ON THE DEFINITION OF NORMAL NUMBERS

Ivan Niven and H.S. Zucrerman

1. Introduction. Let R be a real number with fractional part.$x_{1} x_{2} x_{3} \cdots$ when written to scale r. Let $N(b, n)$ denote the number of occurrences of the digit b in the first n places. The number R is said to be simply normal to scale r if

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{N(b, n)}{n}=\frac{1}{r} \tag{1}
\end{equation*}
$$

for each of the r possible values of $b ; R$ is said to be normal to scale r if all the numbers $R, r R, r^{2} R, \cdots$ are simply normal to all the scales r, r^{2}, r^{3}, \cdots These definitions, for $r=10$, were introduced by Emile Borel [1], who stated (p.261) that "la propriété caractéristique" of a normal number is the following: that for any sequence B whatsoever of v specified digits, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{N(B, n)}{n}=\frac{1}{r^{v}}, \tag{2}
\end{equation*}
$$

where $N(B, n)$ stands for the number of occurrences of the sequence B in the first n decimal places.

Several writers, for example Champernowne [2], Koksma [3, p.116], and Copeland and Erdös [4], have taken this property (2) as the definition of a normal number. Hardy and Wright [$5, \mathrm{p} .124$] state that property (2) is equivalent to the definition, but give no proof. It is easy to show that a normal number has property (2), but the implication in the other direction does not appear to be so obvious. If the number R has property (2) then any sequence of digits

$$
B=b_{1} b_{2} \cdots b_{v}
$$

appears with the appropriate frequency, but will the frequencies all be the same for $i=1,2, \cdots, v$ if we count only those occurrences of B such that b_{1} is an $i, i+v, i+2 v, \cdots-t h \operatorname{digit}$? It is the purpose of this note to show that this is

Received August 14, 1950, and, in revised form, November 22, 1950.
Pacific J. Math. 1 (1951), 103-109.
so, and thus to prove the equivalence of property (2) and the definition of normal number.
2. Notation. In addition to the notation already introduced, we shall use the following:
S_{α} is the first α digits of R.
$B X B$ is the totality of sequences of the form $b_{1} b_{2} \cdots b_{v} x x \cdots x b_{1} b_{2} \cdots b_{v}$, where $x x \cdots x$ is any sequence of t digits.
$k_{i}(\alpha)$ is the number of times that B occurs in S_{α} with b_{1} in a place congruent to $i(\bmod v)$.

$$
g(\alpha)=\sum_{i=0}^{v-1} k_{i}(\alpha)
$$

$\theta_{t}(\alpha)$ is the number of occurrences of $B X B$ in S_{α}.

$$
k_{i, j}(\alpha)=k_{i}(\alpha)-k_{j}(\alpha),
$$

$i \neq j$.
B^{*} is any block of digits of length from $v+1$ to $2 v-1$ whose first v digits are B and whose last v digits are B. Such a block need not exist.
3. Proof. We shall assume that the number R has the property (2), so that we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{g(n)}{n}=\frac{1}{r^{v}} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\theta_{t}(n)}{n}=\frac{1}{r^{2 v}} \tag{4}
\end{equation*}
$$

for each fixed t, and we prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{k_{i, j}(n)}{n}=0 \tag{5}
\end{equation*}
$$

from which it follows that R is a normal number.
Now $k_{i}(\alpha+s)-k_{i}(\alpha)$ is the number of B with b_{1} in a place congruent to to $i(\bmod v)$ that are in $S_{\alpha+s}$ but not entirely in S_{α}. Therefore

$$
\sum_{\substack{i<j \\ 1, \cdots, v-2 \\ 2, \cdots, v-1}}\left\{k_{i}(\alpha+s)-k_{i}(\alpha)\right\}\left\{k_{j}(\alpha+s)-k_{j}(\alpha)\right\}
$$

counts the number of $B X B$ and B^{*} that occur in $S_{\alpha+s}$ such that the first B is not contained entirely in S_{α}. Here the number t of digits in X runs through all values $\not \equiv 0(\bmod v)$ with $0 \leq t \leq s-v-1$. We take $n>s$ and sum the above expression to get
(6) $\quad \sigma=\sum_{\alpha=0}^{n-s} \sum_{\substack{i<j \\ i=0,1, \cdots, v-2 \\ j=1,2, \cdots, v-1}}\left\{k_{i}(\alpha+s)-k_{i}(\alpha)\right\}\left\{k_{j}(\alpha+s)-k_{j}(\alpha)\right\}$.

Considering S_{n} and any $B X B$ contained in it with $t \leq s-v-1$, we see that $B X B$ is counted in σ a certain number of times. In fact if $B X B$ is not too near either end of S_{n} it is counted just $s-t-v$ times and it is never counted more than this many times. Furthermore if $B X B$ is preceded by at least $s-t-2 v$ digits and is followed in S_{n} by at least $s-t-v-1$ digits then $B X B$ is counted exactly $s-t-v$ times. Therefore we have, ignoring any B^{*} blocks which may be counted by σ,

$$
\begin{equation*}
\sigma \geq \sum_{\substack{t=0 \\ t \neq 0(\bmod v)}}^{s-v-1}(s-t-v)\left\{\theta_{t}(n-s)-\theta_{t}(s)\right\} \tag{7}
\end{equation*}
$$

Using (4) we find

$$
\lim _{n \rightarrow \infty} \frac{\theta_{t}(n-s)}{n}=\frac{1}{r^{2 v}}
$$

for any fixed s; hence, from (7), we have

$$
\lim _{n \rightarrow \infty} \frac{\sigma}{n} \geq \sum_{\substack{t=0 \\ t \neq 0(\bmod v)}}^{s-v-1}(s-t-v) \frac{1}{r^{2 v}}
$$

It is now convenient to take s, which is otherwise arbitrary, to be congruent to
$0(\bmod v)$. Then the above formula reduces to

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\sigma}{n} \geq \frac{(v-1)(s-v)^{2}}{2 v} \cdot \frac{1}{r^{2 v}} . \tag{8}
\end{equation*}
$$

In a similar manner we count the $B X B$ in S_{n} where the number t of digits of X is congruent to $0(\bmod v)$. This gives us
(9) $\quad \lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\alpha=0}^{n-s} \sum_{i=0}^{v-1} \frac{1}{2}\left\{k_{i}(\alpha+s)-k_{i}(\alpha)\right\}\left\{k_{i}(\alpha+s)-k_{i}(\alpha)-1\right\}$

$$
=\sum_{\substack{t=0 \\ t \neq 0(\bmod v)}}^{s-v-1}(s-t-v) \frac{1}{r^{2 v}}=\frac{s(s-v)}{2 v} \cdot \frac{1}{r^{2 v}} .
$$

Now, by (3) we have

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{1}{2 n} \sum_{\alpha=0}^{n-s} \sum_{i=0}^{v-1}\left\{k_{i}(\alpha+s)-k_{i}(\alpha)\right\}=\lim _{n \rightarrow \infty} \frac{1}{2 n} \sum_{\alpha=0}^{n-s}\{g(\alpha+s)-g(\alpha)\} \\
=\lim _{n \rightarrow \infty}\left\{\frac{1}{2 n} \sum_{\alpha=n-s+1}^{n} g(\alpha+s)-\frac{1}{2 n} \sum_{\alpha=0}^{s-1} g(\alpha)\right\}=\frac{s}{2 r^{v}},
\end{array}
$$

and (9) reduces to

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\alpha=0}^{n-s} \sum_{i=0}^{v-1}\left\{k_{i}(\alpha+s)-k_{i}(\alpha)\right\}^{2}=\frac{s}{r^{v}}+\frac{s(s-v)}{v r^{2 v}} . \tag{10}
\end{equation*}
$$

From (6), (8), and (10) we find that
(11) $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{\alpha=0}^{n-s} \sum_{\substack{i<j \\ i=0,1, \cdots, v-2 \\ j=1,2, \cdots, v-1}}\left\{\left[k_{i}(\alpha+s)-k_{i}(\alpha)\right]-\left[k_{j}(\alpha+s)-k_{j}(\alpha)\right]\right\}^{2}$

$$
\leq \frac{(v-1) s}{r^{v}}+\frac{(v-1)(s-v)}{r^{2 v}}
$$

for any fixed $s \equiv 0(\bmod v)$. Using the inequality

$$
\sum_{i=1}^{n} x_{i}^{2} \geq \frac{1}{n}\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

we obtain

$$
\begin{aligned}
& \sum_{\alpha=0}^{n-s}\left\{\left[k_{i}(\alpha+s)-k_{i}(\alpha)\right]-\left[k_{j}(\alpha+s)-k_{j}(\alpha)\right]\right\}^{2} \\
& \quad \geq \frac{1}{n-s+1}\left\{\sum_{\alpha=0}^{n-s}\left[k_{i}(\alpha+s)-k_{\imath}(\alpha)-k_{J}(\alpha+s)+k_{j}(\alpha)\right]\right\}^{2} \\
& \quad=\frac{1}{n-s+1}\left\{\sum_{\alpha=0}^{n-s}\left[k_{i, j}(\alpha+s)-k_{\imath, j}(\alpha)\right]\right\}^{2} \\
& \quad=\frac{1}{n-s+1}\left\{\sum_{\alpha=0}^{s-1} k_{i, j}(n-\alpha)-\sum_{\alpha=0}^{s-1} k_{i, j}(\alpha)\right\}^{2}
\end{aligned}
$$

This with (ll) implies
(12) $\varlimsup_{n \rightarrow \infty} \frac{1}{n(n-s+1)}$

$$
\begin{aligned}
& \sum_{\substack{i<j \\
i=0,1, \cdots, v-2 \\
j=1,2, \cdots, v-1}}\left\{\sum_{\alpha=0}^{s-1} k_{i, j}(n-\alpha)-\sum_{\alpha=0}^{s-1} k_{i, j}(\alpha)\right\}^{2} \\
& \leq \frac{(v-1) s}{r^{v}}+\frac{(v-1)(s-v)}{r^{2 v}}
\end{aligned}
$$

From the definition we have $\left|k_{i, j}(\alpha)\right|<\alpha$ and hence

$$
\lim _{n \rightarrow \infty} \frac{1}{n(n-s+1)}\left\{\sum_{\alpha=0}^{s-1} k_{i, j}(\alpha)\right\}^{2}=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n(n-s+1)} \sum_{\alpha=0}^{s-1} k_{i, j}(n-\alpha) \sum_{\alpha=0}^{s-1} k_{i, j}(\alpha)=0
$$

for fixed s.

Therefore (12) implies

$$
\begin{aligned}
& \varlimsup_{n \rightarrow \infty} \frac{1}{n(n-s+1)} \sum_{\substack{i<j \\
i=0,1, \cdots, v-2 \\
j=1,2, \cdots, v-1}}\left\{\sum_{\alpha=0}^{s-1} k_{i, j}(n-\alpha)\right\}^{2} \\
& \leq \frac{(v-1) s}{r^{v}}+\frac{(v-1)(s-v)}{r^{2 v}},
\end{aligned}
$$

which can be written in the form

$$
\begin{aligned}
\overline{\lim _{n \rightarrow \infty}} \frac{1}{n(n-s+1)} \sum_{\substack{i=j \\
i=0,1, \cdots, v-2 \\
j=1,2, \cdots, v-1}}\left\{s k_{i, j}(n)\right. & \left.+\sum_{\alpha=0}^{s-1}\left[k_{i, j}(n-\alpha)-k_{i, j}(n)\right]\right\}^{2} \\
& \leq \frac{(v-1) s}{r^{v}}+\frac{(v-1)(s-v)}{r^{2 v}}
\end{aligned}
$$

But $\left|k_{i, j}(n-\alpha)-k_{i, j}(n)\right|<2 \alpha$ so that this implies

$$
\begin{aligned}
\varlimsup_{n \rightarrow \infty} \frac{1}{n(n-s+1)} & \sum_{\substack{i<j \\
i=0,1, \cdots, v-2 \\
j=1,2, \cdots, v-1}} s^{2}\left\{k_{i, j}(n)\right\}^{2} \\
& \leq \frac{(v-1) s}{r^{v}}+\frac{(v-1)(s-v)}{r^{2 v}}
\end{aligned}
$$

or

$$
\varlimsup_{n \rightarrow \infty} \sum_{\substack{i<j \\ i=0,1, \cdots, v-2 \\ j=1,2, \cdots, v-1}} \frac{\left\{k_{i, j}(n)\right\}^{2}}{n(n-s+1)} \leq \frac{v-1}{s r^{v}}+\frac{(v-1)(s-v)}{s^{2} r^{2 v}} .
$$

From this we have

$$
\varlimsup_{n \rightarrow \infty} \frac{\left\{k_{i, j}(n)\right\}^{2}}{n^{2}}=\varlimsup_{n \rightarrow \infty} \frac{\left\{k_{i, j}(n)\right\}^{2}}{n(n-s+1)} \leq \frac{v-1}{s r^{v}}+\frac{(v-1)(s-v)}{s^{2} r^{2 v}}
$$

for any fixed $s \equiv 0(\bmod v)$. Since the right member can be made arbitrarily small, we have

$$
\lim _{n \rightarrow \infty} \frac{\left|k_{i, j}(n)\right|}{n}=0
$$

or

$$
\lim _{n \rightarrow \infty} \frac{k_{i}(n)}{n}=\lim _{n \rightarrow \infty} \frac{k_{J}(n)}{n} .
$$

References

1. Émile Borel, Les probabilités dénombrables et leurs applications arithmétiques, Rend. Circ. Mat. Palermo 27 (1909), 247-271.
2. D. G. Champernowne, The construction of decimals normal in the scale of ten, J. London Math. Soc., 8 (1933), 254-260.
3. J. F. Koksma, Diophantische Approximationen, Ergebnisse der Mathematik, Band 1, Heft 4, Springer, Berlin, 1937.
4. Arthur H. Copeland and Paul Erdös, Note on normal numbers, Bull. Amer. Math. Soc., 52 (1946), 857-860.
5. G. H. Hardy and E. M. Wright, The Theory of Numbers, Second Edition, Oxford University Press, London, 1945.

University of Oregon and
University of Washington

