A DIFFERENTIABLE STRUCTURE FOR A BUNDLE OF C*-ALGEBRAS ASSOCIATED WITH A DYNAMICAL SYSTEM

Мото О'исні

Let (M,G) be a differentiable dynamical system, and σ be a transverse action for (M,G). We have a differentiable bundle (B, π, M, C) of C^{*}-algebras with respect to a flat family \mathcal{F}_{σ} of local coordinate systems and we have a flat connection ∇ in B. If G is connected, the bundle B is a disjoint union of $\rho_x(C^*_r(\mathcal{G}))$ $(x \in M)$, where \mathcal{G} is the groupoid associated with (M,G) and ρ_x is the regular representation of $C_r^*(\mathcal{G})$. We show that, for $f \in C_c^{\infty}(\mathcal{G})$, a cross section $cs(f): x \mapsto \rho_x(f)$ is differentiable with respect to the norm topology, and calculate a covariant derivative $\nabla(cs(f))$. Though B is homeomorphic to the trivial bundle, the differentiable structure for B is not trivial in general. Let B^{σ} be a subbundle of B generated by elements f with the property $\nabla(cs(f)) = 0$. We show the triviality of the differentiable structure for B^{σ} induced from that for B when $C^*_r(\mathcal{G})$ is simple. We have a bundle RM(B) of right multiplier algebras and it contains B as a subbundle. Let (M,G) be a Kronecker dynamical system and σ be a flow whose slope is rational. In this case, we have a subbundle D of RM(B) whose fibers are *- isomorphic to $C(\mathbb{T})$. The flat connection ∇^r in D is not trivial and the bundle B decomposes into the trivial bundle B^{σ} and the non-trivial bundle D. Moreover, for a σ -invariant closed connected submanifold N of M with $\dim N = 1$, we show that $C_r^*(\mathcal{G}|N)$ is *-isomorphic to $C_r^*(D_x, \Phi_x)$, where Φ_x is the holonomy group of ∇^r with reference point x. If G is not connected, we also have sufficiently many differentiable cross sections of B and calculate their covariant derivatives.

0. Introduction. In the theory of C^* -algebras, one sometimes study a stable C^* -algebra $A \otimes \mathcal{K}$ instead of studying a given C^* -algebra A itself, where \mathcal{K} is the algebra of all compact operators on the infinite dimensional separable Hilbert space. There are many

other algebras D such that $D \otimes \mathcal{K} \cong A \otimes \mathcal{K}$. Moreover, stable algebras do not have any identity elements. Therefore, given a stable C^* -algebra C, we want to find C^* - algebras A with the property $A \otimes \mathcal{K} \cong C$, especially unital ones with the property. We do not know any general answer to the question, but there is a method to construct such algebras A for foliation C^{*}- algebras. Let (V, \mathcal{F}) be a foliation and $C^*(V, \mathcal{F})$ be the foliation C^* -algebra introduced by A. Connes ([1], [3]). It follows from [10] that $C^*(V, \mathcal{F})$ is *-isomorphic to $C^*_r(\mathcal{G}|N) \otimes \mathcal{K}$, where \mathcal{G} is the holonomy groupoid of (V, \mathcal{F}) , where N is a complete transverse submanifold and where the groupoid $\mathcal{G}|N$ is the reduction of \mathcal{G} by N. Suppose that V is compact. If we have dim $N = \operatorname{codim} \mathcal{F}$, then the C^* -algebra $C^*_r(\mathcal{G}|N)$ is unital. To give an example, if (V, \mathcal{F}) is a Kronecker foliation, then the C^* - algebra $C^*_r(\mathcal{G}|N)$ is the irrational rotation algebra A_{θ} for an appropriate N. This example plays an important role in the theory of non-commutative differential geometry by A. Connes. We refer the reader to the works of A. Connes [2], [3], that of A. Connes and M.A. Rieffel [4] and that of M.A. Rieffel [20]. M.A. Rieffel also studied the example in [17], [18] from the viewpoint of Morita equivalence. The author studied another example of $C_r^*(\mathcal{G}|N)$ in **[12]**, **[13]**.

From these considerations, we begin to study C^* -algebras of reductions of differentiable dynamical systems. Let (M, G) be a differentiable dynamical system. We denote by \mathcal{G} the topological groupoid $G \times M$ and denote by $C_r^*(\mathcal{G})$ the reduced C^* -algebra associated with \mathcal{G} . We have a regular representation ρ_x of $C_r^*(\mathcal{G})$ on a Hilbert space \mathcal{H}_x for every $x \in M$. For the moment we assume that G is connected and that $C_r^*(\mathcal{G})$ is simple. We set $B_x = \rho_x(C_r^*(\mathcal{G}))$ and denote by B the disjoint union of C^{*}-algebras B_x ($x \in M$). We may consider elements a of $C_r^*(\mathcal{G})$ to be cross sections $cs(a): x \mapsto \rho_x(a)$ of the bundle B on M. Continuous fields of C^* - algebras have been studied by many authors. We refer the reader to the book of J. Dixmier [5], those of J.M.G. Fell and R.S. Doran [8], [9], the work of B.D. Evans [6] and that of M.A. Rieffel [19]. Since we study C^* -algebras associated with differentiable dynamical systems, it is natural to consider differentiable structure for fields of C^* -algebras. In the previous paper [14], the author introduced the notion of differentiable bundles of C^* -algebras and

that of connections in them. A. Connes first introduced the notion of connections into the theory of C^* -algebras in [2]. He defined the notion in the setting of projective modules. On the other hand, our definition of connections is in the setting of bundles of C^* -algebras and it is a literal translation of that in the setting of vector bundles, except that our connections are compatible with *-algebraic structures possessed by fibers.

In this paper, we introduce a notion of a transverse action σ for (M,G) and we construct a family \mathcal{F}_{σ} of local coordinate systems for B from local charts of (M, G) compatible with σ . Then \mathcal{F}_{σ} defines a differentiable structure for B. Next, we prove that the above cross section cs(f) is differentiable with respect to the norm topology for every $f \in C_c^{\infty}(\mathcal{G})$. We define a flat connection ∇ in B with respect to \mathcal{F}_{σ} . Though B is homeomorphic to the trivial bundle $M \times C^*_r(\mathcal{G})$, the differentiable structure for B is not trivial, that is, ∇ is not trivial. Let B^{σ} be the subbundle of B generated by elements f with the property $\nabla(cs(f)) = 0$. Then B^{σ} is trivial, that is, the restriction of ∇ to B^{σ} is trivial. We denote by $RM(B_x)$ the right multiplier algebra of B_x and denote by RM(B) the disjoint union of Banach algebras $RM(B_x)$ ($x \in M$). There exists a differentiable structure for RM(B) such that B is a subbundle of RM(B) and such that ∇ extends to a flat connection $\overline{\nabla^r}$ in RM(B). In the case where (M,G) is a Kronecker dynamical system, we give a decomposition of B into a trivial part and a non-trivial part. There exists a subbundle D of RM(B) such that every fiber D_x is *-isomorphic to the commutative C^{*}-algebra $C(\mathbb{T})$ and such that $B_x^{\sigma} D_x$ generates B_x . Let ∇^r be the restriction of $\overline{\nabla^r}$ to D and let Φ_x be the holonomy group of ∇^r with reference point x. Note that Φ_x is a subgroup of the group $\operatorname{Aut}(D_x)$ of all *-automorphisms of D_x . Let N be a σ -invariant closed connected submanifold of M with dim N = 1. Then we show that the C^{*}-algebra $C_r^*(\mathcal{G}|N)$ is *- isomorphic to the reduced crossed product $C_r^*(D_x, \Phi_x)$ of D_x by Φ_x . This result means that B decomposes into the trivial bundle B^{σ} and the non-trivial bundle D and that D corresponds to the reduction of (M, G) by N. This situation was studied by M.A. Rieffel in [17], [18] from the viewpoint of projective modules. Our result describes the same situation from the viewpoint of vector bundles.

When G is not connected, we also define a differentiable bundle

B associated with a transverse action for (M, G) and define a flat connection ∇ in B. But, in this case, B_x is larger than $\rho_x(C_r^*(\mathcal{G}))$ and cross sections cs(f) may not be differentiable. We define a cross section $cs_m(f)$ of B for $f \in C_c^{\infty}(\mathcal{G})$ and every connected component m of G, and we show that the cross sections $cs_m(f)$ are differentiable. The *-algebra \mathcal{D}_x generated by elements of the form $cs_m(f)_x$ is dense in B_x with respect to the strong operator topology. The above results are valid even if G is discrete.

To find a transverse action for a given dynamical system (M, G), it may be useful to consider the universal covering space \tilde{M} of M. Suppose that the action of G on M lifts to an action of G on \tilde{M} . (If G is simply connected, this assumption is satisfied.) If there exists a transverse action for (\tilde{M}, G) and if it is compatible with the covering map, then we have a transverse action for (M, G). But we do not know any interesting examples of transverse actions for dynamical systems (M, G) such that the connected components G_e of G are not abelian, and it is difficult to find such examples. This is the problem for further investigation.

1. Preliminaries. (a) Commutative dynamical systems. Let (M, G) be a topological transformation group. We assume that a topological space M and a topological group G are second countable, Hausdorff and locally compact. We denote by \mathcal{G} a topological groupoid $G \times M$ with the following operations; s(g, x) = (e, x), $r(g, x) = (e, gx), (g', gx)(g, x) = (g'g, x), (g, x)^{-1} = (g^{-1}, gx)$ for $x \in M$ and $g, g' \in G$, where e is the unit of G. We set $\mathcal{G}_x = \{(g, x) \in \mathcal{G}; g \in G\}$ for $x \in M$. Let μ be a right Haar measure on G and Δ be the modular function of G. We define a right Haar system $\{\nu_x; x \in M\}$ on \mathcal{G} by $\nu_x = \mu \times \delta_x$. Let $C_c(\mathcal{G})$ be the *-algebra of continuous functions with compact supports, where the product and the involution are defined as follows:

$$(f_1 * f_2)(g, x) = \int_G f_1(g'^{-1}, g'gx) f_2(g'g, x) \ d\mu(g'), \ f^*(g, x) = \overline{f(g^{-1}, gx)}$$

for $f, f_1, f_2, \in C_c(\mathcal{G})$ and $(g, x) \in \mathcal{G}$. We denote by \mathcal{H}_x the Hilbert space $L^2(\mathcal{G}_x, \nu_x)$ for $x \in M$. We define the regular representation

 $\rho_x \text{ of } C_c(\mathcal{G}) \text{ on } \mathcal{H}_x \text{ by}$

$$(
ho_x(f)\xi)(g,x) = \int_G f(gg'^{-1},g'x)\xi(g',x) \ d\mu(g')$$

for $f \in C_c(\mathcal{G}), \xi \in \mathcal{H}_x$ and $(g, x) \in \mathcal{G}_x$. We define the reduced norm ||f|| by $||f|| = \sup_{x \in M} ||\rho_x(f)||$. We denote by $C_r^*(\mathcal{G})$ the completion of $C_c(\mathcal{G})$ by the reduced norm. The representation ρ_x extends to a representation of $C_r^*(\mathcal{G})$, which we denote again by ρ_x . For details of groupoids and their C^* -algebras, we refer the reader to [1], [3] and [16].

LEMMA 1.1. Let f be an element of $C_c(\mathcal{G})$ and D be a compact set in G such that supp $f \subset D \times M$. Then the following inequality holds: $||\rho_x(f)|| \leq I_D ||f||_{\infty}$, where $||f||_{\infty}$ is the supremum norm of f and $I_D = \int_D \Delta^{1/2}(g) d\mu(g)$.

Proof. Let χ_D be the characteristic function of D. For ξ , $\eta \in \mathcal{H}_x$, we have

$$\begin{split} &\int_{G} |f(g'^{-1},g'gx)\xi(g'g,x)\eta(g,x)| \ d\mu(g) \\ &\leq \left(\int_{G} |f(g'^{-1},g'gx)||\xi(g'g,x)|^{2} \ d\mu(g)\right)^{1/2} \\ &\quad \cdot \left(\int_{G} |f(g'^{-1},g'gx)||\eta(g,x)|^{2} \ d\mu(g)\right)^{1/2} \\ &\leq ||f||_{\infty}\chi_{D}(g'^{-1})||\eta||\Delta^{1/2}(g')||\xi||. \end{split}$$

Then we have $|(\rho_x(f)\xi|\eta)| \le I_D||f||_{\infty}||\eta|||\xi||.$

We introduce a *-algebra of functions on $G \times G$. Let $\tilde{\mathcal{C}}$ be the set of bounded continuous functions K on $G \times G$ with the following property; there exists a compact set D in G such that supp $K \subset G \times D$. The set D may vary when K varies. Then $\tilde{\mathcal{C}}$ is a *-algebra with the following product and involution;

$$(K_1 * K_2)(g, g') = \int_G K_1(g, g''^{-1}) K_2(g''g, g''g') d\mu(g''),$$
$$K^*(g, g') = \overline{K(g'^{-1}g, g'^{-1})}$$

for $K, K_1, K_2 \in \tilde{\mathcal{C}}$ and $(g, g') \in G \times G$. We denote by \mathcal{H} the Hilbert space $L^2(G, \mu)$. We define a *-representation ρ of $\tilde{\mathcal{C}}$ on \mathcal{H} by

$$(\rho(K)\xi)(g) = \int_G K(g, g'^{-1})\xi(g'g) \ d\mu(g')$$

for $K \in \tilde{\mathcal{C}}$, $\xi \in \mathcal{H}$ and $g \in G$. We can prove the following lemma by a similar computation to that in the proof of Lemma 1.1.

LEMMA 1.2. Let K be an element of \tilde{C} and D be a compact set in G such that supp $K \subset G \times D$. Then the following inequality holds: $||\rho(K)|| \leq I_D ||K||_{\infty}$.

(b) Differentiable bundles of C^* -algebras. With a few modifications on the definitions in [14, §1], we summarize the necessary facts. Let e_1, \ldots, e_n be the standart basis of \mathbb{R}^n and x_1, \ldots, x_n be the canonical coordinate functions of \mathbb{R}^n . Let Ω be an open subset of \mathbb{R}^n and f be a map of Ω into a Banach space C. If there exists $\lim_{h\to 0} h^{-1}(f(x + he_i) - f(x))$ with respect to the norm in C, then we denote the limit by $(\partial f/\partial x_i)(x)$. We say that f is differentiable of class $(C^{\infty})'$ on Ω if the partial derivatives $\partial^{\alpha} f/\partial x^{\alpha}$ exist and are continuous on Ω for all multi-indices α .

DEFINITION 1.3. (c.f. [14, Definition 1.1]). Let M be a finite dimensional real manifold of class C^{∞} and \mathcal{A} be the complete atlas defining the structure of M. A map f of M into a Banach space C is said to be of class C^{∞} if $f \circ \varphi^{-1}$ is of class $(C^{\infty})'$ on $\varphi(U)$ for every $(U, \varphi) \in \mathcal{A}$.

We assume that a real manifold M is second countable, Hausdorff and of class C^{∞} . Let B be a topological space, C be a C^* -algebra and π be a continuous map of B onto M. We set $B_x = \pi^{-1}(x)$ for $x \in M$ and suppose that B_x is a C^* -algebra. (It is easy to rewrite the rest of this section for Banach algebras C and B_x . We leave it to the reader.) Let $\{U_i\}$ be an open covering of M indexed by a set I and ψ_i be a homeomorphism of $\pi^{-1}(U_i)$ onto $U_i \times C$ such that $p_1 \circ \psi_i(b) = \pi(b)$ for $b \in \pi^{-1}(U_i)$, where $p_1 : U_i \times C \to U_i$ is the projection. For $x \in U_i$, we define a map $\psi_{i,x}$ of B_x into Cby $\psi_{i,x}(b) = p_2 \circ \psi_i(b)$ for $b \in B_x$, where $p_2 : U_i \times C \to C$ is the projection. We denote by \mathcal{F} the set of pairs (U_i, ψ_i) $(i \in I)$.

DEFINITION 1.4. (c.f. [14, Definition 1.2]). A quartet (B, π, M, C) is called a differentiable bundle of C^* -algebras with respect to \mathcal{F} if \mathcal{F} satisfies the following conditions:

(i) For every $i \in I$ and $x \in U_i$, $\psi_{i,x}$ is a *- isomorphism between C^* -algebras.

(ii) For $i, j \in J$ with $U_i \cap U_j \neq \emptyset$ and for a map f of $U_i \cap U_j$ into

C, define the map $f_{i,j}$ of $U_i \cap U_j$ into C by $f_{i,j}(x) = \psi_{i,x} \circ \psi_{j,x}^{-1} \circ f(x)$. If f is of class C^{∞} , then $f_{i,j}$ is of class C^{∞} .

Let \mathcal{F} be a family satisfying the above condition (i). We say that \mathcal{F} is a flat family of C^* -coordinate systems if it satisfies the following conditions:

(iii) For every $i, j \in I$ with $U_i \cap U_j \neq \emptyset$ and for every connected component U of $U_i \cap U_j$, there exists a *- automorphism α of the C^* -algebra C such that $\alpha = \psi_{i,x} \circ \psi_{j,x}^{-1}$ for all $x \in U$.

Let ξ be a map of an open set U of M into $\pi^{-1}(U)$ such that $\pi(\xi_x) = x$ for $x \in U$. For $i \in I$ with $U_i \cap U \neq \emptyset$, define the map $\tilde{\xi}_i$ of $U_i \cap U$ into C by $\tilde{\xi}_i(x) = \psi_{i,x}(\xi_x)$. We say that ξ is a differentiable cross section on U if $\tilde{\xi}_i$ is of class C^{∞} for every $i \in I$ with $U_i \cap U \neq \emptyset$. We denote by $\Gamma(B)$ the *-algebra of all differentiable cross sections on M. Let TM be the tangent bundle on M, $\Gamma(TM)$ be the space of C^{∞} vector fields on M and T^*M be the cotangent bundle on M. We denote by $T^*M \otimes B$ the tensor product of T^*M and B as real vector bundles. Let ξ be a cross section of $T^*M \otimes B$. If x_1, \ldots, x_n is a local coordinate system in M, then we have $\xi_x = \sum (dx_k)_x \otimes b_x^k$ with $b_x^k \in B_x$. We say that ξ is differentiable if the cross sections $x \mapsto b_x^k$ are differentiable. Let $\Gamma(T^*M \otimes B)$ be the two-sided $\Gamma(B)$ -module of differentiable cross sections of $T^*M \otimes B$. We define the involution on $\Gamma(T^*M \otimes B)$ by $\xi_x^* = \sum (dx_k)_x \otimes (b_x^k)^*$. We denote by $C^{\infty}(M, \mathbb{R})$ the space of real-valued C^{∞} functions on M.

DEFINITION 1.5. (c.f. [14, Definition 1.3]). Let (B, π, M, C) be a differentiable bundle of C^* -algebras and \mathcal{D} be a *-subalgebra of $\Gamma(B)$ such that $f\xi \in \mathcal{D}$ for $f \in C^{\infty}(M; \mathbb{R})$ and $\xi \in \mathcal{D}$. A linear map ∇ of \mathcal{D} into $\Gamma(T^*M \otimes B)$ is called a connection in B with domain \mathcal{D} if it satisfies the following conditions: (i) $\nabla(f\xi) = df \otimes \xi + f \nabla \xi$, (ii) $\nabla(\xi\eta) = (\nabla \xi)\eta + \xi(\nabla \eta)$, (iii) $(\nabla \xi)(X) \in \mathcal{D}$, (iv) $\nabla(\xi^*) =$ $(\nabla \xi)^*$ for $\xi, \eta \in \mathcal{D}, f \in C^{\infty}(M; \mathbb{R})$ and $X \in \Gamma(TM)$.

Suppose that the family \mathcal{F} is flat. Let ∇ be a connection in B with domain $\Gamma(B)$ and (V, x_1, \ldots, x_n) be a local coordinate system in M. For $\xi \in \Gamma(B)$ and $i \in I$, we set $\tilde{\xi}_i(x) = \psi_{i,x}(\xi_x)$. We say that ∇ is a flat connection if we have

$$\psi_{i,x}((\nabla\xi)(X)_x) = \sum_{k=1}^n a_k(x) \frac{\partial \xi_i}{\partial x_k}(x) \quad (x \in V \cap U_i),$$

for $X \in \Gamma(TM)$ with $X_x = \sum a_k(x) (\partial/\partial x_k)_x$ (c.f. [14, Definition1.6],

 $[11, Chapter II, \S 9]$). Then the following lemma is obvious.

LEMMA 1.6. If (B, π, M, C) is a differentiable bundle of C^* algebras with respect to a flat family \mathcal{F} , then there exists a unique flat connection in B.

2. Transverse actions and bundles of C^* -algebras. Let M be an *n*-dimensional real manifold of class C^{∞} and G be a *p*-dimensional real Lie group of class C^{∞} . In the following sections, we assume that M and G are second countable and Hausdorff and that $0 < n < \infty$ and $0 \le p < \infty$. If p = 0, then G is a countable discrete group. Moreover we assume that M is connected. Suppose that (M,G) is a differentiable dynamical system, that is, (M,G) is a transformation group and the map $(g, x) \mapsto gx$ of $G \times M$ into M is of class C^{∞} . Let G_e be the connected component of the unit e in G. We denote by \mathcal{N} the countable discrete group G/G_e and denote by G_m the connected component of G corresponding to $m \in \mathcal{N}$. We take notations from §1, and also use the following notations; $\mathcal{G}_m = G_m \times M, \ \mathcal{G}_{m,x} = \mathcal{G}_m \cap \mathcal{G}_x, \ \mathcal{H}^m = L_2(G_m, \mu | G_m), \ \mathcal{H}^m_x =$ $L^2(\mathcal{G}_{m,x},\nu_x|\mathcal{G}_{m,x})$, for $m \in \mathcal{N}$ and $x \in M$. Let $P_x^m \in \mathcal{B}(\mathcal{H}_x)$ be the projection on \mathcal{H}_x^m and $P^m \in \mathcal{B}(\mathcal{H})$ be the projection on \mathcal{H}^m . We denote by $\mathcal{N}(\mathcal{G})$ the set of families $\zeta = (f_m)_{m \in \mathcal{N}}$ with the following properties; (1) $f_m \in C_c(\mathcal{G}) \ (m \in \mathcal{N}),$ (2) $\sup_{m \in \mathcal{N}} ||f_m||_{\infty} < +\infty,$ (3) there exists a compact set D in G such that supp $f_m \subset D \times M$ for all $m \in \mathcal{N}$. We set $||\zeta|| = \sup_m ||f_m||_{\infty}$.

LEMMA 2.1. For $\zeta = (f_m)_{m \in \mathcal{N}} \in \mathcal{N}(\mathcal{G})$, the sum $\tilde{\rho}_x(\zeta) = \sum_{m \in \mathcal{N}} \rho_x(f_m) P_x^m$ converges with respect to the strong operator topology in $\mathcal{B}(\mathcal{H}_x)$, and the following inequality holds: $||\tilde{\rho}_x(\zeta)|| \leq J_D ||\zeta||$, where D is any compact set in G such that supp $f_m \subset D \times M(m \in \mathcal{N})$, and J_D is a constant depending only on D.

Proof. We set $D_m = D \cap G_m$. There exist elements $m(1), \ldots, m(k)$ of \mathcal{N} such that D is the disjoint union of non-empty sets $D_{m(1)}, \ldots, D_{m(k)}$. Then we have $\rho_x(f_m)P_x^m = \sum_{l \in A(m)} P_x^l \rho_x(f_m)P_x^m$, where $A(m) = \{m(i) \ m; i = 1, \ldots, k\}$. If we have $(P_x^l \rho_x(f_m)P_x^m \xi)(g, x) \neq 0$, then there exists $g' \in G_m$ such that $gg'^{-1} \in D_{lm^{-1}}$. This implies that we have $lm^{-1} = m(i)$ for some i with $1 \leq i \leq k$. We set

298

$$B(l) = \{m(i)^{-1}l \in \mathcal{N}; i = 1, \dots, k\}. \text{ We have}$$
$$\left\| \sum_{m \in \mathcal{N}} \rho_x(f_m) P_x^m \xi \right\|^2 \le k \sum_{l \in \mathcal{N}} \sum_{m \in B(l)} ||P_x^l \rho_x(f_m) P_x^m \xi||^2.$$

Note that $m \in B(l)$ if and only if $l \in A(m)$. Thus we have

$$\sum_{l \in \mathcal{N}} \sum_{m \in B(l)} ||P_x^l \rho_x(f_m) P_x^m \xi||^2 \le I_D^2 ||\zeta||^2 \sum_{m \in \mathcal{N}} ||P_x^m \xi||^2.$$

Let B_x be the C^* -subalgebra of $\mathcal{B}(\mathcal{H}_x)$ generated by $\{\tilde{\rho}_x(\zeta); \zeta \in \mathcal{N}(\mathcal{G})\}$. Since we have $\tilde{\rho}_x(\zeta) = \rho_x(f)$ for $\zeta = (f_m)$ with $f_m = f$ for all $m \in \mathcal{N}$, B_x contains $\rho_x(C_r^*(\mathcal{G}))$. If G is connected, then we have $B_x = \rho_x(C_r^*(\mathcal{G}))$. If G is not connected, then B_x may not be separable. For $x \in M$ and $f \in C_c(\mathcal{G})$, we define $K_x^f \in \tilde{\mathcal{C}}$ by $K_x^f(g,g') = f(g',g'^{-1}gx)$. For $m \in \mathcal{N}$, we define $\chi_m \in C^{\infty}(G \times G)$ as follows; $\chi_m(g,g') = 1$ if $g'^{-1}g \in G_m$ and $\chi_m(g,g') = 0$ otherwise. For $\zeta = (f_m) \in \mathcal{N}(\mathcal{G})$, we define $K_x^{\zeta} \in \tilde{\mathcal{C}}$ by $K_x^{\zeta} = \sum_{m \in \mathcal{N}} K_x^{f_m} \chi_m$. We denote by C_x the C^* -subalgebra of $\mathcal{B}(\mathcal{H})$ generated by $\{\rho(K_x^{\zeta}); \zeta \in \mathcal{N}(\mathcal{G})\}$. We define an isometry T of \mathcal{H}_x onto \mathcal{H} by $(T\eta)(g) = \eta(g,x)$ for $\eta \in \mathcal{H}_x$. We set $\tilde{\psi}_x(a) = TaT^*$ for $a \in B_x$. For $g \in G_e$ and $a \in C_x$, we set $\Psi(x,g)(a) = R_g a R_g^*$, where R is the right regular representation of G on \mathcal{H} . Then we have:

LEMMA 2.2. For $x \in M$, there exists a unique spatial isomorphism $\tilde{\psi}_x$ of B_x onto C_x such that $\tilde{\psi}_x(\tilde{\rho}_x(\zeta)) = \rho(K_x^{\zeta})$ for $\zeta \in \mathcal{N}(\mathcal{G})$.

LEMMA 2.3. For $x \in M$ and $g \in G_e$, there exists a unique spatial isomorphism $\Psi(x,g)$ of C_x onto C_{gx} such that $\Psi(x,g)(\rho(K_x^{\zeta})) = \rho(K_{gx}^{\zeta})$ for $\zeta \in \mathcal{N}(\mathcal{G})$.

We denote by $\operatorname{Diff}_G(M)$ the group of diffeomorphisms of M which commute with the action of the connected component G_e on M. For $\alpha \in \operatorname{Diff}_G(M)$ and $m \in \mathcal{N}$, there exists a diffeomorphism α_m such that $g\alpha(x) = \alpha_m(gx)$ for all $g \in G_m$ and $x \in M$. If G is discrete, then we have $\operatorname{Diff}_G(M) = \operatorname{Diff}(M)$, the group of all diffeomorphisms on G. For $\alpha \in \operatorname{Diff}_G(M)$ and $\zeta = (f_m) \in \mathcal{N}(\mathcal{G})$, we define $\bar{\alpha}(\zeta) \in$ $\mathcal{N}(\mathcal{G})$ by $\bar{\alpha}(\zeta) = (\tilde{\alpha}_m(f_m))$, where $\tilde{\alpha}_m(f_m)(g, x) = f_m(g, \alpha_m^{-1}(x))$. For $\zeta \in \mathcal{N}(\mathcal{G})$, we have $K_x^{\bar{\alpha}^{-1}(\zeta)} = K_{\alpha(x)}^{\zeta}$. Thus we have:

LEMMA 2.4. For $\alpha \in \text{Diff}_G(M)$ and $x \in M$, $C_x = C_{\alpha(x)}$.

Remember that dim M = n and dim G = p. We assume that $n \ge p$. Let $\sigma : \mathbb{R}^{n-p} \to \text{Diff}_G(M)$ be a differentiable action, that is, σ is a homomorphism and the map $(x, t) \mapsto \sigma_t(x)$ is of class C^{∞} .

DEFINITION 2.5. Let U be a connected open set in M. Suppose that there exists a C^{∞} diffeomorphism φ of U onto $S \times T$, where S is an open set in G_e with $e \in S$ and T is an open set in \mathbb{R}^{n-p} with $0 \in T$. Then the pair (U, φ) is called a local chart of (M, G)compatible with σ if it satisfies the following conditions;

- (i) $\varphi^{-1}(g,t) = g\varphi^{-1}(e,t),$
- (ii) $\varphi^{-1}(g,t) = \sigma_t(\varphi^{-1}(g,0))$ for all $(g,t) \in S \times T$.

Let (U, φ) be a local chart compatible with σ as above. We set $x_0 = \varphi^{-1}(e, 0)$. For $x \in U$ with $\varphi(x) = (g, t)$, we have $g^{-1}x = \sigma_t(x_0)$. It follows from Lemmas 2.2, 2.3 and 2.4 that the map $\Psi(x, g^{-1}) \circ \tilde{\psi}_x$ is a spatial isomorphism of B_x onto C_{x_0} for $x \in U$ with $\varphi(x) = (g, t)$. We set $\psi_x = \Psi(x, g^{-1}) \circ \tilde{\psi}_x$. Then we have the following:

PROPOSITION 2.6. Let (U_1, φ_1) and (U_2, φ_2) be local chatrs compatible with σ and U be a connected component of $U_1 \cap U_2$. If $\psi_{i,x}$ is the *-isomorphism of B_x onto C_{x_i} as above with respect to (U_i, φ_i) with $x_i = \varphi_i^{-1}(e, 0)$ (i = 1, 2), then there exists a *-isomorphism α of C_{x_1} onto C_{x_2} such that $\alpha = \psi_{2,x} \circ \psi_{1,x}^{-1}$ for all $x \in U$.

Proof. For i = 1, 2, we set $\varphi_i(U_i) = S_i \times T_i$ as in Definition 2.5. We fix $x \in U$ and suppose that $\varphi_i(x) = (g_i, t_i)$ (i = 1, 2). Let x' be an element of U such that $\varphi_i(x') = (g'_i, t'_i)$ (i = 1, 2). We set $g_0 = g'_1 g_1^{-1}$ and $t_0 = t_1 - t'_1$. Let U_0 be a sufficiently small neighborhood of xin U. For $x' \in U_0$, we have $g_0 x = \sigma_{t_0}(x')$, $\varphi_2(g_0 x) = (g_0 g_2, t_2)$ and $\varphi_2(\sigma_{t_0}(x')) = (g'_2, t_0 + t'_2)$. Since we have $(g_0 g_2, t_2) = (g'_2, t_0 + t'_2)$, we have $g_2^{-1}g_1 = g'_2^{-1}g'_1$. Since we have $\psi_{2,x} \circ \psi_{1,x}^{-1} = \Psi(x_1, g_2^{-1}g_1)$ and $\psi_{2,x'} \circ \psi_{1,x'}^{-1} = \Psi(x_1, g'_2^{-1}g'_1)$, we have $\psi_{2,x} \circ \psi_{1,x}^{-1} = \psi_{2,x'} \circ \psi_{1,x'}^{-1}$. Since U_0 is a neighborhood of x, this completes the proof of Proposition 2.6.

We denote by B the disjoint union of C^{*}-algebras $\{B_x; x \in M\}$ and denote by π the map of B onto M defined by $\pi(a) = x$ for $a \in B_x$. Let $\{(U_i, \varphi_i)\}$ be the set of all local charts of (M, G) compatible with σ indexed by a set I and let $\psi_{i,x}$ be the *-isomorphism of B_x onto C_{x_i} constructed as above from (U_i, φ_i) with $x_i = \varphi_i^{-1}(e, 0)$. We define a map ψ_i of $\pi^{-1}(U_i)$ onto $U_i \times C_{x_i}$ by $\psi_i(a) = (x, \psi_{i,x}(a))$ for $a \in B_x$. Let \mathcal{F}_{σ} be the set of pairs (U_i, ψ_i) $(i \in I)$ constructed as above.

DEFINITION 2.7. A differentiable action σ is called a transverse action for (M, G) if the family $\{U_i; i \in I\}$ is an open covering of M.

In the following we assume that σ is a transverse action for (M, G). It follows from Proposition 2.6 that there exists a unique topology on B such that π is continuous and ψ_i is a homeomorphism for all $i \in I$. Since M is connected, the C^* -algebras C_x are mutually *-isomorphic. Therefore, for a fixed $\tilde{x} \in M$, we set $C = C_{\tilde{x}}$ and fix a *-isomorphism between C and C_{x_i} for every $i \in I$, and then we identify C_{x_i} with C by this isomorphism. Thus we consider $\psi_{i,x}$ to be a *-isomorphism of B_x onto C and ψ_i to be a homeomorphism of $\pi^{-1}(U_i)$ onto $U_i \times C$. By virtue of Proposition 2.6, we have the following theorem:

THEOREM 2.8. Suppose that σ is a transverse action for (M, G). Then the quartet (B, π, M, C) constructed above is a differentiable bundle of C^{*}-algebras with respect to the flat family \mathcal{F}_{σ} of C^{*}-coordinate systems.

3. Differentiable cross sections. For $f \in C_c^{\infty}(\mathcal{G})$ and $m \in \mathcal{N}$, we define an element $[f]_m = (f_m)$ of $\mathcal{N}(\mathcal{G})$ by $f_m = f$ and $f_k = 0$ if $k \neq m$, and define the cross section $cs_m(f)$ of B by $cs_m(f)_x = \tilde{\rho}_x([f]_m)$ $(x \in M)$, that is, $cs_m(f)_x = \rho_x(f)P_x^m$. If G is connected, we set $cs(f) = cs_e(f)$, where $\mathcal{N} = \{e\}$, and we have $cs(f)_x = \rho_x(f)$. Let $\sigma^m : \mathbb{R}^{n-p} \to \text{Diff}(M)$ be a differentiable action such that $\sigma^m = g \circ \sigma \circ g^{-1}$ for every $g \in G_m$. We prepare a lemma for proving the differentiability of $cs_m(f)$.

LEMMA 3.1. For $F \in C_c^{\infty}(\mathbb{R}^{n-p} \times \mathcal{G})$ and $t \in \mathbb{R}^{n-p}$, define an element F_t of $C_c^{\infty}(\mathcal{G})$ by $F_t(g, x) = F(t, g, x)$. Let t_0 be an element of \mathbb{R}^{n-p} . (i) The supremum norm $||F_t - F_{t_0}||_{\infty}$ converges to 0 as $t \to t_0$. (ii) Let J be an open interval in \mathbb{R} containing 0, and let $t(\cdot)$ be a C^2 map of J into \mathbb{R}^{n-p} with $t(0) = t_0$. Define an element f of $C_c^{\infty}(\mathcal{G})$ by $f(g, x) = \sum_{i=1}^{n-p} (\partial F/\partial t_i)(t_0, g, x)(dt_i/dh)(0)$, where

 $t(h) = (t_1(h), \ldots, t_{n-p}(h)).$ Then $||h^{-1}(F_{t(h)} - F_{t_0}) - f||_{\infty}$ converges to 0 as $h \to 0.$

The proof is elementary, and we omit it.

THEOREM 3.2. The cross section $cs_m(f)$ is differentiable, that is, $cs_m(f) \in \Gamma(B)$, for every $f \in C_c^{\infty}(\mathcal{G})$ and $m \in \mathcal{N}$.

Proof. We fix $i \in I$, that is, we fix (U_i, ψ_i) in \mathcal{F}_{σ} and a local chart (U_i, φ_i) compatible with σ . Recall that φ_i is a diffeomorphism of U_i onto $S \times T$, where S and T are open sets of G_e and \mathbb{R}^{n-p} respectively. Let (U_0, φ_0) be a local coordinate system of M such that $U_i \cap U_0 \neq \emptyset$. We set $U = U_i \cap U_0$ and $V = \varphi_0(U)$. We define C^{∞} map x(v) of V into U by $x(v) = \varphi_0^{-1}(v)$ and define C^{∞} maps g(v) of V into S and t(v) of V into T by $\varphi_i(x(v)) = (g(v), t(v))$. We set $\xi = cs_m(f)$ and define maps $\tilde{\xi}_i$ of U_i into C and η of V into C by $\tilde{\xi}_i(x) = \psi_{i,x}(\xi_x)$ and $\eta = \tilde{\xi}_i \circ \varphi_0^{-1}$ respectively. It follows from Lemmas 2.2 and 2.3 that we have $\eta(v) = \rho(K_{g(v)^{-1}x(v)}^{[f]_m})$. We have $g(v)^{-1}x(v) = \sigma_{t(v)}(x_i)$, where $x_i = \varphi_i^{-1}(e, 0)$. We define an element F of $C^{\infty}(\mathbb{R}^{n-p} \times \mathcal{G})$ by $F(t, g, x) = f(g, \sigma_t^m(x))$. We have

$$\left\| \left| K_{\sigma_{t(v)}(x_i)}^f \chi_m - K_{\sigma_{t(u)}(x_i)}^f \chi_m \right| \right\|_{\infty} \le \left\| F_{t(v)} - F_{t(u)} \right\|_{\infty}, \text{ for } u, v \in V.$$

Let *E* be a compact set in *G* such that supp $f \subset E \times M$. It follows from Lemma 1.2 that we have $||\eta(v) - \eta(u)|| \leq I_E ||F_{t(v)} - F_{t(u)}||_{\infty}$. By virtue of Lemma 3.1 we know that η is continuous on *V*.

Let e_1, \ldots, e_n be the standard basis of \mathbb{R}^n and v_1, \ldots, v_n be coordinate functions of \mathbb{R}^n associated with e_1, \ldots, e_n . We fix an element u of V. For a fixed $k = 1, \ldots, n$, let $\delta > 0$ be such that $u + he_k \in V$ for $|h| < \delta$. We denote by J the interval $\{h; |h| < \delta\}$ in \mathbb{R} . We define a C^{∞} map τ of J into T by $\tau(h) = t(u + he_k)$. For $j = 1, \ldots, n - p$, we define an element f_j^m of $C_c^{\infty}(\mathcal{G})$ by $f_j^m(g, x) =$ $(\partial/\partial t_j)(f(g, \sigma_t^m(x)))|_{t=0}$. We set $t(v) = (t_1(v), \ldots, t_{n-p}(v))$ and $\tau(h) = (\tau_1(h), \ldots, \tau_{n-p}(h))$. We define an element a of $C_c^{\infty}(\mathcal{G})$ by $a(g, x) = \sum_{j=1}^{n-p} (\partial F/\partial t_j)(\tau(0), g, x)(d\tau_j/dh)(0)$. It follows from Lemma 3.1 that $h^{-1}(F_{\tau(h)} - F_{\tau(0)})$ converges to a as $h \to 0$. Let \tilde{K}_h be a function on $G \times G$ such that $\tilde{K}_h(g, g')$ is equal to

$$h^{-1}\left\{K_{\sigma_{\tau(h)}(x_i)}^f\chi_m - K_{\sigma_{\tau(0)}(x_i)}^f\chi_m\right\}(g,g') - \sum_{j=1}^{n-p} \left(K_{\sigma_{\tau(0)}(x_i)}^{f_j^m}\chi_m\right)(g,g')\frac{\partial t_j}{\partial v_k}(u).$$

We have $||\tilde{K}_h||_{\infty} \leq ||h^{-1}(F_{\tau(h)} - F_{\tau(0)}) - a||_{\infty}$. We set $\xi^j = cs_m(f_j^m)$ and define maps $\tilde{\xi}_i^j$ of U_i onto C and η^j of V into C by $\tilde{\xi}_i^j(x) = \psi_{i,x}(\xi_x^j)$ and $\eta^j = \tilde{\xi}_i^j \circ \varphi_0^{-1}$ respectively. It follows from Lemma 1.2 that we have

$$\left\| h^{-1}(\eta(u+he_k) - \eta(u)) - \sum_{j=1}^{n-p} \eta^j(u) \frac{\partial t_j}{\partial v_k}(u) \right\| \\ \leq I_E ||h^{-1}(F_{\tau(h)} - F_{\tau(0)}) - a||_{\infty}.$$

Therefore we have $(\partial \eta / \partial v_k)(u) = \sum_{j=1}^{n-p} \eta^j(u) (\partial t_j / \partial v_k)(u)$. As we have seen in the first half of this proof, η^j is continuous on V. Therefore η is of class $(C^1)'$ in the sense of §1. Similarly η^j is of class $(C^1)'$ for $j = 1, \ldots, n-p$. Therefore we know that η is of class $(C^{\infty})'$ and that ξ_i is of class C^{∞} in the sense of Definition 1.3. This completes the proof of Theorem 3.2.

Recall that $\Gamma(B)$ is not only a *-algebra but also a $C^{\infty}(M)$ module. We denote by \mathcal{D} the *-subalgebra of $\Gamma(B)$ generated by elements of the form $\omega \cdot cs_m(f)$ with $f \in C_c^{\infty}(\mathcal{G}), m \in \mathcal{N}$ and $\omega \in C^{\infty}(M)$. Then \mathcal{D} is also a $C^{\infty}(M)$ -submodule of $\Gamma(B)$. For $x \in M$, we set $\mathcal{D}_x = \{\xi_x \in B_x; \xi \in \mathcal{D}\}$. Note that \mathcal{D}_x is the *subalgebra of B_x generated by elements of the form $\rho_x(f)P_x^m$ with $f \in C_c^{\infty}(\mathcal{G})$ and $m \in \mathcal{N}$. If \mathcal{N} is finite, then \mathcal{D}_x is dense in the norm topology of B_x for every $x \in M$. If \mathcal{N} is infinite, then \mathcal{D}_x may not be dense in the norm topology, but it is dense in the strong operator topology of B_x by Lemma 2.1.

4. Flat connections. It follows from Lemma 1.6 that there exists a unique flat connection ∇ in B. In this section we calculate $\nabla(cs_m(f))$ explicitly.

LEMMA 4.1. For j = 1, ..., n - p, there exists an element w^j of $\Gamma(T^*M)$ such that $w_x^j(X_x) = X_x(t_j \circ p_2 \circ \varphi)$ $(X \in \Gamma(TM), x \in U)$

for every local chart (U, φ) of (M, G) compatible with σ , where p_2 is the projection of $G_e \times \mathbb{R}^{n-p}$ onto \mathbb{R}^{n-p} and t_j is the j-th coordinate function of \mathbb{R}^{n-p} .

Proof. Let $\{\omega_k; k = 1, 2, ...\}$ be a partition of unity on M subordinate to the cover $\{U_i; i \in I\}$. Let i(k) be an element of I such that supp $\omega_k \subset U_{i(k)}$. We define w^j by $w^j = \sum_{k=1}^{\infty} \omega_k d(t_j \circ p_2 \circ \varphi_{i(k)})$.

THEOREM 4.2. The flat connection ∇ in B satisfies the following equation;

$$\nabla(cs_m(f)) = \sum_{j=1}^{n-p} w^j \otimes cs_m(f_j^m) \ (f \in C_c^{\infty}(\mathcal{G}) \ m \in \mathcal{N}),$$

where $f_j^m(g,x) = (\partial/\partial t_j)(f(g,\sigma_t^m(x)))|_{t=0}$. In particular, a cross section $(\nabla \xi)(X)$ is an element of \mathcal{D} for every $\xi \in \mathcal{D}$ and $X \in \Gamma(TM)$.

Proof. Let $\{\omega_k\}$ be the partition of unity as in the proof of Lemma 4.1 and i(k) be an element of I such that supp $\omega_k \subset U_{i(k)}$. Let (V, ψ) be a local coordinate system of M and x_1, \ldots, x_n be coordinate functions associated with (V, ψ) . We set $\xi = cs_m(f)$ and $\xi^j = cs_m(f_j^m)$, we set $\tilde{\xi}_{i(k)}(x) = \psi_{i(k),x}(\xi_x)$ and $\tilde{\xi}_{i(k)}^j = \psi_{i(k),x}(\xi_x^j)$, and then we set $\eta = \tilde{\xi}_{i(k)} \circ \psi^{-1}$ and $\eta^j = \tilde{\xi}_{i(k)}^j \circ \psi^{-1}$. We set $\tilde{t}_j^{i(k)} = t_j \circ p_2 \circ \varphi_{i(k)}$. It follows from the proof of Theorem 3.2 that we have $(\partial \eta / \partial v_l) = \sum_{j=1}^{n-p} \eta^j (\partial \tilde{t}_j^{i(k)} \circ \psi^{-1} / \partial v_l)$. Since we have $\sum_{k=1}^{\infty} (\partial \omega_k / \partial x_l) = 0$, we have

$$\sum_{k=1}^{\infty} \psi_{i(k),x}^{-1} \left(\frac{\partial(\omega_k \tilde{\xi}_{i(k)})}{\partial x_l}(x) \right) = \sum_{k=1}^{\infty} \sum_{j=1}^{n-p} \omega_k(x) \xi_x^j \frac{\partial \tilde{t}_j^{i(k)}}{\partial x_l}(x).$$

Let X be an element of $\Gamma(TM)$. It follows from Lemma 4.1 that we have $(\nabla\xi)(X)_x = \sum_{j=1}^{n-p} w_x^j(X_x)\xi_x^j$. This completes the proof of Theorem 4.2.

In the rest of this section, we assume that G is connected and that $C_r^*(\mathcal{G})$ is simple. The following proposition shows that the bundle B is topologically trivial, but the differentiable structure for B is not trivial as we shall see in the next section.

PROPOSITION 4.3. Suppose that G is connected and that $C_r^*(\mathcal{G})$ is simple. Then the bundle B is isomorphic to the product bundle $M \times C_r^*(\mathcal{G})$ as topological vector bundles.

Proof. We set $A = C_r^*(\mathcal{G})$. Since G is connected, we have $\tilde{\rho}_x = \rho_x$. Since A is simple, ρ_x is a *- isomorphism of A onto B_x . For $i \in I$, we define a *-isomorphism $\Theta_{i,x}$ of A onto C by $\Theta_{i,x} = \psi_{i,x} \circ \rho_x$, where $(U_i, \psi_i) \in \mathcal{F}_{\sigma}$. For $a \in A$, we define a map η_a of U_i into C by $\eta_a(x) = \Theta_{i,x}(a)$. For $f \in C_c^{\infty}(\mathcal{G})$, it follows from the proof of Theorem 3.2 that η_f is continuous. Since $\Theta_{i,x}$ is isometry, the map $(x, a) \mapsto \eta_a(x)$ is continuous on $U_i \times A$. For $c \in C$, we define a map $\overline{\eta}_c$ of U_i into A by $\overline{\eta}_c(x) = \Theta_{i,x}^{-1}(c)$. The map $(x, c) \mapsto \overline{\eta}_c(x)$ is continuous on $U_i \times C$. We define a map Θ_i of $U_i \times A$ onto $U_i \times C$ by $\Theta_i(x, a) = (x, \eta_a(x))$. Then we have $\Theta_i^{-1}(x, c) = (x, \overline{\eta}_c(x))$. Therefore Θ_i is a homeomorphism. We define a map Θ of $M \times A$ onto B by $\Theta(x, a) = \rho_x(a)$. Then we have $\psi_i \circ \Theta = \Theta_i$ for every $i \in I$. Since the topology of B is determined by $\{\psi_i\}, \Theta$ is a homeomorphism.

We denote by $C^{\infty}_{c}(\mathcal{G})^{\sigma}$ the *-algebra of all elements f of $C^{\infty}_{c}(\mathcal{G})$ with the property that $\nabla(cs(f)) = 0$. It follows from Theorem 4.2 that f is an element of $C_c^{\infty}(\mathcal{G})^{\sigma}$ if and only if we have $f(g, \sigma_t(x)) =$ f(g,x) for all $t \in \mathbb{R}^{n-p}$ and $(g,x) \in \mathcal{G}$. Let $C_r^*(\mathcal{G})^{\sigma}$ be the C^* subalgebra of $C_r^*(\mathcal{G})$ generated by $C_c^{\infty}(\mathcal{G})^{\sigma}$. We set $B_x^{\sigma} = \rho_x(C_r^*(\mathcal{G})^{\sigma})$. We set $B^{\sigma} = \bigcup_{x \in M} B_x^{\sigma}$ and $\pi^{\sigma} = \pi | B^{\sigma}$, the restriction of π to B^{σ} . For $(U_i, \psi_i) \in \mathcal{F}_{\sigma}$, we set $\psi_i^{\sigma} = \psi_i | (\pi^{\sigma})^{-1}(U_i)$ and $\psi_{i,x}^{\sigma} = \psi_{i,x} | B_x^{\sigma}$ $(x \in$ U_i). We denote by $\mathcal{F}^{\sigma}_{\sigma}$ the set of (U_i, ψ^{σ}_i) $(i \in I)$. Let C^{σ}_x be the C^* -subalgebra of C_x generated by elements $\rho(K_x^f)$ $(f \in C_c^{\infty}(\mathcal{G})^{\sigma})$. Then $\psi_{i,x}^{\sigma}$ is a *-isomorphism of B_x^{σ} onto $C_{x_i}^{\sigma}$. Let \tilde{x} be the element chosen in §2 so that we can identify C_{x_i} with $C = C_{\tilde{x}}$. We set $C^{\sigma} = C^{\sigma}_{\tilde{x}}$. Then we may identify the subalgebra $C^{\sigma}_{x_i}$ of C_{x_i} with the subalgebra C^{σ} of C. Thus we consider $\psi_{i,x}^{\sigma}$ to be a *-isomorphism of B_x^{σ} onto C^{σ} and ψ_i^{σ} to be a homeomorphism of $(\pi^{\sigma})^{-1}(U_i)$ onto $U_i \times C^{\sigma}$. We denote by Θ^{σ} the restriction of Θ to $M \times C^*_r(\mathcal{G})^{\sigma}$, where Θ is the homeomorphism defined in the proof of Proposition 4.3. Then we have the following:

PROPOSITION 4.4. Suppose that G is connected and $C_r^*(\mathcal{G})$ is simple. The quartet $(B^{\sigma}, \pi^{\sigma}, M, C^{\sigma})$ is a differentiable bundle of C^* -algebras with respect to the family $\mathcal{F}_{\sigma}^{\sigma}$. Moreover the differentiable structure for B^{σ} is trivial in the following sense: There exists

a homeomorphism Θ^{σ} of $M \times C_r^*(\mathcal{G})^{\sigma}$ onto B^{σ} with the following property; for every $(U_i, \psi_i^{\sigma}) \in \mathcal{F}_{\sigma}^{\sigma}$, there exists a *-isomorphism α_i of $C_r^*(\mathcal{G})^{\sigma}$ onto C^{σ} such that $\psi_i^{\sigma} \circ \Theta_i^{\sigma} = id_i \times \alpha_i$, where Θ_i^{σ} is the restriction of Θ^{σ} to $U_i \times C_r^*(\mathcal{G})^{\sigma}$ and id_i is the identity map of U_i onto itself.

We denote by RM(A) the Banach algebra of all right multipliers of a C^{*}-algebra A on a Hilbert space ([15, 3.12]). Let RM(B)be the disjoint union of Banach algebras $RM(B_x)$ ($x \in M$) and $\bar{\pi}$ be the map of RM(B) onto M defined by $\bar{\pi}(a) = x$ for $a \in$ $RM(B_x)$. Let (U_i, ψ_i) be an element of \mathcal{F}_{σ} . It follows from Lemmas 2.2 and 2.3 that $\psi_{i,x}$ is spatial for every $x \in U_i$. Therefore we can extend $\psi_{i,x}$ to an isomorphism $\overline{\psi}_{i,x}$ of $RM(B_x)$ onto $RM(C_{x_i})$. We define a map $\bar{\psi}_i$ of $\bar{\pi}^{-1}(U_i)$ onto $U_i \times RM(C_{x_i})$ by $\bar{\psi}_i(a) =$ $(x, \overline{\psi}_{i,x}(a))$ for $a \in RM(B_x)$. We denote by $\overline{\mathcal{F}}_{\sigma}$ the set of $(U_i, \overline{\psi}_i)$ $(i \in I)$. Moreover we may identify $RM(C_{x_i})$ with RM(C). Thus we consider $\overline{\psi}_{i,x}$ to be an isomorphism of $RM(B_x)$ onto RM(C) and $\bar{\psi}_i$ to be a homeomorphism of $\bar{\pi}^{-1}(U_i)$ onto $U_i \times RM(C)$. Then the quartet $(RM(B), \bar{\pi}, M, RM(C))$ is a differentiable bundle of Banach algebras with respect to the flat family $\overline{\mathcal{F}}_{\sigma}$ of Banach coordinate systems. It follows from Lemma 1.6 that there exists a unique flat connection $\overline{\nabla}$ in RM(B).

5. Examples. (a) Kronecker dynamical systems and irrational rotation algebras. Let M be the two-torus $\mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$. For $\mu \in$ $\mathbb{R} \cup \{\infty\}$, we define an action F^{μ} of \mathbb{R} on M by $F_t^{\mu}(x_1, x_2) = (x_1 + x_2)$ $t, x_2 + \mu t$ if $\mu \in \mathbb{R}$ and by $F_t^{\infty}(x_1, x_2) = (x_1, x_2 + t)$ $((x_1, x_2) \in t)$ $M, t \in \mathbb{R}$). Let G be the real line \mathbb{R} and θ be an irrational number. We define an action of G on M by $t \cdot x = F_t^{\theta}(x)$ for $t \in G$ and $x \in M$. For $\mu \in \mathbb{Q} \cup \{\infty\}$, we define an action σ of \mathbb{R} on M by $\sigma = F^{\mu}$. For $x_0 = (x_1^0, x_2^0) \in M$ and $\varepsilon > 0$, we set $S = T = \{t \in I\}$ $\mathbb{R}; |t| < \varepsilon$. We define a map φ_0 of $S \times T$ into M by $\varphi_0(t_1, t_2) =$ $t_1 \cdot \sigma_{t_2}(x_0)$. We set $U = \varphi_0(S \times T)$. If ε is small enough, then φ_0 is a diffeomorphism onto U. In this case, we set $\varphi = \varphi_0^{-1}$ and (U, φ) is a local chart of (M, G) compatible with σ . Therefore σ is a transverse action for (M, G). It follows from Theorem 2.8 that there exists the differentiable bundle (B, π, M, C) of C^{*}-algebras with respect to the flat family \mathcal{F}_{σ} . Let ∇ be the flat connection in B(Lemma 1.6). For $f \in C_c^{\infty}(\mathcal{G})$, it follows from Theorem 4.2 that we

have, $\nabla(cs(f)) = (adx_1 + bdx_2) \otimes cs(f_1)$, where $a = -\theta/(\mu - \theta)$, $b = 1/(\mu - \theta)$ and $f_1 = \partial f/\partial x_1 + \mu(\partial f/\partial x_2)$, if $\mu \in \mathbb{Q}$ and we have $\nabla(cs(f)) = (-\theta dx_1 + dx_2) \otimes cs(\partial f/\partial x_2)$ if $\mu = \infty$.

First, we suppose that $\mu = \infty$. For $u \in C(\mathbb{T})$, we define an operator $rm(u)_x$ on \mathcal{H}_x by $(rm(u)_x\zeta)(t,x) = u(x_2 + \theta t)\zeta(t,x)$ for $x = (x_1, x_2) \in M, \ \zeta \in \mathcal{H}_x$ and $t \in G$. For $f \in C_c(\mathcal{G})$, we have $\rho_x(f)rm(u)_x = \rho_x(f \cdot u)$, where $(f \cdot u)(t, x_1, x_2) = f(t, x_1, x_2)u(x_2)$. Therefore $rm(u)_x$ is an element of $RM(B_x)$. We denote by D_x the set of elements $rm(u)_x$ ($u \in C(\mathbb{T})$). Then D_x is a C^{*}-subalgebra of $\mathcal{B}(\mathcal{H}_x)$ and D_x is *- isomorphic to $C(\mathbb{T})$. Note that f is an element of $C^{\infty}_{c}(\mathcal{G})^{\sigma}$ if and only if there exists an element \tilde{f} of $C^{\infty}_{c}(\mathbb{R}\times\mathbb{T})$ such that $f(t, x_1, x_2) = \tilde{f}(t, x_1)$. Therefore $B_x^{\sigma} D_x$ generates B_x . Let D be the disjoint union of D_x ($x \in M$), π^r be the restriction of $\bar{\pi}$ to D and ψ_i^r be the restriction of $\overline{\psi}_i$ to $(\pi^r)^{-1}(U_i)$ for $(U_i, \overline{\psi}_i) \in \overline{\mathcal{F}}_{\sigma}$. We denote by \mathcal{F}_{σ}^{r} the set of (U_{i}, ψ_{i}^{r}) $(i \in I)$. Then the quartet $(D, \pi^r, M, C(\mathbb{T}))$ is a differentiable bundle of C^{*}-algebras with respect to the flat family \mathcal{F}_{σ}^{r} of C^{*}-coordinate systems. We denote by ∇^r the unique flat connection in D (Lemma 1.6). Let $(U, \bar{\psi})$ be an element of $\overline{\mathcal{F}}_{\sigma}$ constructed from the above local chart (U, φ) . We denote by ψ^r the restriction of $\bar{\psi}$ to $(\pi^r)^{-1}(U)$ and denote by ψ^r_r the restriction of $\bar{\psi}_x$ to D_x for $x \in U$. For $x = (x_1, x_2) \in U$, we have $(\psi_x^r(rm(u)_x)\zeta)(s) = u(-\theta(x_1-x_1^0)+x_2+\theta s)\zeta(s)$ for $u \in C(\mathbb{T}), \zeta \in$ \mathcal{H} and $s \in \mathbb{R}$. Let (x_1, x_2, x_3) be a natural coordinate system of $U \times \mathbb{T}$ as a subset of $\mathbb{T}^3 = \mathbb{R}^3 / \mathbb{Z}^3$. We denote by $C_b^\infty(U \times \mathbb{T})$ the set of all C^{∞} functions f on $U \times \mathbb{T}$ with the property that partial derivatives $\partial^{\alpha} f / \partial \tilde{x}^{\alpha}$ are bounded for every multi-index α and every natural coordinate system \tilde{x} . For $v \in C(U \times \mathbb{T})$, we define a map rm(v) of U into D by $rm(v)_x = rm(v_x)_x$ for $x \in U$, where v_x is an element of $C(\mathbb{T})$ defined by $v_x(x_3) = v(x, x_3)$. As in the proof of Theorem 3.2, we can show that rm(v) is a differentiable cross section of D on U for $v \in C_b^{\infty}(U \times \mathbb{T})$, and we have $\nabla^r(rm(v)) =$ $dx_1 \otimes rm(v_1) + dx_2 \otimes rm(v_2)$, where $v_1 = \partial v / \partial x_1 - \theta (\partial v / \partial x_3)$ and $v_2 = \partial v / \partial x_2 + \partial v / \partial x_3$. Moreover we have $\nabla^r(rm(v)) = 0$ if and only if there exists an element u of $C^{\infty}(\mathbb{T})$ such that $v(x_1, x_2, x_3) =$ $u(\theta(x_1-x_1^0)-(x_2-x_2^0)+x_3).$

Let [a, b] be a closed interval in \mathbb{R} , and $\gamma : [a, b] \to M$ be a smooth curve, that is, γ extends to be a C^{∞} map of $(a - \varepsilon, b + \varepsilon)$ into Mfor some $\varepsilon > 0$, which we denote again by γ . We shall say that a map ξ of [a, b] into D is a smooth curve in D if ξ extends to be a map of $(a - \varepsilon, b + \varepsilon)$ into D, which we denote again by ξ , such that $\pi^r(\xi(t)) = \gamma(t)$ and the map $t \mapsto \psi^r_{i,\gamma(t)}(\xi(t))$ is of class C^{∞} for every $i \in I$. Next suppose that γ is a piecewise smooth curve. By definition there exists a partition $a = a_0 < a_1 < \cdots < a_k = b$ such that $\gamma | [a_j, a_{j+1}]$ is smooth for every j ([21, Definition 1.41]). We shall say that a map ξ of [a, b] into D is a piecewise smooth curve in D if $\xi | [a_j, a_{j+1}]$ is smooth for every j. For a piecewise smooth curve ξ in D, we define $\nabla^r(\xi)(\dot{\gamma}(t)) \in D_{\gamma(t)}$ by $\nabla^r(\xi)(\dot{\gamma}(t)) =$ $(\psi^r_{i,\gamma(t)})^{-1}((d/dt)(\psi^r_{i,\gamma(t)}(\xi(t))))$ (c.f. [14, §1]). A horizontal curve ξ in D is a piecewise smooth curve in D such that $\nabla^r(\xi)(\dot{\gamma}(t)) = 0$ for every $t \in [a, b]$ (c.f. [11, Chapter II, §3]). Then we have the following:

LEMMA 5.1. Let $\gamma : [a, b] \to M$ be a piecewise smooth curve with $\gamma(a) = \gamma(b) = x$. For every $A \in D_x$, there exists a unique horizontal curve ξ_A in D such that $\xi_A(a) = A$. For $u \in C(\mathbb{T})$, define an element h(u) of $C(\mathbb{T})$ by $\xi_A(b) = rm(h(u))_x$, where $A = rm(u)_x$. Then there exists an integer k such that $h(u)(s) = u(s + k\theta)$ $(s \in \mathbb{T})$ for every $u \in C(\mathbb{T})$.

Proof. We fix $t_0 \in [a, b]$. Let (U, ψ^r) and (U, φ) be as above with $x_0 = \gamma(t_0)$. Let V be a connected neighborhood of t_0 such that $\gamma(t) \in U$ for every $t \in V$. Then we have $\xi_A(t) = (\psi_{\gamma(t)}^r)^{-1} \circ \psi_{\gamma(t_0)}^r(\xi_A(t_0))$ for $t \in V$. This implies the existence and the uniqueness of ξ_A . Let u_t be an element of $C(\mathbb{T})$ such that $\xi_A(t) = rm(u_t)_{\gamma(t)}$. We set $\gamma(t) = (\gamma_1(t), \gamma_2(t))$ and $x_j(t_1, t_2) = \gamma_j(t_1) - \gamma_j(t_2)$ for j = 1, 2. Then we have $u_t(-\theta x_1(t, t_0) + \gamma_2(t) + \theta s) = u_{t_0}(\gamma_2(t_0) + \theta s)$ $(s \in \mathbb{T})$. Thus we have $h(u)(s) = u(s + k\theta)$ for an integer k.

By virtue of Lemma 5.1, one can define a *-automorphism h_{γ} of D_x by $\hat{h}_{\gamma}(A) = \xi_A(b)$. This automorphism is called the parallel displacement along the curve γ . We denote by C(x) the set of piecewise smooth curves starting and ending at x. The holonomy group Φ_x of ∇^r with reference point x is the group of all automorphisms \hat{h}_{γ} ($\gamma \in C(x)$) (c.f. [11, Chapter II, §4]). We define an action α of \mathbb{Z} on $C(\mathbb{T})$ by $\alpha_k(u)(t) = u(t + k\theta)$ for $u \in C(\mathbb{T}), k \in \mathbb{Z}$ and $t \in \mathbb{T}$. It follows from Lemma 5.1 that (D_x, Φ_x) is isomorphic to $(C(\mathbb{T}), \alpha)$. Therefore the reduced crossed product $C_r^*(D_x, \Phi_x)$ is *-isomorphic to the irrational rotation algebra A_{θ} . On the other hand, let N be a σ -invariant closed connected submanifold with dim N = 1. Then N is of the form $\{x_1\} \times \mathbb{T}$ for some $x_1 \in \mathbb{T}$, and $C_r^*(\mathcal{G}|N)$ is *-isomorphic to A_{θ} . Therefore $C_r^*(\mathcal{G}|N)$ is *-isomorphic to $C_r^*(D_x, \Phi_x)$.

Next, we suppose that μ is rational, say $\mu = p/q$ for relatively prime integers p and q. There exist integers a and b such that pb - qa = 1. We define a diffeomorphism S of M as follows; $S(x_1, x_2) = (px_1 - qx_2, -ax_1 + bx_2)$ for $(x_1, x_2) \in M$. We set $\nu = (-a + b\theta)/(p - q\theta)$ and define actions \tilde{F} and $\tilde{\sigma}$ by $\tilde{F}_t = S \circ F_t^{\theta} \circ S^{-1}$ and $\tilde{\sigma}_t = S \circ \sigma_t \circ S^{-1}$. Then we have $\tilde{F}_t = F_{(p-q\theta)t}^{\nu}$ and $\tilde{\sigma}_t = F_{t/q}^{\infty}$. Since the system (M, F^{θ}, σ) is conjugate to $(M, \tilde{F}, \tilde{\sigma})$ by S, we have a similar result to that obtained above. Note that $C_r^*(\mathcal{G}|N)$ is \ast isomorphic to A_{ν} for every σ -invariant closed connected submanifold N with dim N = 1. We can summarize the conclusion just obtained as follows:

THEOREM 5.2. Let σ be a transverse action for (M, G) defined by $\sigma = F^{\mu}$ for $\mu \in \mathbb{Q} \cup \{\infty\}$ and let (B, π, M, C) be a differentiable bundle of C^* -algebras with respect to \mathcal{F}_{σ} . Then there exists a subbundle $(D, \pi^r, M, C(\mathbb{T}))$ of $(RM(B), \overline{\pi}, M, RM(C))$ with the following properties; (i) $B^{\sigma}_{x}D_{x}$ generates B_{x} for every $x \in M$, (ii) $C^*_r(\mathcal{G}|N)$ is *-isomorphic to $C^*_r(D_x, \Phi_x)$ for every $x \in M$, where N is a σ -invariant closed connected submanifold of M with dim N = 1 and Φ_x is the holonomy group of the flat connection ∇^r in D.

(b) An action of a semi-direct product group. Let S be an element of SL(2, Z), λ be an eigenvalue of S and $(1, \theta)$ be an eigenvector of S with respect to λ . We suppose that θ is real and irrational. Let G be a semi-direct product group of Z and R defined by (n,t)(m,s) = $(n + M, \lambda^{-m}t + s)$ for (n,t), $(m,s) \in \mathbb{Z} \times \mathbb{R}$. We may identify the group \mathcal{N} with Z and a connected component G_m is the set of elements of the form (m,t) $(t \in \mathbb{R})$ for $m \in \mathbb{Z}$. Let M be the torus \mathbb{T}^2 . Since we have $SF_t^{\theta} = F_{\lambda t}^{\theta}S$, we can define an action of G on M by $(n,t) \cdot x = S^n F_t^{\theta}(x)$ for $(n,t) \in G$ and $x \in M$. Let ν be the other eigenvalue of S and $(1,\mu)$ be an eigenvector of S with respect to ν . We set $\sigma_t = F_t^{\mu}$ for $t \in \mathbb{R}$. As in (a), σ is a transverse action for (M,G). Let (B, π, M, C) be a differentiable bundle of C^{*}- algebras with respect to the family \mathcal{F}_{σ} and let ∇ be the flat connection in B. It follows from Theorem 4.2 that we have

 $\nabla(cs_m(f)) = \nu^m(adx_1 + bdx_2) \otimes cs_m(f_1)$, where $a = -\theta/(\mu - \theta)$, $b = 1/(\mu - \theta)$ and $f_1 = \partial f/\partial x_1 + \mu(\partial f/\partial x_2)$ for $m \in \mathbb{Z}$ and $f \in C_c^{\infty}(\mathcal{G})$. We denote by N the submanifold $\{0\} \times \mathbb{T}$ of M and denote by $B(S, \lambda)$ the reduction C*-algebra $C_r^*(\mathcal{G}|N)$. This algebra was studied in [12, 13, 14]. It follows from [7] and [13] that it is a simple algebra. We do not have any results concerning relations between the bundle and the algebra $B(S, \lambda)$. This is the problem for further investigation.

(c) Actions of discrete groups. Let (M,G) be a differentiable dynamical system with G discrete and let $\sigma : \mathbb{R}^n \to \text{Diff}(M)$ be a differentiable action. Suppose that the differential of the map $t \mapsto \sigma_t(x)$ at 0 is an isomorphism for every $x \in M$. Then, for every $x_0 \in M$, there exist a neighborhood U of x_0 and a neighborhood T of 0 in \mathbb{R}^n such that the map $\varphi_0 : t \mapsto \sigma_t(x_0)$ is a diffeomorphism of T onto U. We set $\varphi = \varphi_0^{-1}$. Then (U, φ) is a local chart compatible with σ and σ is a transverse action for (M, G). Let (B, π, M, C) be a differentiable bundle of C^{*}-algebras with respect to \mathcal{F}_{σ} and ∇ be the flat connection. It follows from Theorem 4.2 that we have, for $g \in G$ and $f \in C_c^{\infty}(\mathcal{G}), \nabla(cs_g(f)) = \sum_{k=1}^n d\varphi^k \otimes cs_g(f_k^g)$, where $\varphi = (\varphi^1, \ldots, \varphi^n)$ and $f_k^g(g', x) = (\partial/\partial t_k) f(g', g\sigma_t(g^{-1}x))|_{t=0}$.

References

- A. Connes, Sur la théorie non commutative de l'integration, Lecture Notes in Math. 725, Springer-Verlag, New York, 1979, pp. 19-143.
- [2] _____, C*-algebres et géométrie différentielle, C. R. Acad. Sci. Paris, 290 (1980), 599-604.
- [3] _____, A survey of foliations and operator algebras, Proc. Sympos. Pure Math., 38 (1982), 521-628.
- [4] A. Connes and M.A. Rieffel, Yang-Mills for non-commutative two-tori, Contemp. Math., 62 (1987), 237-266.
- [5] J. Dixmier, C^{*}-algebras, North-Holland, Amsterdam, 1977.
- B.D. Evans, C*-bundles and compact transformation groups, Mem. Amer. Math. Soc., 269, Amer. Math. Soc., Providence, 1982.
- T. Fack et G. Skandalis, Sur les représentations et idéaux de la C*-algebre d'un feuilletages, J. Operator Theory, 8 (1982), 95-129.
- [8] J.M.G. Fell and R.S. Doran, Representations of *- Algebras, Locally Compact Groups, and Banach *-Algebraic Bundles, Vol. 1, Academic Press, San Diego, 1988.
- [9] _____, Representations of *-Algebras, Locally Compact Groups, and Ba-

nach *-Algebraic Bundles, Vol. 2, Academic Press, San Diego, 1988.

- [10] M. Hilsum and G. Skandalis, Stabilité des C*- algèbres de feuilletages, Ann. Inst. Fourier (Grenoble), 33 (1983), 201-208.
- S. Kobayashi and K. Nomizu, Foundations of Differential Geometry, Vol. 1, John Wiley & Sons, New York, 1963.
- [12] M. O'uchi, On C*-algebras containing irrational rotation algebras, unpublished.
- [13] _____, A C^{*}-algebra of a reduction of a holonomy groupoid, Math. Japon., **35** (1990), 493-508.
- [14] _____, On a one-parameter group of automorphisms associated with a flat connection in a differentiable bundle of C*- algebras, Math. Japon., 36 (1991), 1179-1191.
- [15] G.K. Pedersen, C^{*}-Algebras and their Automorphism Groups, Academic Press, London, 1979.
- [16] J. Renault, A Groupoid Approach to C*-Algebras, Lecture Notes in Math., 793, Springer-Verlag, New York, 1980.
- [17] M.A. Rieffel, C*-algebras associated with irrational rotations, Pacific J. Math., 93 (1981), 415-429.
- [18] _____, The cancellation theorem for projective modules over irrational rotation C^{*}-algebras, Proc. London Math. Soc., (3) 47 (1983), 285-302.
- [19] _____, Continuous fields of C*-algebras coming from group cocycles and actions, Math. Ann., 283 (1989), 631-643.
- [20] _____, Critical points of Yang-Mills for noncommutative two-tori, J. Differential Geom., **31** (1990), 535-546.
- [21] F.W. Warner, Foundations of Differentiable Manifolds and Lie Groups, Springer-Verlag, New York, 1983.

Received August 20, 1992 and in revised form July 22, 1993.

OSAKA WOMEN'S UNIVERSITY OSAKA 590, JAPAN *E-mail address*: ouchi@appmath.osaka-wu.ac.jp