FOURIER COEFFICIENTS OF AN ORTHOGONAL EISENSTEIN SERIES

Jerry Shurman

This paper defines a nonholomorphic Eisenstein series for a totally real algebraic number field F and the special orthogonal group with respect to a bilinear form $S=\left(\begin{array}{rrr}T & 0 & -1 \\ & -1 & 0\end{array}\right)$, where $T \in M_{n}(F)$ and its embedded images $T^{v} \in M_{n}(\mathbb{R})$ under archimedean places v of F have signature ($1, n-1$). This group has an associated product of tube domains $\mathcal{H}^{a}=\prod_{v \in a} \mathcal{H}_{v}$, the product taken over archimedean places of F and each $\mathcal{H}_{v} \subset \mathbb{C}^{n}$. The series is denoted $E(z, s ; k, \psi, \mathfrak{b})$ or simply $E(z, s)$, with $z \in \mathcal{H}^{a}, s \in \mathbb{C}$ a complex parameter, $k \in \mathbb{Z}$ the weight, ψ a Hecke character on the ideles of F, and the level \mathfrak{b} an integral ideal in F. E has the Fourier expansion

$$
E(z, s)=(-1)^{d k} 2^{d(k+2 s)} \sum_{h \in L^{\prime}} a(h, y, s) e\left(\sum_{v \in a} T^{v}\left(x_{v}, h_{v}\right)\right),
$$

where $d=[F: \mathbb{Q}], L^{\prime}$ is the lattice dual to o_{F}^{n} under T, $\boldsymbol{e}(x)=e^{2 \pi i x}$, and $z=\left(x_{v}+i y_{v}\right)_{v \in a} \in \mathcal{H}^{a}$. The Fourier coefficient $a(h, y, s)$ is the product $(N \mathfrak{d})^{-\frac{n}{2}} a_{a}(h, y, s) a_{f}(h, s)$ with $N \mathfrak{d}$ the norm of the different of F over \mathbb{Q}. The archimedean factor is $a_{\boldsymbol{a}}(h, y, s)=\prod_{v \in \boldsymbol{a}} \xi\left(y_{v}, h_{v} ; k+s, s ; T^{v}\right)$ with ξ a certain confluent hypergeometric function studied by Shimura. The nonarchimedean factor $a_{f}(h, s)$ is essentially a product and quotient of Hecke L-functions, depending on the parity of n and the nature of h. Specializing to $s=0$ gives holomorphic and in special cases nearly holomorphic behavior.

1. Introduction and notation.

Introduction. This paper defines an Eisenstein series $E(z, s)$ of weight k for z in a tube domain and s a complex parameter, and computes its Fourier expansion explicitly. The series is of interest as a special case of the nearly holomorphic functions studied by Shimura and Bluher.

Section 2 describes the action of a subgroup of the adelization of a certain orthogonal group on an associated complex domain. A tube domain \mathcal{H} is associated to a bilinear form S of signature $(2, n)$ on \mathbb{R}^{n+2}, and the identity component of $\mathrm{SO}(S, \mathbb{R})$, the special orthogonal group over \mathbb{R} with respect to S, acts on \mathcal{H}. Take a totally real algebraic number field F, a symmetric matrix S all of whose embedded images S^{v} in $\mathrm{M}_{n+2}(\mathbb{R})$ under archimedean places v of F have signature $(2, n)$, and the algebraic group $G=\mathrm{SO}(S, F)$. Then $G_{\mathbf{A +}+}$, a suitable subgroup of the adelization of G, acts on \mathcal{H}^{a}, a product of tube domains \mathcal{H}_{v} over the archimedean places v of F.

Section 3 defines an Eisenstein series $E(z, s)$ for $z \in \mathcal{H}^{a}$ and $s \in \mathbb{C}$, and shows that it has a Fourier expansion. The series agrees with a series studied by Indik in the case $F=\mathbb{Q}$. $E(z, s)$ has an associated series $\tilde{E}(y, s)$ for y in a certain subset of $G_{\mathbf{A}+\text {. Har- }}$ monic analysis gives a Fourier expansion of $\tilde{E}(y, s)$ with coefficients $b\left(h, w_{y}, s\right)$, where h runs through a lattice in F^{n} and w_{y} depends on $y=\operatorname{Im}(z)$. This transforms back to a Fourier expansion of $E(z, s)$.

Section 4 expresses the global Fourier coefficient $a(h, y, s)$ of $E(z, s)$ as a simple factor multiplied by a product of local coefficents $a_{v}(h, y, s)$, the product being taken over all places of F. For archimedean $v, a_{v}(h, y, s)$ is equal to a certain confluent hypergeometric function ξ studied by Shimura.

Section 5 continues to study the local coefficients of $E(z, s)$. The coefficients at finite places v dividing \mathfrak{b} (where \mathfrak{b}, an integral ideal of F, is the level of $E(z, s)$) are equal to 1 . The coefficients at finite places v not dividing \mathfrak{b} are power series $\alpha_{v}\left(h_{v}, X\right)=\sum_{\lambda} S_{v}\left(\lambda, h_{v}\right) X^{\lambda}$ evaluated at certain values of X, where the coefficients $S_{v}\left(\lambda, h_{v}\right)$ are sums of exponentials.

Section 6 expresses the power series $\alpha_{v}\left(h_{v}, X\right)$ as a simple rational expression of Euler factors of Hecke L-functions, which depend on the v-adic nature of the lattice vector h. In some cases $\alpha_{v}\left(h_{v}, X\right)$ is not expressed precisely, but then it is a polynomial of bounded degree. Taking the product of $\alpha_{v}\left(h_{v}, X\right)$ over finite places v not dividing \mathfrak{b} expresses the finite part of $a(h, y, s)$ as essentially a product and quotient of Hecke L-functions. Thus the Fourier coefficients of $E(z, s)$ are explicit expressions in well understood functions, up to some polynomial factors. The methods in this section are from Indik.

Section 7 specializes the Eisenstein series to $s=0$ to obtain holomorphic and in special cases nearly holomorphic behavior. Also, for certain values of k and $s, E(z, s)$ is either finite or exhibits a simple pole with residue that is holomorphic up to a factor.

My warmest thanks to Goro Shimura for suggesting this problem as a Ph.D thesis and for all his generous help as my advisor.

Notation. $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$, and \mathbf{T} denote the integers, the rational, real and complex numbers, and the unit circle $\{z \in \mathbb{C}:|z|=1\}$. For an associative ring A with identity, A^{*} denotes the group of invertible elements of A. When A is commutative, $\mathrm{M}_{n}(A)$ denotes the ring of n-by- n matrices with entries in $A, \mathrm{GL}_{n}(R)$ means $\mathrm{M}_{n}(R)^{*}$, and $\mathrm{SL}_{n}(R)$ denotes the elements of $\mathrm{GL}_{n}(R)$ with determinant 1. $(-)$ denotes the Jacobi symbol, and for $x \in \mathbb{R},\lfloor x\rfloor$ denotes the greatest integer n such that $n<x$.

2. Archimedean and adelic preliminaries.

The quadratic forms T and S and the complex domain \mathcal{H}. Let $n>2$ be an integer, and let T, a symmetric element of $M_{n}(\mathbb{R})$, define a quadratic form of signature $(1, n-1)$ on \mathbb{R}^{n}. Write $T(x, y)={ }^{t} x T y$ and $T[x]=T(x, x)$ for $x, y \in \mathbb{C}^{n}$. Set

$$
S=\left(\begin{array}{rrr}
T & & \tag{2.1}\\
& 0 & -1 \\
& -1 & 0
\end{array}\right)
$$

defining a quadratic form of signature $(2, n)$ on \mathbb{R}^{n+2}, and write $S(x, y)={ }^{t} x S y, S[x]=S(x, x)$ for $x, y \in \mathbb{C}^{n+2}$.

Fix $\varepsilon \in \mathbb{R}^{n}$ such that $T[\varepsilon]=1$. Define a set \mathcal{P} of "positive" elements in \mathbb{R}^{n} by

$$
\mathcal{P}=\left\{y \in \mathbb{R}^{n}: T[y]>0 \text { and } T(y, \varepsilon)>0\right\}
$$

and a complex domain \mathcal{H} by

$$
\mathcal{H}=\left\{z=x+i y \in \mathbb{C}^{n}: y \in \mathcal{P}\right\}
$$

\mathcal{P} and \mathcal{H} are connected.

The action of $\operatorname{SO}(S, \mathbb{R})^{\circ}$ on \mathcal{H}. Let $\mathcal{G}=\mathrm{SO}(S, \mathbb{R})^{\circ}$, where """ denotes the identity component and

$$
\mathrm{SO}(S, \mathbb{R})=\left\{\alpha \in \mathrm{SL}_{n+2}(\mathbb{R}):^{t} \alpha S \alpha=S\right\}
$$

Thus for $x, y \in \mathbb{C}^{n+2}$ and $\alpha \in \mathcal{G}, S(\alpha x, \alpha y)=S(x, y)$ and $S[\alpha x]=$ $S[x]$.
For $z \in \mathbb{C}^{n}$, define $w(z)=\left(\begin{array}{c}z \\ \frac{1}{2} T[z] \\ 1\end{array}\right) X S \in \mathbb{C}^{n+2}$. Any S-isotropic $w \in \mathbb{C}^{n+2}$ with bottom entry 1 is of this form. If $z \in \mathcal{H}$ and $\alpha \in$ \mathcal{G} then $\{\operatorname{Re}(\alpha w(z)), \operatorname{Im}(\alpha w(z))\}$ forms an orthogonal basis $\{u, v\}$ (with $S[u]=S[v]$) of a subspace in \mathbb{R}^{n+2} where S is positive definite. Set $j(\alpha, z)=\alpha w(z)_{n+2}$, which is nonzero, and define $\alpha(z) \in \mathbb{C}^{n}$ by

$$
\begin{equation*}
w(\alpha(z))=j(\alpha, z)^{-1} \alpha w(z) . \tag{2.2}
\end{equation*}
$$

Since $j(\alpha, z)^{-1} \alpha w(z)$ is S-isotropic and has bottom entry 1 , such an $\alpha(z)$ indeed exists.

To show that $\alpha(z) \in \mathcal{H}$, first note that $0<T[\operatorname{Im}(\alpha(z))]=$ $S[\operatorname{Im}(w(\alpha(z)))]$ follows from (2.2) and the properties of $\{u, v\}$. Also, $T(\operatorname{Im}(\alpha(z)), \varepsilon)>0$: because $T(\operatorname{Im}(\alpha(z)), \varepsilon)$ can not vanish as T is negative definite on $\left\{x \in \mathbb{R}^{n}: T(x, \varepsilon)=0\right\}$ but positive at $\operatorname{Im}(\alpha(z))$, it suffices to show $T(\operatorname{Im}(\alpha(z)), \varepsilon)>0$ for one α from the connected group \mathcal{G}, and taking $\alpha=I_{n+2}$ completes the proof.

Not all of $\mathrm{SO}(S, \mathbb{R})$ acts on \mathcal{H} because while \mathcal{G} fixes \mathcal{H} and $-\mathcal{H}$, the other component interchanges them. Taking $\alpha=\left({ }^{I_{n}}-I_{2}\right)$, so that $\alpha(z)=-z$, shows this. From (2.2), the action of \mathcal{G} on \mathcal{H} is associative and j is a factor of automorphy. The action is well known to be transitive.

The field F and the group G. Let F denote a totally real algebraic number field of degree d, \boldsymbol{o}_{F} the ring of algebraic integers in F, and $\boldsymbol{a}=\left\{v_{1}, \ldots, v_{d}\right\}$ the set of archimedean places of F. Each $v \in \boldsymbol{a}$ is an embedding $v: F \hookrightarrow \mathbb{R}$. Take T a symmetric element of $M_{n}\left(\mathfrak{o}_{F}\right)$ such that T^{v} defines a form of signature $(1, n-1)$ on \mathbb{R}^{n} for each $v \in \boldsymbol{a}$. Define S as in (2.1), so that the S^{v} for all $v \in \boldsymbol{a}$ define forms of signature $(2, n)$. For each $v \in \boldsymbol{a}$ take an $\varepsilon_{v} \in \mathbb{R}^{n}$ such that $T^{v}\left[\varepsilon_{v}\right]=1$. Set

$$
G=\mathrm{SO}(S, F)=\left\{\alpha \in \mathrm{SL}_{n+2}(F):^{t} \alpha S \alpha=S\right\}
$$

The action of $G_{\mathbf{A +}}$ on \mathcal{H}^{a}. Let \boldsymbol{f} and \boldsymbol{a} denote the set of nonarchimedean and archimedean places of F, respectively. For $v \in \boldsymbol{f} \cup \boldsymbol{a}$ denote by F_{v} the v-completion of F and, if $v \in \boldsymbol{f}$, by \mathfrak{o}_{v} the v-closure of \mathfrak{o}_{F} in F_{v}; if $v \in \boldsymbol{a}$, identify F_{v} with \mathbb{R}. Denote the adeles and ideles of F as $F_{\mathbf{A}}$ and $F_{\mathbf{A}}^{*}$ and identify F with its embedded images in F_{A} and F_{v} for any $v . F_{f}$ denotes the adeles $\left(a_{v}\right)_{v \in f \cup a}$ such that $a_{v}=0$ for $v \notin \boldsymbol{f}, F_{\boldsymbol{a}}$ is defined similarly, and $\boldsymbol{o}_{\boldsymbol{f}}$ denotes the elements of F_{f} such that $a_{v} \in \mathfrak{o}_{v}$ for all $v \in f ; F_{f}^{*}, F_{a}^{*}$ and \mathfrak{o}_{f}^{*} are the similarly defined subgroups of $F_{\mathbf{A}}^{*}$. The image of \mathfrak{o}_{F} in \mathbb{R}^{d} under $x \mapsto\left(x^{v}\right)_{v \in a}$ is a lattice Λ of volume $(N \mathfrak{d})^{\frac{1}{2}}$, where N denotes the norm from F to \mathbb{Q} and \mathfrak{d} denotes the different of F over \mathbb{Q}.

Define G_{v} to be the v-completion of G for $v \in f \cup \boldsymbol{a}$. Thus if $v \in \boldsymbol{a}, G_{v}$ can be identified with $\operatorname{SO}\left(S^{v}, \mathbb{R}\right)$. Take the adelization $G_{\mathbf{A}}$ of G; put $G_{f}=\prod_{v \in f} G_{v} \cap G_{\mathbf{A}}, G_{a}=\prod_{v \in a} G_{v}$. Identify G with its embedded image in $G_{\mathbf{A}}$ and the same convention holds for other groups defined below. For $x \in G_{\mathbf{A}}$ define $x_{\boldsymbol{f}} \in G_{\boldsymbol{f}}$ and $x_{\boldsymbol{a}} \in G_{a}$ by $x=x_{\boldsymbol{f}} x_{\boldsymbol{a}}$. Define

$$
G_{\mathbf{A}+}=\left\{x \in G_{\mathbf{A}}: x_{v} \in \mathrm{SO}\left(S^{v}, \mathbb{R}\right)^{\circ} \text { for all } v \in \boldsymbol{a}\right\}
$$

and $G_{a+}=G_{a} \cap G_{\mathbf{A}_{+}}, G_{+}=G \cap G_{\mathbf{A +}}$.
For each $v \in \boldsymbol{a}$, let \mathcal{H}_{v} be the complex domain of the previous section associated to T^{v} and ε_{v}. Denote $\prod_{v \in a} \mathcal{H}_{v}$ as \mathcal{H}^{a} and define the action of G_{a+} on \mathcal{H}^{a} componentwise. The action extends to $G_{\mathbf{A}+}$ by defining $x \in G_{\mathbf{A}+}$ to act as x_{a}.
3. The Eisenstein series $E(z, s ; k, \psi, \mathfrak{b})$ and its Fourier expansion.

The series E on \mathcal{H}^{a}. Fix an integer k. Take a Hecke character $\psi: F_{\mathbf{A}}^{*} \rightarrow \mathbf{T}\left(\psi\left(F^{*}\right)=1\right)$ with $\psi(a)=\Pi_{v \in \boldsymbol{a}} \operatorname{sgn}\left(a_{v}\right)^{k}$ for $a \in F_{a}^{*}$; let \mathfrak{c} denote the finite part of its conductor, ψ_{v} the v component of ψ, and $\psi_{\iota}=\prod_{v \mid \iota} \psi_{v}$ for any integral ideal ι. Let $\mathfrak{b} \subset F$ be an integral ideal divisible by \mathfrak{c}, by 2 , and by $\operatorname{det} T$. Define $\mathcal{U}=\left\{u \in F^{n+2}: S[u]=0\right\}$, and for $u \in \mathcal{U}, z \in \mathcal{H}^{a}$, set $S(u, w(z))=\Pi_{v \in a} S^{v}\left(u_{v}, w_{v}(z)\right)$, where $w_{v}(z)=\left(\begin{array}{c}z_{v} \\ \frac{1}{2} T^{v}\left[z_{v}\right] \\ 1\end{array}\right)$. Our

Eisenstein series is defined as follows:

$$
\begin{aligned}
& E(z, s ; k, \psi, \mathfrak{b}) \\
& \quad=\sum_{(u, t) \in \mathcal{U} \times F_{f}^{*} / \sim} c(t u) \psi(t)^{-1}|t|^{k+2 s} S(u, w(z))^{-k}|S(u, w(z))|^{-2 s}
\end{aligned}
$$

for $z \in \mathcal{H}^{a}$ and $s \in \mathbb{C}$, where $(u, t) \sim\left(u^{\prime}, t^{\prime}\right)$ means that for some $b \in F^{*}, u^{\prime}=b u$ and $t^{\prime} \mathbf{o}_{F}=b^{-1} t \mathbf{o}_{F}$ (so that $t^{\prime}=e b_{f}^{-1} t$ with $e \in \mathfrak{o}_{f}^{*}$). Here $c: F_{\mathbf{A}}^{n+2} \rightarrow \mathbb{C}$ is the locally constant function

$$
c(x)= \begin{cases}\psi_{\mathfrak{b}}\left(x_{n+2}\right), & \text { if } x_{\boldsymbol{f}} \in \mathfrak{o}_{f}^{n+2} \text { and } x_{n+2} \text { is prime to } \mathfrak{b} \\ 0, & \text { otherwise } .\end{cases}
$$

This series is also denoted simply $E(z)$ or $E(z, s)$.
E is readily seen to be well-defined. The series converges for sufficiently large $\operatorname{Re}(s)$ and has an analytic continuation, as shown in [Sh80]. In the special case $F=\mathbb{Q}, E$ reduces to the series studied by Indik in [In].

Transformation of E. Define subgroups of $G_{\mathbf{A}+}$ by

$$
\begin{aligned}
P_{\mathbf{A}} & =\left\{\gamma \in G_{\mathbf{A}+}: \gamma=\left(\begin{array}{c}
* * * \\
* * \\
00 *
\end{array}\right)\right\} ; \\
C & =\prod_{v} C_{v}, \text { where } C_{v}= \begin{cases}\operatorname{SO}\left(S, \mathfrak{o}_{v}\right) & \text { if } v \in \boldsymbol{f}, \\
\text { stabilizer of } i \varepsilon_{v} & \text { if } v \in \boldsymbol{a} ;\end{cases} \\
D & =\left\{\gamma \in C: \gamma \equiv\left(\begin{array}{rr}
* * & * \\
* & * \\
0 & 0 \\
d_{\gamma}
\end{array}\right)(\bmod \mathfrak{b})\right\} ;
\end{aligned}
$$

and $\Gamma_{0}(\mathfrak{b}) \subset G_{+}$by

$$
\begin{aligned}
& \Gamma_{0}(\mathfrak{b})=G_{+} \cap D G_{a} \\
& =\left\{\gamma \in G_{+} \cap \operatorname{SO}\left(S, \mathfrak{o}_{F}\right): \gamma \equiv\left(\begin{array}{rrr}
* & * & * \\
* & * \\
0 & 0 & d_{\gamma}
\end{array}\right)(\bmod \mathfrak{b})\right\} .
\end{aligned}
$$

For $\gamma \in G_{\mathbf{A +}}$ and $z \in \mathcal{H}^{a}$ define

$$
\begin{aligned}
J(\gamma, z) & =j(\gamma, z)^{k}|j(\gamma, z)|^{2 s} \quad \text { where } j(\gamma, z)=\prod_{v \in a} j\left(\gamma_{v}, z_{v}\right), \\
J_{\psi}(\gamma, z) & =\psi_{\mathbf{b}}\left(d_{\gamma}\right) J(\gamma, z) .
\end{aligned}
$$

The relation $J(\alpha \beta, z)=J(\alpha, \beta z) J(\beta, z)$ holds for all $\alpha, \beta \in G_{\mathbf{A +}}$, and the same relation holds for J_{ψ} when $\alpha, \beta \in D G_{a+}$.

For $\gamma \in \Gamma_{0}(\mathfrak{b})$ and $z \in \mathcal{H}^{a}$ one easily verifies that

$$
E(\gamma(z))=J_{\psi}(\gamma, z) E(z)
$$

If, in particular,

$$
\gamma \in \Gamma_{0}(\mathfrak{b}) \cap N, \text { where } N=\left\{\left(\begin{array}{ccc}
1 & 0 & b \\
0 & 1 & \underset{1}{c}
\end{array}\right): b \in F^{n}\right\},
$$

then $b \in \mathfrak{o}_{F}^{n}, \gamma(z)=z+b$, and $J_{\psi}(\gamma, z)=1$. Thus, $E(z+b)=E(z)$ for $b \in \mathfrak{o}_{F}^{n}$.

The series \tilde{E} on $G_{+} D G_{a_{+}}$. Define $\tilde{E}(y, s)$ for $y \in G_{+} D G_{a_{+}}$and $s \in \mathbb{C}$ by

$$
\begin{aligned}
& \tilde{E}(y, s)=E(x(i \varepsilon), s) J_{\psi}(x, i \varepsilon)^{-1} \\
& \qquad \text { for } y=\alpha x \text { with } \alpha \in G_{+}, x \in D G_{\boldsymbol{a}+} .
\end{aligned}
$$

Here $i \varepsilon$ means $\left(i \varepsilon_{v}\right)_{v \in \boldsymbol{a}} \in \mathcal{H}^{\boldsymbol{a}} . \tilde{E}(y, s)$ is well defined. Denote this series also $\tilde{E}(y)$. Then

$$
\tilde{E}(\alpha y w)=\tilde{E}(y) J_{\psi}(w, i \varepsilon)^{-1} \text { for } \alpha \in G_{+}, y \in G_{+} D G_{a+}, w \in D .
$$

To write \tilde{E} explicitly, first note that

$$
S(u, w(x(i \varepsilon)))=j(x, i \varepsilon)^{-1} S\left(x^{-1} u, w(i \varepsilon)\right)
$$

So for $\alpha \in G_{+}, x \in D G_{\boldsymbol{a}+}$,

$$
\begin{gathered}
\tilde{E}(\alpha x) \\
\begin{array}{c}
=\sum_{(u, t)} c(t u) \psi(t)^{-1}|t|^{k+2 s} J(x, i \varepsilon) S\left(x^{-1} u, w(i \varepsilon)\right)^{-k} \\
\quad \cdot\left|S\left(x^{-1} u, w(i \varepsilon)\right)\right|^{-2 s} J_{\psi}(x, i \varepsilon)^{-1} \\
=\sum \psi_{\mathbf{b}}\left(d_{x^{-1}}\right) c(t u) \psi(t)^{-1}|t|^{k+2 s} S\left(x^{-1} u, w(i \varepsilon)\right)^{-k} \\
\cdot \\
=\left|S\left(x^{-1} u, w(i \varepsilon)\right)\right|^{-2 s} \\
=\sum c\left(x^{-1} t u\right) \psi(t)^{-1}|t|^{k+2 s} S\left(x^{-1} u, w(i \varepsilon)\right)^{-k} \\
\cdot\left|S\left(x^{-1} u, w(i \varepsilon)\right)\right|^{-2 s}
\end{array}
\end{gathered}
$$

The Fourier expansions of \tilde{E} and E. Let $V=F^{n}$ and $V_{\mathrm{A}}=$ $F_{\mathbf{A}}^{n}$. For $x, y \in V_{\mathbf{A}}$ define a complex number $\chi(T(x, y))$:

$$
\begin{aligned}
\chi(T(x, y)) & =\prod_{v \in f \cup a} \boldsymbol{e}_{v}\left(T\left(x_{v}, y_{v}\right)\right) \\
& =\prod_{v \in f} \boldsymbol{e}_{p}\left(T r_{F_{v} / \mathbb{Q}_{\boldsymbol{p}}}\left(T\left(x_{v}, y_{v}\right)\right)\right) \prod_{v \in \boldsymbol{a}} \boldsymbol{e}\left(T^{v}\left(x_{v}, y_{v}\right)\right),
\end{aligned}
$$

where $v \mid p, \boldsymbol{e}_{p}(t)=\boldsymbol{e}($ the fractional part of $-t)$ for $t \in \mathbb{Q}_{p}$, and $\boldsymbol{e}(s)=e^{2 \pi i s}$ for $s \in \mathbb{C}$. Define

$$
\tau(v)=\left(\begin{array}{ccc}
1 & 0 & v \\
0 & 1 & 7
\end{array}\right) \in G_{+} D G_{a+} \text { for } v \in V_{\mathbf{A}}\left(\tau(v) \in G_{+} D G_{a+}\right.
$$

since $v=v^{\prime}+w$ with $v^{\prime} \in V, w \in \Pi_{f} \mathfrak{o}_{f}^{n} \times F_{a}^{n}$), and fix a Haar measure μ on $V_{\mathbf{A}}$ so that $\mu\left(V_{\mathbf{A}} / V\right)=1$.

Consider $\tilde{E}(\tau(v) w)$ with $v \in V_{\mathbf{A}}$ and $w \in G_{a+}$ as a function on $V_{\mathbf{A}}$. Then for $u \in V, \tilde{E}(\tau(v+u) w)=\tilde{E}(\tau(u) \tau(v) w)=\tilde{E}(\tau(v) w)$, so \tilde{E} is a function on $V_{\mathbf{A}} / V$. This gives the expansion

$$
\tilde{E}(\tau(v) w, s)=\sum_{h \in V} b(h, w, s) \chi(T(v, h)) \quad \text { for } v \in V_{\mathbf{A}}, w \in G_{a_{+}},
$$

where

$$
b(h, w, s)=\int_{v \in V_{\mathbf{A}} / V} \tilde{E}(\tau(v) w, s) \chi(-T(v, h)) d \mu(v) \quad \text { for } h \in V
$$

Define lattices $L=\mathfrak{o}_{F}^{n} \subset V$ and $L_{v}=\mathfrak{o}_{v}^{n} \subset V_{v}$ for $v \in f$. For $u \in L_{v}, \tilde{E}(\tau(v+u) w)=\widetilde{E}(\tau(v) w \tau(u))=\tilde{E}(\tau(v) w) J_{\psi}(\tau(u), i \varepsilon)^{-1}=$ $\tilde{E}(\tau(v) w)$. Hence $b(h, w, s)=\int_{v \in V_{\mathrm{A}} / V} \widetilde{E}(\tau(v+u) w, s) \chi(-T(v+$ $u, h)) d \mu(v)=\chi(-T(u, h)) b(h, w, s) ;$ this shows that $b(h, w, s) \neq 0$ only when $\chi(-T(u, h))=1$, i.e., when $h \in L^{\prime}$ with $L^{\prime}=$ the dual lattice to L under T, defined by $L^{\prime}=\left\{h \in V: T(h, L) \subset \mathfrak{d}^{-1}\right\}$, where \mathfrak{d} is the different of F over \mathbb{Q}. Thus,

$$
\tilde{E}(\tau(v) w, s)=\sum_{h \in L^{\prime}} b(h, w, s) \chi(T(v, h)) \text { for } v \in V_{\mathbf{A}}, w \in G_{\boldsymbol{a}+} .
$$

To express this on \mathcal{H}^{a} for $z=\left(z_{v}\right)_{v \in a}$ with $z_{v}=x_{v}+i y_{v}$, put $w_{y}=\left(w_{y_{v}}\right)_{v \in a}$ with

$$
w_{y_{v}}=\left(\begin{array}{ccc}
A_{v} & & \\
& \sqrt{T\left[y_{v}\right]} & \\
& & \sqrt{T\left[y_{v}\right]}
\end{array}\right)
$$

where $A_{v} \varepsilon_{v}=y_{v} / \sqrt{T^{v}\left[y_{v}\right]}$ and $T^{v}\left(A_{v} x, A_{v} y\right)=T^{v}(x, y)$ for $x, y \in$ \mathbb{R}^{n}, so that $w_{y_{v}}\left(i \varepsilon_{v}\right)=i y_{v}$ and hence $w_{y}(i \varepsilon)=i y$. Then

$$
\begin{aligned}
E(z, s) & =\tilde{E}\left(\tau(x) w_{y}, s\right) J_{\psi}\left(\tau(x) w_{y}, i \varepsilon\right) \\
& =\tilde{E}\left(\tau(x) w_{y}, s\right) J\left(w_{y}, i \varepsilon\right),
\end{aligned}
$$

so

$$
E(z, s)=J\left(w_{y}, i \varepsilon\right) \sum_{h \in L^{\prime}} b\left(h, w_{y}, s\right) \boldsymbol{e}\left(\sum_{v \in \boldsymbol{a}} T^{v}\left(x_{v}, h_{v}\right)\right)
$$

4. Fourier coefficients of E : reduction to the local case.

The coefficient $b\left(h, w_{y}, s\right)$. For $h \in L^{\prime}$ and $x+i y \in \mathcal{H}^{a}$ we have $b\left(h, w_{y}, s\right)=\int_{v \in V_{\mathbf{A}} / V} E\left(\tau(v) w_{y}, s\right) \chi(-T(v, h)) d \mu(v)$. Choosing representatives v of $V_{\mathbf{A}} / V$ such that $\tau(v) \in D G_{\boldsymbol{a}}$ gives

$$
\begin{aligned}
& =\int_{v \in V_{\mathbf{A}} / V}\left\{\sum_{(u, t) \in \mathcal{U} \times F_{f}^{*} / \sim} c\left(\left(\tau(v) w_{y}\right)^{-1} t u\right) \psi(t)^{-1}|t|^{k+2 s}\right. \\
& \quad \cdot S\left(\left(\tau(v) w_{y}\right)^{-1} u, w(i \varepsilon)\right)^{-k} \\
& \left.\quad \cdot\left|S\left(\left(\tau(v) w_{y}\right)^{-1} u, w(i \varepsilon)\right)\right|^{-2 s} \chi(-T(v, h))\right\} d \mu(v)
\end{aligned}
$$

If $u_{n+2}=0$ then $\left(\left(\tau(x) w_{y}\right)^{-1} t u\right)_{n+2}=0$ at \boldsymbol{f} since $\left(\tau(x) w_{y}\right)_{\boldsymbol{f}} \in P_{\mathbf{A}}$. So normalize $u_{n+2}=1$ and sum over $\left\{\left(w\left(v^{\prime}\right), t\right): v^{\prime} \in V, t \in F_{f}^{*} / \mathfrak{o}_{f}^{*}\right\}$. This gives

$$
\begin{aligned}
& b\left(h, w_{y}, s\right) \\
& =\int_{v \in V_{\mathbf{A}} / V}\left\{\sum_{v^{\prime} \in V} S\left(\left(\tau(v) w_{y}\right)^{-1} w\left(v^{\prime}\right), w(i \varepsilon)\right)^{-k}\right. \\
& \cdot\left|S\left(\left(\tau(v) w_{y}\right)^{-1} w\left(v^{\prime}\right), w(i \varepsilon)\right)\right|^{-2 s} \\
& \cdot \sum_{t \in F_{f}^{*} / o_{f}^{*}} c\left(\left(\tau(v) w_{y}\right)^{-1} t w\left(v^{\prime}\right)\right) \\
& \left.\psi(t)^{-1}|t|^{k+2 s} \chi(-T(v, h))\right\} d \mu(v)
\end{aligned}
$$

$$
\begin{gathered}
=\int_{v \in V_{\mathbf{A}} / V}\left\{\sum_{v^{\prime} \in V} S\left(w_{y}^{-1} w\left(v^{\prime}-v\right), w(i \varepsilon)\right)^{-k}\right. \\
\cdot \\
\cdot\left|S\left(w_{y}^{-1} w\left(v^{\prime}-v\right), w(i \varepsilon)\right)\right|^{-2 s} \\
\cdot \sum_{t \in F_{f}^{*} / o_{f}^{*}} c\left(t w_{y}^{-1} w\left(v^{\prime}-v\right)\right) \psi(t)^{-1}|t|^{k+2 s} \\
\cdot \\
\begin{array}{c}
\left.\chi\left(-T\left(v-v^{\prime}, h\right)\right)\right\} d \mu(v) \\
=\int_{v \in V_{\mathbf{A}}}\left\{S\left(w_{y}^{-1} w(v), w(i \varepsilon)\right)^{-k}\left|S\left(w_{y}^{-1} w(v), w(i \varepsilon)\right)\right|^{-2 s}\right. \\
=\int_{v \in V_{\mathbf{A}}}\left\{S\left(w(v), j\left(w_{y}, i \varepsilon\right) w(i y)\right)^{-k}\left|S\left(w(v), j\left(w_{y}, i \varepsilon\right) w(i y)\right)\right|^{-2 s}\right. \\
\left.\quad \cdot \sum_{t \in F_{f}^{*} / o_{f}^{*}} c(t w(v)) \psi(t)^{-1}|t|^{k+2 s} \chi(T(v, h))\right\} d \mu(v) \\
\left.\quad \cdot \sum_{t \in F_{f}^{*} / o_{f}^{*}} c(t w(v)) \psi(t)^{-1}|t|^{k+2 s} \chi(T(v, h))\right\} d \mu(v) \\
=J\left(w_{y}, i \varepsilon\right)^{-1} \int_{v \in V_{\mathbf{A}}}\left\{S(w(v), w(i y))^{-k}|S(w(v), w(i y))|^{-2 s}\right. \\
\left.\cdot \sum_{t \in F_{f}^{*} / o_{f}^{*}} c(t w(v)) \psi(t)^{-1}|t|^{k+2 s} \chi(T(v, h))\right\} d \mu(v)
\end{array}
\end{gathered}
$$

Lemma. $S(w(v), w(i y))=\left(-\frac{1}{2}\right)^{d} T_{a}[-v+i y]$, where $d=[F: \mathbb{Q}]$ and $T_{a}[x]=\prod_{v \in a} T^{v}\left[x_{v}\right]$ for $x \in V_{\mathbf{A}}$.

Proof. Immediate from

$$
S(w(v), w(i y))=\prod_{v \in \boldsymbol{a}}\left({ }^{t} v_{v} \frac{1}{2} T^{v}\left[v_{v}\right] 1\right)\left(\begin{array}{cc}
T^{v} & \\
& 0 \\
& -1 \\
-1 & 0
\end{array}\right)\left(\begin{array}{c}
i y_{v} \\
\frac{1}{2} T^{v}\left[i y_{v}\right] \\
1
\end{array}\right) .
$$

This gives

$$
\begin{aligned}
& b\left(h, w_{y}, s\right) \\
&= J\left(w_{y}, i \varepsilon\right)^{-1}(-1)^{d k} 2^{d(k+2 s)} \\
& \cdot \int_{v \in V_{\mathbf{A}}} T_{a}[-v+i y]^{-k}\left|T_{a}[-v+i y]\right|^{-2 s} \sigma(v, s) \chi(T(v, h)) d \mu(v) \\
&= J\left(w_{y}, i \varepsilon\right)^{-1}(-1)^{d k} 2^{d(k+2 s)} \\
& \cdot \int_{v \in V_{\mathbf{A}}} T_{a}[v+i y]^{-k}\left|T_{a}[v+i y]\right|^{-2 s} \sigma(v, s) \chi(-T(v, h)) d \mu(v)
\end{aligned}
$$

where

$$
\sigma(x, s)=\sum_{t \in F_{f}^{*} / \mathfrak{o}_{f}^{*}} c(t w(x)) \psi(t)^{-1}|t|^{k+2 s} \text { for } x \in V_{\mathbf{A}}, s \in \mathbb{C}
$$

The $\operatorname{sum} \sigma(x, s)$. For $x \in V_{\mathbf{A}}$ and $v \in f$ define a local ideal $\iota_{v}\left(x_{v}\right) \subset \mathfrak{o}_{v}$ by $\iota_{v}\left(x_{v}\right)=\mathfrak{p}_{v}^{i_{v}(x)}$, where \mathfrak{p}_{v} is the maximal ideal of \boldsymbol{o}_{v} and $i_{v}(x)=-\min _{1 \leq i \leq n+2}\left\{\nu_{v}\left(w(x)_{i}\right)\right\}$ with ν_{v} the normalized v-adic valuation on $F_{v} . \iota_{v}\left(x_{v}\right)$ is integral since $w\left(x_{v}\right)_{n+2}=1$, and $\iota_{v}\left(x_{v}\right)=\mathfrak{o}_{v}$ for almost all v.

The product ideal $\iota(x)=\prod_{v \in f} \iota_{v}\left(x_{v}\right) \subset \mathfrak{o}_{f}$ is such that $t w(x) \in$ \boldsymbol{o}_{f}^{n+2} for $t \in F_{f}^{*}$ if and only if $t \in \iota(x)$. Thus $c(t w(x)) \neq 0$ if and only if $t \in \iota(x)$ and $(t w(x))_{n+2}=t$ is prime to \mathfrak{b}, in which case $c(t w(x))=\psi_{\mathfrak{b}}(t)$ and the summand of $\sigma(x, s)$ is $\prod_{\substack{v \in f \\ v \nmid b}} \psi\left(t_{v}\right)^{-1}\left|t_{v}\right|_{v}^{k+2 s}$. Thus

$$
\begin{aligned}
\sigma(x, s) & =\sum_{\left\{\left.\begin{array}{c}
t=\prod_{\substack{v \in f \\
v \nmid \mathfrak{b}}} \prod_{v}^{j_{v}}: \iota(x) \mid t \\
\end{array} \prod_{\substack{v \in f \\
v \nmid \mathfrak{b}}} \psi\left(\mathfrak{p}_{v}^{j_{v}}\right)^{-1}\right|_{\left.\mathfrak{p}_{v}^{j_{v}}\right|_{v} ^{k+2 s}}\right.}=\sum_{t} \prod_{v}\left(\psi\left(\mathfrak{p}_{v}\right)^{-1}\left|\mathfrak{p}_{v}\right|_{v}^{k+2 s}\right)^{j_{v}}
\end{aligned}
$$

(The sum is empty if $\iota(x)$ is nontrivial at \mathfrak{b}.) This has the Euler product expansion $\sigma(x, s)=\prod_{v \in f} \sigma_{v}\left(x_{v}, s\right)$, where

$$
\begin{aligned}
& \sigma_{v}\left(x_{v}, s\right) \\
& \quad= \begin{cases}\delta_{v}\left(x_{v}\right), & \text { if } v \mid \mathfrak{b} \\
\left(1-\psi\left(\mathfrak{p}_{v}\right)^{-1}\left|\mathfrak{p}_{v}\right|_{v}^{k+2 s}\right)^{-1}\left(\psi\left(\mathfrak{p}_{v}\right)^{-1}\left|\mathfrak{p}_{v}\right|_{v}^{k+2 s}\right)^{i_{v}\left(x_{v}\right)}, & \text { if } v \nmid \mathfrak{b}\end{cases}
\end{aligned}
$$

Here $\delta_{v}\left(x_{v}\right)=1$ if $x \in L_{v}$ (so that $\iota_{v}\left(x_{v}\right)=\mathfrak{o}_{v}$), 0 if $x_{v} \notin L_{v}$ (so that $\left.\iota_{v}\left(x_{v}\right) \neq \mathbf{o}_{v}\right)$.

The local coefficient $a_{v}(h, y, s)$. We now have for $z=\left(z_{v}\right)=$ $\left(x_{v}+i y_{v}\right) \in \mathcal{H}^{a}$,

$$
E(z, s)=(-1)^{d k} 2^{d(k+2 s)} \sum_{h \in L^{\prime}} a(h, y, s) \boldsymbol{e}\left(\sum_{v \in \boldsymbol{a}} T^{v}\left(x_{v}, h_{v}\right)\right),
$$

where

$$
\begin{aligned}
& a(h, y, s) \\
& \quad=\int_{x \in V_{\mathbf{A}}} T_{a}[x+i y]^{-k}\left|T_{a}[x+i y]\right|^{-2 s} \sigma(x, s) \chi(-T(x, h)) d \mu(x),
\end{aligned}
$$

with

$$
\begin{aligned}
T_{a}[x+i y] & =\prod_{v \in a} T^{v}\left[x_{v}+i y_{v}\right], & \sigma(x, s) & =\prod_{v \in f} \sigma_{v}\left(x_{v}, s\right), \\
\chi(-T(x, h)) & =\prod_{v} e_{v}\left(-T\left(x_{v}, h_{v}\right)\right), & d \mu(x) & =c_{\mu} \prod_{v} d \mu_{v}\left(x_{v}\right),
\end{aligned}
$$

where $\mu\left(V_{\mathbf{A}} / V\right)=1, \mu=c_{\mu} \Pi_{v} \mu_{v}, \mu_{v}\left(L_{v}\right)=1$ for $v \in \boldsymbol{f}$, and μ_{v} is Euclidean measure on \mathbb{R}^{n} for $v \in \boldsymbol{a}$; these determine $c_{\mu}=N \mathfrak{d}^{-n / 2}$. So

$$
a(h, y, s)=N \mathfrak{d}^{-n / 2} \prod_{v} a_{v}(h, y, s)
$$

where for $v \in \boldsymbol{a}$,

$$
\begin{aligned}
& a_{v}(h, y, s) \\
& \quad=\int_{x \in V_{v}} T^{v}\left[x+i y_{v}\right]^{-k} \mid T^{v}\left[x+i y_{v}\right]^{-2 s} \boldsymbol{e}\left(-T^{v}\left(x, h_{v}\right)\right) d \mu_{v}(x) \\
& \quad=\int_{x \in V_{v}} T^{v}\left[x+i y_{v}\right]^{-k-s} T^{v}\left[x-i y_{v}\right]^{-s} \boldsymbol{e}\left(-T^{v}\left(x, h_{v}\right)\right) d \mu_{v}(x) \\
& \quad=\xi\left(y_{v}, h_{v} ; k+s, s ; T^{v}\right),
\end{aligned}
$$

with ξ the confluent hypergeometric function studied by Shimura in [Sh82]. For $v \in f$, the local coefficient does not depend on y and so may be denoted $a_{v}(h, s)$. Setting $q_{v}=\left|\mathfrak{p}_{v}\right|_{v}^{-1}$ and $X_{v}(s)=$ $\psi\left(\mathfrak{p}_{v}\right)^{-1} q_{v}^{-k-2 s}$ gives
$a_{v}(h, s)$
$=\int_{x \in V_{v}} \sigma_{v}(x, s) \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) d \mu_{v}(x)$
$= \begin{cases}\int_{x \in V_{v}} \delta_{v}\left(x_{v}\right) \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) d \mu_{v}(x) & \text { if } v \mid \mathfrak{b} \\ \left(1-X_{v}(s)\right)^{-1} \int_{x \in V_{v}} X_{v}(s)^{i_{v}\left(x_{v}\right)} \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) d \mu_{v}(x) & \text { if } v \nmid \mathfrak{b} .\end{cases}$

5. Local Fourier coefficients of E.

The archimedean coefficient $\xi\left(y_{v}, h_{v} ; k+s, s ; T^{v}\right)$. In [Sh82], Shimura defines the functions

$$
\xi(y, h ; \alpha, \beta ; T)=\int_{x \in \mathbb{R}^{n}} T[x+i y]^{-\alpha} T[x-i y]^{-\beta} e(-T(x, h)) d x
$$

where $y \in \mathcal{P}, h \in \mathbb{R}^{n},(\alpha, \beta) \in \mathbb{C}^{2}, T$ defines a form of signature ($1, n-1$) on \mathbb{R}^{n}; and

$$
\begin{aligned}
& \eta^{*}(y, h ; \alpha, \beta ; T) \\
& \quad=T[y]^{\alpha+\beta-\frac{n}{2}} \int_{x \in Q(h)} T[x+h]^{\alpha-\frac{n}{2}} T[x-h]^{\beta-\frac{n}{2}} e^{-T(y, x)} d x,
\end{aligned}
$$

where $Q(h)=\left\{x \in \mathbb{R}^{n}: x \pm h \in \mathcal{P}\right\}$. Both integrals converge when $\operatorname{Re}(\alpha)>n / 2-1, \operatorname{Re}(\beta)>n / 2-1$. He defines

$$
\begin{aligned}
& \omega(y, h ; \alpha, \beta ; T)=\eta^{*}(y, h ; \alpha, \beta ; T) \\
& \begin{cases}2^{-2 \alpha} \Gamma_{n}(\beta)^{-1} \delta(h y)^{\frac{n}{2}-\alpha}, & h \in \mathcal{P} \\
2^{-2 \beta} \Gamma_{n}(\alpha)^{-1} \delta(h y)^{\frac{n}{2}-\beta}, & -h \in \mathcal{P}\end{cases} \\
& |\operatorname{det} T|^{\frac{1}{2}} 2^{-2 \alpha-2 \beta} \Gamma\left(\alpha-\frac{n-2}{2}\right)^{-1} \Gamma\left(\beta-\frac{n-2}{2}\right)^{-1} \\
& . \delta_{+}(h y)^{1-\alpha+\frac{n-2}{4}} \delta_{-}(h y)^{1-\beta+\frac{n-2}{4}}, \quad T[h]<0 \\
& \begin{cases}|\operatorname{det} T|^{\frac{1}{2}} 2^{-2 \alpha-2 \beta} \Gamma\left(\alpha+\beta-\frac{n}{2}\right)^{-1} \Gamma\left(\beta-\frac{n-2}{2}\right)^{-1} & \\
. \delta(h y)^{\frac{n}{2}-\alpha}, & T[h]=0,\end{cases} \\
& T(\varepsilon, h)>0 \\
& |\operatorname{det} T|^{\frac{1}{2}} 2^{-2 \alpha-2 \beta} \Gamma\left(\alpha+\beta-\frac{n}{2}\right)^{-1} \Gamma\left(\alpha-\frac{n-2}{2}\right)^{-1} \\
& T[h]=0, \\
& T(\varepsilon, h)<0 \\
& \Gamma_{n}\left(\alpha+\beta-\frac{n}{2}\right)^{-1}, \\
& h=0 \text {, }
\end{aligned}
$$

where ε is as in section 2 and

$$
\begin{gathered}
\Gamma_{n}(s)=|\operatorname{det} T|^{-\frac{1}{2}} 2^{2 s-1} \pi^{\frac{n}{2}-1} \Gamma(s) \Gamma\left(s-\frac{n}{2}+1\right), \\
\delta_{+}(h y)=\text { the product of all positive roots to } \\
\lambda^{2}-2 T(y, h) \lambda+T[y] T[h]=0, \\
\delta_{-}(h y)=\delta_{+}((-h) y), \quad \delta(h y)=\delta_{+}(h y) \delta_{-}(h y)
\end{gathered}
$$

and proves the relation
$\xi(y, h ; k+s, s ; T)$

$$
\begin{align*}
& =|\operatorname{det} T|^{-\frac{1}{2}}(-1)^{k} 2^{n-2 k-4 s} T[y]^{\frac{n}{2}-k-2 s} \omega(2 \pi y, h ; k+s, s ; T) \tag{5.1}\\
& \qquad \begin{cases}2^{2 k+2 s+1} \pi^{2 k+2 s+1-\frac{n}{2}} \Gamma(k+s)^{-1} \Gamma\left(k+s+1-\frac{n}{2}\right)^{-1} & \\
\cdot \delta_{+}(h y)^{k+s-\frac{n}{2}}, & h \in \mathcal{P} \\
2^{2 s+1} \pi^{2 s+1-\frac{n}{2}} \Gamma(s)^{-1} \Gamma\left(s+1-\frac{n}{2}\right)^{-1} \delta_{-}(h y)^{s-\frac{n}{2}}, & -h \in \mathcal{P} \\
2^{k+2 s+\frac{n}{2}+1} \pi^{k+2 s+1-\frac{n}{2}} \Gamma(k+s)^{-1} \Gamma(s)^{-1} & \\
\cdot \delta_{+}(h y)^{k+s-1-\frac{-2}{4}} \delta_{-}(h y)^{s-1-\frac{n-2}{4}}, & T[h]<0 \\
2^{k+s+2+\frac{n}{2}} \pi^{k+s+2-\frac{n}{2}} \Gamma\left(k+2 s-\frac{n}{2}\right) \Gamma(k+s)^{-1} & T(\varepsilon, h)>0 \\
\cdot \Gamma(s)^{-1} \Gamma\left(k+s+1-\frac{n}{2}\right)^{-1} \delta_{+}(h y)^{k+s-\frac{n}{2}}, & T[h]=0, \\
2^{s+2+\frac{n}{2} \pi^{s+2-\frac{n}{2}} \Gamma\left(k+2 s-\frac{n}{2}\right) \Gamma(k+s)^{-1}} & T(\varepsilon, h)<0 \\
\cdot \Gamma(s)^{-1} \Gamma\left(s+1-\frac{n}{2}\right)^{-1} \delta_{-}(h y)^{s-\frac{n}{2}}, & T[h]=0, \\
2 \pi^{\frac{n}{2}+1} \Gamma\left(k+2 s-\frac{n}{2}\right) \Gamma(k+2 s+1-n) \Gamma(k+s)^{-1} & \\
\cdot \Gamma(s)^{-1} \Gamma\left(k+s+1-\frac{n}{2}\right)^{-1} \Gamma\left(s+1-\frac{n}{2}\right)^{-1}, & h=0 .\end{cases}
\end{align*}
$$

The main result of [Sh82] is that ω can be continued as a holomorphic function in (α, β) to \mathbb{C}^{2}. Thus, zeros and poles of ξ can be read off from the previous equation.

The next result will be used in Section 7.
Proposition 5.1. (a) $\omega(2 \pi y, h ; \alpha, 0 ; T)=2^{-n} \boldsymbol{e}(T(i y, h))$ if $h \in$ \mathcal{P};
(b) $\omega(2 \pi y, h ; \alpha, 0 ; T)=\omega(2 \pi y, h ; n / 2, \beta)=2^{-1-n} \pi^{n / 2-1} \boldsymbol{e}(T(i y, h))$ if $T[h]=0, T(h, \varepsilon)>0$;
(c) $\omega(2 \pi y, 0 ; \alpha, \beta ; T)=1$.

Proof. (a) and part of (b) are shown in [Sh82, 4.35.IV]. The remainder of (b) follows from [Sh82, 4.12.IV, 4.29, 3.15], where m, n there are $n, n-2$ here, respectively. (c) is [Sh82, 4.9].

The finite coefficient $a_{v}(h, s)$ for $v \mid \mathfrak{b}$. For $v \mid \mathfrak{b}$,

$$
\begin{aligned}
a_{v}(h, s) & =\int_{x \in V_{v}} \delta_{v}(x) \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) d \mu_{v}(x) \\
& =\int_{x \in L_{v}} \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) d \mu_{v}(x)=\int_{x \in L_{v}} d \mu_{v}(x)=1
\end{aligned}
$$

Thus

$$
a_{v}(h, s)=1 \quad \text { if } v \mid \mathfrak{b} .
$$

The finite coefficient $a_{v}(h, s)$ for $v \nmid \mathfrak{b}$. For $v \nmid \mathfrak{b}$,

$$
a_{v}(h, s)=\left(1-X_{v}(s)\right)^{-1} \int_{x \in V_{v}} X_{v}(s)^{i_{v}(x)} \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) d \mu_{v}(x) .
$$

Since the integrand is invariant under $x \mapsto x+l$ for $l \in L_{v}$, this is

$$
\begin{aligned}
a_{v}(h, s) & =\left(1-X_{v}(s)\right)^{-1} \sum_{\substack{x \in V_{v} / L_{v}}} X_{v}(s)^{i_{v}(x)} \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) \\
& =\left(1-X_{v}(s)\right)^{-1} \sum_{\lambda=0}^{\infty} \sum_{\substack{x \in V_{v} / L_{v} \\
i_{v}(x)=\lambda}} X_{v}(s)^{\lambda} \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) \\
& =\left(1-X_{v}(s)\right)^{-1} \sum_{\lambda=0}^{\infty} X_{v}(s)^{\lambda} \sum_{\substack{x \in V_{v} / L_{v} \\
i_{v}(x)=\lambda}} \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) .
\end{aligned}
$$

Now sum by by parts, $\sum_{\lambda=0}^{\nu} a_{\lambda} b_{\lambda}=\sum_{\lambda=0}^{\nu-1} A_{\lambda}\left(b_{\lambda}-b_{\lambda+1}\right)+A_{\nu} b_{\nu}$, where $A_{\lambda}=\sum_{j=0}^{\lambda} a_{j}$. Letting $a_{\lambda}=\sum_{\substack{x \in V_{v} / L_{v} \\ i_{v}(x)=\lambda}} \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right), b_{\lambda}=X_{v}(s)^{\lambda}$ gives

$$
\begin{aligned}
A_{\lambda} & =\sum_{\substack{x \in V_{v} / L_{v} \\
i_{v}(x) \leq \lambda}} \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) \\
& =\sum_{\substack{x \in V_{v} / L_{v} \\
w(x) \in p_{v}^{-} o_{v}^{n+2}}} \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) \stackrel{\text { call }}{=} S_{v}\left(\lambda, h_{v}\right)
\end{aligned}
$$

and $b_{\lambda}-b_{\lambda+1}=\left(1-X_{v}(s)\right) X_{v}(s)^{\lambda}$. Hence

$$
\begin{aligned}
& \sum_{\lambda=0}^{\nu} X_{v}(s)^{\lambda} \sum_{\substack{x \in V_{v} / L_{v} \\
i_{v}(x)=\lambda}} \boldsymbol{e}_{v}\left(-T\left(x, h_{v}\right)\right) \\
& \quad=\left(1-X_{v}(s)\right)\left(\sum_{\lambda=0}^{\nu-1} X_{v}(s)^{\lambda} S_{v}\left(\lambda, h_{v}\right)\right)+X_{v}(s)^{\nu} S_{v}\left(\nu, h_{v}\right) .
\end{aligned}
$$

The last term goes to 0 as $\nu \rightarrow \infty$ when $\operatorname{Re}(k+2 s)>n$, giving

$$
a_{v}(h, s)=\alpha_{v}\left(h_{v}, X_{v}(s)\right) \quad \text { if } v \nmid \mathfrak{b}
$$

where $\alpha_{v}\left(h_{v}, X\right)$ is the power series

$$
\alpha_{v}\left(h_{v}, X\right)=\sum_{\lambda=0}^{\infty} S_{v}\left(\lambda, h_{v}\right) X^{\lambda} .
$$

The exponential sum $S_{v}\left(\lambda, h_{v}\right)$. Let π_{v} generate the maximal ideal \mathfrak{p}_{v} of \mathfrak{o}_{v}, and let $y=\pi_{v}^{\lambda} x$. Summing over y 's, the set of summation for $S_{v}\left(\lambda, h_{v}\right)$ becomes

$$
\begin{aligned}
\left\{y \in V_{v} / \mathfrak{p}_{v}^{\lambda} L_{v}:\left(\begin{array}{c}
\pi_{v}^{-\lambda} y \\
\frac{1}{2} \pi_{v}^{-2 \lambda} T[y] \\
1
\end{array}\right)\right. & \left.\in \mathfrak{p}_{v}^{-\lambda} \mathfrak{o}_{v}^{n+2}\right\} \\
& =\left\{y \in L_{v} / \mathfrak{p}_{v}^{\lambda} L_{v}: \frac{1}{2} T[y] \in \mathfrak{p}_{v}^{\lambda}\right\} .
\end{aligned}
$$

Since $2 \mid \mathfrak{b}$ and $v \nmid \mathfrak{b}$ the $\frac{1}{2}$ is irrelevant, so the sum is

$$
S_{v}\left(\lambda, h_{v}\right)=\sum_{\substack{y \in L_{v} / p_{\nu}^{\lambda} L_{v} \\ T[y] \in p_{v}^{\lambda}}} e_{v}\left(\frac{-T\left(y, h_{v}\right)}{\pi_{v}^{\lambda}}\right) .
$$

This is independent of the choice of π_{v} since the set being summed over is stable under multiplication by units.
6. The power series $\alpha_{v}\left(h_{v}, X\right)$.

Definitions. The methods in this section are from Indik [In].
From now on all work is local at a fixed place $v \nmid \mathfrak{b}$ (so that $v \nmid 2 \operatorname{det} T$), and v 's will be suppressed in the notation; for example, $F, V, L, \mathfrak{o}, \mathfrak{p}$ and \mathfrak{d} now denote the local objects $F_{v}, V_{v}, L_{v}, \mathfrak{o}_{v}, \mathfrak{p}_{v}$ and \mathfrak{o}_{v} (the local different of F_{v} over \mathbb{Q}_{p}). Locally T^{-1} is integral; so for $y \in V, \nu(T y)=\nu(y)$ and hence $L^{\prime}=\mathfrak{d}^{-1} L$. To study the sum $S(\lambda, h)$, begin with some definitions.
Extend the v-adic valuation ν on F to a function also called ν on V by

$$
\nu(x)=\min _{1 \leq i \leq n}\left\{\nu\left(x_{i}\right)\right\}, \quad \text { for } x \in V
$$

For $\lambda \geq 0$ and $a \in \mathfrak{o}$ define the sets

$$
\begin{aligned}
\sigma(\lambda, a) & =\left\{y \in L: T[y] \equiv a\left(\bmod \mathfrak{p}^{\lambda}\right)\right\}, \\
\sigma^{\prime}(\lambda, a) & =\{y \in \sigma(\lambda, a): \nu(y)=0\} \\
\overline{\sigma(\lambda, a)} & =\left\{y \in L / \mathfrak{p}^{\lambda} L: T[y] \equiv a\left(\bmod \mathfrak{p}^{\lambda}\right)\right\}, \\
\overline{\sigma^{\prime}(\lambda, a)} & =\{y \in \overline{\sigma(\lambda, a)}: \nu(y)=0\} .
\end{aligned}
$$

When $a=0$, write $\sigma(\lambda)$ for $\sigma(\lambda, a)$ and so on. We will sometimes use the sets $\sigma(\lambda, a), \ldots$ defined as above but for forms R other than T, in which case they are denoted $\sigma_{R}(\lambda, a)$, etc.

Extend the definition of S to

$$
S(\lambda, h)= \begin{cases}\sum_{y \in \overline{\sigma(\lambda)}} \boldsymbol{e}_{v}\left(-\frac{T(y, h)}{\pi^{\lambda}}\right) & \text { if } h \in L^{\prime} \\ 0 & \text { if } h \notin L^{\prime},\end{cases}
$$

and define

$$
S^{\prime}(\lambda, h)=\sum_{y \in \sigma^{\prime}(\lambda)} \boldsymbol{e}_{v}\left(-\frac{T(y, h)}{\pi^{\lambda}}\right) \quad \text { for } h \in L^{\prime}
$$

i.e., just sum over primitive vectors.

Recall that $q=|\mathfrak{p}|^{-1}=\#(\mathfrak{o} / \mathfrak{p})$.
Proposition 6.1. For symmetric $R \in M_{n}(\mathfrak{o} / \mathfrak{p})$ defining a nondegenerate bilinear form on $(\mathfrak{o} / \mathfrak{p})^{n}$,

$$
\# \overline{\sigma_{R}(1)}-q^{n-1}= \begin{cases}q^{\frac{n}{2}-1}(q-1)\left(\frac{(-1)^{\frac{n}{2}} \operatorname{det} R}{\mathfrak{p}}\right) & \text { if } n \text { is even } \\ 0 & \text { if } n \text { is odd. }\end{cases}
$$

Proof. This is a standard textbook exercise.
Recurrence formula for $\# \overline{\sigma^{\prime}(\lambda, a)}$. Fix $\lambda \geq 1$ and $a \in \mathfrak{o}$, and recall that $v \nmid 2$.

Lemma. For $\tilde{y} \in \sigma^{\prime}(\lambda, a)$, there exists $d \in L$ such that $T(\tilde{y}, d)=\frac{1}{2}$.

Proof. $(T y)_{i} \in \mathfrak{o}^{*}$ for some i, so take $d_{i}=\frac{1}{2}(T y)_{i}^{-1}$ and $d_{j}=0$ for $j \neq i$.

Lemma. For $v \in \overline{\sigma^{\prime}(\lambda+1, a)}, \#\{l \in L / \mathfrak{p} L: T(v, l) \in \mathfrak{p}\}=q^{n-1}$.
Proof. $(T y)_{i} \in \mathfrak{o}^{*}$ for some i; consequently $T(v, l) \in \mathfrak{p}$ if and only if $l_{i}=(T v)_{i}^{-1}\left(-\sum_{j \neq i}(T v)_{j} l_{j}\right)+k$ with $k \in \mathfrak{p}$. This determines the value of $l_{i}(\bmod \mathfrak{p})$ once the l_{j} for $j \neq i$ have been chosen.

Proposition 6.2. $\# \overline{\sigma^{\prime}(\lambda+1, a)}=q^{n-1} \# \overline{\sigma^{\prime}(\lambda, a)}$. Consequently, $\# \overline{\sigma^{\prime}(\lambda, a)}=q^{(n-1)(\lambda-1)} \# \overline{\sigma^{\prime}(1, a)}$ for $\lambda \geq 1$, and this value depends only on a $(\bmod \mathfrak{p})$.

Proof. Let $\pi_{\lambda}^{\lambda+1}: L / \mathfrak{p}^{\lambda+1} L \rightarrow L / \mathfrak{p}^{\lambda} L$ be the natural map. We will show that $\pi_{\lambda}^{\lambda+1}: \overline{\sigma^{\prime}(\lambda+1, a)} \rightarrow \overline{\sigma^{\prime}(\lambda, a)}$ is surjective with multiplicity q^{n-1}.

Construct a function $\varphi: \overline{\sigma^{\prime}(\lambda, a)} \rightarrow \overline{\sigma^{\prime}(\lambda+1, a)}$ as follows: Choose any lifting, denoted ${ }^{\sim}$, from $L / \mathfrak{p}^{\lambda} L$ to L. Given $y \in \overline{\sigma^{\prime}(\lambda, a)}$, there exists $d \in L$ such that $T(\tilde{y}, d)=\frac{1}{2}$, by the first lemma. Take $\varphi(y)=\tilde{y}+(a-T[y]) d\left(\bmod \mathfrak{p}^{\lambda+1} L\right)$. Then $T[\varphi(y)] \equiv a\left(\bmod \mathfrak{p}^{\lambda+1}\right)$ is easy to check. Thus $\overline{\sigma^{\prime}(\lambda, a)} \xrightarrow{\varphi} \overline{\sigma^{\prime}(\lambda+1, a)} \xrightarrow{\pi_{\lambda}^{\lambda+1}} \overline{\sigma^{\prime}(\lambda, a)}$, and the composite is the identity since $\varphi(y) \equiv y\left(\bmod p^{\lambda} L\right)$. This shows that $\pi_{\lambda}^{\lambda+1}: \overline{\sigma^{\prime}(\lambda+1, a)} \rightarrow \overline{\sigma^{\prime}(\lambda, a)}$ is surjective.

For $v \in \overline{\sigma^{\prime}(\lambda+1, a)}$ and $v^{\prime} \in L / \mathfrak{p}^{\lambda+1} L, \pi_{\lambda}^{\lambda+1}\left(v^{\prime}\right)=\pi_{\lambda}^{\lambda+1}(v)$ if and only if $v^{\prime}=v+\pi^{\lambda} l$ for some $l \in L / \mathfrak{p} L$, in which case $T\left[v^{\prime}\right] \equiv$ $a+2 \pi^{\lambda} T(v, l)\left(\bmod \mathfrak{p}^{\lambda+1}\right)$. This shows that $v^{\prime} \in \overline{\sigma^{\prime}(\lambda+1, a)}$ if and only if $T(v, l) \in \mathfrak{p}$. The number of l satisfying this is q^{n-1} by the second lemma, so $\pi_{\lambda}^{\lambda+1}: \overline{\sigma^{\prime}(\lambda+1, a)} \rightarrow \overline{\sigma^{\prime}(\lambda, a)}$ has multiplicity q^{n-1}, proving the proposition.

Recurrence formula for $S(\lambda, h)$.
Lemma. $\sigma(\lambda)=\sigma^{\prime}(\lambda) \cup \mathfrak{p} \sigma(\lambda-2)$ for $\lambda \geq 2$, a disjoint union.
Proof. $\sigma(\lambda) \supset \sigma^{\prime}(\lambda)$ and $\sigma(\lambda) \supset \mathfrak{p} \sigma(\lambda-2)$ are clear, as is disjointness. Let $y \in \sigma(\lambda)-\sigma^{\prime}(\lambda)$. Then $y=\pi x$ for some $x \in L$, and $\pi^{2} T[x]=T[y] \in \mathfrak{p}^{\lambda}$ shows that $T[x] \in \mathfrak{p}^{\lambda-2}$, i.e., $x \in \sigma(\lambda-$ $2)$.

Proposition 6.3. $S(\lambda, h)=S^{\prime}(\lambda, h)+q^{n} S(\lambda-2, h / \pi)$ for $\lambda \geq 2$ and $h \in L^{\prime}$.

Proof.

$$
S(\lambda, h)=S^{\prime}(\lambda, h)+\sum_{\substack{y \in \mathfrak{p} \sigma(\lambda-2) \\\left(\bmod \mathfrak{p}^{\lambda} L\right)}} \boldsymbol{e}_{v}\left(-\frac{T(y, h)}{\pi^{\lambda}}\right)
$$

by the lemma, so we need to evaluate this last sum, which is equal to

$$
\sum_{\substack{y \in \sigma(\lambda-2) \\\left(\bmod \mathfrak{p}^{\lambda-1} L\right)}} \boldsymbol{e}_{v}\left(-\frac{T(y, h)}{\pi^{\lambda-1}}\right) \stackrel{\text { call }}{=} S .
$$

The set $\sigma(\lambda-2)\left(\bmod \mathfrak{p}^{\lambda-1} L\right)$ is stable under translation by any. $\pi^{\lambda-2} l \in \mathfrak{p}^{\lambda-2} L$. So

$$
S=\sum_{\substack{y \in \sigma(\lambda-2) \\\left(\bmod \mathfrak{p}^{\lambda-1} L\right)}} \boldsymbol{e}_{v}\left(-\frac{T\left(y+\pi^{\lambda-2} l, h\right)}{\pi^{\lambda-1}}\right)=\boldsymbol{e}_{v}(-T(l, h / \pi)) S
$$

If $\frac{h}{\pi} \in L^{\prime}$ then

$$
S=\sum_{\substack{y \in \sigma(\lambda-2) \\\left(\bmod p^{-1} L\right)}} \boldsymbol{e}_{v}\left(-\frac{T(y, h / \pi)}{\pi^{\lambda-2}}\right)=q^{n} S(\lambda-2, h / \pi)
$$

If $\frac{h}{\pi} \notin L^{\prime}$ then $T(L, h / \pi) \not \subset \mathfrak{d}^{-1}$, so for some $l \in L$ we have $\operatorname{Tr}(T(l, h / \pi)) \notin \mathbb{Z}_{p}$, giving $\boldsymbol{e}_{v}(-T(l, h / \pi)) \neq 1$, whence $S=0$. Thus $S(\lambda, h)=S^{\prime}(\lambda, h)+q^{n} S(\lambda-2, h / \pi)$ in all cases.

Corollary 6.4. $S\left(\underline{\lambda, 0)}-q^{n} S \underline{(\lambda-2,0)}=q^{(n-1)(\lambda-1)} \# \overline{\sigma^{\prime}(1)}\right.$ for $\lambda \geq 2$. Equivalently, $\# \overline{\sigma(\lambda)}-q^{n} \# \overline{\sigma(\lambda-2)}=q^{(n-1)(\lambda-1)} \# \overline{\sigma^{\prime}(1)}$.

Proof.

$$
S(\lambda, 0)-q^{n} S(\lambda-2,0)=S^{\prime}(\lambda, 0)=\# \overline{\sigma^{\prime}(\lambda)}=q^{(n-1)(\lambda-1)} \# \overline{\sigma^{\prime}(1)}
$$

by the previous proposition.
The value of $\alpha(h, X)$ when $h=0$.
Proposition 6.5.

$$
\alpha(0, X)=\frac{1+\left(\# \overline{\sigma(1)}-q^{n-1}\right) X-q^{n-1} X^{2}}{\left(1-q^{n} X^{2}\right)\left(1-q^{n-1} X\right)} .
$$

Proof. Since $S(\lambda, 0)-q^{n} S(\lambda-2,0)=q^{(n-1)(\lambda-1)} \# \overline{\sigma^{\prime}(1)}$ for $\lambda \geq 2$,

$$
\begin{aligned}
& \left(1-q^{n} X^{2}\right) \sum_{\lambda=0}^{\infty} S(\lambda, 0) X^{\lambda} \\
& \quad=1+S(1,0)+\sum_{\lambda=2}^{\infty}\left(S(\lambda, 0)-q^{n} S(\lambda-2,0)\right) X^{\lambda} \\
& =1+\# \overline{\sigma(1)} X+\sum_{\lambda=2}^{\infty} q^{(n-1)(\lambda-1)} \# \overline{\sigma^{\prime}(1)} X^{\lambda},
\end{aligned}
$$

and since $\# \overline{\sigma(1)}=1+\# \overline{\sigma^{\prime}(1)}$, this is

$$
\begin{aligned}
& =1+X+\sum_{\lambda=1}^{\infty} q^{(n-1)(\lambda-1)} \# \overline{\sigma^{\prime}(1)} X^{\lambda} \\
& =1+X+\frac{\# \overline{\sigma^{\prime}(1)} X}{1-q^{n-1} X} .
\end{aligned}
$$

The result follows easily.
Definition. For n even, define a quadratic character θ by $\theta(\mathfrak{p})=\left(\frac{(-1)^{\frac{n}{2}} \operatorname{det} T}{\mathfrak{p}}\right)$.

This gives for n even $\# \overline{\sigma(1)}-q^{n-1}=q^{\frac{n}{2}-1}(q-1) \theta(\mathfrak{p})$, so in the proposition the numerator becomes $\left(1+q^{\frac{n}{2}} \theta(\mathfrak{p}) X\right)\left(1-q^{\frac{n}{2}-1} \theta(\mathfrak{p}) X\right)$, and the denominator, $\left(1+q^{\frac{n}{2}} \theta(\mathfrak{p}) X\right)\left(1-q^{\frac{n}{2}} \theta(\mathfrak{p}) X\right)\left(1-q^{n-1} X\right)$. For n odd, $\# \overline{\sigma(1)}-q^{n-1}=0$. Thus,

$$
\alpha(h, X)= \begin{cases}\frac{1-q^{\frac{n}{2}-1} \theta(\mathfrak{p}) X}{\left(1-q^{\frac{n}{2}} \theta(\mathfrak{p}) X\right)\left(1-q^{n-1} X\right)} & \text { if } h=0, n \text { even } \\ \frac{1-q^{n-1} X^{2}}{\left(1-q^{n} X^{2}\right)\left(1-q^{n-1} X\right)} & \text { if } h=0, n \text { odd. }\end{cases}
$$

Formula for S.

Definition. Let $\nu_{\mathfrak{d}}=\nu(\mathfrak{d})$, the valuation of the different.
Proposition 6.6. For a set $\sigma \subset L / \mathfrak{p}^{\lambda} L$ such that $u \sigma=\sigma$ for all $u \in \mathfrak{o}^{*}$,

$$
\begin{aligned}
\sum_{y \in \sigma} \boldsymbol{e}_{v}\left(-\frac{T(y, h)}{\pi^{\lambda}}\right) & =\#\left\{y \in \sigma: \nu(T(y, h)) \geq \lambda-\nu_{\mathfrak{d}}\right\} \\
& -\frac{1}{q-1} \#\left\{y \in \sigma: \nu(T(y, h))=\lambda-\nu_{\mathfrak{d}}-1\right\}
\end{aligned}
$$

Proof. We may assume $\lambda \geq 1$. Let $U_{\lambda}=\mathfrak{o}^{*} / \mathfrak{p}^{\lambda}=\mathfrak{o} / \mathfrak{p}^{\lambda}-\mathfrak{p} / \mathfrak{p}^{\lambda}$, with $\# U_{\lambda}=q^{\lambda}-q^{\lambda-1}=q^{\lambda-1}(q-1)$. Then

$$
\begin{aligned}
& q^{\lambda-1}(q-1) \sum_{y \in \sigma} \boldsymbol{e}_{v}\left(-\frac{T(y, h)}{\pi^{\lambda}}\right)=\sum_{u \in U_{\lambda}} \sum_{y \in \sigma} \boldsymbol{e}_{v}\left(-\frac{T(u y, h)}{\pi^{\lambda}}\right) \\
& \quad=\sum_{y} \sum_{u} \boldsymbol{e}_{v}\left(-\frac{T(u y, h)}{\pi^{\lambda}}\right) \\
& \quad=\sum_{y}\left\{\sum_{u \in 0 / \mathbf{p}^{\lambda}} \boldsymbol{e}_{v}\left(-\frac{T(u y, h)}{\pi^{\lambda}}\right)-\sum_{u \in 0 / \mathfrak{p}^{\lambda-1}} \boldsymbol{e}_{v}\left(-\frac{T(u y, h)}{\pi^{\lambda-1}}\right)\right\} .
\end{aligned}
$$

Since the sums over $\mathfrak{o} / \mathfrak{p}^{\lambda}$ and $\mathfrak{o} / \mathfrak{p}^{\lambda-1}$ are character sums over finite groups, and since $\frac{T(u y, h)}{\pi^{\lambda}} \in \mathfrak{d}^{-1}$ for all u if and only if $\nu(T(y, h)) \geq$
$\lambda-\nu_{\mathrm{d}}$, the inner sums yield

$$
\begin{cases}0 & \text { if } \nu(T(y, h))<\lambda-\nu_{\mathfrak{v}}-1 \\ -q^{\lambda-1} & \text { if } \nu(T(y, h))=\lambda-\nu_{\mathfrak{v}}-1 \\ q^{\lambda}-q^{\lambda-1} & \text { if } \nu(T(y, h)) \geq \lambda-\nu_{\mathfrak{d}},\end{cases}
$$

so

$$
\begin{aligned}
& q^{\lambda-1}(q-1) \sum_{y \in \sigma} e_{v}\left(-\frac{T(y, h)}{\pi^{\lambda}}\right) \\
& =\left(q^{\lambda}-q^{\lambda-1}\right) \#\left\{y \in \sigma: \nu(T(y, h)) \geq \lambda-\nu_{\mathfrak{d}}\right\} \\
& \quad-q^{\lambda-1} \#\left\{y \in \sigma: \nu(T(y, h))=\lambda-\nu_{\mathfrak{d}}-1\right\}
\end{aligned}
$$

giving the result.
This shows that the coefficients of the power series $\alpha_{v}(h, X)$ are elements of \mathbb{Q}.

The value of $\alpha(h, X)$ when $T[h]=0$. Now assume that $T[h]=$ $0, h \neq 0$.

Definition. Given a nonzero $h \in L^{\prime}$, define $\nu_{h} \in \mathbb{Z}$ and $h^{\prime} \in L$ by $h=\pi^{\nu_{h}} h^{\prime}$, where $\nu_{h}=\nu(h) \geq-\nu_{\mathrm{o}}$ and $\nu\left(h^{\prime}\right)=0$. Further define $\nu_{h \mathrm{~d}}=\nu_{h}+\nu_{\mathrm{d}} \geq 0$.

There is an $x_{0} \in L$ such that $T\left(x_{0}, h^{\prime}\right)=1$; then setting $x=x_{0}-$ $\frac{1}{2} T\left[x_{0}\right] h^{\prime}$ gives $T[x]=T\left[h^{\prime}\right]=0, T\left(x, h^{\prime}\right)=1$, and $L=\mathfrak{o} h^{\prime}+\mathfrak{o} x+W$, where $W=\left\{w \in L: T\left(w, h^{\prime}\right)=T(w, x)=0\right\}$. Define $T^{\prime}=\left.T\right|_{W}$.

Proposition 6.7. For a nonzero $h \in L^{\prime}$ such that $T[h]=0$,

$$
\alpha(h, X)=\frac{1+\left(\# \overline{\sigma_{T^{\prime}}(1)}-q^{n-3}\right) q X-q^{n-1} X^{2}}{1-q^{n} X^{2}} G_{h, v}(X),
$$

where

$$
G_{h, v}(X)=\sum_{i=0}^{\nu_{h \varnothing}}\left(q^{n-1} X\right)^{i}=\frac{1-\left(q^{n-1} X\right)^{\nu_{h \nu}+1}}{1-q^{n-1} X} .
$$

Proof. For $y=a h^{\prime}+b x+w \in L, T[y]=2 a b+T[w]$, so $y \in \sigma(\lambda)$ if and only if $T[w] \equiv-2 a b\left(\bmod \mathfrak{p}^{\lambda}\right)$. Given $w \in W / \mathfrak{p}^{\lambda} W$ and $b \in \mathfrak{o} / \mathfrak{p}^{\lambda}$, there is an $a \in \mathfrak{o} / \mathfrak{p}^{\lambda}$ such that $T[w] \equiv-2 a b\left(\bmod \mathfrak{p}^{\lambda}\right)$ if
and only if $\nu(T[w]) \geq \nu(b)$, in which case there are $q^{\min (\lambda, \nu(b))}$ such values a. Proposition 6.6 says,
$S\left(\lambda, \pi^{\nu_{h}} h^{\prime}\right)=\#\left\{y \in \overline{\sigma(\lambda)}: \nu\left(T\left(y, h^{\prime}\right)\right) \geq \lambda-\nu_{h \mathrm{~d}}\right\}$

$$
\begin{equation*}
-\frac{1}{q-1} \#\left\{y \in \overline{\sigma(\lambda)}: \nu\left(T\left(y, h^{\prime}\right)\right)=\lambda-\nu_{h \mathfrak{o}}-1\right\} \tag{6.1}
\end{equation*}
$$

Setting $M=\max \left(0, \lambda-\nu_{h \mathfrak{d}}\right)$ one finds that the first term of (6.1) is

$$
\begin{aligned}
& \sum_{m=M}^{\lambda} \#\left\{b \in \mathfrak{o} / \mathfrak{p}^{\lambda}: \nu(b)=m\right\} \#\left\{\sigma_{T^{\prime}}(m)\left(\bmod \mathfrak{p}^{\lambda} L\right)\right\} q^{m} \\
& =\sum_{m=M}^{\lambda-1} q^{\lambda-m-1}(q-1) q^{(n-2)(\lambda-m)} \# \overline{\sigma_{T^{\prime}}(m)} q^{m}+\# \overline{\sigma_{T^{\prime}}(\lambda)} q^{\lambda} \\
& =\sum_{m=M}^{\lambda} q^{\lambda} q^{(n-2)(\lambda-m)} \# \overline{\sigma_{T^{\prime}}(m)}-\sum_{m=M}^{\lambda-1} q^{\lambda-1} q^{(n-2)(\lambda-m)} \# \overline{\sigma_{T^{\prime}}(m)} \\
& =q^{\lambda} \sum_{m=M}^{\lambda} q^{(n-2)(\lambda-m)} \# \overline{\sigma_{T^{\prime}}(m)} \\
& -q^{\lambda} \sum_{m=M+1}^{\lambda} q^{-1} q^{(n-2)(\lambda-m+1)} \# \overline{\sigma_{T^{\prime}}(m-1)} \\
& =q^{\lambda} \sum_{m=M+1}^{\lambda} q^{(n-2)(\lambda-m)} \Delta(m)+q^{\lambda} q^{(n-2)(\lambda-M)} \# \overline{\sigma_{T^{\prime}}(M)} \\
& = \begin{cases}q^{\lambda} \sum_{m=1}^{\lambda} q^{(n-2)(\lambda-m)} \Delta(m)+q^{\lambda} q^{(n-2) \lambda} & \text { if } \lambda \leq \nu_{h \mathfrak{d}} \\
q^{\lambda} \quad \sum_{m=\lambda}^{\lambda} \quad q^{(n-2)(\lambda-m)} \Delta(m) & \text { if } \lambda>\nu_{h \mathfrak{d}}, \\
+q^{\lambda} q^{(n-2) \nu_{h \mathfrak{d}}} \# \overline{\sigma_{T^{\prime}}\left(\lambda-\nu_{h \boldsymbol{\delta}}\right)}\end{cases}
\end{aligned}
$$

where $\Delta(m)=\# \overline{\sigma_{T^{\prime}}(m)}-q^{n-3} \# \overline{\sigma_{T^{\prime}}(m-1)}$. The second term of (6.1) is 0 when $\lambda \leq \nu_{h \mathfrak{d}}$, and is

$$
\begin{aligned}
- & \frac{q^{\lambda-\nu_{h \mathfrak{\jmath}}-1}}{q-1} \#\left\{b \in \mathfrak{o} / \mathfrak{p}^{\lambda}: \nu(b)=\lambda-\nu_{h \mathfrak{~}}-1\right\} \\
& \#\left\{\sigma_{T^{\prime}}\left(\lambda-\nu_{h \mathfrak{d}}-1\right)\left(\bmod \mathfrak{p}^{\lambda} L\right)\right\} \\
= & -\frac{q^{\lambda-\nu_{h \mathfrak{\jmath}}-1}}{q-1} q^{\nu_{h \mathfrak{o}}}(q-1) q^{(n-2)\left(\nu_{h \mathfrak{~}}+1\right)} \# \overline{\sigma_{T^{\prime}}\left(\lambda-\nu_{h \mathfrak{d}}-1\right)} \\
= & -q^{\lambda} q^{(n-2) \nu_{h \mathfrak{~}}} q^{n-3} \# \overline{\sigma_{T^{\prime}}\left(\lambda-\nu_{h \mathfrak{d}}-1\right)}
\end{aligned}
$$

when $\lambda>\nu_{h \boldsymbol{d}}$. So

$$
S(\lambda, h)= \begin{cases}q^{\lambda} \sum_{m=1}^{\lambda} q^{(n-2)(\lambda-m)} \Delta(m)+q^{\lambda} q^{(n-2) \lambda} & \text { if } \lambda \leq \nu_{h \mathrm{~d}} \tag{6.2}\\ q^{\lambda} \sum_{m=\lambda-\nu_{h \mathrm{o}}}^{\lambda} q^{(n-2)(\lambda-m)} \Delta(m) & \text { if } \lambda>\nu_{h \mathrm{o}}\end{cases}
$$

Now, $\Delta(m)$ satisfies

$$
\begin{aligned}
\Delta(m+ & 2)-q^{n-2} \Delta(m) \\
= & \left(\# \overline{\sigma_{T^{\prime}}(m+2)}-q^{n-2} \# \overline{\sigma_{T^{\prime}}(m)}\right) \\
& -q^{n-3}\left(\# \overline{\sigma_{T^{\prime}}(m+1)}-q^{n-2} \# \overline{\sigma_{T^{\prime}}(m-1)}\right) \\
= & \# \overline{\sigma_{T^{\prime}}^{\prime}(m+2)}-q^{n-3} \# \overline{\sigma_{T^{\prime}}^{\prime}(m+1)} \\
= & 0
\end{aligned}
$$

by Corollary 6.4 and Proposition 6.2 with T^{\prime} in place of T. This shows that for $\lambda>\nu_{h \mathfrak{o}}$,

$$
\begin{aligned}
S(\lambda+ & 2, h)-q^{n} S(\lambda, h) \\
& =q^{\lambda+2} \sum_{m=\lambda-\nu_{h \delta}+2}^{\lambda+2} q^{(n-2)(\lambda+2-m)} \Delta(m) \\
& -q^{\lambda} \sum_{m=\lambda-\nu_{h \delta}}^{\lambda} q^{n} q^{(n-2)(\lambda-m)} \Delta(m) \\
& =q^{\lambda+2} \sum_{m=\lambda-\nu_{h \delta}}^{\lambda} q^{(n-2)(\lambda-m)}\left(\Delta(m+2)-q^{n-2} \Delta(m)\right) \\
& =0
\end{aligned}
$$

So for $\nu_{h \mathrm{~d}}=0$,

$$
\begin{aligned}
(1 & \left.-q^{n} X^{2}\right) \sum_{\lambda=0}^{\infty} S(\lambda, h) X^{\lambda} \\
& =1+S(1, h) X+\sum_{\lambda=2}^{\infty}\left(S(\lambda, h)-q^{n} S(\lambda-2, h)\right) X^{\lambda} \\
& =1+\left(\# \overline{\sigma_{T^{\prime}}(1)}-q^{n-3}\right) q X+\left(q^{2} \# \overline{\sigma_{T^{\prime}}(2)}-q^{n-1} \# \overline{\sigma_{T^{\prime}}(1)}-q^{n}\right) X^{2}
\end{aligned}
$$

giving the result in this case, as the relations $\# \overline{\sigma_{T^{\prime}}(2)}=q^{n-2} \# \overline{\sigma_{T^{\prime}}(0)}$ $+q^{n-3} \# \overline{\sigma_{T^{\prime}}^{\prime}(1)}$ and $\# \overline{\sigma_{T^{\prime}}(1)}=\# \overline{\sigma_{T^{\prime}}^{\prime}(1)}+1$ show that the coefficient of X^{2} is $-q^{n-1}$. Also when $\nu_{h \boldsymbol{d}}=0,(6.2)$ shows that

$$
\sum_{\lambda=0}^{\infty} S(\lambda, h)=1+\sum_{m=1}^{\infty}(q X)^{m} \Delta(m)
$$

so that

$$
1+\sum_{m=1}^{\infty}(q X)^{m} \Delta(m)=\frac{1+\left(\# \overline{\sigma_{T^{\prime}}(1)}-q^{n-3}\right) q X-q^{n-1} X^{2}}{1-q^{n} X^{2}}
$$

For general $\nu_{h \mathfrak{d}}$, the same formula gives

$$
\begin{align*}
\alpha(h, X)= & 1+\sum_{\lambda=1}^{\nu_{h \delta}}(q X)^{\lambda}\left(\sum_{m=1}^{\lambda} q^{(n-2)(\lambda-m)} \Delta(m)+q^{(n-2) \lambda}\right) \tag{6.3}\\
& +\sum_{\lambda=\nu_{h \partial}+1}^{\infty}(q X)^{\lambda} \sum_{m=\lambda-\nu_{h \delta}}^{\lambda} q^{(n-2)(\lambda-m)} \Delta(m) \\
= & \sum_{\lambda=0}^{\nu_{h \delta}}\left(q^{n-1} X\right)^{\lambda}+\sum_{\lambda=1}^{\nu_{h \delta}}(q X)^{\lambda} \sum_{m=1}^{\lambda} q^{(n-2)(\lambda-m)} \Delta(m) \\
& +\sum_{\lambda=\nu_{h \partial}+1}^{\infty}(q X)^{\lambda} \sum_{m=\lambda-\nu_{h \delta}}^{\lambda} q^{(n-2)(\lambda-m)} \Delta(m) .
\end{align*}
$$

The first sum in (6.3) is $\frac{1-\left(q^{n-1} X\right)^{\nu_{h \varnothing}+1}}{1-q^{n-1} X}$. The second sum is

$$
\begin{aligned}
\sum_{m=1}^{\nu_{h 0}} & q^{-m(n-2)} \Delta(m) \sum_{\lambda=m}^{\nu_{h \delta}}\left(q^{n-1} X\right)^{\lambda} \\
& =\sum_{m=1}^{\nu_{h \delta}} q^{-m(n-2)} \Delta(m)\left(q^{n-1} X\right)^{m} \frac{1-\left(q^{n-1} X\right)^{\nu_{h \delta}+1-m}}{1-q^{n-1} X} \\
& =\sum_{m=1}^{\nu_{h \delta}} \Delta(m)(q X)^{m} \frac{1-\left(q^{n-1} X\right)^{\nu_{h \delta}+1-m}}{1-q^{n-1} X}
\end{aligned}
$$

The third sum is

$$
\begin{aligned}
\sum_{m=1}^{\nu_{h \delta}} q^{-m(n-2)} \Delta(m) & \sum_{\lambda=\nu_{h o}+1}^{m+\nu_{h \delta}}\left(q^{n-1} X\right)^{\lambda} \\
& +\sum_{m=\nu_{h \delta}+1}^{\infty} q^{-m(n-2)} \Delta(m) \sum_{\lambda=m}^{m+\nu_{h \delta}}\left(q^{n-1} X\right)^{\lambda}
\end{aligned}
$$

which splits into

$$
\begin{aligned}
& \sum_{m=1}^{\nu_{h 0}} q^{-m(n-2)} \Delta(m)\left(q^{n-1} X\right)^{\nu_{h o}+1} \frac{1-\left(q^{n-1} X\right)^{m}}{1-q^{n-1} X} \\
& \quad=\sum_{m=1}^{\nu_{h 0}} q^{-m(n-2)} \Delta(m)\left(q^{n-1} X\right)^{m} \frac{\left(q^{n-1} X\right)^{\nu_{h \partial}+1-m}-\left(q^{n-1} X\right)^{\nu_{h \varnothing}+1}}{1-q^{n-1} X} \\
& \quad=\sum_{m=1}^{\nu_{h 0}} \Delta(m)(q X)^{m}\left(\frac{1-\left(q^{n-1} X\right)^{\nu_{h 0}+1}}{1-q^{n-1} X}-\frac{1-\left(q^{n-1} X\right)^{\nu_{h \partial}+1-m}}{1-q^{n-1} X}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \sum_{m=\nu_{h D}+1}^{\infty} q^{-m(n-2)} \Delta(m)\left(q^{n-1} X\right)^{m} \frac{1-\left(q^{n-1} X\right)^{\nu_{h 0}+1}}{1-q^{n-1} X} \\
& \quad=\sum_{m=\nu_{h D}+1}^{\infty} \Delta(m)(q X)^{m} \frac{1-\left(q^{n-1} X\right)^{\nu_{h 0}+1}}{1-q^{n-1} X}
\end{aligned}
$$

The total is thus

$$
\begin{aligned}
\alpha(h, X) & =\left(1+\sum_{m=1}^{\infty} \Delta(m)(q X)^{m}\right)\left(\frac{1-\left(q^{n-1} X\right)^{\nu_{h 0}+1}}{1-q^{n-1} X}\right) \\
& =\frac{1+\left(\# \overline{\sigma_{T^{\prime}}(1)}-q^{n-3}\right) q X-q^{n-1} X^{2}}{1-q^{n} X^{2}} G_{h, v}(X),
\end{aligned}
$$

which completes the proof of the proposition.
For n even, observe that since

$$
\operatorname{det} T^{\prime}=-\operatorname{det} T, \theta(\mathfrak{p})=\left(\frac{(-1)^{\frac{n}{2}-1} \operatorname{det} T^{\prime}}{\mathfrak{p}}\right)
$$

and the first factor becomes

$$
\frac{1+q^{\frac{n}{2}-2}(q-1) \theta(\mathfrak{p}) q X-q^{n-1} X^{2}}{\left(1+q^{\frac{n}{2}} \theta(\mathfrak{p}) X\right)\left(1-q^{\frac{n}{2}} \theta(\mathfrak{p}) X\right)}=\frac{1-q^{\frac{n}{2}-1} \theta(\mathfrak{p}) X}{1-q^{\frac{n}{2}} \theta(\mathfrak{p}) X}
$$

For n odd the first factor becomes $\frac{1-q^{n-1} X^{2}}{1-q^{n} X^{2}}$. Thus,

$$
\alpha(h, X)= \begin{cases}\frac{1-q^{\frac{n}{2}-1} \theta(\mathfrak{p}) X}{1-q^{\frac{n}{2}} \theta(\mathfrak{p}) X} G_{h, v}(X) & \text { if } T[h]=0, n \text { even } \\ \frac{1-q^{n-1} X^{2}}{1-q^{n} X^{2}} G_{h, v}(X) & \text { if } T[h]=0, n \text { odd. }\end{cases}
$$

The value of $\alpha(h, X)$ when $\nu\left(T\left[h^{\prime}\right]\right)=0$.
Proposition 6.8. For $h \in L^{\prime}$ such that $\nu\left(T\left[h^{\prime}\right]\right)=0, \alpha(h, X)$ is a polynomial $H_{h, v}(X) \in \mathbb{Q}[X]$ of degree $<2\left(\nu_{h \boldsymbol{\gamma}}+1\right)$. If $\nu_{h \mathrm{~d}}=0$ then

$$
\alpha(h, X)=1+\frac{1}{q-1}\left(q\left(\# \overline{\sigma_{T^{\prime \prime}}(1)}-q^{n-2}\right)-\left(\# \overline{\sigma(1)}-q^{n-1}\right)\right) X,
$$

where $T^{\prime \prime}=\left.T\right|_{W}$, with $W=\{w \in L: T(w, h)=0\}$.
Proof. We will compute $S^{\prime}(\lambda, h)$ for all values of λ. For $\lambda \leq \nu_{h 0}$, $S^{\prime}(\lambda, h)=\# \overline{\sigma^{\prime}(\lambda)}$ is clear. Suppose now that $\lambda>\nu_{h 0}+1$. Any $y \in \sigma(\lambda)$ takes the form $y=a h^{\prime}+w$, where $a=\frac{T\left(y, h^{\prime}\right)}{T\left[h^{\prime}\right]}, w \in W$, $T[w] \equiv-a^{2} T\left[h^{\prime}\right]\left(\bmod \mathfrak{p}^{\lambda}\right)$, and $\nu(y)=0$ if and only if $\nu(w)=0$. For $l \geq 0, l=\nu(T(y, h))=\nu\left(T\left(a h^{\prime}, \pi^{\nu_{h}} h^{\prime}\right)\right)=\nu(a)+\nu_{h}$ if and only if $\nu(a)=l-\nu_{h}$. Thus by Proposition 6.6,

$$
\begin{align*}
S^{\prime}(\lambda, h)= & \#\left\{y \in \overline{\sigma^{\prime}(\lambda)}: \nu(T(y, h)) \geq \lambda-\nu_{\mathrm{o}}\right\} \tag{6.4}\\
& -\frac{1}{q-1} \#\left\{y \in \overline{\sigma^{\prime}(\lambda)}: \nu(T(y, h))=\lambda-\nu_{\mathrm{d}}-1\right\} \\
= & \sum_{\substack{a \in \mathcal{O}^{\prime} \mathfrak{p}^{\lambda} \\
\nu(a) \geq \lambda-\nu_{h \mathrm{o}}}} \#\left\{w \in \overline{\sigma_{T^{\prime \prime}}^{\prime}\left(\lambda,-a^{2} T\left[h^{\prime}\right]\right)}\right\} \\
& -\frac{1}{q-1} \sum_{\substack{a \in \mathfrak{o} / \mathfrak{p}^{\lambda} \\
\nu(a)=\lambda-\nu_{h \mathrm{o}}-1}} \#\left\{w \in \overline{\sigma_{T^{\prime \prime}}^{\prime}\left(\lambda,-a^{2} T\left[h^{\prime}\right]\right)}\right\} .
\end{align*}
$$

Since $\lambda>\nu_{h 0}+1, \nu\left(a^{2}\right)>0$ in both sums. By Proposition 6.2, the set cardinalities depend only on $a^{2} T\left[h^{\prime}\right](\bmod \mathfrak{p})$, which is 0 , so for $\lambda>\nu_{h \mathrm{o}}+1$,

$$
\begin{aligned}
& S^{\prime}(\lambda, h)= \# \overline{\sigma_{T^{\prime \prime}}^{\prime}(\lambda)}\left(\#\left\{a \in \mathfrak{o} / \mathfrak{p}^{\lambda}: \nu(a) \geq \lambda-\nu_{h \mathfrak{d}}\right\}\right. \\
&\left.-\frac{1}{q-1} \#\left\{a \in \mathfrak{o} / \mathfrak{p}^{\lambda}: \nu(a)=\lambda-\nu_{h \mathfrak{d}}-1\right\}\right) \\
&=\# \overline{\sigma_{T^{\prime \prime}}^{\prime}(\lambda)}\left(q^{\nu_{h \mathfrak{~}}}-\frac{1}{q-1}\left(q^{\nu_{h \mathrm{o}}+1}-q^{\nu_{h \mathfrak{~}}}\right)\right) \\
&= 0
\end{aligned}
$$

This bounds the degree, for if $\lambda \geq 2 \nu_{h \mathcal{~}}+2$ then

$$
S(\lambda, h)=\sum_{r=0}^{\nu_{h o}} q^{n r} S^{\prime}\left(\lambda-2 r, \pi^{-r} h\right)
$$

by repeated application of Proposition 6.3, and the summand is always zero since $\lambda>2 \nu_{h \mathfrak{d}}+1$ implies $\lambda-2 r>\nu_{\pi^{-r} h, \mathfrak{d}}+1$ for $r=0, \ldots, \nu_{h \mathfrak{d}}$.

The remaining case is $\lambda=\nu_{h \delta}+1$. In this instance (6.4) becomes

$$
\begin{aligned}
S^{\prime}\left(\nu_{h \mathfrak{\jmath}}+1, h\right)= & q^{\nu_{h \mathfrak{\jmath}}} \# \overline{\sigma_{T^{\prime \prime}}^{\prime}\left(\nu_{h \mathfrak{d}}+1\right)} \\
& -\frac{1}{q-1} \sum_{\substack{a \in \mathfrak{o} / \mathfrak{p}^{\boldsymbol{\lambda}} \\
\nu(a)=0}} \# \overline{\sigma_{T^{\prime \prime}}^{\prime}\left(\nu_{h \mathfrak{d}}+1,-a^{2} T\left[h^{\prime}\right]\right)}
\end{aligned}
$$

To simplify this expression, note that

$$
\begin{aligned}
\# \overline{\sigma^{\prime}\left(\nu_{h \mathfrak{d}}+1\right)}= & q^{\nu_{h \mathfrak{d}}} \# \overline{\sigma_{T^{\prime \prime}}^{\prime}\left(\nu_{h \mathfrak{d}}+1\right)} \\
& +\sum_{\substack{a \in \mathfrak{o} / \mathfrak{p}^{\lambda} \\
\nu(a)=0}} \# \overline{\sigma_{T^{\prime \prime}}^{\prime \prime}\left(\nu_{h \mathfrak{d}}+1,-a^{2} T\left[h^{\prime}\right]\right)},
\end{aligned}
$$

obtained from $\# \overline{\sigma^{\prime}\left(\nu_{h \mathrm{~d}}+1\right)}=S^{\prime}\left(\nu_{h \mathrm{~d}}+1,0\right)$ and analysis of $S^{\prime}\left(\nu_{h \mathrm{\jmath}}+\right.$ $1,0)$ similar to the argument above. Combining these gives

$$
\begin{aligned}
& S^{\prime}\left(\nu_{h \mathrm{\jmath}}+1, h\right) \\
& \quad=\frac{1}{q-1}\left(q^{\nu_{h \mathfrak{\jmath}}+1} \# \overline{\sigma_{T^{\prime \prime}}^{\prime}\left(\nu_{h \mathfrak{\jmath}}+1\right)}-\# \overline{\sigma^{\prime}\left(\nu_{h \mathfrak{\jmath}}+1\right)}\right) \\
& \quad=\frac{1}{q-1}\left(q^{\nu_{h \mathfrak{\jmath}}+1} q^{(n-2) \nu_{h \jmath}} \# \overline{\sigma_{T^{\prime \prime}}^{\prime}(1)}-q^{(n-1) \nu_{h \mathrm{\jmath}}} \# \overline{\sigma^{\prime}(1)}\right)
\end{aligned}
$$

The expression for $\nu_{h \mathrm{~d}}=0$ follows since in this case the formulae for $S^{\prime}(\lambda, h)$ give

$$
\begin{aligned}
\alpha(h, X) & =S(0, h)+X+S^{\prime}(1, h) X \\
& =1+X+\frac{1}{q-1}\left(q \# \overline{\sigma_{T^{\prime \prime}}^{\prime}(1)}-\# \overline{\sigma^{\prime}(1)}\right) X \\
& =1+\frac{1}{q-1}\left(q\left(1+\# \overline{\sigma_{T^{\prime \prime}}^{\prime}(1)}\right)-\left(1+\# \overline{\sigma^{\prime}(1)}\right)\right) X \\
& =1+\frac{1}{q-1}\left(q \# \overline{\sigma_{T^{\prime \prime}}(1)}-\# \overline{\sigma(1)}\right) X
\end{aligned}
$$

which completes the proof.
Definition. For n odd and h such that $\nu\left(T\left[h^{\prime}\right]\right)=0$, define a quadratic character θ_{h} by $\theta_{h}(\mathfrak{p})=\left(\frac{(-1)^{\frac{n-1}{2}} T\left[h^{\prime}\right] \operatorname{det} T}{\mathfrak{p}}\right)$.

Since $\operatorname{det} T^{\prime \prime}=T\left[h^{\prime}\right]^{-1} \operatorname{det} T$ and $\left(\frac{T\left[h^{\prime}\right]^{-1}}{\mathfrak{p}}\right)=\left(\frac{T\left[h^{\prime}\right]}{\mathfrak{p}}\right)$, when $\nu_{h \delta}=0$ we get

$$
\begin{aligned}
& \alpha(h, X) \\
& = \begin{cases}1+q^{\frac{n}{2}-1} \theta(\mathfrak{p}) X & \text { if } \nu\left(T\left[h^{\prime}\right]\right)=0, n \text { even } \\
1+q^{\frac{n-1}{2}} \theta_{h}(\mathfrak{p}) X=\frac{1-q^{n-1} X^{2}}{1-q^{\frac{n-1}{2}} \theta_{h}(\mathfrak{p}) X} & \text { if } \nu\left(T\left[h^{\prime}\right]\right)=0, n \text { odd }\end{cases}
\end{aligned}
$$

The value of $\alpha(h, X)$ when $\nu\left(T\left[h^{\prime}\right]\right)>0$.
Lemma. For $y \in L, h \in L^{\prime}, \mu \in \mathbb{Z}$, the following equivalence holds:
$T h \equiv a T y\left(\bmod \mathfrak{p}^{\mu} \mathfrak{d}^{-1} L\right)$ for some $a \in \mathfrak{d}^{-1}$

$$
\Leftrightarrow\left(T(d, y) \in \mathfrak{p}^{\mu} \Rightarrow T(d, h) \in \mathfrak{p}^{\mu} \mathfrak{d}^{-1} \text { for all } d \in L\right)
$$

Proof. \Rightarrow : If $T h \equiv a T y\left(\bmod \mathfrak{p}^{\mu} \mathfrak{d}^{-1} L\right)$ then $T(d, h) \equiv a T(d, y)$ $\left(\bmod \mathfrak{p}^{\mu} \mathfrak{d}^{-1}\right)$ for all $d \in L$, hence $T(d, y) \in \mathfrak{p}^{\mu} \Rightarrow a T(d, y) \in$ $\mathfrak{p}^{\mu} \mathfrak{d}^{-1} \Rightarrow T(d, h) \in \mathfrak{p}^{\mu} \mathfrak{d}^{-1}$ for all $d \in L$.
\Leftarrow : If $(T y)_{i} \in \mathfrak{p}^{\mu}$ then setting $d=e_{i}$ (the $i^{\text {th }}$ basis vector) gives $T(d, y)=(T y)_{i} \in \mathfrak{p}^{\mu}$, so $T(d, h)=(T h)_{i} \in \mathfrak{p}^{\mu} \mathfrak{d}^{-1}$. At such i, $(T h)_{i} \equiv a(T y)_{i} \equiv 0\left(\bmod \mathfrak{p}^{\mu} \mathfrak{d}^{-1}\right)$ holds for any $a \in \mathfrak{d}^{-1}$.

If $(T y)_{i} \notin \mathfrak{p}^{\mu}$, setting $d=\pi^{\mu-\nu(T y)_{i}} e_{i}$ gives

$$
T(d, y)=\pi^{\mu-\nu(T y)_{i}}(T y)_{i} \in \mathfrak{p}^{\mu}
$$

so $T(d, h)=\pi^{\mu-\nu(T y)_{i}}(T h)_{i} \in \mathfrak{p}^{\mu} \mathfrak{d}^{-1}$, showing $\nu(T h)_{i} \geq \nu(T y)_{i}-\nu_{\mathfrak{d}}$. We may assume that $(T y)_{1}$ has the smallest valuation among the $(T y)_{i}$ and define $a=\frac{(T h)_{1}}{(T y)_{1}} \in \mathfrak{d}^{-1} .(T h)_{1} \equiv a(T y)_{1}\left(\bmod \mathfrak{p}^{\mu} \mathfrak{d}^{-1}\right)$ certainly holds. For $i \neq 1$ such that $(T y)_{i} \notin \mathfrak{p}^{\mu}$, set

$$
d=\pi^{\nu(T y)_{i}}\left((T y)_{1}^{-1} e_{1}-(T y)_{i}^{-1} e_{i}\right) \in L
$$

$T(d, y)=0 \in \mathfrak{p}^{\mu}$, hence

$$
T(d, h)=\pi^{\nu(T y)_{i}}\left(a-\frac{(T h)_{i}}{(T y)_{i}}\right) \in \mathfrak{p}^{\mu} \mathfrak{d}^{-1}
$$

so

$$
\pi^{\nu(T y)_{i}} a \equiv \frac{\pi^{\nu(T y)_{i}}}{(T y)_{i}}(T h)_{i} \quad\left(\bmod \mathfrak{p}^{\mu} \mathfrak{d}^{-1}\right),
$$

i.e., $(T h)_{i} \equiv a(T y)_{i}\left(\bmod \mathfrak{p}^{\mu} \mathfrak{d}^{-1}\right)$.

The relation now holds at all i, showing that

$$
T h \equiv a T y\left(\bmod \mathfrak{p}^{\mu} \mathfrak{d}^{-1} L\right) .
$$

Lemma.

$$
S(\lambda, h)=\sum_{y \in \tau(\lambda, h)} \boldsymbol{e}_{v}\left(-\frac{T(y, h)}{\pi^{\lambda}}\right),
$$

where
$\tau(\lambda, h)=\left\{y \in \overline{\sigma(\lambda)}: \nu(T h-a T y) \geq\left\lfloor\frac{\lambda}{2}\right\rfloor-\nu_{\mathrm{o}}\right.$ for some $\left.a \in \mathfrak{d}^{-1}\right\}$.

Proof. Let $\mu=\left\lfloor\frac{\lambda}{2}\right\rfloor$ and $\nu=\lambda-\mu$ so that $2 \nu \geq \lambda$. For any $y \in$ $\sigma(\lambda)$ and $d \in L$ we have $T\left[y+\pi^{\nu} d\right] \equiv 2 \pi^{\nu} T(y, d)\left(\bmod \mathfrak{p}^{\lambda}\right)$, showing that $\sigma(\lambda)=\left\{y+\pi^{\nu} d: y \in \sigma(\lambda), d \in L, T(y, d) \in \mathfrak{p}^{\mu}\right\}$. Projecting $\bmod \mathfrak{p}^{\lambda}, \overline{\sigma(\lambda)}=\left\{y+\pi^{\nu} d: y \in \overline{\sigma(\lambda)}, d \in L / \mathfrak{p}^{\lambda}, T(y, d) \in \mathfrak{p}^{\mu} / \mathfrak{p}^{\lambda}\right\}$. To avoid redundancy, take only $y \in \sigma(\lambda)\left(\bmod \mathfrak{p}^{\nu} L\right)$. So

$$
\begin{aligned}
S(\lambda, h) & =\sum_{\substack{y \in \sigma(\lambda)\left(\bmod \\
d \in L / p^{\lambda} \\
T(y, d) \in \mathfrak{p}^{\mu} / \mathfrak{p}^{\lambda}\right.}} \boldsymbol{e}_{v}\left(-\frac{T\left(y+\pi^{\nu} d, h\right)}{\pi^{\lambda}}\right) \\
& =\sum_{y} \boldsymbol{e}_{v}\left(-\frac{T(y, h)}{\pi^{\lambda}}\right) \sum_{d} \boldsymbol{e}_{v}\left(-\frac{T(d, h)}{\pi^{\mu}}\right) .
\end{aligned}
$$

The sum over d vanishes if there exists some $d \in L$ such that $T(y, d) \in \mathfrak{p}^{\mu}$ and $\boldsymbol{e}_{v}\left(-\frac{T(d, h)}{\pi^{\mu}}\right) \neq 1$, since it is then a nontrivial character sum over a finite group. Such d exists if and only if $T(y, d) \in \mathfrak{p}^{\mu} \nRightarrow T(d, h) \in \mathfrak{p}^{\mu} \mathfrak{d}^{-1}$. So by the previous lemma, we may sum only over y such that $T h \equiv a T y\left(\bmod \mathfrak{p}^{\mu} \mathfrak{d}^{-1} L\right)$ for some
$a \in \mathfrak{d}^{-1}$, thus:

$$
\begin{aligned}
S(\lambda, h)= & \sum_{\substack{y+\pi^{\nu} d: \\
y \in \sigma(\lambda)\left(\bmod \mathfrak{p}^{\nu} L\right) \\
d \in L\left(\bmod \mathfrak{p}^{\mu}\right) \\
T(y, d) \in \mathfrak{p}^{\mu} / \mathfrak{p}^{\lambda} \\
T h \equiv a T y\left(\bmod \mathfrak{p}^{\mu} \mathfrak{D}^{-1} L\right) \\
\left(\text { for some } a \in \mathcal{D}^{-1}\right)}} \boldsymbol{e}_{v}\left(-\frac{T\left(y+\pi^{\nu} d, h\right)}{\pi^{\lambda}}\right) \\
= & \sum_{y \in \tau(\lambda, h)} \boldsymbol{e}_{v}\left(-\frac{T(y, h)}{\pi^{\lambda}}\right) .
\end{aligned}
$$

Proposition 6.9. If $\nu\left(T\left[h^{\prime}\right]\right)>0, \alpha(h, X)$ is a polynomial $K_{h, v}(X) \in \mathbb{Q}[X]$ of degree less than $2\left(\nu^{\prime}+1+2 \nu_{h \mathfrak{d}}+\nu_{\mathfrak{d}}\right)$, where $\nu^{\prime}=\nu\left(T\left[h^{\prime}\right]\right)$.

Proof. We will prove $\tau(\lambda, h)$ is empty for $\lambda \geq 2\left(\nu^{\prime}+1+2 \nu_{h \mathrm{D}}+\right.$ $\left.\nu_{\mathfrak{d}}\right)$. Suppose $y \in \tau(\lambda, h)$. Then for some $a \in \mathfrak{d}^{-1}, T h-a T y \in$ $\mathfrak{p}^{\mathfrak{\lambda}\rfloor} \mathfrak{d}^{-1} L \subset \mathfrak{p}^{\left(\nu^{\prime}+1+2 \nu_{0}\right)} L$, i.e., $T h \equiv a T y\left(\bmod \mathfrak{p}^{\nu^{\prime}+1+2 \nu_{0}} L\right)$. Multiplying by T^{-1} gives also $h \equiv a y\left(\bmod \mathfrak{p}^{\nu^{\prime}+1+2 \nu_{0}} L\right)$, so $\pi^{2 \nu_{h}} T\left[h^{\prime}\right]=$ $T[h] \equiv a^{2} T[y]\left(\bmod \mathfrak{p}^{\nu^{\prime}+1+2 \nu_{0}}\right)$. But since $y \in \tau(\lambda, h), a^{2} T[y] \in$ $\mathfrak{p}^{\lambda} \mathfrak{d}^{-2} \subset \mathfrak{p}^{2\left(\nu^{\prime}+1+2 \nu_{h 0}\right)} \subset \mathfrak{p}^{\nu^{\prime}+1+2 \nu_{h 0}}$, giving the contradiction $T\left[h^{\prime}\right] \in$ $\mathfrak{p}^{\nu^{\prime}+1+2 \nu_{\nu}}$.

Summary. We gather the results of this chapter.
Theorem 6.10. For n even,

$$
\begin{aligned}
& \alpha_{v}\left(h_{v}, X\right) \\
& = \begin{cases}\left(1-q_{v}^{\frac{n}{2}-1} \theta\left(\mathfrak{p}_{v}\right) X\right)\left(1-q_{v}^{\frac{n}{2}} \theta\left(\mathfrak{p}_{v}\right) X\right)^{-1} \\
\left(1-q_{v}^{n-1} X\right)^{-1} & \text { if } h_{v}=0 \\
\left(1-q_{v}^{\frac{n}{2}-1} \theta\left(\mathfrak{p}_{v}\right) X\right)\left(1-q_{v}^{\frac{n}{2}} \theta\left(\mathfrak{p}_{v}\right) X\right)^{-1} & \\
G_{h, v}(X) & \text { if } T\left[h_{v}\right]=0 \\
\left(1-q_{v}^{\frac{n}{2}-1} \theta\left(\mathfrak{p}_{v}\right) X\right) & \text { if } \nu\left(T\left[h_{v}^{\prime}\right]\right)=0, \nu_{h d}=0 \\
H_{h, v}(X) & \text { if } \nu\left(T\left[h_{v}^{\prime}\right]\right)=0, \nu_{h \mathcal{D}}>0 \\
K_{h, v}(X) & \text { if } \nu\left(T\left[h_{v}^{\prime}\right]\right)>0 .\end{cases}
\end{aligned}
$$

For n odd,

$$
\begin{aligned}
& \alpha_{v}\left(h_{v}, X\right) \\
& = \begin{cases}\left(1-q_{v}^{n-1} X^{2}\right)\left(1-q_{v}^{n} X^{2}\right)^{-1} & \text { if } h_{v}=0 \\
\left(1-q_{v}^{n-1} X\right)^{-1} & \text { if } \left.T h_{v}\right]=0 \\
\left(1-q_{v}^{n-1} X^{2}\right)\left(1-q_{v}^{n} X^{2}\right)^{-1} G_{h, v}(X) & \text { (1 } \left.q_{v}^{n-1} X^{2}\right)\left(1-q_{v}^{\frac{n-1}{2}} \theta_{h}\left(\mathfrak{p}_{v}\right) X\right)^{-1} \\
\left(1-{\text { if } \nu\left(T\left[h_{v}^{\prime}\right]\right)=0, \nu_{h \delta}=0}^{H_{h, v}(X)}\right. & \text { if } \nu\left(T\left[h_{v}^{\prime}\right]\right)=0, \nu_{h \delta}>0 \\
K_{h, v}(X) & \text { if } \nu\left(T\left[h_{v}^{\prime}\right]\right)>0 .\end{cases}
\end{aligned}
$$

Recalling that $a_{v}\left(h_{v}, s\right)=\alpha_{v}\left(h_{v}, X_{v}(s)\right)$ for $v \in \boldsymbol{f}, v \nmid \mathfrak{b}$, where from before $X_{v}(s)=\psi\left(\mathfrak{p}_{v}\right)^{-1} q_{v}^{-k-2 s}$, and taking the product over such v gives,

Theorem 6.11. For $z=\left(z_{v}\right)=\left(x_{v}+i y_{v}\right) \in \mathcal{H}^{\boldsymbol{a}}$,

$$
E(z, s ; k, \psi, \mathfrak{b})=(-1)^{d k} 2^{d(k+2 s)} \sum_{h \in L^{\prime}} a(h, y, s) \boldsymbol{e}\left(\sum_{v \in \boldsymbol{a}} T^{v}\left(x_{v}, h_{v}\right)\right),
$$

with

$$
a(h, y, s)=N \mathfrak{d}^{-n / 2} a_{\boldsymbol{a}}(h, y, s) a_{\boldsymbol{f}}(h, s),
$$

where

$$
a_{\boldsymbol{a}}(h, y, s)=\prod_{v \in \boldsymbol{a}} \xi\left(y_{v}, h_{v} ; k+s, s ; T^{v}\right) ;
$$

for n even,

$$
\begin{align*}
& a_{f}(h, s)=L_{\mathfrak{b}}\left(k+2 s+1-\frac{n}{2}, \theta \psi^{-1}\right)^{-1} \tag{6.5a}\\
& \\
& \cdot \begin{cases}L_{\mathfrak{b}}\left(k+2 s-\frac{n}{2}, \theta \psi^{-1}\right) L_{\mathfrak{b}}\left(k+2 s-n+1, \psi^{-1}\right) & \text { if } h=0 \\
L_{\mathfrak{b}}\left(k+2 s-\frac{n}{2}, \theta \psi^{-1}\right) \prod_{\substack{v \nmid b: \nu_{v}(h)+\nu_{v}(\mathfrak{p})>0}} G_{h, v}\left(X_{v}(s)\right) & \text { if } T[h]=0 \\
\prod_{\substack{v \nmid: b_{v}\left(T\left[h_{v}^{\prime}\right)\right]=0, \nu_{v}(h)+\nu_{v}(0)>0}} \frac{H_{h, v}\left(X_{v}(s)\right)}{\left(1-q_{v}^{\frac{n}{2}-1} \theta\left(\mathfrak{p}_{v}\right) X_{v}(s)\right)} & \\
\cdot \prod_{v \nmid b: \nu_{v}\left(T\left[h_{v}^{\prime}\right)\right]>0} \frac{K_{h, v}\left(X_{v}(s)\right)}{\left(1-q_{v}^{\frac{n}{2}-1} \theta\left(\mathfrak{p}_{v}\right) X_{v}(s)\right)} & \text { if } T[h] \neq 0 ;\end{cases}
\end{align*}
$$

and for n odd,

$$
\begin{align*}
& a_{f}(h, s)=L_{\mathfrak{b}}\left(2(k+2 s)-n+1, \psi^{-2}\right)^{-1} \tag{6.5b}
\end{align*}
$$

Here $\mathfrak{h}=\prod_{\substack{v \nmid b: \nu_{v}\left(T\left[h^{\prime}\right]\right)=0,0 \\ \nu_{v}(h)+\nu_{\nu}(\mathcal{O})>0}} \mathfrak{p}_{v} \prod_{\nu \nmid 6: \nu_{\nu}\left(T\left[h_{v}^{\prime}\right]\right)>0} \mathfrak{p}_{v}, \quad \theta$ and θ_{h} are the quadratic characters defined in this chapter, and $G_{h, v}, H_{h, v}$ and $K_{h, v}$ are the polynomials from Propositions 6.7, 6.8 and 6.9.
7. $E(z, s)$ at special values of s.

The order of $a(h, y, s)$ at $s=0$. For a discussion of near holomorphy and arithmeticity of a class of functions containing $E(z, s)$ the reader is referred to [Sh86], [Sh87], [B190], [Blpp]. As a special case, we exhibit the Fourier expansion of $E(z, s)$ at $s=0$.

Definition. For $h \in L^{\prime}$ such that $T[h] \neq 0$, define

$$
\begin{aligned}
p_{h} & =\#\left\{v \in \boldsymbol{a}: \quad h_{v} \in \mathcal{P}_{v}\right\}, \\
q_{h} & =\#\left\{v \in \boldsymbol{a}:-h_{v} \in \mathcal{P}_{v}\right\}, \\
r_{h} & =\#\left\{v \in \boldsymbol{a}: T^{v}\left[h_{v}\right]<0\right\} .
\end{aligned}
$$

For nonzero $h \in L^{\prime}$ with $T[h]=0$, define

$$
\begin{aligned}
& s_{h}=\#\left\{v \in \boldsymbol{a}: T^{v}\left(h_{v}, \varepsilon_{v}\right)>0\right\}, \\
& t_{h}=\#\left\{v \in \boldsymbol{a}: T^{v}\left(h_{v}, \varepsilon_{v}\right)<0\right\} .
\end{aligned}
$$

Define $b=\#\{v \in \boldsymbol{f}: v \mid \mathfrak{b}\}$.
Observe that $p_{h}+q_{h}+r_{h}=s_{h}+t_{h}=d$, where $d=[F: \mathbb{Q}]$, and that $b>0$.

Proposition 7.1. For n even and $k \geq n / 2, L_{\mathfrak{b}}(k+2 s+1-$ $\left.n / 2, \theta \psi^{-1}\right)\left.a(h, y, s)\right|_{s=0}$ has a zero of order at least

$$
\begin{cases}d-1, & \text { if } h=0 \text { and } k=n / 2+1, \psi=\theta \\ d, & \text { if } h=0 \text { otherwise } \\ d+t_{h}-1, & \text { if } T[h]=0 \text { and } k=n / 2+1, \psi=\theta \\ d, & \text { if } T[h]=0 \text { otherwise } \\ 2 q_{h}+r_{h}, & \text { if } T[h] \neq 0 .\end{cases}
$$

For n odd and $k \geq(n+1) / 2,\left.L_{\mathfrak{b}}\left(2(k+2 s)+1-n, \psi^{-2}\right) a(h, y, s)\right|_{s=0}$ has a zero of order at least

$$
\begin{cases}d-1, & \text { if } h=0 \text { or } T[h]=0 \text { and } k=(n+1) / 2, \psi^{2}=1 \\ d, & \text { if } h=0 \text { or } T[h]=0 \text { otherwise } \\ q_{h}+r_{h}-1, & \text { if } T[h] \neq 0 \text { and } k=(n+1) / 2, \psi=\theta_{h} \\ q_{h}+r_{h}, & \text { if } T[h] \neq 0 \text { otherwise } .\end{cases}
$$

Proof. This is straightforward from examining the Γ - and $L-$ factors that occur in $\left.a(h, y, s)\right|_{s=0}$. For example, consider the case n even, $k \geq n / 2, h=0$. A d-fold product of the archimedean factor in (5.1) gives a zero of order $2 d$ if $k \geq n$; d if $n / 2<k<n$; 0 if $k=n / 2$. The term $L_{b}\left(k-n / 2, \theta \psi^{-1}\right)$ in (6.5a) gives a zero of order 0 if $k>n / 2+1$ or $k=n / 2+1, \psi \neq \theta ;-1$ if $k=n / 2+1, \psi=\theta$; $d-1+b \geq d$ if $k=n / 2, \psi=\theta ; d$ if $k=n / 2, \psi \neq \theta$. And the term $L_{\mathfrak{b}}\left(k+1-n, \theta \psi^{-1}\right)$ in (6.5a) gives a zero of order 0 unless $k=n$, $\psi=1 ;-1$ if $k=n, \psi=1$. Combining these gives the result. The other cases are simpler.

Corollary 7.2. For n even and $k \geq n / 2, L_{\mathfrak{b}}(k+2 s+1-$ $\left.n / 2, \theta \psi^{-1}\right)\left.a(h, y, s)\right|_{s=0}$ is finite. It is nonzero only in the cases (a) $h \in \mathcal{P}^{a}$, (b) $F=\mathbb{Q}, k=n / 2+1, \psi=\theta, T[h]=0, T(h, \varepsilon)>0$ or $h=0$.

For n odd and $k \geq(n+1) / 2$, excepting the case $k=(n+1) / 2$, $\psi=\theta_{h}$ for some $h,\left.L_{\mathfrak{b}}\left(2(k+2 s)-n+1, \psi^{-2}\right) a(h, y, s)\right|_{s=0}$ is finite. It is nonzero only in the cases (a) $h \in \mathcal{P}^{a}$, (b) $F=\mathbb{Q}, k=(n+1) / 2$, $\psi^{2}=1, T[h]=0$ or $h=0$.

The Fourier expansion of $E(z, s)$ at $s=0$. From Proposition 5.1 we obtain

$$
\begin{aligned}
a_{a}(h, y, 0)= & (-1)^{d k} 2^{d} \pi^{d\left(2 k+1-\frac{n}{2}\right)} \Gamma(k)^{-d} \Gamma(k+1-n / 2)^{-d} \\
& \cdot|N(\operatorname{det} T)|^{-\frac{1}{2}} N(T[h])^{k-\frac{n}{2}}
\end{aligned}
$$

$\boldsymbol{e}\left(\sum_{v \in \boldsymbol{a}} T^{v}\left(i y_{v}, h_{v}\right)\right)$ if $h \in \mathcal{P}^{a}$. Thus for n even, $k \geq n / 2$, excepting the case $F=\mathbb{Q}, k=n / 2+1, \psi=\theta$, specializing to $s=0$ gives the holomorphic function

$$
\begin{align*}
& \left.L_{\mathfrak{b}}\left(k+2 s+1-\frac{n}{2}, \theta \psi^{-1}\right) E(z, s ; k, \psi, \mathfrak{b})\right|_{s=0} \tag{7.1}\\
& =\pi^{d\left(2 k+1-\frac{n}{2}\right)}|N(\operatorname{det} T)|^{-\frac{1}{2}} N \mathfrak{d}^{-\frac{n}{2}} 2^{d(k+1)} \Gamma(k)^{-d} \Gamma\left(k+1-\frac{n}{2}\right)^{-d} \\
& \cdot \sum_{h \in L^{\prime} \cap \mathcal{P}^{a}} N(T[h])^{k-\frac{n}{2}} \prod_{\substack{v \nmid b: \nu_{v}\left(T\left[h_{v}^{\prime}\right)\right]=0, \nu_{v}(h)+\nu_{v}(\mathfrak{p})>0}} \frac{H_{h, v}\left(\psi^{-1}\left(\mathfrak{p}_{v}\right) q_{v}^{-k}\right)}{\left(1-\theta \psi^{-1}\left(\mathfrak{p}_{v}\right) q_{v}^{\frac{n}{2}-k-1}\right)} \\
& \cdot \prod_{v \nmid 6: \nu_{v}\left(T\left[h_{v}^{\prime}\right]\right)>0} \frac{K_{h, v}\left(\psi^{-1}\left(\mathfrak{p}_{v}\right) q_{v}^{-k}\right)}{\left(1-\theta \psi^{-1}\left(\mathfrak{p}_{v}\right) q_{v}^{\frac{n}{2}-k-1}\right)} e\left(\sum_{v \in \boldsymbol{a}} T^{v}\left(z_{v}, h_{v}\right)\right),
\end{align*}
$$

with Fourier coefficients in $\pi^{d\left(2 k+1-\frac{n}{2}\right)}|N(\operatorname{det} T)|^{-\frac{1}{2}} \mathbb{Q}(\psi)$, where $\mathbb{Q}(\psi)$ is the extension of \mathbb{Q} generated by values of ψ.
In the case $F=\mathbb{Q}, k=n / 2+1, \psi=\theta$ our function also has nonholomorphic terms at $s=0$. Using Proposition 5.1 gives

$$
\begin{align*}
& \zeta_{\mathfrak{b}}(2+2 s)\left.E\left(z, s ; \frac{n}{2}+1, \theta, \mathfrak{b}\right)\right|_{s=0} \tag{7.2}\\
& \quad= \pi^{\frac{n}{2}+1}|\operatorname{det} T|^{-\frac{1}{2}}\left(1-\frac{n}{2}\right) \prod_{p \mid \mathfrak{b}}\left(1-p^{-1}\right) 2^{\frac{n}{2}-2} \\
& \quad \cdot \Gamma\left(\frac{n}{2}+1\right)^{-1} L_{\mathfrak{b}}\left(2-\frac{n}{2}, \theta\right) T[y]^{-1} \\
& \quad+\pi^{\frac{n}{2}+2}|\operatorname{det} T|^{-\frac{1}{2}} \prod_{p \mid \mathfrak{b}}\left(1-p^{-1}\right) 2^{\frac{n}{2}+1} \Gamma\left(\frac{n}{2}+1\right)^{-1} \\
& \quad \cdot \sum_{\substack{\left.h \in L^{\prime}: T T h\right]=0, p \nmid 6: \nu_{p}(h)>0 \\
T(h, \varepsilon)>0}} G_{h, p}\left(\theta(p) p^{1-\frac{n}{2}}\right) T[y]^{-1} T(y, h) \boldsymbol{e}(T(z, h))
\end{align*}
$$

$$
\begin{aligned}
& +\pi^{\frac{n}{2}+3}|\operatorname{det} T|^{-\frac{1}{2}} 2^{\frac{n}{2}+2} \Gamma\left(\frac{n}{2}+1\right)^{-1} \\
& \cdot \sum_{h \in L^{\prime} \cap \mathcal{P}} T[h] \prod_{\substack{p \nmid 6: \nu_{p}\left(T\left[h_{p}^{\prime}\right]\right)=0, \nu_{p}(h)>0}} \frac{H_{h, p}\left(\theta(p) p^{-\frac{n}{2}-1}\right)}{\left(1-p^{-2}\right)} \\
& \cdot \prod_{p \nmid b: \nu_{p}\left(T\left[h_{p}^{\prime}\right]\right)>0} \frac{K_{h, p}\left(\theta(p) p^{-\frac{n}{2}-1}\right)}{\left(1-p^{-2}\right)} \boldsymbol{e}(T(z, h)) .
\end{aligned}
$$

Here the coefficient of $T[y]^{-1}$ in the $h=0$ term is in $\pi^{\frac{n}{2}+1}|\operatorname{det} T|^{-\frac{1}{2}} \mathbb{Q}$ and is nonzero only if $n \equiv 2(\bmod 4)$; the coefficients of $T[y]^{-1} T(y, h) \boldsymbol{e}(T(z, h))$ in the $T[h]=0, T(h, \varepsilon)>0$ terms are in $\pi^{\frac{n}{2}+2}|\operatorname{det} T|^{-\frac{1}{2}} \mathbb{Q}$; and the Fourier coefficients of the holomorphic terms are in $\pi^{\frac{n}{2}+3}|\operatorname{det} T|^{-\frac{1}{2}} \mathbb{Q}$.

Similar calculations show that for n odd, $k \geq(n+1) / 2$, excepting the case $F=\mathbb{Q}, k=(n+1) / 2, \psi^{2}=1$, specializing to $s=0$ gives the holomorphic function

$$
\begin{align*}
& \left.L_{\mathfrak{b}}\left(2(k+2 s)+1-n, \psi^{-2}\right) E(z, s ; k, \psi, \mathfrak{b})\right|_{s=0} \tag{7.3}\\
& =\pi^{d\left(2 k+1-\frac{n}{2}\right)} \Gamma\left(k+1-\frac{n}{2}\right)^{-d}|N(\operatorname{det} T)|^{-\frac{1}{2}} N \mathfrak{d}^{-\frac{n}{2}} 2^{d(k+1)} \Gamma(k)^{-d} \\
& \cdot \sum_{h \in L^{\prime} \cap \mathcal{P}^{\mathfrak{a}}} N(T[h])^{k-\frac{n}{2}} L_{\mathfrak{b h}}\left(k-\frac{n-1}{2}, \theta_{h} \psi^{-1}\right) \\
& \cdot \prod_{\substack{v \nmid b: \nu_{v}\left(T\left[h_{v}^{\prime}\right]\right)=0, \nu_{v}(h)+\nu_{v}(\mathfrak{p})>0}} \frac{H_{h, v}\left(\psi^{-1}\left(\mathfrak{p}_{v}\right) q_{v}^{-k}\right)}{\left(1-\psi^{-2}\left(\mathfrak{p}_{v}\right) q_{v}^{n-2 k-1}\right)} \\
& \quad \cdot \prod_{v \nmid b: \nu_{v}\left(T\left[h_{v}^{\prime}\right] \mid>0\right.} \frac{K_{h, v}\left(\psi^{-1}\left(\mathfrak{p}_{v}\right) q_{v}^{-k}\right)}{\left(1-\psi^{-2}\left(\mathfrak{p}_{v}\right) q_{v}^{n-2 k-1}\right)} \boldsymbol{e}\left(\sum_{v \in \boldsymbol{a}} T^{v}\left(z_{v}, h_{v}\right)\right) .
\end{align*}
$$

In this case the Fourier coefficients are in

$$
\pi^{d\left(2 k-\frac{n-1}{2}\right)}|N(\operatorname{det} T)|^{-\frac{1}{2}} N \mathfrak{d}^{-\frac{n}{2}} \mathbb{Q}_{\mathrm{ab}}(\psi),
$$

where \mathbb{Q}_{ab} denotes the maximal abelian extension of \mathbb{Q} in \mathbb{C}.
In the case $F=\mathbb{Q}, k=(n+1) / 2, \psi^{2}=1, \psi \neq \theta_{h}$ for all h, our function again has nonholomorphic terms at $s=0$. Let
$l=\lim _{s \rightarrow 0} L_{\mathfrak{b}}((n+1) / 2-n+1+2 s, \psi) / 2 s$. Then

$$
\begin{align*}
& \left.\zeta_{\mathfrak{b}}(2+4 s) E\left(z, s ; \frac{n+1}{2}, \psi, \mathfrak{b}\right)\right|_{s=0} \tag{7.4}\\
& =\pi^{\frac{n}{2}+1}|\operatorname{det} T|^{-\frac{1}{2}} \prod_{p \mid \mathfrak{b}}\left(1-p^{-1}\right)(-1)^{\frac{n+1}{2}} 2^{\frac{n-1}{2}} \Gamma\left(\frac{n+1}{2}\right)^{-1} \\
& \cdot \Gamma\left(\frac{n-1}{2}\right)^{-1} \Gamma\left(1-\frac{n}{2}\right)^{-1} l T[y]^{-\frac{1}{2}} \\
& +\pi^{\frac{n+1}{2}}|\operatorname{det} T|^{-\frac{1}{2}} \prod_{p \mid \mathfrak{b}}\left(1-p^{-1}\right) 2^{\frac{n+1}{2}} \Gamma\left(\frac{n+1}{2}\right)^{-1} \\
& \cdot \sum_{\substack{h \in L^{\prime}: T(h, h]=0, p \nmid 6: \nu_{p}(h)>0 \\
T(h, s)>0}} G_{h, p}\left(\psi(p) p^{-\frac{n+1}{2}}\right) T[y]^{-\frac{1}{2}} T(y, h)^{\frac{1}{2}} \boldsymbol{e}(T(z, h)) \\
& +\pi^{\frac{n+1}{2}+1}|\operatorname{det} T|^{-\frac{1}{2}} 2^{\frac{n+1}{2}+2} \Gamma\left(\frac{n+1}{2}\right)^{-1} \\
& \cdot \sum_{h \in L^{\prime} \cap \mathcal{P}} T[h]^{\frac{1}{2}} L_{\mathfrak{b h}}\left(1, \theta_{h} \psi\right) \prod_{\substack{\text { płf: } \\
\left.\nu_{p}\left(T\left(h_{p}^{\prime}\right)\right]\right)=0,}} \frac{H_{h, p}\left(\psi(p) p^{-\frac{n+1}{2}}\right)}{\left(1-p^{-2}\right)} \\
& \cdot \prod_{p \nmid: \nu_{p}\left(T\left[h_{p}^{\prime}\right]\right)>0} \frac{K_{h, p}\left(\psi(p) p^{-\frac{n+1}{2}}\right)}{\left(1-p^{-2}\right)} \boldsymbol{e}(T(z, h)) .
\end{align*}
$$

The residue of $E(z, s)$ at special values of s. Analysis of (5.1) and (6.5) shows that for n even, $k=n / 2-1, s=1, L_{6}(k+2 s+$ $\left.1-n / 2, \theta \psi^{-1}\right) E(z, s ; k, \psi, \mathfrak{b})$ is finite unless $\psi=\theta$, in which case it has a simple pole and

$$
\begin{align*}
& \operatorname{Res}_{s=1} \zeta_{\mathfrak{b}}(2 s) E\left(z, s ; \frac{n}{2}-1, \theta, \mathfrak{b}\right) \tag{7.5}\\
& =\pi^{d\left(\frac{n}{2}+1\right)}|N(\operatorname{det} T)|^{-\frac{1}{2}} N \mathfrak{D}^{-\frac{n}{2}} 2^{d \frac{n}{2}-1} \Gamma\left(\frac{n}{2}\right)^{-d} \\
& \cdot \operatorname{Res}_{\sigma=1} \zeta_{\mathfrak{b}}(\sigma) T[y]^{-d}\left\{2^{-d} L_{\mathfrak{b}}\left(2-\frac{n}{2}, \theta\right)\right. \\
& \left.+\sum_{\substack{h \in L^{\prime}: T[\mid]=0, T^{v}\left(h_{v}, \varepsilon_{v}\right)>0, v \in a}} \prod_{v \nmid:: v_{v}(h>0)} G_{h, v}\left(\theta\left(\mathfrak{p}_{v}\right) q_{v}^{-\frac{n}{2}-1}\right) e\left(\sum_{v \in a} T^{v}\left(z_{v}, h_{v}\right)\right)\right\} .
\end{align*}
$$

Similarly for n odd, $k=(n-1) / 2, s=1 / 2$, excluding the case $\psi=\theta_{h}$ for some $h, L_{\mathfrak{b}}\left(2(k+2 s)+1-n, \psi^{-2}\right) E(z, s ; k, \psi, \mathfrak{b})$ is finite unless $\psi^{2}=1$, in which case it has a simple pole and

$$
\begin{align*}
& \operatorname{Res}_{s=1 / 2} \zeta_{\mathfrak{b}}(4 s) E\left(z, s ; \frac{n-1}{2}, \psi, \mathfrak{b}\right) \tag{7.6}\\
& = \\
& =\pi^{d\left(\frac{n}{2}+1\right)}|N(\operatorname{det} T)|^{-\frac{1}{2}} N \mathfrak{d}^{-\frac{n}{2}} 2^{d \frac{n-1}{2}-2} \Gamma\left(\frac{n}{2}\right)^{-d} \operatorname{Res}_{\sigma=1} \zeta_{\mathfrak{b}}(\sigma) \\
& \quad \cdot T[y]^{-\frac{d}{2}}\left\{2^{-d} L_{\mathfrak{b}}\left(2-\frac{n+1}{2}, \psi^{-1}\right)\right. \\
& \left.\quad \sum_{\substack{h \in L^{\prime}: T[h]=0, T^{v}\left(h_{v}, \varepsilon_{v}\right)>0, v \in \boldsymbol{v}}} \prod_{v \nmid: \nu_{v}(h>0)} G_{h, v}\left(\psi\left(\mathfrak{p}_{v}\right) q_{v}^{-\frac{n+1}{2}}\right) \boldsymbol{e}\left(\sum_{v \in \boldsymbol{a}} T^{v}\left(z_{v}, h_{v}\right)\right)\right\} .
\end{align*}
$$

In (7.5) and (7.6), multiplying the residue by $T[y]^{\text {sd }}$ gives a holomorphic function.

References

[B190] A. Bluher, Near holomorphy of some automorphic forms at critical points, Invent. Math., (1990).
[Blpp] , Arithmeticity of some automorphic forms at critical points, Amer. J. Math., (to appear).
[In] R. Indik, Fourier coefficients of nonholomorphic Eisenstein series on a tube domain associated to an orthogonal group, Thesis, Princeton Univ., (1982).
[Sh80] G. Shimura, The arithmetic of certain zeta functions and automorphic forms on orthogonal groups, Ann. of Math., 111 (1980), 313-375.
[Sh82] , Confluent hypergeometric functions on tube domains, Math. Ann., 260 (1982), 269-302.
[Sh83] -, On Eisenstein series, Duke Math. J., 50 (1983), 417-476.
[Sh86] , On a class of nearly holomorphic automorphic forms, Ann. of Math., 123 (1986), 346-406.
[Sh87] , Nearly holomorphic functions on Hermitian symmetic spaces, Math. Ann., 278 (1987), 1-28.

Received June 29, 1992.
Reed College
Portland, OR 97202
has a simple pole and

$$
\begin{align*}
& \operatorname{Res}_{s=1} \zeta_{\mathfrak{b}}(2 s) E\left(z, s ; \frac{n}{2}-1, \theta, \mathfrak{b}\right) \tag{7.5}\\
& =\pi^{d\left(\frac{n}{2}+1\right)}|N(\operatorname{det} T)|^{-\frac{1}{2}} N \mathfrak{d}^{-\frac{n}{2}} 2^{d \frac{n}{2}-1} \Gamma\left(\frac{n}{2}\right)^{-d} \\
& \quad \cdot \operatorname{Res}_{\sigma=1} \zeta_{\mathfrak{b}}(\sigma) T[y]^{-d}\left\{2^{-d} L_{\mathfrak{b}}\left(2-\frac{n}{2}, \theta\right)\right. \\
& \left.+\sum_{\substack{h \in L^{\prime}: T[h]=0, T^{v}\left(h_{v}, \varepsilon_{v}\right)>0, v \in a}} \prod_{v \nmid: v_{v}(h>0)} G_{h, v}\left(\theta\left(\mathfrak{p}_{v}\right) q_{v}^{-\frac{n}{2}-1}\right) \boldsymbol{e}\left(\sum_{v \in \mathfrak{a}} T^{v}\left(z_{v}, h_{v}\right)\right)\right\} .
\end{align*}
$$

Similarly for n odd, $k=(n-1) / 2, s=1 / 2$, excluding the case $\psi=\theta_{h}$ for some $h, L_{\mathfrak{b}}\left(2(k+2 s)+1-n, \psi^{-2}\right) E(z, s ; k, \psi, \mathfrak{b})$ is finite unless $\psi^{2}=1$, in which case it has a simple pole and

$$
\begin{align*}
& \operatorname{Res}_{s=1 / 2} \zeta_{\mathfrak{b}}(4 s) E\left(z, s ; \frac{r_{-1}-1}{2}, \psi, \mathfrak{b}\right) \tag{7.6}\\
& = \\
& \quad \pi^{d\left(\frac{n}{2}+1\right)}|N(\operatorname{det} T)|^{-\frac{1}{2}} N \mathfrak{d}^{-\frac{n}{2}} 2^{d \frac{n-1}{2}-2} \Gamma\left(\frac{n}{2}\right)^{-\boldsymbol{d}} \operatorname{Res}_{\sigma=1} \zeta_{\mathfrak{b}}(\sigma) \\
& \quad \cdot T[y]^{-\frac{d}{2}}\left\{2^{-d} L_{\mathfrak{b}}\left(2-\frac{n+1}{2}, \psi^{-1}\right)\right. \\
& \left.\quad \sum_{\substack{h \in L^{\prime}: T[h]=0, T^{v}\left(h_{v}, \varepsilon_{v}\right)>0, v \in \boldsymbol{a}}} \prod_{v \nmid: \nu_{v}(h>0)} G_{h, v}\left(\psi\left(\mathfrak{p}_{v}\right) q_{v}^{-\frac{n+1}{2}}\right) \boldsymbol{e}\left(\sum_{v \in \boldsymbol{a}} T^{v}\left(z_{v}, h_{v}\right)\right)\right\} .
\end{align*}
$$

In (7.5) and (7.6), multiplying the residue by $T[y]^{\text {sd }}$ gives a holomorphic function.

References

[B190] A. Bluher, Near holomorphy of some automorphic forms at critical points, Invent. Math., (1990).
[Blpp] , Arithmeticity of some automorphic forms at critical points, Amer. J. Math., (to appear).
[In] R. Indik, Fourier coefficients of nonholomorphic Eisenstein series on a tube domain associated to an orthogonal group, Thesis, Princeton Univ., (1982).

