
SCHLICHT TAYLOR SERIES WHOSE CONVERGENCE ON THE

UNIT CIRCLE IS UNIFORM BUT NOT ABSOLUTE

P. E R D O S , F . H E R Z O G , AND G. P I R A N I A N

1. Summary. That a Taylor series which converges uniformly on the unit circle

C need not converge absolutely on C was proved by Hardy [2] (see also Landau

[4, p.68] for a simpler example, see Herzog and Piranian [3, Section 4 ] ) . The

present paper exhibits two functions that are schlicht on the closed unit disc, and

whose Taylor series converge uniformly but not absolutely on C. Each of the

examples satisfies an additional restrictive requirement: the first function has

only one singular point on C9 and the Taylor series

00

(1) Σ *kzmk

k = 0

of the second function has the property that lim(m&+i *"" mh) ~ °°

The condition that (l) represent a schlicht function and converge uniformly

but not absolutely on C imposes restrictions on the sequence of exponents \mk\

For the condition implies that Σ/£=o m^ | α& | 2 < °° (see Landau [4, p. 65]);

since, by Schwarz's inequality, we have

it follows that

00

(2) Σ l/mk - 0 0 .
k = o

It remains an open question whether the condition implies a restriction on

which is stronger than (2)
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In the construction of both examples, the basic idea consists of the observation

that if

(3) h(z) = z + kail - (1 - z/co)1/n]

(where k is a real constant, | ω | — 1, n is a positive integer and the function

(1 — z/ω)ί/n is chosen to be positive when z — ω/2)9 then h{z) maps the unit

disc into a region which consists roughly of the unit disc with a tooth of length k

protruding at the point z — ω The tooth can be made arbitrarily narrow by choosing

n large enough. If additional terms are joined to the right member of (3), the map

of the unit disc by h(z) bristles with teeth; and if the lengths, widths and po-

sitions of these teeth are chosen appropriately, the Taylor series of h (z) con-

verges uniformly, but not absolutely, on C. The geometric and analytic motivation

for the devices that induce h (z) to satisfy the additional requirements will be

obvious from the text,

2. The first example. Let \φ j \ be a decreasing sequence of real numbers

(277> φί9 φ: —•> 0), and \ δy 5 a sequence of positive numbers such that the discs

I z — e ι w < δy are disjoint. For each index / , Ωy shall denote the complement,

relative to the disc \z\ < 2, of the union of the disc j z — e ί ιw | < δy and the

line segment z — reι<^J9 1 < r < 2 Also, for each index / , p; shall denote a real

number subject to the condition

(4) 1 < pj < 1 + δ ;/2

Nj shall denote a positive integer such that, for every pj satisfying (4) and

every ΠJ greater than Nj , the function

fj(z) Ξ l - (1 -z/oύjY'*)

{cύj — pjel(^j, (1 — z/ωj)ι/ni positive when z = ωy/2) satisfies the inequality

I fj (z) I < 2" ; throughout Ωy.

We now proceed to select the integers τij in such a way that, in a suitable

region about the origin, the series

00

(5) 2 + Σ COjfj(z)/j
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converges uniformly to a function which is endowed with the desired properties.

To this end, we define the numbers α m j by the equations

00

fj(z) = Σ amtJ(ze-^J)m ,
ί ϊ i = l

keeping in mind that at this stage of the discussion the numbers α m j must be

regarded as functions of the still undetermined constants pj and nj . It should

be noted that the amfj are all positive; that, for each fixed /, they form a de-

creasing i sequence whose first element is (p; nj) ι and that

(6) £ amiJ = fjie**') = 1 - (1
m = l

Let nι be an integer greater than 7VL and let pι be a real number satisfying

condition (4), and near enough to one so that (1 — l/pt)
l/ni < 2 ι . Once nv and

pv have been chosen for v = 1,2, * ,y" — 1, let My denote an integer so large

that

and let nj be greater than Nj and so large that, for all pj satisfying (4),

(8) Σ αuJ <2'i

m<Mj

finally, let pj be chosen near enough to one so that

(9) (1

Then the series (5) converges uniformly in some closed region whose interior

contains all points of the closed unit disc except the point z — 1. Its sum F(z) is

therefore continuous on the closed disc, and holomorphic at all its points except

at z — l The Taylor series Σ ^ = i α m z m of F {z) does not converge absolutely on

C; for
00

αα= Σ K A ) αn,ve-ιφ"* , m > 2,
v- 1
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and therefore

|α«| > a*,j/j " 2 Σ °>m,v

hence it follows from (6)—(9) that

Σ k|>r1-o(2"J").
Mj <m<Mj+ι

That Σ ^ = 1 CLmzm converges uniformly on C can be shown directly; but it will also

follow from the continuity of F (z) and Fejer's Theorem, once univalence has been

established (see Fejer [ l ] or Landau [4, pp.65, 66] ).

To establish univalence of the function F (z)9 it is sufficient to note that

(d/dz)ί- ωj

whence the argument of the quantity on the left is —(1 — 1/τij) arg(l — z/cύj);

since —"77/2 < arg(l — z/cύj) < 77/2, the real part of the derivative of ωjfj(z) is

positive throughout the open unit disc, and therefore 5RF' (z) > 1 when \ z\ < 1.

This implies that | FizJ — F(z2) | > | zγ — z2 \ for all pairs of points z t and z2

in the open unit disc; and because F(z) is continuous in the closed unit disc, it

is schlicht in the closed unit disc.

3 The second example. The schlicht function whose Taylor series has Fabry

gaps and converges uniformly but not absolutely on C is obtained from the first

example by simple modifications. Let

00

(10) G(z) ΞΞ z + Σ gj(z) ,
7 = 1

where

gj(z) ^kjz{l-ll-(z/ωj)PψΛi\;

the symbols ωy and Πj play the same role as in the first example; kj is a certain

real number; and pj is an integer, much smaller than rij For the sake of intuitive

clarity, it should be observed that the value of gj {z) is kj z when {z/ύύj)pJ = 1,
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and that it is small whenever | z | < \oύj \ and (z/cύj)pJ is very different from

one, A rough idea of the image of C under the mapping by G(z) can be obtained by

attaching to C a tooth of length ki at each of the points

z = ex P [ i (Φi + 2 π h / p 1 ) ] l h = 0, 1, 2, ••• ,p i - 1 ,

then adding further sets of teeth as dictated by the parameters k29 ω 2 , p2> and

so forth.

A rigorous proof that the parameters can actually be chosen in such a way that

the function G{z) is schlicht and will be schlicht after it has been modified

through the introduction of gaps in its Taylor series is based on the study of

Kι//'U), where

( I ω I > 1, p and n integers, 1 < p < n). If t = {z/ω)p, then

ψ'(z) = 1 + (I- t)1/nΛ(l + p/n) t - 1 ] Ξ Φ< t ) .

We wish to show that

(11) %ψ'(z) >-3p/n ,

In order to do this we shall prove that

(12) RΦ(t) >-3p/n , \t\ < 1,

Since Φ(ί) is holomorphic for | ί | < 1, t ^ 1, it will suffice to show that (12)

holds

(a) when t is inside the unit circle (of the ί-plane) and sufficiently near the

point t = 1;

(b) when 11 \ — 1, t φ 1.

Since the coefficients of the powers of t in the power series of Φ(ί) are all real,

we may restrict ourselves in (a) and (b) to values of t whose imaginary part is

nonnegative; if t has one of these values,

0 > arg(l - t) >-7τ/2 .

(a) Let t = u + iv, and consider those values of t for which

p

1+p/n ' ~V 2n2{l+p/n)
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We then have

and

r , x -, (1 +p/n)v p/2n2 π
0 < arg[(l + p/n) t - l] = arctan < < — ,

" (1 +p/n)u~l P/2n In '

whence R$(ί) > 1.

(b) Let t = e , where 0 < θ < π. A simple computation gives

» φ ( t ) = 1-^2 sii(1 3) »Φ(t) = 1 - (2 sin

(n + 1)0-77
sin h sin

In

?\1/n π -
= 1 — (2 sin - I cos2/ 2n

(2 sin — sin
2>

(bt) If 0 < θ < Ή/(Π + 1) then, from the second expression for RΦ(ί) in (13),

we have

> 1 - (2 sin <9/2)1/ncos[(τr - θ)/2n] > 0 .

(b2) If 77/(71 + 1) < 6* <77, then the content of the braces in the first expression

for 3lΦ(ί) in (13) is less than

(1 +p/n)(2 sin 0/2) cos [(77 - θ)/2n] ,

and hence

»Φ(t) > l - 2 1 / n ( l +p/n) > - 3 p / n .

This establishes the validity of (12), and therefore that of (11).

Now let

{pj] = \1, 2,2, 4,4, 4,4, 8,8, 8, ••• };
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kj = 1/py;

\Φj/2π] = {0, 0 , 1/4, 0, 1/16, 2/16, 3/16, 0, 1/64, 2/64, ••• } .

The choice of the parameters rij and pj is similar to the analogous procedure in

the first example. However, here we restrict ourselves entirely to the closed unit

disc and choose as the region Ωy the complement, relative to \ z\ < 1, of the

union of certain neighborhoods of the points

e x p [ ι ( φ ; + 2πh/Pj)] . /* = 0,1,2, ••• ,Pj - 1 .

These neighborhoods are chosen sufficiently small so that if a point z of the

closed unit disc fails to lie in Ωy , it lies in Ω r whenever r ψ /and pΓ = pj.

Furthermore, the indices ΠJ should be greater than pj and such that

00

Σ 1/πj < 1/8 .
7 = 1

In this manner we will again arrive at the result that the series in (10) converges

uniformly for z \ < 1, and that the convergence of the Taylor series for G(z) is

not absolute on z I — 1 because, as in the first example,

(14) Σ Wm\>kj -O(2~J)
MJ<m<MJ+1

and Σy°=1 kj = «>.

The function G{z) has all the properties that are required of the second ex-

ample (see Summary), except that it fails to possess Fabry gaps. In order to

introduce these, we replace each gj(z) by a partial sum SJ{Z) of its Taylor series.

Because the Taylor series of gj(z) and gj'(z) converge uniformly in the closed

unit disc, it is possible to choose the degrees Pj of the polynomials sy (z) large

enough so that

\gj(z)-S](z)\ <2~)

when I z | < 1 (this ensures uniform convergence of the series

00

S(z) =z + Σ sj(z)
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on the closed unit disc); so that

when I z \ < 1, and in turn

CO

nS'(z) > 1 - 4 Σ l/nj > 1/2
7 = 1

(this guarantees univalence of the function S(z) in the closed unit disc); and so

that the analogue to (14) holds for the Taylor series of S{z). The function S(z)

then has the desired properties.
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