
TOPOLOGIES FOR FUNCTION SPACES

RICHARD ARENS AND JAMES DUGUNDJI

1. Introduction. Let Z^denote the class of continuous functions (or "mappings,"
or "maps ")

(1.1) f:Y~>Z

of a topological space Y into another Z. A great variety of topologies t may be
introduced into Z^ making it into a topological space Z^(ί). The topologies we
deal with in this paper can be classified by using the notion of "continuous con-
vergence" of directed sets (generalized sequences) fβ in Z^ as follows: with no
reference to any topology Z^, we can say fμ converges continuously (Frink [ l ] ;
Kuratowski [2]) to f (fμ and fare elements of Ẑ O if

(1.2) fμ.{yv)^f(y)

whenever yv —* y in Y. (We use the "—>"for convergence as in (1.2), as well as for
indicating the domain-range relation as in (1.1). The context prevents confusion.)
We can classify the topologies t for Z^ according as to whether

(1.3) convergence in Z^(t) implies continuous convergence

or

(1.4) continuous convergence implies convergence in Z^(ί)

Certainly there are other topologies possible in Z^, but we do not discuss

these. There may be a topology t satisfying both (1.3) and (1.4), but if so it is

unique; see (5.6).
An apparently different approach to the same classification is suggested by

homotopy theory. Beside Y and Z, consider a third space X. For a function g de-
fined on X X y with values in Z, we can define g* (x) mapping X into 7? by
setting g* (x) (y) = g(x9y) Then a topology ί for Z^ may be such that, for any X,

(1.5) if g is continuous, then g* is continuous,

or

(1.6) if g* is continuous, then g is continuous.
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It is proved ((2.4), (2.5)) that (1.5) is equivalent to (1.3) and (1.6) is equivalent
to (1.4). We call the former class of topologies proper, and the latter admissible.

The following questions about this class of topologies in Zγ are considered in
this paper: What are the relations (in the sense of the conventional partial ordering
of topologies) of the proper topologies to the admissible topologies? What can be
said about the order-type of the proper topologies? of the admissible topologies?

We write s < t if s and t are topologies such that a set open in Z^(s) is open
in ZY(t) Then (a) if s < t and t is proper, s is proper; (b) iί s < t and s is admis-
sible, so also is ί; (c) if 5 is proper and t is admissible, then s < ί; (d) there is
at most one proper admissible topology, and such a topology is both the greatest
proper and least admissible topology.

The proper topologies form a principal ideal in the lattice of all topologies for
Z^; thus there is always a greatest proper topology. The admissible topologies are
much more disorganized. We state some findings for the special case in which Z is
the real line, (e) When Y is not locally compact, but is completely regular, there is
no least admissible topology and (hence) no proper admissible topology; (f) if Y is
a metric space, not locally compact, then there always exists a pair of admissible
topologies none of whose common lower bounds are admissible.

When Y is locally compact, there does exist a proper admissible topology, as
is well known, which we call the ^-topology (see below (4.3)). We ask:To what
extent do any of these properties of the A -topology persist when Y is not locally
compact? It is always proper, but sometimes not the greatest of the proper topolo-
gies even if Y is completely regular. Admissibility does not often persist (See (c),
above).

We consider a special class of topologies, the set-open topologies, whose defi-
nition is patterned after that of the ώ-topology except that arbitrary families \A ]
of sets are admitted. We determine fairly complete criteria as to whether a given
one is proper or admissible. The fc-topology is always the greatest proper set-
open topology, when Z is metric, and also the g. 1. b. of all admissible set-open
topologies.

A subclass of the set-open topologies are the σ-topologies defined in terms of
coverings (just as the A -topology is definable in terms of the covering by open sets
with compact closure when Y is compact). These topologies are admissible, and
for any pair there is a common lower bound.

Considering that the space F of closed subsets of Y can be regarded as a
function space, we felt it appropriate to point out that the usualHausdorff topology,
even when Y is a compactum, is not proper, and that A -topology is not a Hausdorff
topology.

One interesting by-product of our investigation of admissible topologies is that
it enables us to answer in the negative, surprisingly enough, the following simple
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question about topological products:

Let Y be a space, let s, t be two topologies for a set X , and let u be the
greatest lower bound of the topologies s and £• Then is the (product) topology of

X(u) X Y

the greatest lower bound of the topologies of X(s) X Y, X{t) X Y ?

Finally, we determine a necessary and sufficient condition that, when Y is a
locally compact regular space, X is a set, and a topology t has been given to
X X Y, a topology s can be found for X such that t is the product topology of

X(s) X Y.

2.Admissible topologies and proper topologies. By a space Y we shall mean
a set Y in which certain subsets, including Y and the empty set, are designated
as open, and which have the property that their finite intersections and arbitrary
unions are also open; no separation axioms are assumed. A basis for a space Y is
a collection σ of open sets such that any open set in Y can be represented as the
union of sets of σ ', a subbasis for the space Y is a collection of open sets which,
together with their finite intersections, form a basis. Compactness in this paper
shall always be the bicompactness of Alexandroff-Hopf [ l ] a space with the
property that every infinite subset has a limit point is called Frechet compact.
A space Y is locally compact if every point lies in an open set having compact
closure. Y is completely regular if, given any y eY and open U with yβU, there
exists a continuous real-valued function / satisfying f{y) = 1 and f(x) = 0 for
x £f/ If Yt and Y2 are two spaces, the topological product Yt X Y2 is the space
whose points are all collections of ordered pairs (yvy2 )> J^ Yi> Ϊ2e\> a n c ^ * n

which a basis consists of all sets of form (Uι X ί/2), t/j being open in Y\, i — l,2 0

If Y and Z are two spaces, the symbol"/: Y —> Z" will always denote a con-
tinuous mapping of Y into Z ; the totality of all such continuous maps will be
written Z . Various topologies can be introduced into the set Z a set Z with a
topology is called a function space. In this section, we shall single out two im-
portant types of topologies in Z ^, and give elementary consequences of the
definitions.

(2.1) DEFINITION. Let Z and Y be two given spaces. A topology t in Z ^ is

called admissible if the mapping co(γ9f) = f(y) of Y X ZY into Z is continuous in

y and /.

The set ZY with the topology t will be denoted by ZY{t)9 but when no ambiguity

is involved regarding the topology t under discussion, the (t) will be omitted. The

mapping ω will be called the evaluation mapping.
We now make the following observation. Let X, Y9 Z, be three spaces and g a



o RICHARD ARENS AND JAMES DUGUNDJI

mapping of X X Y into Z . Setting g*(x)(y) — g{x,y) = fx(y) and varying x, we
can evidently regard g* as a mapping of X into ZY Conversely, if we have a
mapping g* of Z into ZY, we can write g(*,y) = g*U)(y) = 4 ( y ) and regard g
as a mapping of X X Y into Z . Two maps g and g* related as just described will
be called associated.

We can now show the intimate relationship between mappings of cartesian
products and admissible topologies in function spaces: the continuity of any g*
implies the continuity of the associated g .

(2.2) THEOREM. Let Z and Y be two given spaces. A topology t in Z is
admissible if and only if

(2.21) for every space X, g*: X —> Z^(t) implies g:X X Y —> Z, where g is
the associated mapping.

Proof. Assume t is admissible, and g * : ί - > Z ^ ( ί ) Define

h:YXX->YXZY(t) by h(x,y) = {gHx),y).

If oύ is the evaluation map, we have cύh\ Y X X ~> Z , and it is not hard to see

that ωh is the mapping associated with g*. Hence, (2.21) holds.
Assume now (2.21) holds. In particular, select X— Z (t) and the identity map

/* : ZY(t) -» Zγ(t); by (2.21) this means the associated map of Y X Zγ(t) into
Z is continuous, and this associated mapping is precisely the evaluation mapping.

The other important class of topologies in Zγ is given in the following defi-

nition.

(2.3) DEFINITION. Let Z and Y be two spaces. A topology t in Zγ is proper
if for every space X, g: X*Y -» Z implies g*: X -> Zγ(t), where g* is the
associated map.

An extremely useful equivalent formulation of the notion 'proper can be given
which is based on directed sets and continuous convergence. We therefore insert
an explanatory paragraph (cf. Birkhoff [2J)

A directed system Δ is a partially ordered system with the property that for
any μ, μ' € Δ, there exists a μ" e Δ with μ" > μ, μ" > μ' . Every directed
system Δ gives rise to a directed space Δ ' by addition of one ideal point o° satis-
fying oo > μ for all μ e Δ . The topology in Δ ' = Δ u {oo$ is obtained by defining
all μ to be open sets, and neighborhoods of oo to be all sets of form \μ; μ> μ'
for some μ'} , μ' € Δ. If Γ = i ^] is another directed system, the set

of all pairs is also a directed system if we define ( μ f v ) > ( μ ' , v1) whenever
both μ > μ1 and v > V1 . A (Δ-) directed set in a space Y is a function on a
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directed system Δ with values in Y, and is denoted by \y \ ^ or more briefly by
XJμ] 5 a directed set [yμ] converges to y (in symbols, γμ —» y) if for every

neighborhood V of yj^here exists a μ' e Δ with y e F for all μ > μ'. Furthermore,
we have g: Y —» Z if and only if for every directed s e t { y μ ] , y —» y implies
g(yμ) " " ^ ( y ) ( s e e Tukey [ l , p . 2 8 ] ) Let \fμ) be a directed set in the set ZY\
fμ converges continuously to f 6 Z ^ if for every y and every neighborhood IF of
f(y) there is a μ ' and a neighborhood V of y such that for μ > μ' we have
f(V) C ίF. (This definition is equivalent to that made in Section 1.) Notice that
the idea of continuous convergence does not require any topology in Z ^

With these preliminaries, we prove the following result,

(2.4) THEOREM. Let Z and Y be two spaces. A topology t in ZY is proper if
and only if for every directed system Δ and every Δ-directed set \f \ in Z^(t)9

the continuous convergence of fμ to f implies fμ~*f according to t.

Proof. Suppose,first, t is proper and let fμ converge continuously to /, \fμ}
being directed by Δ . Let Δ ' be the corresponding directed space. Then define
g(μ9y) = fμ(y)9 g(co9y) = f(y) Now we have g: Δ ' X Y —» Z , by the definition
of continuous convergence. Hence fμ — g*(μ) ~~> g*(oo) = / as desired.

Now suppose continuous convergence always implies convergence, and suppose
we have g: X X Y ~^> Z. Suppose xμ —> x in X. It is easy to see that g*(xμ ) con-
verges continuously to g*(x) since g is continuous. Thus g*(xμ) ~> g*(x) in Z.
This proves that we have g* : X —* Z. Consequently t is proper.

We remark that if every continuously convergent sequence in Z^(t) converges,
the topology need not necessarily be proper.

A rather parallel criterion for admissibility can also be stated. We formulate
it now but leave the proof, which resembles that of (2.4), to the reader.

(2.5) THEOREM. Let Z and Y be two spaces. A topology t in Z ^is admissible
if and only if for every directed system Δ and /^-directed set \f \ the convergence
fμ ~~* f in Z(t) implies the continuous convergence of fμ to f

Kuratowski [ l l ] has shown that the idea of continuous convergence can be
used to introduce a convergence (in Kuratowski's case [10] , L*-convergence)
in Z provided also Y and Z are L*-spaces. The convergence obtained is both
admissible and proper, in a suitable sense (see Kuratowski [ l l ] ) . There is not
always a corresponding topology in Z ^ associated with this convergence, but the
poor showing of topologies in this connection (see (6.01)) seems to commend this
step beyond the class of topological spaces, as Kuratowski points out.

3. Comparison of topologies. Since we are going to be concerned with various

topologies for Z ^ it is natural to recall that there is a useful partial ordering for

all the topologies on a fixed fundamental set E For references, see Birkhoff

[5, P .173] .
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To define this partial ordering, it is useful to take the attitude th&t a topology

t on a set E is (rather than merely determines) the class of those sets which are

open in the topology. Thus a topology is a subset of 2^, the class of all subsets

of E Hence for two topologies t and u on the same set E the set-theoretic state-

ment of inclusion, "t (Z u," is meaningful and leads to the following definition.

(3.1) DEFINITION. If t and u are two topologies for a set Ef we shall write

t < u or u > t or t is smaller than u or u is greater than t when every set open

in t is open in u, that is, when t C u.

Notice that the statement "t is smaller than u" is not comparable with the

statement "u is not greater than t"since the former is not intended to exclude the

possibility: t — u. If t < u we shall sometimes call u an expansion of t and t a

contraction of u. This partial ordering is easily seen to have the property that

t < u if and only if the identity mapping

(3.2) E(u)~>E(t)

is continuous.

Since the class τ(E) of all topologies is a subset of 2^, and since the relation

"< "defined above is just that which is inherited from the natural partial ordering

(by inclusion) (see Birkhoff [5]) in 2 , we have the following result.

(3.3) THEOREM. The relation "<" in the class τ(E) of topologies on E is a

partial ordering.

τ(E) is not a sublattice of 2^ because, while t n u is always a topology, t u u

is not always a topology.. This does not exclude the possibility that τ(E) be

nevertheless a lattice (see Birkhoff [5, p. 19]).

(3*4) THEOREM (Birkhoff [4]). τ(E) is a lattice; that is, for two topologies

t and u there is a least upper bound t v u and a greatest lower bound t Λ u. In fact,

every subset T of τ(E) has a least upper bound (briefly: "join )

V t

teT

and a greatest lower bound (briefly: "meet )

Λ t

teT

that is, τ(E) is a complete lattice with greatest and least members.

The greatest lower bound of a class T of topologies has the open sets

Π t

teT
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which are open in all. On the other hand, if we take as a basis the class of sets

U t

teT

we obtain a topology which is easily seen to be the least one including all the

members of T The discrete topology is the greatest of all, topologies and the

trivial topology (only E and the void set are open) is least.

The familiar classes of topologies (for example, Hausdorff, completely regular,

normal) are not all well behaved with reference to expansion and contraction (see

Hewitt [9]). Since there will emerge some trouble with admissible topologies

under the operation "meet," it is only fair to show that things do not go smoothly

with every one of the familiar classes of topologies. The following theorem is in-

tended only for orientation. The statement that a property T is preserved under

"meeting of two" means that if t and u have property T then so does t Λ w,and so

on for the other terms to be used.

(3.5) THEOREM. In the lattice of topologies on a set E,

(3.51) The Riesz [ 7 \ ] , Hausdorff [T2], and Urysohn (see Hewitt [9]) separa-

tion properties are each preserved under arbitrary expansions (Hewitt L9J), and

hence under joining:

(3.52) Although not preserved under arbitrary expansion (Hewitt [9]), regularity

and complete regularity are preserved under joining of two',

(3.53) Riesz separation is preserved under meeting (Birkhoff [4]);

(3.54) Hausdorff and Urysohn separation, regularity, complete regularity, nor-

mality, complete normality, and metrizabilitγ are not generally preserved under

meeting of two.

Proof Statements (3.51) through (3.53) may be found in the references or easily

proved. We content ourselves by supplying an example supporting (3.54).

Let E be any denumerable infinite set, and let x\, X2 be a pair of distinct ele-

ments of E. Consider the topology ί r in which any set is open if it either excludes

xι or has a finite complement. This (compact) space has all the properties men-

tioned in (3.54). By interchanging the roles of xι and x2 we obtain another topology

ί2. Since tγ Λ t2 is a non-Hausdorff Riesz space, all the properties in (3.24) also

fail since each guarantees Hausdorff separation when points are closed sets. This

completes (3.5).

The result (3.54) just obtained entitles one to consider that perhaps the com-

parison of topologies based on (3.1) is not the most satisfactory one possible.

However, no other generally applicable definition of ordering seems to have been

proposed anywhere.
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We now apply these ideas to topologies on a function space Z^.

(3.6) T H E O R E M . Let t and u be topologies on Z . If t is admissible and u>t

then u is admissible. If u is proper and t < u then t is proper.

These facts follow at once from the definition and property (3.2). In particular,

admissibility is preserved under joining, and propernessis preserved under meeting.

We shall see in (5.1) and (5.2) that the proper topologies form a principal ideal

{tm) in the lattice of all topologies; that is, there exists a topology tm such that t

is proper if and only if t < tm. In particular, they constitute a sublattice. For ad-

missible topologies, there sometimes exists a topology u such that u < t precisely

for the admissible topologies, but sometimes (see (6.3)) not even t Λ U is admissi-

ble when t and u are.

The general position of the admissible topologies with respect to the proper

ones is this:

(3.7) THEOREM. If t is proper and u is admissible then t < u.

Proof. Since u is admissible, the mapping

• ω:Zγ(u)X Y~>Z

is continuous. From the definition of "proper," we obtain

ω+: Zγ(u)->Zγ(t).

From (3.2) we conclude that t < u.

See also (6.01) below.

4. Examples of function spaces. In this section we shall give examples of

function spaces, some having a proper topology, and some an admissible topology;

we also investigate in some detail a method for introducing topologies in the set

ZY. Notice that the discrete topology in the set Zγ is always an (the greatest)

admissible topology, and the trivial topology (3.4) in Zγ is always a (the smallest)

proper topology. We proceed to less trivial methods for introducing a topology.

(4.01) DEFINITION. Let A and B be subsets of the spaces Y and Z respec-

tively. The symbol (A9B) denotes the set of all / £ Z y satisfying f(A) C B.

We utilize this notation to define a class of topologies in Zγ: the σ-topologies.

Let σ be an arbitrary covering of Y by open sets; we keep σ fixed throughout this

discussion. Introduce a topology in Zγ as follows. Let F be any closed set in Y

contained in some member of σ9 and V an open set in Z. The class of all sets of

form (F,V) is taken as a subbasis in Zγ.

(4.02) DEFINITION. The topology in Zγ thus determined by σ is called the

σ-topology.



TOPOLOGIES FOR FUNCTION SPACES 13

(4.1) THEOREM. Let Y be regular, Z arbitrary. Then for any σ, the σ-topology
in Zγ is always admissible.

Proof. We are to show that we have ω: Y X Zγ -* Z. Let / e Zγ, y e Y, and
let IF be a neighborhood of f(y) in Z. Since Y is regular, we can find an open V
containing y with closure F~~ in f~ι(W) and also in some member of σ then
ω(FX (V~9 W)) C W and ω is continuous, as was to be shown.

The following fact about σ -topologies is to be compared with (6.3) below.

(4.11) THEOREM. Let σ{ and σ2 be open coverings of Y. If cri is a refinement
of σ2 then the σι-topology is less than or equal to the σ2-topology. If Y is regular,
the meet of two σ -topologies is also admissible.

Proof. The first assertion is obvious. It implies the second as follows. Let σ
be a common refinement of σχ and σ2. When Y is regular, the σ-topology is ad-
missible, and since

σ -topology < σγ -topology Λ σ2 -topology,

the latter is admissible. There is no reason why the latter should be a σ-topology,
of course.

Variants of the σ-topologies can be found by varying the allowable sets in Y,
that is, by permitting open, or arbitrary, subsets of members of σ to be used in the
definition of the subbasis. Although these variants of σ-topologies are also
always admissible (when Y is regular) there is a reason for preferring the σ-topol-
ogies. To see this, we first remark that the existence of a proper admissible
topology in Zγ is a desirable property. For example, it is easily seen that with
such a topology, the homotopy of two maps Y —> Z is equivalent with their being
joined by an arc in the functional space. Now, when Y is regular, it is easy to see
that the σ-topology is always less than or equal any of its variants, so that the
former is "nearer" to the proper topologies than any of the latter. For this reason,
the σ-topologies appear better suited to our work.

We shall now introduce a class of topologies including the class of σ-topol-
ogies. Let Y and Z be as before and let a family {̂ 4} of subsets of Y be given.
Taking the family of sets (A,W) (see (4.01)), where W is open in Z and A belongs
to \A}9 as a subbase in Z^ we obtain a topology.

(4.2) DEFINITION. The topology described above is called t h e J l p

topology. Any such topology will be called an S-topology, or set-open topology.

The space Zγ with the {y4|-open topology will be written Zγ (S : {A})

One reason for st i l l limiting W to open subsets of Z in (A,W) is that in this
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way we can be sure that if we consider only the class of constant functions, it will
be homeomorphic to Z.

The next result shows how a large class of proper topologies may be obtained.
(Recall that σ -topologies provide a way of obtaining admissible topologies.)

(4.21) THEOREM. Lei Z and Y be two spaces. If all the sets in {A} are com-
pact, then the \A\-open topology in Z^ is proper.

Proof. Suppose we have g: X X Y —» Z; to prove g* continuous, it is enough
to show that given any subbasic open set (A, V) 9 g*(xo)f there is a neighborhood
U of x0 with g*(U) C (A, V). Using the continuity of g and the definition of g*, we
see that from x0 X A being contained in the open set g~ι(V) we have to conclude
that U X A C g~ι{V) for some neighborhood U of x0. To do this, for each (xQ, y)
in x0 X A we find a set Wy open in X X Y with (xo,y) € Wy a g~ι(V); this gives
a covering of x0 X A, and the compactness of x0 X A allows us to extract a finite
covering. The intersection of the projections of the sets of this finite covering on
Z gives an open U containing x0 and clearly U X A d g~ι(V).

On the basis of this theorem, an important special case of the set-open topol-
ogies is singled out: the case where {A} is the collection of all the compact sub-
sets of Y (see Arens [2], Fox [7]). We will call this special case, for ready
reference, the k-topology. For separation properties of the ̂ -topology, see Arens
[2] . For example, if Z is a Hausdorff space, the A -topology is a Hausdorff topol-

ogy. It is evident that the A -topology is the greatest set-open proper topology
based on compact sets.

The proof of the properness of a set-open topology contains essentially the
following question: What conditions on the sets \A\ insure that, for every X, an
open V in X X Y containing x0 X A also contains an "open tube " U X A (U a
neighborhood of x0 in X)? With this observation, we are ready to approach the
problem: Which of the set-open topologies are proper? Our procedure enables us
to answer a more inclusive question: What conditions on the class {A} follow
from the assumption that the {/l}-open topology is < every admissible topology?
(See (3.7).) A sufficient condition has been given in (4.2); we have several neces-
sary conditions, but have not found both necessary and sufficient conditions,
except in isolated instances.

We first treat the special case of real-valued functions.

(4.3) THEOREM. Let Y be a completely regular space, and Eγ the Euclidean
line. If the \A\-open topology in E^ is < every admissible topology, then the sets
of {A} must all have compact closure.

Proof. Let B be any set of {̂ 4} and σ: } V\ an arbitrary covering of the closure
β~ of B. We are to show that we can extract a finite covering of B~.

Let / be the constant function 0 in £ t

y . Then / € (β, W), where W is the com-
plement of 1 in Eχ Now form the σ-topology based on the covering of Y by the



TOPOLOGIES FOR FUNCTION SPACES 15

sets I V\ together with the complement of B~ * By (4.11) this topology is admis-
sible, and by hypothesis there exists a neighborhood

£/=(Cι, C 2 , , Cn\ IΓi, W2, - ,Wn)

in Zγ{σ-topology) such that f € U d {B,W). Let C denote the closed union of
Ci> * * ' > Cn. If C does not contain β~, there is a point ό in B~ which is not inC,
and which hence has a neighborhood V not meeting C; since b € B~, it follows
that V contains some point b' in B not in C Construct a continuous real-valued
function r with r(b') — 1 and r(y) = 0 for y ^ V. It is clear that r € U since it
coincides with / on C, but evidently r φ (β, W) Hence, B~~ is contained in C. Let
Vι, , Vn be sets of the covering σ~ containing the closed sets C^ * , Cn

respectively; then β"" is contained in the union of the former. Hence, β~ is com-
pact, as was to be shown.

It is evident that a similar theorem holds for mappings of a completely regular
space Y into any space Z that contains at least one non-degenerate arc Thus an
application of the special case (4.3) yields the same conclusion in many more
general cases.

(4.31) THEOREM. Let Y be a completely regular space, and Z a space con-
taining a non-degenerate arc. A necessary and sufficient condition that a set-open
topology based on closed sets be < every admissible topology is that it be a
proper topology.

Proof. The necessity stems from (4.3) and (4.21).The sufficiency arises from
(3.7).

(4.311) COROLLARY. Let Y be a completely regular space, and Z a space
containing a non-degenerate arc. A set-open topology based on closed sets is
proper if and only if all the sets are compact.

The following concept is useful in the further investigation of {̂ 4] when the
fy4}-open topology is proper. Let β be a subset of Y. A point y0 of Y is ines-

sential to B if, for every /: Y —» E\ there exists a y in β, γ ^ y0, such that
f(y) = f(yo) Note that in a metric space Y no point is inessential to any β. In a
completely regular space, y0 is essential (that is, not inessential) to B if and only
if y0 is a Gg-set relative to β.

(4.4) THEOREM. Let Y be an arbitrary space, Z a space containing a non-
degenerate arc. If the \A\-open topology in ZY is < every admissible topology,
then each set A of {A} must contain all points of its closure which are essential
to A.

Proof. One may regard Eγ a s embedded in Z . Let A belong to {A}9 and let

Ύ e AT -A. Suppose y0 is e s sent ia l to A. Then there ex is t s an / : Y - * Eι with
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f(y) Φ f{y0 ) for every y in A. Let us take /(y0) = 0.
Select X = Ex and define g: £\ X Y -> £ t by the condition g(x,y) = * + f(y).

We can now define an admissible topology t in Z^ as follows: (a) the set

G = \gHχ); x eE,}

is open and homeomorphic to Eγ (b) all other elements are isolated. This topology
is clearly admissible, due to the continuity of g. By hypothesis there must exist a
set U open in Zγ (t) with f e U C (A, W); and due to the definition of t9 this U is
(or at least contains) the image of some interval (~e,e), e > O Now, since y0 is a
limit point of A, and / is continuous, there must exist a y0 in A with — e <f(yo)<e.
Construct /i = g* [-f(yι)]. This /i belongs to U9 but it does not belong to (A,W)
since fiiγγ) = —/"(ft ) + /(ji) = 0. This is a contradiction, and shows that y0 is
inessential to A. This proves (4.4).

We give an example to show that the sets {A} on which a proper 5-topology is
based need not be closed. Let Y be any uncountable set in which all points are
declared open sets except one, y0 , whose neighborhoods are defined as the com-
plements of finite sets excluding y0. Introduce a set-open topology t into E^ based
on the non-closed set A = Y — yb Note that g e (Y-yθ9W) if and only if g e (Y,W),
since otherwise g would assume a value at y0 different from all its other values,
and y0 would be a G§. Thus this topology is the same as that based on Ax ~Y,
which is proper, by (4.3), since Aγ is compact.

With the aid of this Theorem (4.4), one can refine the results of (4.31) and
(4.311). We state the result but leave the proof to the reader.

(4.41) THEOREM. Let Y be a completely regular space in which every point is
a G$, and Z any space that contains a non-degenerate arc. A set-open topology in
Z^ is proper if and only if it is based on sets that are all compact. A necessary
and sufficient condition that a set-open topology in Z^ be proper is that it be
< every admissible topology.

If a simple condition be satisfied by Z, we lose no proper set-open topologies
by limiting ourselves to f/ί}-open topologies where every A is compact. This is
shown in the next theorem.

(4 5) THEOREM. Let Y be a completely regular space, Z a metric space con-
taining a non-degenerate arc. If an \A\-open topology in Z^ is < every admissible
topology, then it is equivalent to the set-open topology based on the compact
sets M 5.

Proof. We have, by (4.3), that all the sets A' are compact; on the basis of
(4.4) every A contains all points of A" that are essential to A. Let AQ be the set
of points of A" inessential to A; then A u Ao — AT. The theorem will be proved
when we show that, for the subbasic open sets, we have {A u A0,W) = (A,W). The
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inclusion (A u Λo ,W) C (A,W) is evident. To prove also (A,W) C (A u Aθ9W) we

need only show that / e C4,IF) implies f(a0) e W for every α0 € 4 0 . To this end
denote by d the metric in Z, and set F (y) = d(f(y)f f(a0)) then we have

F : Y - > £ ! ,

and since α 0 eA 0 , this means there must be a point a e A with F (α) = F(α 0 ) = 0;

this in turn implies that f(ao) = /(α) € IF, finishing the proof as indicated. (All
that is really needed for this theorem is that (a) Z be completely regular, (b) every
point of Z be a Gg, and(c) Z contain a non-degenerate arc.)

If we specialize Z instead of Y, we get a more complete converse to (4.2). Let
us take Z to be the Sierpinski space consisting of two points, which we call 0
and 1, with the empty set, the entire space, and the point 0 as the only open sets.

(4.6) THEOREM. Let Y be an arbitrary space, S the Sierpinski space. A neces-

sary and sufficient condition that an \A\-open topology in Sγ be < every admis-

sible topology is that all the sets of [A] be compact.

Proof. The sufficiency follows from (4.2). We need only prove the necessity.

Let B be an arbitrary set of the collection {A} and {Vn \ an arbitrary covering of

B. We shall reduce \Vβ\ to a finite covering. Let V be the union of all the Vβ

Let k 6 S^ be the function which is 0 precisely on V. Introduce an admissible

topology t in S^ as follows: (a) All elements of S^ except k are isolated, (b) the

neighborhoods of k are of form (Ft u V2 u ' u Vβ, 0) where the F; are open

sets with V( CZ Vβi . In fact, t is admissible, as is not hard to verify. The hy-

pothesis then gives us a neighborhood in t with

k e (Vt u V2 u u Vn9 0) c (β,0).

Selecting Vβi ID V( , we form their union G. This set covers B for otherwise, if g

is the function vanishing precisely on G we have g e (V\ u * # * υ Vn, 0) and

g ^ (B,0), a contradiction. Hence B is compact, proving (4.6).

We now turn to the admissible case, and seek conditions under which a set-

open topology is admissible.For convenience we make another definition. A family

of sets [A] is a regular family in Y if, given any y in Y and neighborhood JJ of y,

there exists an A in {A} contained in U and containing γ in its interior.

This concept permits the following statement.

(4.7) THEOREM. Let Z and Y be arbitrary spaces. A set-open topology in ZY

based on a regular family of sets is always admissible.

Proof. We are to show that we have ω: Y X ZY -» Z. Let / e Z y , y e Y and

ψ a neighborhood of f{y); then f~~ι(W) is open in Y, and y € f~ι{W); by regularity

of the family \A] we can find an A with γ € int A, A CZ f~ι(W). It is clear that

ω [int A X C4i, IF)] a W, and so ω is continuous.
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This theorem has two interesting consequences, the first of which has been
known for a long time; see Fox [7] and Arens [2] .

(4.71) THEOREM. Let Y be a regular locally compact space, and Z arbitrary.
Then the k-topology (see (4.2)) in Z^ is admissible and proper.

Proof. The totality of all compact subsets of Y, since Y is locally compact
and regular, forms a regular family.

A corollary of (4.71) particularly useful in discussions of homotopies is the
following.

(4.72) COROLLARY (FOX [7]). Let Y be regular, and let X and Yboth satisfy
the first axiom of countability. Then g: X X Y —* Z is equivalent with

g*:X->Zγ(k),

for any Z.

Proof. One half of the result comes from (4.2); we prove g*: X —> Z^ (k) im-
plies g: X X Y —* Z. Note that (4.71) implies g is continuous on all sets of form
A X Y where A is a compact subset of X. In particular, g is sequentially con-
tinuous, and with our hypothesis this implies that g is continuous.

5 The proper topologies. The situation of the proper topologies in the class
of all topologies in a class Z^ is a particularly simple one: with the partial
ordering of (3.1), they form an ideal with a (smallest and a) greatest element. We
establish first the completeness of the class of proper topologies.

(5.1) LEMMA. Let Z and Y be arbitrary spaces; let {ta} an arbitrary collection
of proper topologies in Z*l Then Λα ία and Vαία are also proper topologies in Z*l

Proof. That Λα£oc is a proper topology is immediate from (3.6). To prove the
remaining part, suppose we have g: X X Y ~* Z we are to show that we have
g*: X —>Z^(Vαία). Select an open set U in Z^(Vαία); since it is sufficient
to consider only the subbasic open sets, this selected set can be assumed open
in some topology tβ. Since tβ is proper, the inverse image of U under g* is open
in X. Hence g* is continuous, as was to be shown.

Since an application of (5.1) gives a greatest and a least proper topology, we
may reformulate (5.1) in the following way.

(5.2) THEOREM. Let Z and Y be arbitrary spaces. With the partial ordering of
(3.1), the proper topologies in Z^ form an ideal with a greatest element.

The least proper topology is, of course, the trivial topology. The (unique)
greatest proper topology tm can be characterized as follows: let {ίoJ be the col-
lection of all the proper topologies in Zγ then tm = Vαία . We have been unable
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to characterize this greatest proper topology more directly in terms of the topologi-
cal structures of Z and Y. So far as its properties are concerned, since tm > k-
topology, all properties of the A-topology invariant under expansion (such as
Hausdorff separation, disconnection) are inherited by tm. A method for obtaining
the greatest proper topology that sometimes works will be given in Section 6; we
merely remark here that a proper admissible topology in Zγ is the greatest proper
topology.

The problem initiating this paper was to determine the status of the λ>topology
From (4.71) and the above remark, we note that if Y is locally compact, the k-
topology is in fact the greatest proper topology inZ^. We ask then if the A -topology
has any distinguished role in the hierarchy of proper topologies for Z ^ Theorems
(5.4) and (5.5), below, will give a reason why the /c-topology is a convenient topol-
ogy to be used in function spaces. However, it is not distinguished by being
always the greatest proper topology in Z ^ We now present an example.

(5.3) THEOREM. Let Z be the unit interval [ θ , l ] in E\. Then there exists a

completely regular space Y such that the k-topology in Z* is not the greatest

proper topology.

Proof. Let Y be the set of all ordered pairs of positive integers, and one

additional element which we will call °o. The topology in Y is obtained by taking

each pair (i, j) as an isolated point, and the neighborhoods of °° to be all sets

obtained as follows: if /V, /#+i, JN+2 > * ' * γs a n v collection of integers, the set

V= Ui9j); i>N and / > / J

is a neighborhood of °°. We remark that, in this space Y, all the compact sets are
finite sets; see Arens [3, p. 234] .

Define a function fn: Y —* Z, fn (i, j) = 0 or 1 according as i Φ n or i = n, and
/π(oo) = O Expand the topology of Zγ(k) by declaring the set B = {fi9 f29

 # #l
closed, thus obtaining a topology k* in Z . We note first that k+ > k since fn~*0
in the A -topology, bur not in the k+ -topology.

The theorem will be proved when we show that k+ is a proper topology in Z ^
To this end, let gμ converge continuously to g (see (2.4)); we are to prove
gμ —> g. Our proof breaks into two cases.

Case 1 : g ^ O . Since Z^{k) is a Hausdorff space (see (4.3)), if g Φ 0, we can
find a ^-neighborhood JJ of 0 that excludes the sequence β, because /Λ —* 0 im-
plies that 0 is the only limit point of B in Z? (k). Since the topologies of ZY(A; + )
and Zγ(k) coincide at all points g Φ 0, and A; is a proper topology, this means g μ

is ultimately in {/, and so converges to g in k and in & + .
Case 2 : g = 0. Let {/+ be a neighborhood of 0 in &+. Then U+ = U ~ B

(U open in A -topology), and gμ is again ultimately in {/. Let us assume that
nevertheless g μ Ά θ in k+. Then we must have gμβ B cofinally; that is, given
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μ9 there exists a μ' > μ with gμι e B. The gμι still converge continuously to
0. Hence there is a neighborhood V of °° (say the one described in the first para-
graph) and a μ0 such that for μ' > μθ9 we have gμι = 0 on V. But since g μι € B,
we have gμι — fn(μt); and since gμι = fn(μt) — 0 on V for μ' > μ09 we would
have 1 <n(μ') <N for μ' > μo» Since the fn(μ*) converge continuously to 0,
they converge also in the A -topology (see (2.4)). Hence there exists a μx such that
μ > μi implies fn(μ) (i, 1) = 0 for i = 1, 2, , N this means that for μ' > μ09

A6' > Mu w e have gμι = 0 = fn(μ') Thus the gμ/ are finally all 0, contradicting
that they all lie on B. Hence, gμ —> 0 in k*. This concludes the proof of the fact
that k+ is proper.

If we do not require Y to be a completely regular space, then a construction of
a proper topology greater than the A -topology becomes simpler. We append such an
example for later use.

(5.31) LEMMA. Let Y be a completely regular space, satisfying the first axiom
of countability, and Z the unit interval in Eχ Let Y~ be an expansion of the
topology of Y in such a way that the sets Z^ and Z^ are the same. Then for any
space Xy g: X X Y ~ —» Z implies g: X X Y —> Z.

Proof. We first establish the following results.

(5.311) A point y in Y~ has a basis of neighborhoods of the form V — D~,
where V is open in Y, D~ is closed in Y~, and V n D~ has no interior in Y.

To see this, note that any neighborhood of y in Y ~ has the form Y~ — E~,
where E~ is closed in Y~ Suppose now that the interior / of E~ in Y has y as
limit point. Pick a basis Vx , V2 , of y in Y such that

Vy ^ F2~ F2 r> Vf, ",

in such a manner that / n {Vn ~ F̂ ~+ι) ^ 0. Define /„: Y —* Z by

{1 at some point of/ n (Vn — F^+i)

Ofory i I n ( F n - F B + , ) .

Then / = Σn fn is a continuous on Y except at y. In Y~, however, it is continuous
even at y because / = 0 o n Y~— £"". The real-valued continuous functions being
the same, this can only happen if / does not have y as a limit point in Y. Hence,
we can pick V so that V π £ ~ has no interior in Y, as was to be shown.

(5.312) g: X X Y~ -> Z ύnp/ίes g : Z X y - > Z .

With the notations of (5.311), g : Z X Y ~ - > Z implies that there exists a
neighborhood U of %0 and a F — D"" containing y0 such that
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for (x9 y) e U X (V — Z)~). Now, each point of V n Z)~is a limit point of V — Z)~;
so if y 6 (F n D~), there exists a sequence {y^ ] with yμ 6 (V ~ D~) and yμ ~* y
in Y. Since g(%, ) is still continuous on Y, we have |g(%, y) ~~ g(#o>yo) I £ ^
and therefore g : X X Y —» Z, as desired,

(5.32) THEOREM. Lei Y 6e α completely regular space, satisfying the first
axiom of countability9 and let Z be the unit interval of E^. Let Y~ be an expansion
of the topology of Y that introduces no new continuous real-valued functions. Let
ZY (k~) be the functional space with the k-topology~9 and let Z^ (k) be the same
functional space with the k-topology of Z^. Then k > k~ 9 and k is also proper.
Hence, the k-topology in ZY is not the greatest proper topology.

Proof. It is not hard to verify that in fact k > &~.To see that k is a l so proper,

note that g : XX Y~ -> Z implies g:XXY->Z9 which yields

as was to be shown.

An example of such a space is exhibited in (6.21) below
The position of the Λ-topology in the proper topologies for Z ^ can now be

somewhat clarified; and a reason for its utility will appear from the following
sequence of theorems.

(5.4) THEOREM. Let Y be a completely regular space, and Z an arbitrary
space. Then the k-topology is the greatest of the proper set-open topologies based
on closed sets.

(5.5) THEOREM. Let Y be a completely regular space, Z a metric space con-
taining a non-degenerate arc. Then the k-topology is the greatest of the proper
set-open topologies.

The proofs of these theorems are immediate from (4.311) and (4.5).

(5.51) COROLLARY. Let Y be a completely regular space, and Z a metric
space containing a non-degenerate arc. If the k-topology is not the greatest proper
topology, then the greatest proper topology is not a set-open topology.

From consideration of the results in (3.6) it is clear that, if a proper admis-
sible topology exists, there must be a delicate balancing of open sets. In general,
there is no such topology (see (6)). But we now show there can never be more than
one, if any.

(5.6) THEOREM. Let Z and Y be arbitrary spaces. If t is a proper admissible
topology in Z^, then t is unique. That is, there is no other proper admissible
topology except t.
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Proof* Let s be another proper admissible topology. Since s is proper and t is
admissible, by (3.6), we have s < t. Reversing the roles of s and t, we get also
t < s. Hence, t = s.

Some of the considerations of this section can be applied to more general
situations in which topologies for a set X are considered, there being no function
space in the picture. The following generalization of (5.1) is related to a con-
struction of Choquet's [6,p 85].

(5.7) LEMMA. Let L be a "notion of convergence," that is, a rule which
assigns, to some directed sets in X, a point. Let a topology t for X be called
"L-proper" if whenever L assigns x to \Xμ} then Xμ —* x in X. Then, if T is any

family of L-proper topologies, the topology

t - = V t
teT

is also L-proper,

Proof. Let L assign x to {xμ] Let a neighborhood U of x in X(t~) be given.
There exist tif , tn in T such that U = ί/t n n Un, where ί/, is open
in X(t() Hence there is some μι such that the relation μ > μt implies X( e ί/, .
Select μ0 > μlf , μn For μ > μ0, we have xμ e U Thus t~ is proper.

To obtain (5.1), let L be the notion of continuous convergence, and let T be
the class of all L-proper topologies.

One may also define what is meant by an "L-admissible "topology. A topology
t for X is L-admissible if whenever xμ —* x in X, then L assigns x to {Xμ} The
next Section shows that the L-admissible topologies do not always have the
property dual to that established for the L-proper topologies in (5.7), not even
when T is limited to finite sets.

6. Admissible topologies. The σ-topologies provide many examples of admis-
sible topologies. We shall now see that proper admissible topologies are scarce,
and that the hierarchy of admissible topologies rarely forms a lattice.

(6.01) THEOREM. A proper admissible topology for Zγ is both the greatest
proper topology and the least admissible topology.

Proof, The proof rests on the fact that any proper topology is smaller than or
equal to any given admissible topology (see (3.7)).

One conceivable way of determining whether there is a proper admissible
topology is to examine the greatest proper topology itself. It is unique and is
admissible if and only if there exists a proper admissible topology. A direct ex-
amination of the greatest proper topology seems rather cumbersome. The following
partial converse to (5.71) shows that, under fairly general conditions, when Y is
not locally compact, there is no proper admissible topology.
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(6.1) THEOREM (FOX [7, Theorem 3]) . // Y is separable and metrizable and

Z is the real line, and if there exists a proper admissible topology, then Y is

locally compact.

Now (6.1) is, by (6.01), immediately deducible from the following somewhat

stronger result.

(6.2) THEOREM (Arens [2, Theorem 3 ] ) . If Y is a completely regular space

and Z is the real interval [0, l ] , and if there exists a least admissible topology

for ZY, then Y is locally compact.

In particular, the "separable and metrizable" in (6.1) can be replaced by

"completely regular." As to the necessity of complete regularity in (6.2): a locally

compact Hausdorff space must be completely regular. However, this justification

for assuming Y to be completely regular is not as convincing as is the following

example.

(6.21) THEOREM. There exists a non-locally-compact Hausdorff space Y such

that ZY can be given a least admissible topology, where Z is the real interval

[ 0 , 1 ] .

Proof Let Yo be the real interval [0, l ] with the ordinary topology. Let y be

the interval [0, l ] with the topology generated by the following subbasic open

sets (cf. Alexandroff-Hopf [ l , p . 3 l ] ) : first, the complement of the set D, where

is the set of numbers \/n {n~ 1,2, •); second, the open sets of Yo . Thus Y

differs from Yo only at 0, but the mutilation at 0 is enough to make Y an irregular

Hausdorff space. Hence it cannot be locally compact. The remaining part of the

argument hinges on the fact that a function / : [0, l ] —> Z is continuous on Y if

and only if it is continuous on Yo. We leave the proof of this to the reader. (This

in itself implies that Y is not completely regular.) Let [A] be the class of sets

which are compact in Yo. In Z^ these determine a set-open topology (see (4.2))

which we shall call the A;0-topology. It is clearly admissible, by (4.7). Let t be

any other admissible topology for Z ^ . Suppose / β Z^ and let (A,Wγ ) be a neigh-

borhood of / in ZY(ko) Now the image f(Λ) is surely compact in Z so that we can

find an open set W in Z such that f(A) CZ W and W~ CZ Wx. For each y in A there

is a neighborhood V\ (y) of γ and a neighborhood U(f,y) of f in ZY(t) so that

z € Vι (y) and so that the relation g e U(f9y) implies g(z) e W. Let V (y) be the

interior of the closure of Vx (y). It is easy to see that g(z) 6 Wx for z 6 V (y) and

g as before. Since each V(y) is open in Yo, where A is compact, we can find

J\ > * # ' > Jn s u c n t n a t

A c F(y t) u u V(yn).

Let ί / ( / ) = U(f,yι) n n U(f,yn). It is easy to see that U (/) is contained in

(A,Wχ) (see Arens [2, p . 4 8 2 ] ) . We infer from this that t >kΌ.
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The complete regularity is used in the proof of (6.2) (see Arens [2, p 483])
in constructing an element of Z ^ which distinguishes a closed set from a disjoint
point. Hence the proof may be duplicated in any other case where such separation
by continuous functions is always possible.

An application, rather than extension, of (6.2) shows that in (6.2) the space Z
may be taken as any To -space containing a non-degenerate arc. Thus we obtain a
result when Z is the Sierpinski space f θ , l | However, in this particular case the
proof of (6.2)can be adapted so as to give a still better result: complete regularity
is relaxed to regularity. We state the result but leave the proof to the reader.

(6.25) THEOREM. // Y is a regular space and Z is the Sierpinski space (see
(4.6)), and if there exists a least admissible topology for Z^, then Y is locally
compact.

Returning to the remark just made about having an arc in Z, we wish to show
that this requirement cannot be simply omitted. Let us consider an extreme ex-
ample in which Y is connected but Z is totally disconnected. Then Z ^ consists
only of constant functions and can hence be given the topology of Z , which is
both proper and admissible, regardless of any other properties of Y.

Theorem (6.2) says that when Y is completely regular, and Z is [0, l ) but Y
is not locally compact, then there is at least one class Ct of admissible topologies
whose greatest lower bound is not admissible. The class & which (6.2) exhibits
for this purpose is a large one—in fact the largest possible. One might ask whether
any two admissible topologies have an admissible "meet" topology (greatest lower
bound) (see (3.4)), especially since we know of an extensive class of admissible
topologies (see (4.11)) for which the meet of two is always admissible. The follow-
ing theorem shows that the answer is " n o " for any metric non-locally compact
space Y. We define a Fre'chet-compact set to be one in which every infinite sub-
set has a limit point.

(6.3) THEOREM. Let Y be a completely regular Hausdorff space in which each

point has a countable basis, and let Z be the real line or the interval [0,1 ] . / /

the meet of every pair of admissible S-topologies for Z^ is admissible then Y is

locally Frechet-compact.

Proof. Suppose Y is not locally Fre'chet-compact. One can then find a point
y0 for which one can construct a basis Vx D F2 3 V3 Z) , and a sequence
of infinite sets rι, r2, r 3, , none of which has a limit point and such that rn is
contained in Vn — FΛ~+i Break each rn into disjoint infinite subsets sn9 tn. Let
r be the union of r 1 ? r2 ? r3 , A set A will be called an R-set if A" intersects
r in but a finite set. Let Bn be any open subset of Vn — Vn +1 containing all of tn

and no points of sn, and let An be any /{-set. Then let {Vn ~~ Bn) U An be called
an Sn-set (n = 1,2, •)•
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Define an S-topology in Z ^ by taking as a subbase the sets (A,W) where W is
open in Z and A is an R-set or an S^-set for some n. (The notation (A, If7), defined
earlier, refers to the class of functions sending A into W.) Designate this topology
simply by "S .

We first show that S is admissible.
Let / and γ be given, as well as a neighborhood W of /(y). We consider two

cases.

Case 1: y = y 0. There is a neighborhood Vn on which / h a s all its values in
W For each x in sn obtain a neighborhood Bx contained in Vn — Ĵ ~+i and avoid-
ing the set tn. Let Bn be the union of these Bx. Then (Vn — Bn, W) is a neighbor-
hood of /, and for g therein and x in Vn +ι we surely have g(x) in W.

Case 2: y — y^. We can find a neighborhood /4 of y which is an β-set and on
which f has values only in W. For g in 04, IF) and x in /4 we have gGc) in ϊF. With
the completion of this second case we have shown the admissibility.

Replacing each S by a T9 each s by a t9 and each ί by an s, regardless of sub-
scripts, we obtain the definition and admissibility of another topology, T

(6.31) The meet S A T is not admissible.

Suppose it were admissible. Let W be the complement of 1 in Z, and let fQ be
a function in Z ^ such that fo(yo) — 0 and fo(y) — 1 for some y in r t . Then there
is a set U open in both S and T9 and a Vp , such that:

(6.32) The relations f e U and γ β Vp together imply f(γ) e W.

Continuing the proof of (6.3) we now deduce the following from (6.32):

(6.33) // U contains an f which assumes the value 1 on some point of rm9 then

it contains an /\ which assumes that value on some point of rn for some n greater

than m.

Proof, We may suppose that f in U assumes the value 1 on some point of sm.
Now f has a neighborhood Uf ~ (^i> * * * > A.] Ί W\, * , Wj ), where the latter
expression denotes the intersection of ( / l i , ^ ) , ' , (Aj9Wj) in T, Some Wi
clearly excludes 1, for otherwise the constant function 1 belongs to U, violating
(6.32). Let Wί 9 * , W'k be those that exclude 1, and suppose A t is a 7^-set with
the lowest value of n. The closures of the finitely many R-sets figuring in Uγ
clearly cannot cover tn Hence there is a point yι in tn with a neighborhood V
intersecting none of A χ> * * * , Aj, Ŵe construct a continuous real-valued function
g with g{y\) — 1 ~~ /(yi), vanishing outside F, and having 0 and 1 — /(y t ) as its
bounds. Let fι = f + g this function has the property required by (6.33), but it
remains to show that we have n > m. If we had n < m then sm would be inside Aγ
Now / assumes the value 1 somewhere on sm. Thus 1 belongs to W^ This con-
tradicts the earlier finding that lί^ does not contain 1. Hence (6.33) is proved.
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To prove (6.3) we observe that from the f0 and an iterated application of

(6.33) we finally obtain an f in U which assumes the value 1 somewhere on Vp.

This contradicts (6.32). Hence (6.3) is proved.

As in the case of (6.2), this result (6.3) can be extended automatically to the

case in which Z merely possesses a non-degenerate arc, and is a jP0"space. The

Sierpinski space" (see (4.6)) is an example. However, one can do a little better

in the case of the Sierpinski space, as follows.

(6.4) THEOREM. Let Y be a Hausdorff space in which each point has a count-

able basis, and let Z be the Sierpinski space f θ , l | (see (4.6)). If the meet of

every pair of S-admissible topologies in ZY is admissible, then Y is locally

compact.

The reader can obtain the proof out of that of (6.3), observing these changes:

(a) instead of having no limit points, the rn have no complete limit points (see

Alexandroff and Urysohn [14, p. 7 ] ) ; (b) the Λ-sets may intersect each rn

in a set of power less than that of rn; (c) the value j need not exceed 1; and (d)

the sets Bn may be taken as tn. In fact, our method of investigating these matters

was to consider first the case where Z is the Sierpinski space.

The following observation is of interest. In (6.3) we saw that the meet t of two

admissible topologies may not have enough open sets to be itself admissible,

unless Y is locally compact. Although there are obviously topologies which are

neither admissible nor proper, one might wonder whether any such are accessible

through lattice operations from admissible topologies. In other words, if the t

above is not admissible is it necessarily proper? A consideration of the proof of

(6.3) shows that the meet t of S and T need not be proper: each set of the form

04, JO, where A is an /ί-set, is open in t; but there is no reason why all R sets

should be compact, and hence (by (4.41)) why t should be proper.

An observation which sometimes leads to the identification of the greatest

proper topology is this: If the meet of two admissible topologies is proper, this

meet is the greatest proper topology. An application of this to the reasoning of

(6.3) yields a result which should be compared with the earlier example (5.3).

(6.5) THEOREM. When Y is not locally compact, and Z is the Sierpinski

space {0,15, then the k-topology may be the greatest proper topology.

Proof. Let y be the space of pairs of positive integers (i9 j) with an added

point "oo". Neighborhoods of oo shall be Vn{n = 1,2, * •) of points with / > n,

plus °° itself. Other points are isolated. Define an S-topology as follows. Let An

be the set of points (j, j) where j' > n + 1 when i is odd and j >n when i is even,

plus °° itself. Let Aa> be void. A set denoted by B shall be any finite set. The

S-topology shall be based on such A or B sets; call it S. The sets of the form

(An u B, 0), where 0 e {θ, \\ is the open point, clearly form a basis. Interchange

"odd" and "even" in the above and arrive at another topology T. Both these
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topologies are admissible, and hence > k, whence 5 Λ T > k. Let U be open in
S Λ T, and contain the function O Select an (An u B9 0) containing 0 and con-
tained in {/, the former being open in S. Then there must be an element f in U
which has the value 1 at almost all points with j <n, and also at almost all points
(i, j) with j = n and i odd. Now select another neighborhood (Ap u Bι,0)oί / in ί/,
the former being open in T Then clearly p > n. There is then a g in U with value
1 at almost all points with j < p and at almost all points (i, j) with j = p and i
even. By induction we arrive at a set K of points, finitely many on each row, such
that, if h(i,j) = 0 for / > N (any N) and for (i9 j) e K, then we have h € U. Let
Kι — K u \ω}. What we have just said is that if h β {Kί9 0) then h 6 U. Hence U
is open in Z^(k) If in the first neighborhood {An u B,0) we have n — °°, then we
have already a A -open set containing 0 and contained in t/ The argument is still
simpler for any function which is not 0 identically. Thus we have S Λ T < k9 or

It is probable that this example can be adapted to the case where Z is the
real interval [0, l ]

7. The space of closed sets. Let S be the Sierpinski space of two points 0 and
1, where {θ} is open and £ l | is not open. Consider S^ for any space Y. Let
f 6 S^9 and let F be the class of points on which f(y) — 1. Then F is evidently a
closed set, and clearly every closed set can be obtained in this way. The notation
of S has been so chosen that the correspondence f *-* F preserves the lattice
operations {S obviously is a lattice, and this introduces lattice ordering into S^ in
an obvious way) and the Boolean ring operations (where we use intersection and
symmetric difference (F t u F2 ) — (F t n F2 ) in the class 3 of closed sets). We
sum up this situation briefly as a theorem.

(7.1) THEOREM. S^ and 3 are isomorphic.

We shall henceforth prefer the symbol " 3 " , or "3(Y)" , to "S*"9 and shall
write the elements as F, ^ , , using F in a dual way when we write

(7.11) y e F if and only if F (y) = 1.

Having decided to regard 3 as a space of continuous functions, we naturally
investigate first the interpretation of any kind of convergence in 3 which does not
require introduction of any topology in the function space.

(7.2) THEOREM. Let \Fμ] be a directed set in 3 . Then Fμ converges con-
tinuously (see circa 2.4) to F if and only if F 3 lim sup Fμ.

Before proceeding to the proof, we must explain what the lim sup of a directed
set of sets Eμ is. Generalizing Hausdorff's definition (Alexandroff-Hopf [ l ,
p. I l l ]) in an obvious way (see Choquet [6]) we say:
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(7.21) y e lim sup Eμ if and only if for every μ and every neighborhood V of

y there is a μ' > μ such that Eμi intersects V,

We add the customary companion:

(7.22) y 6 lim inf Eμ if and only if for every neighborhood V of y there is a

μ such that for every μ1 > μ, £μ/ intersects F.

Proof of 7.2. Let lim sup F μ be denoted by L. Then L (y) — 0 precisely if for
some μ and some V of y and every μ ' > μ we have Fμ / (y) = 0 Now suppose
that Fμ converge continuously to F (the definition precedes (2.4)), and suppose
F(y) = O It follows at once that L (y) — O Hence the continuous convergence
implies L CL F (see (7.11)) Conversely, suppose F Z> L. To check continuous
convergence we need only consider y such that F(y) — 0. Then L(y) — 0. Reading
the second sentence of this proof, we see that the condition of continuous con-
vergence is satisfied.

Observe that continuous limits are not unique. Everything converges con-
tinuously to Y itself, for example.

The condition that a topology for 3 should be admissible is easily deducible

from (2.5) and (7.2).

(7.23) THEOREM. A topology t for 3 is admissible if and only if for every
directed set of closed sets \Fμ\ which converges to F according to t we have
F 3 lim sup Fμ.

We shall now consider the significance of proper topologies.

(7.3) THEOREM. Let X and Y be spaces, and let Φ be a closed subset of
X X Y. For each x let Fx be the closed set of points y for which (x9y) € Φ. Then
a necessary and sufficient condition that a topology for o be proper is that for
every Φ the associated mapping

be continuous*

According to (6.25), (6.01), and (4.71), when Y is a regular space we can
obtain a topology t with the properties of (7.23) and (7.3) if and only if Y is locally
compact, and that topology will be the ά-topology. We wish to compare this topol-
ogy with that introduced by Hausdorff into 9 when Y is a compact metric space
(see Alexandroff-Hopf [ l ] ) and further generalized by Choquet [6, pp.87-93].
Hausdorff's topology H is surely not the same as the A-topology, for S^(H) is a
Hausdorff space whereas in S^(k) the closed set Y has, as its only neighborhood,
3 itself. Theorem VI (Alexandroff-Hopf [ l , p.115]) shows that convergence in
SY(H) fulfills the condition of (7.23), so that H is admissible, and thus H > k. As
a matter of fact, the void set is omitted in Hausdorff's treatment; but a formal
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application of definitions shows that it would be isolated, as it is in the A -topology.
Since Hausdorff's topology H makes 3 compact [ l ] ,there is no other Hausdorff

topology H' lying between k and H. This supports the conjecture that H is the
least admissible Hausdorff topology.

8. Topological products. The techniques of this paper enable us to give an
answer to the following question: If X is an arbitrary set and Y a space, if T is a
topology in the set of all couples (x,y), x β X, y β Y, yielding a topological
space P, when can a topology t be introduced in I so that P is the topological
product X(t)XY?

(8.1) THEOREM. With the notations as above, assume T has the following
properties:

(8.11) For each fixed x0, the mapping fχQ(y) = (%o,y) of Y into P is continuous;

(8.12) The mapping g(x,y) — y of P into Y is continuous;

(8.13) Given any two points ( * 0 , y 0 ) , ixo,yό~) of P, and any neighborhood V
°f (χo>yo)i there exists a neighborhood ψ of y0 and a neighborhood V of (XQ^Q)
such that ix,y~) 6 V and y 6 W imply (x,y) € V.

Then, if PY has a proper and admissible topology, there exists a topology t in
XwithX(t)X Y = P.

Proof. Since by (8.11), for each x, fx(y) e PY, the map F*, F*U)(y) = fx(y),
is a one-to-one mapping of X into P Y, and so in all that follows we shall consider
X C PY. We now give X the topology t of a subset of the space P Y. Then we have
F* : X(t) —* PY; and, due to the admissibility, for the associated map we have
F: X(t) X Y ^> P. It is evident that F is the identity map.

On the basis of (8.13) we note that defining h[y9 {x,y~)] = (x,y) we get
h : y X P —» P; by the properness we find A* : P —• PY, and it is easy to see that
Λ* maps P into X C pY9 so that we have A* : P —» X. Using (8.12), we also have
g: P - > Y . D e f i n i n g H(x,y) = [h*(x,y),g(x,y)], w e t h u s h a v e H:P ~>X(t)XY,

and H is the identity map. Hence, from the above we find that X (t) X Y and P are
homeomorphic, and the theorem is proved.

Note that in case Y is locally compact and regular, then from (4.71) the k-
topology in pY, for any space P, is admissible and proper.

(8.2) THEOREM. Let Y be a locally compact regular space, and let X be an
arbitrary set. A necessary and sufficient condition that a topology T in the set
X X Y be a product topology with one factor the space Y, is that T satisfy (8.11)
through (8.13).

Proof. The necessity of (8.11) through (8.13) is immediate from elementary



30 RICHARD ARENS AND JAMES DUGUNDJI

properties of topological products. The sufficiency of (8.11) through (8.13) stems
from (4.71) and (8.1).

Another result on the behavior of topological products that is implied by our
results will now be given. Let Y be a fixed space, and X a set carrying topologies
5 and t. In the set of all pairs, XX Y, let S be the product topology of Y X Z(s),
T the product topology of Y X X(t), and R the product topology in Y X X(s A t).

(8.3) THEOREM. In the set XX Y, we always have R < S A T. Furthermore:

(8.31) // Y is locally compact and regular, then R — S A T;

(8.32) // Y is not locally compact, then in general R Φ S A T.

Proof. If W is open in R9 and iy,x) € W, then there is a set of the form ί / X F ,
U open in Y, V open in X{s) and in X(t), with (y,x) 6 U XV C W. This means
that LI X V is open in 5 and in T, hence in S A T. It follows that W is open in
5 Λ T, so that R <S A T.

Ad (8.31). Let P denote the set X X Y with topology S A Γ. Since Y is locally
compact, pY has, by (4.71), an admissible and proper topology. We first remark
that for the identity map, we have g: Y X X{s) —» P; due to properness, we have
for the associated map g*:X{s)—> P?. Using the same map, we also obtain
g* : X(t) —> PY, and so evidently we have g*: X(s Λ t) —» PY. By admissibility
we find for the identity map g: Y X X{s Λ t) —* P. This shows that S A T < R
and, with what we have already shown, this gives S Λ Γ — R,

Ad (8.32). Let us take Y to be the space of (6.4) and X to be the set Zγ of
(6.4). Let s and t be two admissible topologies whose meet is not admissible. We
show that R^S A T. First we note that the evaluation map ω of Y X Z^{s A t)
into Z is not continuous in R since s A t is not admissible. But ω is clearly
continuous in S A T, since it is continuous in both S and T. This proves that
R Φ S A T, and also establishes the theorem.

In case both factors are allowed to change, the assertion (8.32) always holds,
regardless of whether Y is compact or not.

(8.4) T H E O R E M . Let X be an arbitrary set, and let s and t be two topologies
in X. IfS is the topology ofX(s) X X{s)f T the topology ofX(t) X X(t), and R the
topology of X(s A t) X X(s A ί), then in general R Φ S A T.

Proof. We take X to be the countable set of (3.54) and s and t the two compact
Hausdorff topologies mentioned there. We remark that it is trivial to prove that the
diagonal D = \{x9y)\ x ~ y\ in a space X(r) X X(r) is closed if and only if r is
a Hausdorff topology To prove the theorem, we note that on the basis of this
remark, D is closed in S and in T, hence in S A T, but that D is not closed in R
since s Λ ί is not a Hausdorff topology.
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