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FOURIER COEFFICIENTS OF AN ORTHOGONAL
EISENSTEIN SERIES

JERRY SHURMAN

This paper defines a nonholomorphic Έisenstein series
for a totally real algebraic number field F and the spe-
cial orthogonal group with respect to a bilinear form

S = ( o -l j , where T G Mn(F) and its embedded im-
ages Tv G Mn(E) under archimedean places υ of F have
signature (l,n — 1). This group has an associated product
of tube domains Ήa = Y[veaΉvi the product taken over
archimedean places of F and each Ήv C O1. The series is
denoted E(z,s;k,ψ,b) or simply E(z,s), with z G Ήα, s G C
a complex parameter, k G Z the weight, ψ a Hecke char-
acter on the ideles of F, and the level b an integral ideal
in F. E has the Fourier expansion

E(z,a) = (-l)*2W> Σ α(h,y,a)e

where d = [F : Q], V is the lattice dual to o£ under T,
e(x) = e 2 π i x , and z = (xυ + iyυ)veα € Ήβ. The Fourier
coefficient α(h,y,s) is the product (Nd)~%αα(h,y,s)αf(h,s)
with iVς) the norm of the different of F over Q. The
archimedean factor is αα(h,y,s) = ΓLeαf(2Λ>)̂ v;& 4- s,s;Tv)
with f a certain confluent hyper geometric function stud-
ied by Shimura. The nonarchimedean factor o/(Λ, s) is
essentially a product and quotient of Hecke L-functions,
depending on the parity of n and the nature of h. Spe-
cializing to s = 0 gives holomorphic and in special cases
nearly holomorphic behavior.

1. Introduction and notation.

Introduction. This paper defines an Eisenstein series E(z, s) of

weight k for z in a tube domain and s a complex parameter, and

computes its Fourier expansion explicitly. The series is of interest

as a special case of the nearly holomorphic functions studied by

Shimura and Bluher.

345



346 JERRY SHURMAN

Section 2 describes the action of a subgroup of the adelization
of a certain orthogonal group on an associated complex domain.
A tube domain % is associated to a bilinear form S of signature
(2, n) on R n + 2 , and the identity component of SO(5, R), the special
orthogonal group over R with respect to £, acts on %. Take a
totally real algebraic number field F, a symmetric matrix 5 all of
whose embedded images Sv in Mn+2(K) under archimedean places
v of F have signature (2, n), and the algebraic group G = SO(S, F).
Then G A + , a suitable subgroup of the adelization of G, acts on Ή β ,
a product of tube domains Ή,v over the archimedean places v of F.

Section 3 defines an Eisenstein series E(z,s) for z € Ήa and
s € C, and shows that it has a Fourier expansion. The series agrees
with a series studied by Indik in the case F = Q. E(z, s) has an
associated series E(y,s) for y in a certain subset of CΓA+ Har-
monic analysis gives a Fourier expansion of E(y, s) with coefficients
δ(Λ, wy,s), where h runs through a lattice in Fn and wy depends on
y = Im(z). This transforms back to a Fourier expansion of E(z, s).

Section 4 expresses the global Fourier coefficient α(/ι, y, s) of
E(z, s) as a simple factor multiplied by a product of local coeffi-
cents αυ(Λ, y, s), the product being taken over all places of F. For
archimedean v, αv(/ι, y, 5) is equal to a certain confluent hypergeo-
metric function f studied by Shimura.

Section 5 continues to study the local coefficients of E(z, s). The
coefficients at finite places υ dividing b (where b, an integral ideal
of JF, is the level of E(z, s)) are equal to 1. The coefficients at finite
places υ not dividing b are power series otυ(hυ, X) = Σ\ Sυ(λj hv)Xx

evaluated at certain values of X, where the coefficients 5υ(λ, hυ) are
sums of exponentials.

Section 6 expresses the power series aυ(hυ, X) as a simple rational
expression of Euler factors of Hecke L-functions, which depend on
the τ -adic nature of the lattice vector h. In some cases aυ(hv,X)
is not expressed precisely, but then it is a polynomial of bounded
degree. Taking the product of av(hv^X) over finite places υ not di-
viding b expresses the finite part of α(/ι, y, s) as essentially a product
and quotient of Hecke L-functions. Thus the Fourier coefficients of
E(zj s) are explicit expressions in well understood functions, up to
some polynomial factors. The methods in this section are from In-
dik.
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Section 7 specializes the Eisenstein series to s = 0 to obtain holo-
morphic and in special cases nearly holomorphic behavior. Also, for
certain values of k and s, E(z, s) is either finite or exhibits a simple
pole with residue that is holomorphic up to a factor.

My warmest thanks to Goro Shimura for suggesting this problem
as a Ph.D thesis and for all his generous help as my advisor.

Notation. Z, Q, R, C, and T denote the integers, the rational,
real and complex numbers, and the unit circle {z G C : \z\ = 1}.
For an associative ring A with identity, A* denotes the group of in-
vertible elements of A. When A is commutative, Mn(A) denotes the
ring of n-by-n matrices with entries in A, GLn(R) means Mn(i2)*,
and SLn(R) denotes the elements of GLn(R) with determinant 1.

( — ) denotes the Jacobi symbol, and for x G R, [̂ J denotes the

greatest integer n such that n < x.

2. Archimedean and adelic preliminaries.

The quadratic forms T and S and the complex domain
U. Let n > 2 be an integer, and let T, a symmetric element of
Mn(R), define a quadratic form of signature (1, n — 1) on Rn. Write
Γ(x, y) = ιxTy and T[x] = Γ(x, x) for x, y G C 1 . Set

(2.1) S =

defining a quadratic form of signature (2,n) on R n + 2 , and write
S(x, y) = ιxSy, S[x] = S(x, x) for x, y € C1*2.

Fix ε e Rn such that Γ[ε] = 1. Define a set V of "positive"
elements in Rn by

V = {yeW : T[y] > 0 and f(y, ε) > 0 }

and a complex domain Ή. by

U = {z = x + iy eC1 :y eV}.

V and Ή. are connected.
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The action of SO(5,R)° on U. Let Q = SO(S,R)°, where "°
denotes the identity component and

SO (5, R ) = { « £ SLn+2(R) : ιaSa =

Thus for x,y e Cn + 2 and a eQ, S(ax, ay) = S(x, y) and S[ax] =

S[x].

I z \
For z e C", define w(z) = \T[z] XS <Ξ C" + 2 . Any S-isotropic

V i )
w G C n + 2 with bottom entry 1 is of this form. If z G 7ί and a G
Q then { Re(aw(z)), lm(aw(z)) } forms an orthogonal basis { u, υ }
(with S[u] = S[v]) of a subspace in R n + 2 where S is positive definite.
Set j(a, z) = aw{z)n+2-, which is nonzero, and define a(z) G O 1 by
(2.2) w(a(z)) = j(α, z)~ιaw{z).

Since j(α, z)~ιaw(z) is 5-isotropic and has bottom entry 1, such an
a{z) indeed exists.

To show that a(z) G U, first note that 0 < T[Im(a(z))] =
S[lm(w(a(z)))] follows from (2.2) and the properties of {u ,v} .
Also, T(Im(α(z)),ε) > 0: because T(Im(a(z))^ε) can not vanish
as T is negative definite on { x G Rn : T(x, ε) = 0 } but positive at
Im(α(z)), it suffices to show T(Im(α(z)),ε) > 0 for one a from the
connected group £?, and taking a — In+2 completes the proof.

Not all of SO(5, R) acts on U because while Q fixes U and -U,
the other component interchanges them. Taking a = (In _/2 J, so
that a(z) = —z, shows this. From (2.2), the action of Q on %
is associative and j is a factor of automorphy. The action is well
known to be transitive.

The field F and the group G. Let F denote a totally real
algebraic number field of degree d, oF the ring of algebraic integers
in F, and a = { vu . . . , vd } the set of archimedean places of F. Each
v G α is an embedding v : F ^ R. Take T a symmetric element of
MU{OF) such that Tv defines a form of signature (1, n — 1) on Rn for
each v G α. Define 5 as in (2.1), so that the Sυ for all t> G a define
forms of signature (2, n). For each υ G o take an ε v G Rn such that
Tυ[ευ] = 1. Set

, F) = { α G SLn + 2(F) : }
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The action of G A + on Ha. Let / and a denote the set of nonar-
chimedean and archimedean places of F, respectively. For v G / U α
denote by Fv the ^-completion of F and, if v G /, by oυ the ^-closure
of Op in Fυ] if υ G α, identify Fυ with R. Denote the adeles and
ideles of F as F A and FA and identify F with its embedded images
in F A and Fv for any v. F/ denotes the adeles (aυ)υefUa such that
aυ = 0 for v £ /, Fa is defined similarly, and 0/ denotes the elements
of Ff such that αυ G oυ for all i> G /; Fjf, F^ and o^ are the similarly
defined subgroups of FA. The image of OF in Rd under x \-^ (xv)υea
is a lattice Λ of volume (Nd)ΐ, where iV denotes the norm from F
to Q and 0 denotes the different of F over Q.

Define G v to be the ^-completion of G for υ G / U α . Thus if
Ϊ; G α, Gυ can be identified with SO(5V,M). Take the adelization
G A of G; put G/ = Π v € / GυnGA,Ga = ΓWα Gυ. Identify G with
its embedded image in G A and the same convention holds for other
groups defined below. For x G G A define x/ G G/ and xa G GΛ by
x = XfXa. Define

GA-f = { x G G A : xυ G 80(5^, R)° for all υ G α }

and Gα+ = Gα Π G A + , G+ = G Π G A +

For each v G α, let Ή v be the complex domain of the previous
section associated to Tυ and ευ. Denote Uυea^υ as Ή β and define
the action of Gβ+ on %a componentwise. The action extends to
G A + by defining x G G A + to act as xa.

3. The Eisenstein series E(z,s\k,φ,b) and its Fourier ex-
pansion.

The series E on %a. Fix an integer k. Take a Hecke char-
acter φ : F£ -> T (V>(F*) = 1) with ^(α) = ΓLeαSgn^)* for
α 6 Fβ*; let c denote the finite part of its conductor, φv the v-
component of φ, and φL = Y\υ\L φv for any integral ideal i. Let
b C F be an integral ideal divisible by c, by 2, and by det-T.
Define U = {u e F n + 2 : S[u] = 0 } , and for u G U, z G Ha, set

= YlveaSυ(uυ,wυ(z)), where ^ ( z ) - \\Tυ[zv) . Our
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Eisenstein series is defined as follows:

E{z,s;k,φ,b)

{u, w(z))-h\S(u, w(z))\-2s

for z G Ήa and s 6 C , where (u, t) ~ {u\ t') means that for some
b e F*, v! = bu and t'oF = b"ιtoF (so that ί' = ebjH with e G oj).
Here c : F£ + 2 —> C is the locally constant function

( \ — /^(^n+2), if ^/ ^ o^+2 and xn + 2 is prime to b
CyX j — \

10, otherwise.
This series is also denoted simply E(z) or E(z, s).
E is readily seen to be well-defined. The series converges for

sufficiently large Re(s) and has an analytic continuation, as shown
in [Sh80]. In the special case F = Q, E reduces to the series studied
by Indik in [In].

Transformation of E. Define subgroups of C?A+ by

ί ί
PA = { 7 e GA+ : 7 = * *

C = \[Cυ, where Cυ = < .
V I stabilizer of zεw if v € α;

: 7 Ξ [ * * I (mod b) \
Oe

and Γ0(b) C G+ by

7 G G+ Π SO(5, oF) : 7 = * * I (mod b) ^.
Vo 0 dΊJ

For 7 G GA+ and z eHa define

= i(7, z)*|j(7, ̂ )i2s where .7(7,«) = JJ j(7β, zυ),
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The relation J{aβ,z) = J(a,βz)J(β,z) holds for all a,β e GA+,
and the same relation holds for Jψ when oc,β€ DGa+.

For 7 6 Γ0(b) and z € Ha one easily verifies that

) = Jφ{Ί,z)E{z).

If, in particular,

7 £ Γ0(b) (Ί N,wheτeN = { (*11) : b <Ξ F n } ,

then 6 G o£, 7(2;) = z + b, and ^ ( 7 , z) = 1. Thus, E(z + b) = E(z)
for b € o£.

The series E on G+DGa+. Define E(y, s) for y € G+DGa+ and
s € C by

for y — ax with cv € G+, x e DGa+.

Here iε means (iευ)υ e o 6 Ήa. E(y, s) is well defined. Denote this
series also E(y). Then

E(ayw) = E(y)Jφ(w,iε)~1 for aeG+,y£ G+DGa+, w E D.

To write E explicitly, first note that

S(u, w(x(iε))) = j(x, iε)~1S(x~1u, w(iε)).

So for a e G+, x e DGa+,

E(ax)

= Σ c{tu)ψ(t)-1\t\k+2sJ(x,iε)S(χ-1u,w(iε))-k

(u,t)

= Σ c(χ-1tu)φ(t)-1\t\k+2sS(χ-ιu, w(iε))-k
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The Fourier expansions of E and E. Let V = Fn and VA =
£. For x,y G VA define a complex number χ(T(a:,y)):

χ(T(x,y))=
vefua

= Π ep(ϊτrF,/Q,(Γ(a:(Mifo))) Π e{Tv{xυ,yv)),

where v \ p, ep(t) = β(the fractional part of — t) for t G Qp, and
e( 5) = e2™ for 5 G C. Define

r(v) = (J 1 ) € G+L>Gα+foπ; G VA(r(t;) € G+2X7α+

since υ = T;7 + w with τ;; G V, w G Π/ o^ x F^1), and fix a Haar
measure μ on VA. SO that μiYx/V) = 1.

Consider E(τ(v)w) with v G VA and w G Gβ^ as a function on
V ^ T h e n for u G V, E(τ(v + u)w) = 25(τ(ti)τ(t;)iι;) = ^(τ(v)tι ),
so E is a function on Vχ/V. This gives the expansion

v, ft)) for v G F A , w G G α + ,

-T(v, h))dμ(v) for ft G V.

Define lattices L = 0^ C V and Lυ = o£ C K for v G / . For
u G Lu, E(τ(υ + u)w) = E(τ(υ)wτ(u)) = E(τ(v)w)Jψ(τ(u),iε)~~ι =
E(r(t;)iϋ). Hence b(h,w,s) = JB€vA/v%(« + i iKί)χ(-Γ(t; +
u,h))dμ(υ) = χ(—T(u,h))b(h,w,s)] this shows that b(h,w,s) φ 0
only when χ(—T(ιz, ft)) = 1, i.e., when h e Lf with L ; = the dual
lattice to L under T, defined by 1/ = {ft G V : T(ft,L) C 0" 1 },
where D is the different of F over Q. Thus,

E(τ(υ)w, β) =

where

6(ft, ty, 5) = /

E(τ(υ)w, s)= w, s)χ{T(v, ft))for v

To express this on Wa for z = (zυ)υea with zυ = xυ + iyv, put

y = (wvv)υea w i t h
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w h e r e A v ε υ = yv/y/Tυ[yυ) a n d Tv(Avx,Aυy) = Tυ(x,y) for x , y G

Rn, so that Wyυ(iευ) = z ^ and hence wy(iε) = iy. Then

E(z,s) = E(τ(x)wy,s)Jψ(τ(x)wy,iε)

= E(r(x)wy, s)J{wy, zε),

so

4. Fourier coefficients of E1: reduction to the local case.

The coefficient b(h}w^s). For h G 11 and x + iy G Ή α we
have b(h,wy,s) = /^vλ/y £(r(v)tί;y,s)χ(-T(t;,Λ))dμ(t;). Choosing
representatives ?; of VA/V such that T(Ϊ ) G DG α gives

5((τ(ί;K)-V^(iε))|"Sχ(-Γ(ί;»)|ίi^)

If u n + 2 = 0 then ((r(x)iί;2/)~1ί?x)n+2 = 0 at / since (τ(x)wy)f G P A

So normalize u n + 2 = 1 and sum over | (w(υ'), t) : v' G V, t G Fj/o*f | .

This gives

&(/&,Wj,,s)

~ c((r(V)^)-1to(t;/))
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=LΛ^Λ<W(V'-V)'W(K)^
• 5(tϋ~1w;(ϋ/-u),iϋ(ίε))|

• Σ c{tw-ιw{v'- vί)ψ{tyι\t\k+2s

•χ{-T{v-v\h))\dμ{υ)

= J^ \s(w~ιw{υ),w{iεj) \s(wylw{υ),w{iε))\

• Σ c{tw{υ))ψ(t)-'\t\k+2sχ{T{v,h)))dμ{v)

= I \s(w(v),j(wy,iε)w(iy)) s(w(v),j(wy,iε)w(iy))\
JvevA { ' N '

• Σ c{tw{v))ψ{t)-ι\t\k+2sχ{T{υ,h))\dμ{v)
t€F;/o) )

= J{wy,iε)-1 J \s{w(υ),w(iyγj \s(w(υ),w(iy))\

• £ c(Mv))m-1\tlk+2'x(T(v,h)))dμ(υ).
teF-j/o) )

LEMMA. S(w(υ),w(iy)) = ( - | ) Ta[-v + iy], where d = [F : Q]

and Ta[x] = Uvea Tυ[xυ] for xeVA.

Proof. Immediate from

fTv \ ί iyυ \
S(w(υ),w(iy)) = Π (% hT*[vv] l) 0-1 \V\iyv) .

vz* V - i 0/ V 1 J
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This gives

, wy, s)

L ]~k \T[v + iy]\~2sTa[-v + iy]~k \Ta[-υ + iy}\"s σ(υ, s)χ(T(υ, h))dμ{v)
evA

• / Ta[v + iy]~k \T[v + iy]\-2s

where

/ Ta[v + iy]~k \Ta[v + iy]\-2s σ(v, *)χ(-Γ(t;, h))dμ(υ),

σ(x,s)= Σ c(tw{x))ψ{t)~ι\t\k+2sϊoτxeVA,seC.
t€Ff/o*f

The sum σ(x, s). For x e VA and v € / define a local ideal
Lυ(xυ) C oυ by iv{xv) = piv(χ\ where pv is the maximal ideal of
oυ and iυ(x) — — mini<i<n+2 { vv(w{x)i)} with ^v the normalized
ΐ -adic valuation on Fv. LV(XV) is integral since w(xυ)n+2 = 1? and
^(^υ) = oυ for almost all v.

The product ideal (̂x) = Uυef Lυ(^v) C 0/ is such that ίiί (x) e
o^+2 for t 6 F/ if and only if t G ι(x). Thus c(ίtϋ(x)) ^ 0 if
and only if t e t(x) and (tw(x))n+2 = ί is prime to b, in which case
c(ί-u;(x)) = ψb(t) and the summand of σ(x, s) is Πυ€/ k

υ\b

Thus

f
v\b

t υ

(The sum is empty if L(X) is nontrivial at b.) This has the Euler
product expansion σ(x, s) = Π^e/ σv(χv, ^)5 where

(^ υ), if v I b

Here ^^(a;̂ ) = 1 if x G Lυ (so that ^(a;,,) = (>„), 0 if xυ £ Lυ (so that
ι>vM Φ ov).



356 JERRY SHURMAN

The local coefficient aυ(h, y, s). We now have for z = (zυ)
(xυ + iyυ) 6 Ήa,

E(z,s) = (_i) r f*2^+ 2^ XJ a(h,y,s)e
heu

where

= ί Ta[x + iy]~k \Ta[x + iy]\~2s σ{x, s)χ(-T(x, h))dμ{x\
JχevAJχevA

with

Ta[x + iy] = Y[ Tv[xυ + iyυ], σ(x, s) = Π σv(xυ, s),
vEa υef

χ{-T{x, h)) = Π eυ{-T{xυ, hy)), dμ(x) = cμ JJdμ v(x v),
V

where μ(VA/V) = 1, μ = cμ Uυ V>v> μv(Lυ) = 1 for v G /, and /iυ is
Euclidean measure on Rn for υ e a; these determine cμ = Nd~n/2.
So

where for υ e a,

aυ(h,y,s)

= ί Tv[x + iyυ]-k \Tυ[x + iyυ]\-2s e(-Tv(x, hυ))dμv(x)
Jχevv

Tυ[x + iyυ]-k-sTυ[x - iyυ]-se(-Tυ(x, hυ))dμυ(x)

with ξ the confluent hypergeometric function studied by Shimura

in [Sh82]. For v e /, the local coefficient does not depend on y

and so may be denoted aυ{h,s). Setting qυ = Ip^l"1 and Xυ(s) —

ΦiPv^Qv1"'23 gives

aυ(h,s)

= / συ(x,s)eυ(-T(x,hv))dμυ(x)
Jχevv

1/ δυ(xv)eυ(-T(x,hυ))dμυ(x) if ^ | b

(1 - XΛs))-1 / Xυ(sY^ ev(-T(x, hv))dμυ(x) if υ \ b.
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5. Local Fourier coefficients of E.

The archimedean coefficient ξ(yυ, hv\ k + s,s; Tv). In [Sh82],
Shimura defines the functions

, h) α, β T)= I T[x + iy}~aT[x - iy}^e(-T(x, h))dx,
JeRn

where y € V, h e Rn, (a,β) 6 C2, T defines a form of signature
( l , n - l ) onRn; and

η*(y,h;a,β;T)

= T[y]a+β-τ f T[x + h)a-^T[x - h]β-τe-τ^dx,
JχeQ(h)

where Q(h) = { i 6 R " : x±h € P }. Both integrals converge when
Re(a) > n/2 - 1, Re(β) > n/2 - 1. He defines

|detT|h-2Ω-2^Γ(α - ψ)

•δ+(hy)ι-a+r^*Λhy)χ-

IdetT\h-2a-2βΓ(a + β- ty

α + β- f )

-heV

T[h]<

T[h} =

T(ε,h)

T[h} =

T(ε,h)

0

o,
> 0

o,
< 0

where ε is as in section 2 and

ΓB(s) = IdetTI-h^-^t-^^Γ (s - I +

δ+(hy) = the product of all positive roots to

\2 -2T(y,h)λ + T[y]T[h} = 0,

δ-(hy) = δ+((-h)y), δ(hy) = δ+(hy)δ.(hy);
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and proves the relation

(5.1)

ξ(y,h;k + s,s;T)

= I det T\-ϊ(-l)k2n-2k-4sT{y]τ-k-2sω(2πy, h k + s, s; T)

%, heV

2 2 ί + 1π 2 ί + 1-t Γ(s)"1Γ(s + 1 - f)-ιδ-{hy)s-τ, -heV

- 1 " a P , T[h] < 0

2s - 2 )Γ(k + s)" 1 T(ε,/ι)>0

Γ(s)-χΓ(A; + s + 1 - f )-M+(%) fc+s-f, Γ[A] = 0,

2s - § )Γ(fc + s)" 1 T(e,Λ)<0

Γ(s)"1Γ(s + 1 - f )-15_(%)s-f, Γ[Λ] = 0,

2τrf+1Γ(A; + 2s - § )Γ(A + 2s + 1 - n)Γ(Λ + s)" 1

•r(s)-xr(A; + s + 1 - f)~1Γ(s + 1 - f ) - \ Λ = 0.

The main result of [Sh82] is that ω can be continued as a holomor-
phic function in (a, β) to C 2 . Thus, zeros and poles of ξ can be read
off from the previous equation.

The next result will be used in Section 7.

PROPOSITION 5.1. (a) ω(2πy,h;a,0;T) = 2~ne(T(iy,h)) if h €
V;
(b) ω(2πy,h;a,0;T) = ω(2πy,h;n/2,β) = 2~1-nπn/2-ιe(T(iy,h))
ifT[h] = 0, T(h,ε) > 0;
(c)ω(2πy,0;a,β;T) = l.

Proof, (a) and part of (b) are shown in [Sh82, 4.35.IV]. The
remainder of (b) follows from [Sh82, 4.12.IV, 4.29, 3.15], where m,
n there are n, n — 2 here, respectively, (c) is [Sh82, 4.9]. D

The finite coefficient aυ(h,s) for υ | b. For υ | b,

aυ(h,s)- / δυ(x)eυ(-T(x,hυ))dμυ(x)
Jχ£Vv

= J eυ(-T(x, hυ))dμυ(x) = J dμv(x) = 1.
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Thus

aυ(h,s) = 1 if v I b.

The finite coefficient av(h, s) for v \ b. For v \ b,

aυ(h,s) = (1 - ^ ( s ) ) "

Since the integrand is invariant under x ι-> x + / for / G Lv, this is

MMHα-X^s))-1 Σ ^(t(l)ev(-T(i,

Σ

Now sum by by parts, £A=O OÂ A = ΣA=O A\(bχ-bχ+ί)+Avbv, where

λ=0 x€Vυ/Lv

t v(x)=λ

= ΣΪ=Qcij. Letting αλ = Σ*evv/L, ev{-T{x,hυ)), bx = Xυ(s)
iv(χ)=X

gives

λ

χev«/L»
w(χ)ePς

xoΐ+2

and 6A — ί»A+i = (1 ~ A" υ (s))X υ (s) λ . Hence

λ=o χevυ/Lυ

iv(x)=X

v(Khv)) +Xυ(s)"Sυ{v,hΌ).
\λ=0

The last term goes to 0 as v —> oo when Re(A; + 2s) > n, giving

aυ(h, s) = αv(/ι,,, Xv(s)) if υ | b

where aυ(hv,X) is the power series

λ=0
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The exponential sum Sυ(λ,hυ). Let τrv generate the maximal
ideal pυ of oυ, and let y — π*x. Summing over y's, the set of
summation for Sυ(λ,hυ) becomes

y e Vυ/pΪLυ: \κ e

= [y 6 Lυ/px

vLυ : \τ[y) 6 pή .

Since 2 | b and υ \ b the \ is irrelevant, so the sum is

Sυ{λ,hυ)=

This is independent of the choice of πυ since the set being summed
over is stable under multiplication by units.

6. The power series aυ(hυ,X).

Definitions. The methods in this section are from Indik [In].
From now on all work is local at a fixed place υ \ b (so that

v \ 2 det T), and υ's will be suppressed in the notation; for example,
F, V, L, o, p and D now denote the local objects F v , Vυ, LVJ oυ, pv

and Vυ (the local different of Fυ over Qp). Locally Γ " 1 is integral;
so for y €V, v(Ty) = u(y) and hence V = ΪP 1 !/ . To study the sum
5(λ, /i), begin with some definitions.

Extend the ?;-adic valuation v on F to a function also called v on
^ b y

v(x) = min { Wα )̂ } , for x EV.

For λ > 0 and a 6 o define the sets

σ(λ,α) = {y € L : T[y] = a (mod pΛ) } ,

σ'(λ,a) = {y e σ(λ,a) : v(y) = 0},

^{λ^={ye L/pxL : T[y] = a (mod pλ) } ,

σ'(λ,α) = {2/ G σ(λ,α) : i/(y) = 0}.

When a = 0, write σ(λ) for σ(λ, α) and so on. We will sometimes
use the sets σ(λ, α), . . . defined as above but for forms R other than
T, in which case they are denoted σ#(λ, α), etc.
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Extend the definition of S to

S(λ, h) =

0 if h £ L',

and define

( T(y h)\
T — I for h G L1',

i.e., just sum over primitive vectors.
Recall that q = \p\~λ = #(o/p).

PROPOSITION 6.1. For symmetric R G Mn(o/p) defining a non-
degenerate bilinear form on (o/p)n,

n__ ((-lyUetBλ .
p L[q — 1) I I if n is even

0 if n is

Proof. This is a standard textbook exercise.

Recurrence formula for #σ'(λ, a). Fix λ > 1 and a e o, and
recall that v f 2.

LEMMA. For y e σ^λjα), ίΛere exists d € L 5nc/i ί/mί

)j G o* for some i, so take di = ^(Ty)'1 and dj = 0 fori. Π

L E M M A . Forv e σ ' ( λ + l , o ) , # { / € L / p L : T ( υ , l ) ep} = qn-1.

Proof. (Ty)i € o* for some i; consequently T(w, /) G p if and only
if Zi = (Tv)'1 ( - Σ j ^iίΓt JjZj) + A; with k e p. This determines the

value of Zj (mod p) once the lj for j φ i have been chosen. D

PROPOSITION 6.2. #σ'(λ + l,a) = qn-ι#σ'(\,a). Conse-
quently, #σ'(λ,o) = 9<n-1)<λ-1)#σ'(l,o) /or λ > 1, αnrf ίΛis t oZue
depends only on a (mod p).

Proof. Let ττ^+1 : L/px+1L -)• L/pΛL be the natural map. We will
show that τr^+1 : σ'(λ + 1, α) —̂  σ'(λ, α) is surjective with multiplic-
ity qn-\
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Construct a function φ : σ'(λ, a) —> σ'{\ + 1, a) as follows: Choose
any lifting, denoted ~, from L/pχL to L. Given y G σ'(λ,α), there
exists d e L such that T(y,d) = | , by the first lemma. Take

= y + (α-T[i/])d (mod p λ + 1 L). Then T[φ(y)] = α (mod p λ + 1 )
πλ+i

is easy to check. Thus σ'(λ, a) —̂-» σ'(λ + 1, α) -̂ -> σ'(λ, α), and the
composite is the identity since φ(y) = ?/ (mod p λ L). This shows
that τr^+1 : σ'(λ + 1, a) —> σ;(λ, a) is surjective.

For v e σ'(λ + l,α) and v# G L/px+ιL, π$+1(vf) - π^+ 1(v) if
and only if v; = v + τrλ/ for some / G L/pL, in which case T[ι/] =
α + 2πλT(υ, I) (mod p λ + 1 ) . This shows that v' G σ'(λ + l,α) if and
only if T{v, I) e p. The number of I satisfying this is qn~~ι by the
second lemma, so τr^+1 : σ ;(λ + l,α) —> σ'(λ,α) has multiplicity
q71"1, proving the proposition. D

Recurrence formula for 5(λ,/ι).

L E M M A . σ ( λ ) = σ ' ( λ ) U pσ(λ — 2) for X>2, a disjoint union.

Proof. σ(λ) D cr'(λ) and σ(λ) D pσ(λ — 2) are clear, as is dis-
jointness. Let y G σ(λ) — crf(λ). Then y = πx for some x G L,
and π2T[x] = Γ[y] G p λ shows that T[x] G p λ ~ 2 , i.e., x G σ(λ -
2). D

PROPOSITION 6.3. S(λ,h) = S'(\,h) + qnS(λ-2,h/π) for X > 2
and h G V.

Proof.

yepσ(X-2)
(mod p λL)

by the lemma, so we need to evaluate this last sum, which is equal
to

/ T(y,h)\ call q

e A ) = s
yeσ(\-2) V /Γ /

(mod p λ " 1 ^

The set σ(λ - 2) (mod px~λL) is stable under translation by any-
πλ-2 / e p λ - 2 L S o
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If - G L' then
π

(
(mod p λ - J £ )

If — ^ Z/ then T(L,h/π) <£ 0"1, so for some I € L we have

Tr(T(l,h/π)) <£ Zp, giving eυ(-T(l,h/π)) φ 1, whence 5 = 0.
Thus S^λ, Λ) = 5'(λ, h) + gnS(λ - 2, h/π) in all cases. D

COROLLARY 6.4. S{\ΰ) - gnS(λ - 2,0) = ^ - D ί A - i ) ^ / ^ ) for
λ > 2. Equivalent^, #σ(λ) - ρ n #σ(λ - 2) = ? ( n ) ( )

Proo/.

, 0) - qnS(λ - 2,0) = S'(λ, 0) = #^(λ) = ς ( n

by the previous proposition. D

The value of a(h, X) when h = 0.

PROPOSITION 6.5.

Proof Since 5(λ, 0) - qnS(λ -2,0) = 9^- 1)( λ- 1)#σ'(l) for λ > 2,

(l-qnX2)ΣS(λ,0)Xλ

λ=o

= 1 + 5(1,0) + f)(5(λ, 0) - ς"5(λ - 2,0))X
λ=2

oo

= 1 + φσ(l)X

and since #σ(l) = 1 + #σ'(l), this is

= l + x
λ=l

l-qn~ιX'
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The result follows easily. D

DEFINITION. For n even, define a quadratic character θ by

This gives for n even # σ ( l ) — qn~ι — q^~ι(q — l)#(p), so in the
proposition the numerator becomes {\ + q*θ{p)X){l — q%~ιθ(p)X),
and the denominator, (l + qϊθ(p)X)(l-qiθ(p)X)(l-qn-1X). For
n odd, # σ ( l ) - qn~ι = 0. Thus,

a(h,X) =

- q2"ιθ(p)X ., , n

— ^ ^ — if h = 0, n even
1 — an X
nV'2{,-, _n-i^Λ if Λ = 0, n odd.(1 - qnX2)(l-qn-ιX)

Formula for S.

DEFINITION. Let i/d = z/(0), the valuation of the different.

PROPOSITION 6.6. For a set σ C L/pxL such that uσ = σ for all

σ : ϊ/(T(y, Λ)) = A - v* -

Proof. We may assume A > 1. Let U\ = o*/pλ = o/pλ - p/p λ,
with φUx = qλ- q*-1 = qχ-ι{q - 1). Then

y u \ /( /

( T(uy,h)

Since the sums over o/pλ and o/px~ι are character sums over finite

groups, and since — - — ^ - 6 0" 1 for all u if and only if v(T(y, h)) >
7ΓΛ
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λ — i/0, the inner sums yield

r0 if i/(Γ(y, h)) < λ - u* - 1

" 1 if u(

-qχ-1 if

so

π λ

=(qx - qχ-χ)φ {yeσ: i/(T(y, Λ)) > λ - i* }

- ^ " ^ { V € σ : i/(Γ(y, ft)) = λ - i* - 1 } ,

giving the result. D

This shows that the coefficients of the power series aυ(h, X) are
elements of Q.

T h e value of α(Λ, X) when T[h] = 0. Now assume that T[h] =
0, /ι ?έ 0.

D E F I N I T I O N . Given a nonzero he U, define i / ^ e Z and ti e L
by h = π"hh!, where i/̂  = v(h) > —v^ and v(h!) = 0. Further define

Vh* = Vh + D̂ > 0.

There is an xo G L such that T(x0, h!) = 1; then setting x = rr0 —
lT[xo]h' gives T[x] = T[Λ;] = 0, Γ(ar, Λ') = 1, and L = o/ι/ + ox + W,
where VF = { w G L : T(tι;, h!) = T(tι;, x) = 0 }. Define T' = T\w.

PROPOSITION 6.7. For α nonzero he V such that T[h] = 0,

"V'*?-'1-; — -i __ o

n χ 2

where

ί=o 1 — q X

Proof. For y = ahf + bx+ w e L, T[y] = 2α6 + T[ti;], so y e σ(λ)
if and only if T[tι;] = -2ab (mod p λ ) . Given it; G W7pλW and
6 G o/pλ, there is an α G o/pλ such that T[w] = -2α6 (mod p λ ) if
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and only if v(T[w]) > 1/(6), in which case there are q

min(χM^)) such
values a. Proposition 6.6 says,

S(λ, ir"oti) = # { y G ̂ (λ) : ι/(T(j/, h')) > λ - i/Λ0 }

(6.1) - ^ - # { y € ϊfλj : i/(T(y, h')) = λ - ι^ - 1} .

Setting M = max(0, λ — z^0) one finds that the first term of (6.1) is

# { δ € θ/pλ : 1/(6) = m } # { σ r (m) (mod pxL) } 9

m

= Σ

= Σ qλq{n~m~m)ihAm) - Σ qχ-ιq(n

m—M m=M

Σ g
m=M+l

Σ ?(n

Σ <7 ( n~2 ) ( λ~m )Δ(m) + 9

λ

9 ( n - 2 ) λ if A <
ΎΠ-\

λ

if λ > i/Λ0,

where Δ(m) = φστ {m) - qn-z#σT'(m - I). The second term of
(6.1) is 0 when λ < i//,5, and is

- 1 V # { 6 € o/pλ: i / ( 6 ) = λ - ̂  -
-i/ f c 0 -l) (modpλL)}
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when λ > i//tf. So

(6.2)

if λ > Z//ιD

m=\-vhxs

Now, Δ(m) satisfies

A(m + 2)-qn-2A(m)

- 1))

= #σ^,(m + 2) - qn-3#σ'τ,(m + 1)

= 0,

by Corollary 6.4 and Proposition 6.2 with T" in place of T. This
shows that for λ > Uho,

+ 2,h)-qnS(λ,h)
λ+2

_ qλ+2 (n-2)(λ+2-m}Δ(m)
m=λ-i/Λi)+2

λ

y q qκ

m=λ—V

λ

Σ q{n~2){X~m) (Δ(m + 2) - 9

n

= 0.

So for i/Λ5 = 0,

λ=0

5(1, - 9 n < S > ( λ - 2 >
λ=2
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giving the result in this case, as the relations #σj* (2) = qn~2φστ> (0)
+ 9 n " 3 # ( 4 / ( l ) and #σ T /(l) = #σ^,(l) + l show that the coefficient
of X 2 is — g71"1. Also when uhΌ = 0, (6.2) shows that

λ=0 m=l

so that

m=l

For general uhd, the same formula gives

(6.3)

Σ(qX)x

λ=l \m=l

"hi* λ

)X + Σ ( ^ ) λ Σ 9(n

λ=0 λ=l m-l
oo λ

+ Σ (iχ)λ Σ ?(n

m=λ—ί/^o

1 — (on~ιXYh*
The first sum in (6.3) is ^—n-\v The second sum is

1 — q Λ

m=\ X=m

rn=l 1 9 -Λ

The third sum is

Σ (<rx*)λ

λ=z//ιD-|-l

oo

+ Σ 9"m("-2)Δ(m)
\=m
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which splits into

m=l I q Λ

m __ (an-lvyhl)+l

r̂  1
m=l I q Λ

= Σ Δ(

and

The total is thus

/ oo

a(h,X)=[l+ΣA(m)(qX)
m=l / \ 1 ~~ Qn~

Λ n - 1 v2

l-qnX2

which completes the proof of the proposition. D

For n even, observe that since

and the first factor becomes

1 + q*-2(q - l)θ(p)qX - qn'

(1 + q?θ(p)X)(l - q%θ(p)X)

1 n—1 y 2

For n odd the first factor becomes ——^ n % . Thus,
1 — Q Ji.

—g" Λ n. (v\ ifT[Λ]=0, nodd.
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The value of a(h,X) when v(T[ti]) = 0.

PROPOSITION 6.8. For h e II such that v(T[h']) = 0, a(h,X)
is a polynomial HhiV(X) € Q[X] of degree < 2(vhυ + 1). // vhΌ = 0
then

a(h, X) =

T" = T\w, with W = {w € L : T(w,h) = 0}.

Proof. We will compute S'(λ,h) for all values of λ. For λ <
S'(λ,h) = φσ'(λ) is clear. Suppose now that λ > I//J0 + 1. Any

y € σ(λ) takes the form y = ah' + w, where a — ' ., , w G W,
T\h'\

T[w] = -α2Γ[/ι'] (mod p λ ), and v(y) = 0 if and only if 1/(10) = 0.
For ί > 0, i = v(T(y, h)) = v{T{ah', π"Λ/ι')) = "(<*>) + υh if and only
if v{a) =1 — Uh Thus by Proposition 6.6,

(6-4)

S"(λ, h) = # { y € σ'(λ) : i/(Γ(y, Λ)) > λ - ί/0 }

- - 4 γ # { y 6 ̂ (λ) : i/(Γ(y, Λ)) = λ - v* - 1 }

= Σ #{weσ'τ,,(λ,-a*T[h>})}
aeo/px

4 #{weσ'τ,,{λ,-a>T[h>})}.
^ αeo/p

i/(α)=λ-i//ι0-l

Since λ > v^x, + 1, v{o?) > 0 in both sums. By Proposition 6.2, the
set cardinalities depend only on a?T[h'] (mod p), which is 0, so for
λ > vhX) + 1,

S'(λ, h) = φo^AXjU { a € θ/pλ : v{a) > λ - uhΰ }

e °/Pλ : "(o) = λ - "«• - 1 } )

= 0.
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This bounds the degree, for if λ > 2vhυ + 2 then

S(λ, h) = Σ qnrS'(λ - 2r, π~rh)
r=0

by repeated application of Proposition 6.3, and the summand is
always zero since λ > 2I/ΛJ, + 1 implies λ — 2r > vn~

rh,x> + 1 for
r = 0 , . . . , χ/A 0.

The remaining case is λ = v^ + 1 . In this instance (6.4) becomes

5"(i/ΛD + 1, Λ) = qUhΏφσ'τl{uh1) + 1)

- - Γ T Σ #<>7
q A e/pλ

i/(α)=O

To simplify this expression, note that

i/(α)=0

obtained from #σ'(i//ιa + 1) = S"(i/ 0̂ +1,0) and analysis of S'(ι>hD +
1,0) similar to the argument above. Combining these gives

1))

q —

The expression for Vhτ> = 0 follows since in this case the formulae
for S'(λ, h) give

a(h, X) = 5(0, h) + X + 5'(1, h)X
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which completes the proof. D

DEFINITION. For n odd and h such that v(T[h']) = 0, define a

quadratic character θh by 0/>(p) = I - — — I.

V J /
Since detΓ" = T[h'}~1 detT and CΏΆlλ = /Ί&-1Y when

= 0 we get

if v{T[h'}) = 0, n even

if v{T[h>\) = 0, n odd.

The value of a(h, X) when u(T[h']) > 0.

LEMMA. For y E L, h £ L', μ E Z, the following equivalence
holds:

Th = aTy (mod pμ1>-ιL) for some a e 0" 1

<*> (T(d, y)epμ=ϊ T(d, h) e p ^ - 1 for all d 6 L) .

Proof. =•: If TΛ = αΓy (mod p^~lL) then T(d,Λ) = aT{d,y)
1) for all d e L, hence T(d,y) E pμ => aT(d,y) E
( d ; Λj G ^ - i for a l l d € L

-ί=: If (Γί/)i G p μ then setting rf = e* (the zth basis vector) gives
T(d,j/) = (Ty)i € p", so T(d,h) = (Th)i E pμQ~ι. At such i,
(Th)i = a(Ty)i = 0 (mod p ^ " 1 ) holds for any a ED'1.

If (Ty)i $ pμ, setting d = πμ-^Ty^ei gives

so T(d, Λ) = τΐμ-^Ty^{Th)i E p"D-\ showing i/(ΓΛ)i > ι/(
We may assume that (Ty)χ has the smallest valuation among the

(Ty)i and define a = ^ ψ - G 0"1. (ΓΛ)i = a{Ty)x (mod
(Γ2/)i

certainly holds. For i φ 1 such that (Ty)j ^ pμ, set

d = π ̂ ^ίίTy):^! - (Ty)?*) E L.
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T(d, y) = 0e pμ, hence

so

^ ^ (mod

i.e., (Th)i = a(Ty)i (mod p ^ " 1 ) .
The relation now holds at all i, showing that

Th = aTy (mod p^L). D
LEMMA.

S(X,h)= £ cj T(V'hΆt
yeτ(λ,h) V π /

where

r(λ,h) = {y e σ(X) : u(Th - aTy) > [|J - Vj, for some a G 0" 1 } .

Proof. Let μ = [|J and u = λ — μ so that 2z/ > λ. For any y G
σ(λ) and d G Z, we have Γ ^ + π ^ d ] = 2πvT(y, d) (mod p λ ), showing
that σ(Λ) = { y + π"d:y G σ(Λ), d G L, T(y, cί) G p μ }. Projecting
mod p λ , σ(λ) = {y + π'd y e σ(λ), d G L/p\ T(y, d) G p μ /p λ }.
To avoid redundancy, take only y G σ(λ) (mod p"L). So

,h)=
j/6σ(λ) (mod p"L)

T(d,hY

The sum over rf vanishes if there exists some d e L such thatt
T(y,d) € pμ and e v ί — ^ ^ ) ^ 1, since it is then a nontrivial
character sum over a finite group. Such d exists if and only if
T(y,d) 6 p μ ^ T(d,/i) e p^O"1. So by the previous lemma, we
may sum only over y such that Th = aTy (mod p^i)"1!/) for some
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a e O"1, thus:

y+π'd:
yeσ(X) (mod ρ"L)

deL (mod p*4)

Th=aTy (mod
(for some α

T(y,h)
π λ

PROPOSITION 6.9. //ι^(T[Λ']) > 0, a(h,X) is a polynomial
Khυ(X) e <Q{X] of degree less than 2{v' + 1 + 2uh0 + v0), where

Proof. We will prove τ(λ,h) is empty for λ > 2{y' + 1 + 2uhJ3 +
vϋ). Suppose y G τ(λ,/ι). Then for some a 6 f""1, TΛ — αΓy e
p ί t J o - 1 ^ C p("'+i+2"»)L, i.e., Th = αΓt/ (mod p ^ + ^ L ) . Multi-
plying by Γ- 1 gives also h = ay (mod pt/'+1+2"°L), so τr2^T[h'} =
T[h] = α2Γ[ι/] (mod p" ' + 1 + 2 ι / a ) . But since ?/ e r(λ,Λ), α2Γ[y] €
pλδ-2 c p2( /+i+2ι^,) c p^+i+2^β j g i v i n g t h e contradiction T[Λ'] €

'+1+2 •

Summary. We gather the results of this chapter.

THEOREM 6.10. For n even,

aυ(hυ,X)

(1 - qt'θip^X) (l - qlθ(pυ)xj
- 1

if K =
(1 - q}~Xθ{pv)X) (l - q!θ(pυ)

GhίV(X) ifT[hv} = 0

(l - qt'θip^ if v{T[h'υ)) = 0, uhΰ = 0

Hh,υ{X) ifv(T[h'v}) = 0,vhΰ>0

if u(τ[h'υ}) > o.
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For n odd,

av(hv,X)

ifhυ = o

v : , ι ifT[hv] = 0

(1 - q^X2) (l - q^θMXy1 ifu(T[h'υ\) = 0, vhi> = 0

Hh,υ(X) ifv(T[tiυ})=0,vhϋ>0
Kh,υ{X) if v(T[h'v]) > 0.

Recalling that aυ(hυ,s) = aυ(hυ,Xυ(s)) for v G /, v \ b, where
from before Xυ(s) = ψ{pv)~ιQϋk~2si a n ( l taking the product over
such v gives,

THEOREM 6.11. For z = (zυ) = (xυ + iyυ) e Ή,a,

with
o(/ι, y, 5) = Nΐ)-n/2aa(h, y, s) af{h, s),

where
, y, s) = jQ ^(yυ, /iw; k + s,s; Tv);

for n even,

(6.5a)

af(h, s) = Lb (k + 2s + 1 - | , ^V"1

+ 2s - ^ , ^ " Λ Lb(A; + 2s - n + 1, ψ~ι) if h = 0

+ 2s - | , 0V"1
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and for n odd,

(6.5b)

af{h, s) = Lb{2(k + 2s) - n + 1, φ~2)~ι

'Lb(2(k + 2s) - n, ψ~2)Lb(k + 2s-n + l,φ~ι) ifh = O
-2s)-n,φ-2) Π Gh,υ(Xv{a)) ifT[h} =

v\b:ι>υ(h)+vv(*)>0

Hh%υ(Xυ(s))
] n (

KhiV(Xυ(s))
• IlφVυ(T[h'v))>0 (1 . qn-iχv(s)

2) f [ J ^

i ϊ e r e ϊ) = Πvfb:I/υ(τ[/ι/j)=o, Pt; Πntίι:i/w(Γ[Λς])>o Pv, θ and θh are the quad-
( h ) ( )

ratio characters defined in this chapter, and Gh,v, Hhyv
 and KhiV are

the polynomials from Propositions 6.7,6.8 and 6.9.

7. E(z, s) at special values of s.

The order of α(/ι, y, s) at s = 0. For a discussion of near holo-
morphy and arithmeticity of a class of functions containing E(z, s)
the reader is referred to [Sh86], [Sh87], [B190], [Blpp]. As a special
case, we exhibit the Fourier expansion of E(z, s) at s = 0.

DEFINITION. For h e Lf such that T[h] Φ 0, define

rh = #{vea:Tυ[hv}<0}.

For nonzero h G 1/ with T[h] = 0, define

sh = φ{vea:Tv(hυ,ευ)>0},

th = φ{υea:Tυ(hv,ευ)<0}.

Define b = # { υ € / : υ \b}.

Observe that ph + qπ + /̂ι = s/ι + th = d, where d = [F : Q], and

that b > 0.



ORTHOGONAL EEISENSTEIN SERIES 377

PROPOSITION 7.1. For n even and k > n/2, Lb(k + 2s + 1 -
n/2,θφ~ι)a(h, y,s) | 5 = 0 has a zero of order at least

d - 1, ifh = O and k = n/2 + 1, φ = θ

d, if h = 0 otherwise

d + t Λ - l , ifT[h] = 0 and k = n/2 + l , ^ = 0

d, z/ Γ[Λ] = 0 otherwise

Forn odd and k > (n + l)/2 ; Lb(2(A: + 25) + l - n , ' 0 " 2 ) β ( ^ y J 5 ) | β = 0

α zero o/ order at least

- 1 , i/Λ = 0 orT[Λ] = 0 and jfc = (n

if h — Q or T[h] = 0 otherwise

+ rh- 1, z/T[/ι] ^ 0 and A; = (n

+ r/ι, ^/r[/i] / 0 otherwise .

This is straightforward from examining the Γ- and L-
factors that occur in a(h,y,s) \s=0. For example, consider the case
n even, k > n/2, h = 0. A d-fold product of the archimedean factor
in (5.1) gives a zero of order 2d if k > n; d if n/2 < k < n; 0 if
& = n/2. The term Lb(A: — n/2,0^~1) in (6.5a) gives a zero of order
0 if Jfc > π/2 + 1 or k = n/2 + 1, ^ ^ 0; - 1 if k = n/2 + 1, ^ = 0;
d - l + 6>difA; = n/2, φ = θ]difk = n/2, ^ 7̂  0. And the term
Lb(k + 1 — n,θφ~ι) in (6.5a) gives a zero of order 0 unless k = n,
φ = I; —l'ιΐk = n,φ = l. Combining these gives the result. The
other cases are simpler. D

COROLLARY 7.2. For n even and k > n/2, Lb(k + 2s + 1 -
n/2,θφ~1)a(h,y,s) \s=o is finite. It is nonzero only in the cases (a)
h e Va, (b) F = Q, k = n/2 + 1 ^ - 0, Γ[Λ] = 0, T(Λ,ε) > 0 or
Λ = 0.

For n odd and k > (n + \)/2, excepting the case k = (n + l)/2 ;

Φ = θh for some h, Lb(2(k + 2s) — n + 1, φ~2)a(h, y, s) \s=0 is finite.
It is nonzero only in the cases (a) h G Va, (b) F = Q, k — (n+l)/2,
^ 2 = l ; τ[Λ] = 0 or h = 0.
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The Fourier expansion of E(z, s) at s = 0. Prom Proposition
5.1 we obtain

α.(Λ, y, 0) = (_i)^2V( 2 f e + 1 -t)Γ(Jk)- d Γ(ϋ; + 1 - n/2)~d

\N(detT)\-τN(T[h])k-τ

e (Σvea Tυ(iyυ, K)) if h G Va. Thus for n even, A; > n/2, excepting
the case F = Q, A; = n/2 + 1, φ = θ, specializing to s = 0 gives the
holomorphic function

(7.1)

Lb (k + 2s + 1 - | , # - χ ) ^(2, s; *, V, b) U=o

d r (jfe + 1 - ^

H h Λ r l { P v ) q \ ]Σ m r ππ , n\:uυ(τ[h v))=Q, 1 - θφ-1(pυ)q^
(h)+vυ(ϋ)>0 \

π

v\b MT[h>υ])>o ί 1 - θψ-ι(pv)qυ

2 )

with Fourier coefficients in τrd(2fc+1~f} |AT(det T) |""ϊQ(^), where Q(ψ)
is the extension of Q generated by values of ψ.

In the case F = Q, fc = n/2 + 1, >̂ = 0 our function also has
nonholomorphic terms at 5 = 0. Using Proposition 5.1 gives

(7.2)

P|b

n x - 1

L+2|detΓ|-t

Σ Π Gh>p{θ{p)pι'^)T[y)~ιT{y,h)e(T{z,h))
[]

T(Λ,ε)>0
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-1

Σ τ[h) Π
heL'ΠV p\b:vP(T[h'p])=0, ^ P '

ι/p(Λ)>0

• Π y

Here the coefficient of T[y]~ι in the h = 0 term is in τrt+ 1 | detT|~^Q
and is nonzero only if n = 2 (mod 4); the coefficients of
r[y]-1T(?/,/i)e(T(z,/i)) in the T[Λ] = 0, T(Λ,e) > 0 terms are
in τrt+2 | detT|"2Q; and the Fourier coefficients of the holomorphic
terms are in τrt+3| detT|~2(Q).

Similar calculations show that for n odd, k > (n + l)/2, excepting
the case F = Q, A: = (n + l)/2, /02 = 1? specializing to 5 = 0 gives
the holomorphic function

(7.3)
Lb(2(k + 2s) + 1 - n, ψ-2)E(z, s; k, φ, b) \s=0

-f )Γ ^ |

U * (* - ^ A i Γ 1

In this case the Fourier coefficients are in

where Qab denotes the maximal abelian extension of Q in C
In the case F = Q, k = (n + l)/2, φ2 = 1, φ φ θh for all

h, our function again has nonholomorphic terms at s = 0. Let
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/ = liπwo Lb((n + l)/2 - n + 1 + 2s, ψ)/2s. Then

(7.4)

Idet:

p|6

- 1

Σ Π
/ιei':T[/ι]=O, ptb:i/

Γ(Λ,e)>0

i/p(Λ)>0

Π _Ό-2)

The residue of E(z, s) at special values of s. Analysis of (5.1)
and (6.5) shows that for n even, k = n/2 — 1, s = 1, Lt,(A; + 2s +
1 — n/2, θψ~ι)E(z, s; fc, t/», b) is finite unless ψ = θ, in which case it
has a simple pole and

(7.5)

Ress=1ζb(2s)E(z,s;~l,θ,b)

h-^f, (2 - l

Π G

heL':T[h]=Oy v\b:v
Tv(hv,εv)>O,vea
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Similarly for n odd, k = (n — l)/2, s = 1/2, excluding the case
ψ = Qh for some h, L^(2{k + 2s) + 1 — ra, ψ~2)E(z, s; k, ψ, b) is finite
unless φ2 = 1, in which case it has a simple pole and

(7.6)

C ( 4 ) £ (z, s;(z

^j^Resσ=1ζb(σ)

In (7.5) and (7.6), multiplying the residue by T[y]sd gives a holo-
morphic function.
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has a simple pole and

(7.5)

Resσ=1ζb(σ)T[y}-4 2~dLb (2 - ^,

+ Σ Π Gh
heL':T[h}=:0, υ\b:vv(h>0)

Tυ{hυ,εv)>0,veα

Similarly for n odd, k = (n — l)/2, s = 1/2, excluding the case
Ψ = θh for some /z, Lb(2(k + 2s) + 1 — n, ψ~2)E(z, S] k, Ψ, b) is finite
unless T/;2 = 1, in which case it has a simple pole and

(7.6)

Ress=1/2Cb(4s)£ (z, s; ^ — , ψ, bj

-d

Σ Π
hEL':T[h]=0, υ\b'Mυ

Tv{hv,εv)>O,v<Ξα

In (7.5) and (7.6), multiplying the residue by T[y]sd gives a holo-
morphic function.
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