
ON THE DEFINITION OF NORMAL NUMBERS

IVAN N I V E N AND H. S. Z U C K E R M A N

1. Introduction, Let R be a real number with fractional part . ^ ^ 2 ^ 3 * * ' w hen

written to scale r. Let N(b,n) denote the number of occurrences of the digit b in

the first n places. The number R is said to be simply normal to scale r if

(1)

for each of the r possible values of b R is said to be normal to scale r if all the

numbers R,rR,r2R, are simply normal to all the scales r,r2,r3, . These

definitions, for r = 10, were introduced by Emile Borel [ l ] , who stated (p.261)

that "la propriete' caracte'ristique" of a normal number is the following: that for

any sequence B whatsoever of v specified digits, we have

where N(B,n) stands for the number of occurrences of the sequence B in the first

n decimal places.

Several writers, for example Champernowne [ 2 ] , Koksma [3, p. 116], and

Cope land and Erdos [ 4 ] , have taken this property (2) as the definition of a normal

number. Hardy and Wright [5, p. 124] state that property (2) is equivalent to the

definition, but give no proof. It is easy to show that a normal number has property

(2), but the implication in the other direction does not appear to be so obvious. If

the number R has property (2) then any sequence of digits

B = 6 χ 6 2 • • • & „

appears with the appropriate frequency, but will the frequencies all be the same

for i — 1,2, , v if we count only those occurrences of B such that bγ is an

i, ί + v, i + 2v9 -th digit? It is the purpose of this note to show that this is
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so, and thus to prove the equivalence of property (2) and the definition of normal

number.

2. Notation. In addition to the notation already introduced, we shall use the

following:

S α is the first CC digits of R.

BXB is the totality of sequences of the form bγb2* ' * bvxx χbίb2 * * * bv,

where xx * * x is any sequence of t digits.

λj(θc) is the number of times that B occurs in S α with bι in a place congruent

to ί(mod v).

1=0

#£ (α) is the number of occurrences of BXB in S α .

* i f J (α) = fci(α) - fc j (α) , i ^ J -

S is any block of digits of length from υ Ί~ 1 to 2v — 1 whose first t> digits

are B and whose last t> digits are B. Such a block need not exist.

3. Proof. We shall assume that the number R has the property (2), so that we

have

(3) lim

and

(4) l i . '-

for each fixed ί, and we prove that

K3 (n)
(5) lim — = 0 ,

π-oo n

from which it follows that R is a normal number.

Now Aj (α* + s) ~ A;j(α) is the number of B with bγ in a place congruent to

to £ (mod v) that are in S<χ+S but not entirely in S α . Therefore
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j
i=0, 1, , v-2

jf = l , 2 , , v - l

counts the number of BXB and β* that occur in S α + S such that the first B is not

contained entirely in S α . Here the number t of digits in X runs through all values

pO(mod v) with 0 < ί < s — ι> — 1. We take n> s and sum the above expression

to get

α=o . i<j
i=0, 1, ,v-2

jr =1, 2, ,v- l

Considering Sn and any BXB contained in it with t < s — v — 1, we see that BXB

is counted in σ a certain number of times. In fact if BXB is not too near either

end of Sn it is counted just s ~ t ~ t> times and it is never counted more than this

many times. Furthermore if BXB is preceded by at least 5 ~~ t ~~ 2v digits and is

followed in Sn by at least s — t — υ — 1 digits then BXB is counted exactly

s ~~ t ~ v times. Therefore we have, ignoring any B blocks which may be counted

by σ,

s-v-l

(7) σ> Σ (s-t-v)\θt{n-s)-θt{s)\.
ί=o

Using (4) we find

for any fixed s; hence, from (7), we have

σ s'v~1 I
lim - > Y (s ~ t - v ) ~— .

It is now convenient to take s, which is otherwise arbitrary, to be congruent to
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0(mod v). Then the above formula reduces to

(8)
σ ( v - l ) ( s - v ) 2

lim — > —
n-co 2v -2v '

In a similar manner we count the BXB in Sn where the number t of digits of X

is congruent to 0(mod t>) This gives us

im- Σ Σ \
α=o i=o

Now, by (3) we have

-i n-s v-1

im — > > U

α=o i=o

and (9) reduces to

Σ
v)

= l im
oo

Δn α=n-s+l

(10) Σ Σ {ki(
α=o i=o

From (6), (8), and (10) we find that

2v

α=o

s s \

r

n α=o
i=Q, 1, ,t/-2
j = l, 2, , v-l

( v — l ) s (v — l)(s — v)

for any fixed s = 0(mod υ) Using the inequality
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Σ *\>-
1 = 1 1 = 1

we obtain

Σ
α=o

n - s + 1

1

n - s + 1

1

n - s + 1

This with (11) implies

n-s

Σ
oc=o

n~s

Σ
α=o

s - i

s - l

α=o

(12) lim
"-*00 n(rι - s + l )

ι<7
ί = 0, 1, , v-2
7 = 1, 2, , v-1

Σ khJ(n-a)- Σ *i,y(α)
α= o α= o

|

(y -

From the definition we have kij(u) | < (X and hence

l im
"- 0 0 n(n - s + l )

s - i

α=o

and

lim V hi Ί- (n - α) T fei v (α) = 0

for fixed s.
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Therefore (12) implies

1 _
lim
"- 0 0 n(n - s + 1)

j

i-0, 1, , i>~2
; = 1, 2, , v - l

s - ί

Z * 1 > J >•
α=o

• + •

which can be written in the form

1 _
l im

ω n(n -
α=o7

i = 0 , 1, ,v~2

; = 1, 2 , , t / - l

|

But I ki9j(n — a) — kifj{n) I < 2α so that this implies

{fei7 (n)

i = 0 , 1, , ι / - 2
; = 1, 2 , , v - l

. ι

(v-ϊ)(s-υ)

or

n(n-s+l) s2r2v

i = 0 , 1, , v - 2
J = l, 2, ,v-l

From this we have

l im — l i m + •
s2r2v

for any fixed s — 0(mod v) Since the right member can be made arbitrarily small,

we have



or
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lim = 0

ki(n) _ _ kj(n)
lim — lim
n-*co n n - oo n
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