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INVARIANT THEORY OF SPECIAL ORTHOGONAL
GROUPS

HELMER ASLAKSEN, E N G - C H Y E TAN AND CHEN-BO ZHU

In this paper we study the action of SO(n) on ra-tuples
o f n x n matrices by simultaneous conjugation. We show
that the polynomial invariants are generated by traces
and polarized Pfaffians of skewsymmetric projections. We
also discuss the same problem for other classical groups.

1. Special orthogonal groups. Let F be a field of charac-
teristic 0. If A is a skewsymmetric 2k x 2k matrix over F, we
denote the Pfaffian of A by pf A. It satisfies det^l = pf2 A and
pί(gAgt) = detgpf A. For an arbitrary 2k x 2k matrix M, we de-
fine pf (M) = pf (M — Mι) to be the Pfaffian of the skewsymmetric
projection of M. This is clearly an SO(2A:,F) invariant. By abuse
of notation we will refer to pf as the Pfaffian, too.

Let W — W(n^ m, F) be the vector space of m-tuples o f n x n ma-
trices over F on which a group G C GL(n, F) acts by simultaneous
conjugation. For G = SO(2, F),the invariants P[W(2, m, F)]G were
determined in [1]. They are generated by the invariants tτ P(A, A1)
and pΐP(A1A

t) where A G W(2,m,F) and P is noncommutative
polynomial.

We will see that for n odd we do not get any more invariants
when we restrict O(n, F) to SO(n, F). In the even case we have the
following crucial Lemma that indicates why Pfaffian appears.

LEMMA 1. Let x\,... ,x^k £ F2k and let \xχ,... ,x2fc] denote the
determinant of the matrix with columns X\,... , X2/c Then

[xu , X2k] = Pf {xixl + '" + X2k-ixt

2k)
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Proof. Let X be the matrix with columns X\,... , X2k and set

J =

/0 1
-10

0 1
-10

Then

+ + X2k-\xt2k) = = det X pf J = det

D

When A: > 1 the Pfaffian will no longer be linear. Instead we

will consider the polarized Pfaffian, which we will denote by pi.

Thus pl(A 1 ? . . . , Ak) is the coefficient of *i t* in the expansion of

pf(ίχAi + + tkAk). It is a symmetric, multilinear function of k

matrices and satisfies pl(-A,... , A) — &!pf(yl).
When proving our main theorem about the invariants of S0(2A;, F)

we will use classical invariant theory and consider decomposable ma-
trices of the form A{ = u{v\. Notice that rank U{v\ < 1. We will need
the following simple Lemma about the polarized Pfaffian.

LEMMA 2. Let A\,... ,Ak be of the form A{ = Uivj. The polarized
Pfaffian is alternating in the Ai, i.e..

if two of the Ai, are equal. Hence

Proof. Set A = tιAh + h tkAik. Then . . . , Aik) is the

coefficient of t\ -tk in the expansion of pΐ(A). But if the Aik are
not all distinct, the rank of A will be at most k — 1. But then the
rank of A — At will be at most 2k — 2, so det(A — A1) — 0. Hence

pf (A) = pf (A - A') = 0,
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and so pl(A^,... , Aik) = 0. Combining this with the multilinearity
of pi, we get

... ,Ak, ,AU... ,Ak,)/k\

= pl(Au... ,Ak).

We can now prove our main theorem.

THEOREM 3. When G = SO(2fc + l, F), the invariants P[W(2k +
1, ra, F)]G are the same as the O(2k + 1, F) invariants. When G =
SO(2£;, F), the invariants P[W(2k, ra, F)]G are generated by traces
and polarized Pfaffians of the A{ and A\, i.e.,

t r P ( Λ ^ ) and p\(p1(A,A%...,Pk(A,Atj),

where P,Pι,... ,Pk are noncommutative polynomials.

Proof. The proof will follow from classical invariant theory. We
can first reduce the problems to finding the multihomogeneous in-
variants of order (di,... , dr) in m matrices, and then reduce further
to studying multilinear invariants of dm matrices where d = ΣLα <t
We will identify Fn <g> Fn and M(n, F) using

u ® v —> uvι.

We can assume that A{ = Ui ® Vi (the symbolic method). The
invariants of (Fn ® jpn^dm a r e g e n erated by inner products and
determinants, i.e., invariants of the form

φ(xι ® •••

where (x^Xj) — X\XJ and [x\,... ,xn] denotes the determinant of
the matrix with columns x 1 ? . . . , xn.

We first observe that if n is odd, we must have an even number
of determinants. But then the whole expression will be an O(n, F)
invariant. This proves the first part of the theorem.

We can therefore assume that n — 2k. We observe that

(xi, Xj) = X\XJ — tr XiX^
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If Wi is U{ or Vi and VO\ the other one, then a product of the form

(wh, w'i2) (wi2, w 3 ) (wir, i ^ )

is equal to

where B{ equals A{ or 4̂* depending on whether W{ is Ui or i^.
We will now show that φ can be written in terms of traces and

polarized Pfaffians of the A{ and the A\.
Since the product of two determinants is an O(2k, F) invariant

and hence expressible in terms of scalar products, we can assume
that we have only one determinant. By reordering the A\ and re-
placing Ai by A\, i.e., interchanging U{ and v^ we can assume that

φ = ±[ui,υι,... ,uh vu uι+u . . . , u2k-ι]

(v2k-l- U

where Q only involves scalar products of U{ and V{ for i > 2k — I +
di + * -+dk-ι But this can be expressed as the trace of a polynomial
in Ai and A* for i > 2k - I + d\ + + dk-ι. We can now apply
Lemma 2 and we get that

(1) [uuvu... ,uhvhuι+u... ,u2k-ι]

= pf(Ai + '" + Aι+ Ui+ιul+2 + + I

, . . . , A h J

But since the function pi is multilinear, we can combine

with uι+ιuf

ι+2 to get
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Repeating this for each of the last k — I terms in (1), we get that

Φ/Q = pl(-4i, Λu Aι+ιA2k-ι+ι A2k-i+dlA\+2,... ,

This shows that φ is the required form. D

We now want to derive a similar result for SO(p, q). The method
is similar to the case of SO(n, F)1 except that we identify Fn ® Fn

and M(n, F) using

where

The corresponding involution of M(n, F) is

Ά* — Γ " 1 4*7"

so that (w ® υ)* — i; ® u. When p + q — 2k is even, we also need to
change the Pfaffian to the (p, g) Pfaffian. It is defined by

pfM(A) = pf(IMA - A%%q) - J f(/ M A).

It is easy to see that the (p,q) Pfaffian is an SO(p, 9) invariant.
Moreover, it satisfies the following modified version of Lemma 1

p f M ( x l ®X2 + ' - + X2k-l

We let pi be the polarization of pf^ We can now derive the
following theorem.

THEOREM 4. Let G = SO(p,g). Define A* = I^AιIPiq. When
p + q is odd, the invariants P[W(p + q,m, R)]G are the same as for
O(p,q). When p + q — 2k is even, the invariants P[W(p + q,m,R)]G

are generated by traces and polarized (p, q) Pfaffians of the A{ and

A*,i.e.,

tτP{A,A*) and p l M

where P, P i , . . . , P)b are noncommutative polynomials.
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2. Classical groups. We will now discuss the invariants of other
classical groups. Let us first define what we mean by a classical
group. Let F be either l o r C and let D be a division algebra over
F with involution a ι-> α # . Let V be a vector space over D and
let (,) be a nondegenerate sesquilinear form on V that is Hermitian
or skew-Hermitian relative to # . (If the involution is the identity
we get bilinear symmetric and skewsymmetric forms.) Let G be the
isometry groups. We will call such groups classical isometry groups.

If the involution is either the identity or complex or quaternionic
conjugation, we can describe the classical isometry groups by Table
1.

bilinear and symmetric

bilinear and skewsymmetric

sesquilinear and Hermitian

sesquilinear and skew-Hermitian

K

O(p,q)
Sp(fc, R)

-
-

C

O(n,C)

Sp(k,C)
U(p, q)

Ufa q)

-
-

Sp(p, q)
Sp(*,H)

Table 1

(We are assuming that n — p + q or n = 2k when appropriate.)
A "-" means that there are no such forms. Helgason [2] writes
SO*(2A;) for the group we have called Sp(fc,H).

The remaining classical groups are the general and special linear
groups GL(n, F) and SL(n, F) and the special isometry groups, i.e.,
the intersections of SL(n, F) and the classical isometry groups.

Sibirskii [4] gave a set of generators of P[W]G when G equals
GL(n, F) , O(n,F) or U(n). His proof for the case of U(n) is
essentially WeyΓs unitary trick, which can easily be adapted to work
for f/(p, q). These results were also proved independently by Procesi
[3], who also solved the problem for Sp(fc,F). His proof for the
<9(n, R) case can also easily be modified for the case of O(p, q). For
the special isometry groups, all the cases are trivial except for the
special orthogonal groups.

It therefore remains to discuss the quaternionic groups Sp(fe,H)
and Sp(p, q). We will use the complexification trick to reduce

H) to SO(2A;,C) and Sp(p,g) to a group isomorphic to

Let G be a real connected Lie group that acts rationally on a
real vector space V. We can find a complex connected group Gc
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such that the Lie algebra of Gc is gc = 0 θ iQ where g is the
Lie algebra of G and with G C Gc Then both G and Gc act
on Vc = V ΘR C = V φ iV, and for A = X + ϊY G Vc with
X,Y eV we define J4* = X — ϊY. We prove the following, which is
a generalization of Lemma 1 in [4].

LEMMA 5. Consider f(A,B) G P(VC θ Vc).Then f(A,B) is Gc

invariant if and only if f(A,A*) is G invariant.

Proof. The lemma follows easily from the following two facts,
(i) /(^4, B) is G invariant if and only if it is Gc invariant.

(ii) If f(A,A*) = 0 for all A G Vc, then f(A, B) = 0 for all
A,BeVc.

To prove (i), we fix arbitrary A, B G Vc and consider the function

F(g) = f(g A,g B)-f(A,B), g G Gc.

We can write F(g) as h(g)/ detJ g for polynomial function /i and
some j G N. We now let

We see that H is a power series that vanishes on g and hence also
on gc Since Gc is connected it follows that h = 0 and so F = 0.
This proves (i).

To prove (ii), we write A = X + iY with X, V G V, and set

/(x, y) - f(A, A*) - / ( * + <y, x - ίy) = o.

Since a polynomial that vanishes on real variables also vanishes
on complex variables, the above remains true for X, Y G Vfc. We
can now substitute X = (A + B)/2 and Y = (A - B)/2i to get
f(A, B) = 0. This proves (ii), and the lemma follows easily. D

Conversely, suppose that we start with a complex connected Lie
group Gc C GL(n, C) and an involution * of M(n, C) such that^
(ilny = —Un.We then obtain a real from G of Gc by setting G =

Π {gg* = /n}, and we get the following.

COROLLARY 6. Let W = W(n,m,C) and consider f(A,B) G
P(W θ W). Then f(A, B) is Gc invariant if and only if f(A, A*)
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is G invariant.

We would like to remark that Corollary 6 allows us to state the
known results [3, 4] in a uniform way.

1 O(p,q)

K 1 /M

0{n,C)

In

Sp(A;,R)

Jk

Sp(*,C)

Jk

U(p,q)

t VA

Table 2

THEOREM 7. Let G be a classical isometry group that is not
quaternionic, i.e., G = {(g*yKg = K} where K is given in Ta-
ble 2. The ring of invariants P[W]G is generated by invariants of
the form tr P(A, A*), where P is a noncommutative polynomial and

A* = κ#
When discussing quaternionic groups, we will use the decompo-

sition W = Cn Θ jCn to identify W1 with C2rι.This gives a corre-
sponding identification of M(n, m, M) with M(2n, m, C). Then

, H) - SO(2£;, C) ΓΊ {g G GL(2k, C) | gιjkg - Jk],

where

Jk ~
-iΛ

o
We can apply Corollary 6 to get the following result for Sp(A;, HI).

THEOREM 8. Let G = Sp(ft,H). Define A* = J^xAlJk. The
invariants P[W(2k,m, C)]G are generated by traces and polarized
Pfaffians of Au A\, A* and (A*)1, i.e.,

trP(A, A\ A*, (A*f) and

pi (P^A, A\ A*, (A*f),... , Pk(A, A\ A*, (A*

where P, P i , . . . , P& are noncommutative polynomials.

Since Sp(p, q) is not a subgroup of Sp(p + 9, C) in the standard
realization, we cannot set G<c — Sp(p + g, C) in Corollary 6. Instead
we will introduce a group isomorphic to Sp(p + g, C) that contains
Sp(p,g). Let

-
and A" -

0 J
M ,
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We define

Sp(p, ?, C) - {<? e GL(2p + 2g, C) | ^J M <? - Jp, J ^ Sp(p + q, C).

If we set

we see that

Sp(p, ?) - Sp(p, ?, C) Π {gg* = I2p+2q}

We can apply Corollary 6, using Gc = Sp(p, #, C). Since the in-
variants for this group can be determined by the method used for
Sp(p + q, C) in [3], we can now derive the following theorem.

THEOREM 9. Let G = Sp(pJq). Define A* = K^\A^KVΛ and
A* = J-JjAtJpj. The invariants P[W(2p + 2q, ra, C)]^ are gener-
ated by invariants of the form tr P(A, A*, A*, (A*)*), where P is a
noncommutative polynomial.

We would finally like to thank the referee for helpful suggestions.
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