2s+1 —
n/2,0¢y=')a(h,y, s) |s=o has a zero of order at least

(d -1, ifh=0andk=n/2+1,9=10
d, if h = 0 otherwise

qd+t, — 1, ifTh) =0 and k=n/2+ 1,9 =0
d, if T[h] = 0 otherwise

[ 2gn + Th, if T[h] # 0.

Forn odd and k > (n+1)/2, Le(2(k+25)+1—mn,%2)a(h,y, s) |s=o
has a zero of order at least

d-—1, ifh=0o0rThl]=0andk=(n+1)/2,¢4*=1
d, if h =0 or T[h] = 0 otherwise

gn+rn—1, ifT[A]#0and k= (n+1)/2,9 =0

qn + Th, if T[h] # 0 otherwise .

Proof. This is straightforward from examining the I'- and L-
factors that occur in a(h,y, s) |s=o. For example, consider the case
neven, k > n/2, h =0. A d—fold product of the archimedean factor
in (5.1) gives a zero of order 2d if k > n; dif n/2 < k < n; 0 if
k =mn/2. The term Lg(k —n/2,0%1) in (6.5a) gives a zero of order
Oifk>n/2+1lork=n/2+1,9p#60; -1ifk=n/2+1, ¢ =06,
d—1+b>difk=n/2,¢y=6;dif k =n/2, 19 # 6. And the term
Ly(k+1—n,0¢y) in (6.5a) gives a zero of order 0 unless k = n,
¥ =1; —=1if Kk =n, ¥ = 1. Combining these gives the result. The
other cases are simpler. O

COROLLARY 7.2. For n even and k > n/2, Le(k +2s + 1 —
n/2,0vV)a(h,y,s) |s=o is finite. It is nonzero only in the cases (a)
heP* b)) F=Q k=n/2+139 =80, T[h] =0, T(h,e) >0 or
h=0. =

Forn odd and k > (n+ 1)/2, ezcepting the case k = (n +1)/2,
¥ = 0y, for some h, Ly(2(k+2s) —n+1,%"2)a(h,y, s) |s=o is finite.
It is nonzero only in the cases (a) h € P%, (b) F =Q, k = (n+1)/2,
Y2 =1, T[h] = 0 or h = 0.
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The Fourier expansion of E(z,s) at s = 0. From Proposition
5.1 we obtain

aa(h,y,0) =(—=1)%2¢7 4 +1-DD (k) Tk + 1 — n/2) ¢
- [N(det T)|"2 N(T[h])*"%
e (Zvea T (1yw, hy)) if h € P4, Thus for n even, k > n/2, excepting

the case F =Q, k =n/2+ 1, ¢ = 0, specializing to s = 0 gives the
holomorphic function

(7.1)
L (k +2s41— g 91[)_1) E(z 5k, 1, b) |sz0

—d
= nd@+1-D)| N (det T)|"7 No~ 3 24*+1 (k) =T (k +1- g)

Y. N(T[h)*% Hpo (Y7 (90)g, ")

heL'npe vfbevy (TR, ])=0, (1 — Gzp‘l(pv)qu% "k~1)
vy (h)+vy(0)>0

-1 —k
. Kh’v(d) (p'v)g'u_k)_l [ (Z Tv(zva h’v)) 3
ofbivy (T[h,])>0 (1 — 0Y=1(p,) g7 ) v€a

with Fourier coefficients in 742¥+1=3)| N (det T')|~2Q(¢), where Q(¢))
is the extension of Q generated by values of .

In the case F = Q, k = n/2+ 1, ¥ = 0 our function also has
nonholomorphic terms at s = 0. Using Proposition 5.1 gives

(7.2)

Go(2 + 25)E (z, 5 g +1,0, b) lozo

= w3+l det T| "3 (1 - -’23) [1(1 —p7*)25-2

plb
n -1 n -
-r(§+1) L, (2—5,0) Tly]

+ 732 det T|~2 JJ(1 - p~1)25*'T (g + 1)
pib

> I Gup0@)p 2T 'T(y, k) e (T(2,k))

heL':T[h]=0, p{b:vp(h)>0
T'(h,e)>0

-1
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n 1 n n -1
+ 23| det T|"222 2T (5 + 1)

Hyp(0(p)p~277)
Z T[h] H ?1_ —2)
heL' NP ptbvp(T[hL))=0, p
" vp(h)>0

KnsO®P 27 o (75, ).
P’fbvp(l’-’:[[h 11)>0 (1-p72) e(T(z2,h))

Here the coefficient of T[y]~" in the h = 0 term is in 72+!| det T'|~2Q
and is nonzero only if n = 2 (mod 4); the coefficients of
Ty 'T(y,h)e(T(2,h)) in the T[h] = 0, T'(h,e) > 0 terms are
in 75+2|det T|~2Q; and the Fourier coefficients of the holomorphic
terms are in 72+3| det T|~2Q.

Similar calculations show that for n odd, £ > (n+1)/2, excepting
the case F = Q, k = (n+ 1)/2, ¥? = 1, specializing to s = 0 gives
the holomorphic function

(7.3)
Lo(2(k +2s) +1 —n, 9 2 E(z, 5;k,%,b) |s=0
d

— qd@k+1-3)p (k +1-— g) N(det T)]‘iNa‘izd(kH)I‘(k) —d
hEL’ﬂ'P“
Y. = 2(;J ) n— 2k 1)
Vv(h)+""(a)>0
K v -1 v
. i : h, (¥ (p Zq«;k y (ZTV (20, h )
v{b:uv(T[h;])>0( - (p )qv vEa

In this case the Fourier coefficients are in
7%= | N (det T)|2 N0~ Qu (¥),
where Q,;, denotes the maximal abelian extension of Q in C.

In the case F = Q, k = (n+1)/2, ¥? = 1, ¥ # 6 for all
h, our function again has nonholomorphic terms at s = 0. Let



380 JERRY SHURMAN

[ =lims Le((n+1)/2 —n+ 1+ 2s,9)/2s. Then
(7.4)

c,,(2+4s)E( ,"H

,8) lo=o

=3t det T| 2 I - p (1) 2T (n + )

plb

n—1\"1! n\ !
.T r(1-2 -
( 2 ) (1 2) Tyl
+ et T [(1 - p~ 12T (
plb

> I Grow®p T )Ty 2T (y, h)

heL':T[h]=0, ptb:vp(h)>0
T(he)>0

(N1

n-l—l)'1
2

Nh—-

e(T(z,h))

1
+ 773 +1]detT|" 2542 (n-}— )

2

Z T[h]%Lu,(l,eth) H Hh’p (’Q/)(p)p_T)

heL'nP plbevp(T[RL])=0, 1-p7?)
up(h)>0

n e (¥(p)p~#
plowy(Thyy>0 (L= P7)

) e(T(z,h)).

The residue of E(z, s) at special values of s. Analysis of (5.1)
and (6.5) shows that for n even, k = n/2 —1, s = 1, Ly(k + 2s +

1 —n/2,00p1)E(z, s; k,1,b) is finite unless 1 = 6, in which case it
has a simple pole and

(7.5)
Ress=1(s(25)E (z,s; g -1,0, b)

= 193+D|N(det T)|" ¥ No~ 3243 -'T ’21)

: Res,=1(b(a)T[y]‘d{2‘dLb (2 - go)

+ ) [I Guo(6G)a®)e (ZT(zv, )}

heL':T[h]=0, wvtb:v,(h>0) v€a
T (hv,e4)>0,v€Ea
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Similarly for n odd, £k = (n — 1)/2, s = 1/2, excluding the case
¥ = 6y, for some h, Ly(2(k +25) + 1 —n,v~2)E(z, s; k, 1, b) is finite
unless 12 = 1, in which case it has a simple pole and

(7.6)

Res,12Co(45)E (2,5 2=, 1, b
/ 2

_ —d
= n¥3+D|N(det T)| "7 No~324"7 2T (g) Reso=10s(0)

-T[yr%{r"Lb (-2 g )

S T G (vea ) e (ST w))}

heL':T[h]=0, vfb:vy(h>0) vEa

T?(hy £v)>0,0€0

In (7.5) and (7.6), multiplying the residue by T[y]*¢ gives a holo-
morphic function.

[B190]

[Blpp]

[In]

[Sh80]
[Sh82]

[Sh83)
[Shs6]

[Sh87]
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has a simple pole and
(7.5)
Ress—1(p(25)E (z, s; g— -1,6, b)

1 nNdR 4
= G *D|N(det T)["2No~ %2957 (%)
: Res,,ZICb(O)T[y]'d{ 27"Ly (2 B g 0)

s et )e(gren))

heL":T[h]=0, wvfbiwy(h>0) vEa
T (hu )E’U)>07v€a

Similarly for n odd, ¥ = (n — 1)/2, s = 1/2, excluding the case
¥ = ), for some h, Ly(2(k +25) +1 —n,v~2)E(z, s; k, 1, b) is finite
unless 1?2 = 1, in which case it has a simple pole and

(76)
n—1
Res,=i/2Go(45)E (2,5 5=, ,b)

1 n n— —d
= 743+ N (det T~ No~ 3 245 -2 (g) Resy—1G5(0)

T[y]-%{ iy (2- 22 )

Z H Gh,'u (¢(pv E ) (Z Tv z’ua ) }
heL"T[h]=0, wvtb:vy(h>0) vea
TY(hv,ev)>0,v€a

In (7.5) and (7.6), multiplying the residue by T'[y]*¢ gives a holo-
morphic function.
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